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Abstract. Reducing data transmission to conserve energy and provide
cost-efficient query answers in sensor networks is the topic of this paper.
We consider a sensor network logically organized into a tree structure.
The sensors at the lowest level cache raw data, and data is stored with
greater degree of compression as we move up the tree. Thus a query
answered using data at a lower level has less error but requires more
energy. We have proposed a model for accounting the cost of resources
consumed and the error in the result obtained. We have formulated an
optimization problem for the trade-off between the error cost and the re-
source cost of answering queries. Its solution enables us to determine the
optimal distribution of data reduction at each level. We have presented
numerical solutions for some sample data, illustrating the practicality of
the scheme.
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1 Introduction

Conserving energy in sensor nodes is one of the crucial problems in wireless
sensor networks. This is specially true for a large sensor network deployed in
inaccessible fields. Data transmission is the major energy consumer in wireless
sensor networks [1]. To reduce the amount of data transmitted, we investigate
a data reduction scheme for efficiently answering queries in a hierarchical data
caching structure of large sensor networks while meeting user accuracy require-
ments. In the caching structure, data at different levels is with a corresponding
degree of compression [2]. Sensors at the leaf level cache raw data, compress
the data and transmit the compressed data to the intermediate upper level. As
we move up the levels, data is compressed to greater extents, but is cached for
longer duration. The root node receives user queries, routes the query to an ap-
propriate level and returns the result obtained from lower levels. Caching of the
compressed data enables to answer greater historical queries efficiently as some
queries can be answered at higher levels instead of being sent to the lower levels.
This caching also reduce data transmission in the network since not all the raw
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data is sent to upper levels. These gains are at the cost of query result accuracy.
Queries answered at higher levels will get larger error in the results.

The rest of the paper is organized as follows. The cost model is proposed to
describe the cost of query answering in Section 2. Section 3 presents an optimal
distribution scheme for data reduction by optimizing the trade-off between en-
ergy consumption and user error tolerance. Section 4 reports the experimental
results which indicate that our scheme can be adapted depending on the user
requests and some network parameters. We present related work in Section 5
and conclude our work in Section 6.

2 Cost Model

Caching data hierarchically with different compression degrees can reduce data
transmission. While queries answered with data at higher level get larger error in
results. To quantitatively analyze the trade-off between energy consumption and
result accuracy, we define two costs, transmission cost and error cost, to represent
the cost for query answering. As energy consumption on computing in a sensor
node is orders of magnitude lower than the consumption on transmission, we
ignore computation cost in this paper [1].

We define the energy consumption for data transmission as transmission cost,
denoted by CT . Let ct denote the unit cost for data transmission, which can
be quantified as cents per bit in practice. Let Bt denote the total amount of
data transmitted. Thus, CT is given by ctBt. As the transmission for queries
and query results is much less than the one for sensor data, and data compres-
sion techniques will not be applied on query results, we ignore it in this paper.
Besides the transmission cost, we define error cost to represent cost generated
by errors, which is denoted by CE . When queries are answered at upper levels
where compressed data are cached, the errors are generated in the results. We
use relative error as a measure of this error, which is defined as:

|result obtained−exact result|
exact result

Let ce denote the unit error cost, which can be quantified as cents per relative
error in practice. Let E denote the average relative error on all query answers.
Thus CE is given by ceE. When queries are answered in the caching structure,
the transmission cost and error cost will change with varying compression degree
of data. We use cumulative reduction ratio to represent compression degree on
the raw data, denoted by R, which is defined as the ratio between the compressed
data size and raw data size. Reduction ratio is used to represent the data com-
pression degree between two adjacent levels in the hierarchical structure and the
definition is given in Section 3. When the cumulative reduction ratio increases,
more data are transmitted to upper levels, the transmission cost increases. On
the other hand, the increase in cumulative reduction ratio leads to less errors
in query results, thus the error cost decreases. The relationship between the
the costs and cumulative reduction ratios are illustrated in Fig. 1. In this pa-
per, we aim to find a data reduction scheme with minimum total cost for query
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cumulative reduction ratio

cost

error
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Fig. 1. Relationship between Transmission Cost and Error Cost

answering. Let C denote the total cost, i.e. the sum of transmission cost and
error cost, which is given by:

C = CT + CE = ctBt + ceE.

3 Optimal Distribution of Data Reduction

Given a group of queries to be answered in the hierarchical caching structure,
we concern the optimal compression degree for data at each level to keep the
overall cost minimum. For instance, there is a three-level caching structure. The
lowest level is level 0, and the root node is at level 2. The number of queries to
be answered at level 0, 1, 2 are 500, 300, 100 respectively. Thus the total cost of
answering this group of queries is C = ct(B1+B2)+ce(500e0+300e1+100e2)/900,
where B1 and B2 are the amount of data transmitted from level 0 to 1 and from
level 1 to 2 respectively, e0, e1, e2 are the average relative error in query results
at level 0 to 2 respectively. If the number of queries to be answered at level
0, 1, 2 changes to be 100, 400, 400 respectively, in order to obtain minimum
overall cost, it is expected that e1 and e2 decrease to make the error cost low.
The decrease in e1 and e2 need the increase in B1 and B2, thus the transmission
cost increases. Hence, we want to find the best average relative error and the
amount of data to be transmitted at each level to get minimum overall cost of
query answering. This is essentially the problem of finding the data compression
degree at each level. To solve this problem we formulate an optimization problem
in this section to give a general statement.

