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- ISECTION 1

INTRODUCTION

One of the fundamental and frequently recurring optimization prob-

lems in fiber composite structure is the design of laminates subject to

various inplane loading conditions, considering strength and stiffness.

It is well understood that, in laminate designs, the most important design

variables are ply orientation angle, ply thickness and volume fraction of

fibers.

Kicher and Chao [11 has considered an optimal laminate design

problem, in which the ply thickness of preassign ply angle was consid-

ered as the only design variable under the minimum weight optimization

criteria. Under this criteria the volume fraction of fiber is indirectly

related to the ply thickness, but ply orientation angle is completely

independent in the design and causes a serious difficulty in laminate

optimization design.

A new approach in the design of laminates was proposed in this

report, which utilizes a first ply failure (FPF) criteria as the objective

function in the design. Under the FPF criteria, the ply orientation angle

is a very sensitive design variable and the optimal laminate designed has

the most strength in the sense of first ply failure criteria.

The design of various simple symmetric laminates (see Figure 2 for

the descriptions of laminates A-F) of the composite material T300/5208

was carried out under the FPF criteria. The fraction of fiber content

is constant and each ply has equal thickness throughout the laminate.



The design angles * of the laminate A-F are obtained under

various loading conditions (N 1 , N2 , N6 ) and are presented in Figures

18-29. In addition, the modulus, compliance and engineering constants

of the laminate A-F are tabulated in terms of the ply design angle 0 and

are presented in Figures 3-17.

It is interesting to compare the optimal design angle 0 with the

corresponding modulus, compliance and engineering constants for these

laminates. It is also noted that the FPF optimal criteria can be applied

to the design of more general laminates but this requires very sophisticated

computer optimization techniques.
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SECTION II

INPLANE STIFFNESS

The composite laminates, having a symmetry of stacking sequence

about the midplane surface, behave as a homogeneous anisotropic plate.

The effective modulus of the composite laminates is simply the arithmetic

average of the modulus of the constituent plies. The main stress strain

relations for a composite laminate are, for modulus

N 1 =A11c + A 1 2 c 2 + Al 6C 6

N 2 =A21E: + A22e2 + A 2 6 e 6  (1)

N 6 = Arjej + A 62c 2 + A 66 - 6

and for compliance

e = aj 1 N1 + a1 2 N2 + a 16 N6

£2 = a2zNi + a 2 2 N2 + a 26 N6  (2)

C 6 = a61 N1 + a6 2 N2 + a 6 N6

where N1 , N2 and N6 are stress resultants over the thickness h of the

laminate and are defined by

N i = a, dz , (i =1, 2, 6) (3)

-h/2

and e. (i = 1, 2, 6) are inplane strain components, constant through the

thickness. The modulus components Aij are given in the following

table:

3
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Table 1 Modulus Components, Ai

1U 2  U3

F1/ U1  1 2

A 22 /h U1 12

12 4 2

6 / 5 2

A16/h3
4

A26/h34

In which U.i (i=l, 2,... ,5) are invariances given in Equation (3.15)

of Tsai and Hahn 12] and

V*h/ (cos2e. cos4e, sin2e, sin4e)dz (4)
(1, 2, 3, 4) h I

- h/2

The engineering constants for the laminate are defined as follows:

0

P El= 1 /ha 1

E:' = I1/ha 66  (5)

V21 = 21a1

The equation of approximate first ply failure surface (strain envelop)

is given by

2 + 2 + = 2
1 2

4



(see Equation (7.102) of Tsai and Hahn [2]. Let us set

2 2 2

Q = 1 + e + E: , (6)
1 2 6

then FPF optimal criteria is to minimize the value of Q. The objective

function Q has another meaning, mainly the value YFr is the norm or

length of the strain vector (c 1, , E /,-). Hence, the FPF criteria
S2 6

minimizing the value of Q is the equivalent to minimizing the norm of

strain vector (E , E / -). The laminates that we have considered
1 2 6

to design in this report are so simple that Q is a function of the design

angle only for given loading conditions (N 1 , N2 , N 6 ).
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SECTION III

CONTINUOUS LAMINATE

It is interesting to consider a symmetric laminate whose ply orienta-

tion angle increases uniformly. We call this laminate a continuous

laminate. If the ply orientation angle sweeps between -4 and , then

is called the sweeping angle of a continuous laminate. The relation

between laminate depth Z and ply angle e is given by (See Figure 1),

Z h + 1 < e < (7)

Note that a continuous laminate with one complete revolution of plies

has the sweepina angle 0 = 900. The modulus and compliance of the

continuous laminate for 00 < 0 < 900 are given in Figure 8 and 14.

In FPF optimal design of the continuous laminate, the sweeping

angle p is the only design variable for given loading conditions

(N 1 , N 2, N6 ).

6



SECTION IV

DESIGN OF LAMINATES

In addition to the continuous laminate, various laminates such as

angle ply laminate and angle ply laminate with additional plies of 0, 90, -45

or 45 degree orientations were considered for FPF optimal design. For

simplicity, these laminates are named Laminate A, B ...... F, which are

specified in Figure 2. The composite material that is used is T300/5208

and its invariants values (in GPa) are;

I1  = 76.37 U2 = 85.73 U 3 = 19.71

14 = 22.61 15 = 26.88

Table 2 gives the expression of V* (i = 1, 2, 3, 4), where V* = V /h,

for the Laminate A-F in terms of design angle

It is clearly seen from Equation (1), (2) and (6) and Tables 1

2 2 2

and 2 that Q =c + e2 +-f6 is a function of 0 and (Nj, N2 , N 6),

and hence Q depends only on 4 if (Nj, N 2 , N6 ) are known values.

Therefore under a given stress loading (Nj, N 2, N6 ) the optimization

problem is to find the value * so that Q = Q(4*) is the minimum among

all values of Q = Q( ) for 0 < 4 <900.

The stresses N1 , N2 , N6 are normalized by the largest value so

that 0 < N. < 1, i = 1, 2, 6. Accordingly, the laminate thickness h

is set to be 1. The results of optimal design angle for Imainates A-F

were presented in Figures 18-29. The cases that N 1 = 1 and N 6 = 1 are

considered for each Iminate. The case that N2 = 1 is identical with that

of N1 = 1 if the laminate is rotated by 90 degrees.

) 7
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Table 2 Computation of V*

Ply *

Laminate Orientation VV
Angle _________

A -,4)cos(2)) cos(4))

B~ (c' 1 cos(24))+1] 1I:2cos(40)+l

11
C -0,90,4 0 [2cos(24))-1] ~ '2cos(44))+11

D-0,0,90,o os2 1 [.Lcos (40))+11

E- ),-45,45,~ 0ycos(24) 1to(4)1

F Continuous 1 sin(24)) sin (4 0)
Laminate 204

V =0, V =0
3 4

The comparison of Q values among the laminates A-F is given in

Figure 30 and 31. The smaller the Q value the stronger the laminate

in FPF criteria. When we apply our results of design angle 4) in actual

laminate design, the thickness of laminate h should be adjusted to meet

the original values of stress conditions (N 1, N2 , N 6). The computations

were carried out by the computer CDC 660 at W right- Patterson Air

Force Base.
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*SECTION V

CONCLUSIONS

The first ply failure criteria is proposed in the composite laminate

design. It is found that design angle * is very sensitive under this

criteria and the results of design angle € can be directly useful to

laminate designers. Among the laminate A-F, laminate F performs over-

all the best in FPF criteria, and then followed by laminate B under

maximum longitudinal stress and laminate E under maximum shear stress.

$9
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Z h: laminate thickness
z ~ : sweeping angle

2

Z=( (5)+1

-~ 0

I FIGURE I CONTINUOUS LAMINATE



1. LAMINATE A: 2. LAMINATE B: Fo4,oAol

3. LAMINATE C: -09,l 4. LAMINATE D:[00,01
2 2

5. LAMINATE E: [-c-45,45,0I 6o. LAMINATE: F CONTINUOUS
2 2 LAMINATE

FIGURE 2. LAMINATESA F
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