We first consider the data transmission cost. Suppose there are l levels in the
hierarchical structure, numbered as 0 to l − 1 from bottom to upper levels. At
level 0, each sensor node produces raw data at the rate of b0. At a certain upper
level i, a sensor receives compressed data from its children at the rate of bi. Each
sensor at level i has ni−1 children. We then define reduction ratio at level i as the
ratio between the data received in a node at level i and the one received in all its
children at level i − 1. Let ri denoted the reduction ratio, which is given by:

ri = bi

ni−1bi−1
.
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Defining reduction ratio enables us to determine the compression degrees
among the levels. In fact, the cumulative reduction ratio R can be calculated by
the reduction ratios. Let Ri denote the compression ratio of the data at level i,
there is Ri =

∏i
j=1 rj . Let N0 be the total number of sensors at level 0. Then

the amount of data received at level i, denoted by Bi, is given by:

Bi = N0b0Ri = N0b0
∏i

j=1 rj i ∈ [1, l − 1]

Thus the total amount of data transmitted is:

Bt =
∑l−1

i=1 Bi = N0b0
∑l−1

i=1
∏i

j=1 rj i ∈ [1, l − 1]

The total transmission cost is:

CT = ctBt = ctN0b0

l−1∑

i=1

i∏

j=1

rj (1)

We next consider the error cost of query answering. Let ei denote the average
relative error of a query result when the query is answered at level i. Let qi

denote the number of queries answered at level i. Given a group of queries, the
average relative error E of all the queries is:

E = e0q0+e1q1+...+el−1ql−1
q0+q1+...+ql−1

=
∑ l−1

i=0 eiqi
∑ l−1

i=0 qi

In this equation,
∑l−1

i=0 qi is the total number of queries posed at the hierar-
chical caching structure. For simplicity, let q denote the total number of queries,
i.e. q =

∑l−1
i=0 qi. e0 is 0 as the raw data is cached at level 0. The error ei is

due to the compressed data and is a function of cumulative reduction ratio. In
general, ei can be represented as:

ei = g(Ri) (2)

With different compression techniques applied on the sensor data, this func-
tion will be different. Further description on this function is given later in this
section. Hence, the total error cost is given by:

CE = ce

∑l−1
i=1 eiqi

∑l−1
i=0 qi

= ce

∑l−1
i=1 qig(

∏i
j=1 rj)

∑l−1
i=0 qi

(3)

Given the costs of transmission and error above, we want to find the optimal
reduction ratio at each level to keep the overall cost minimum. Thus, this problem
is formulated as an optimization problem:

Minimize
C = ctN0b0

∑l−1
i=1

∏i
j=1 rj + ce

∑ l−1
i=1(qig(

∏ i
j=1 rj))

∑ l−1
i=0 qi

1 ≤ i ≤ l − 1 (4a)

This problem is under following constraints:

– The errors in query results meet user specified accuracy requirement, i.e.

0 < g(
∏i

j=1 rj) < Tei (4b)
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where Tei is the threshold of error tolerance at level i, which is decided by
the user accuracy requirement. The discussion on user accuracy requirement
and Tei is given later in this section.

– reduction ratio at each level is between 0 and 1.

0 < ri < 1 (4c)

– As one of the characters of the hierarchical caching structure, older historical
data is cached at higher levels than the data at lower levels. Let ti be the
time span for data cached at level i, there is:

0 < ti−1 < ti (4d)

Let Mi be the memory space for caching in a sensor node at level i, the time
span for data cached at this node is given by:

ti = Mi

bi
= Mi

b0
∏ i−1

k=0 nk

∏ i
j=1 rj

.

Description of ei and Tei

As mentioned in Equation(2), the average error in query results at level i is the
function of ratio Ri. This function is determined by the compression technique
used. In our previous work, we proposed data approximation algorithms for
sensor data [3]. Using some real life data sets, we also analyzed the relationship
between the data cumulative reduction ratio and the error generated from the
approximated data. Based on our experiment results, we set the error function
as following to further illustrate the optimization problem in the next section.

ei = g(Ri) =
k(1 − Ri)

Ri
(k > 0) (5)

where k is the coefficient of the function. With different compression algorithms
or on different data sets, the value of k will be different. We set k as 2 in this
paper. In this function, if Ri is 0, then e = ∞. This means that when data is
totally compressed to size 0, the queries are not able to be answered. If Ri = 1,
e = 0. This indicates that when the raw data is sent to the upper levels, there
will be no error for query answering. If Ri > 1, the value of e is less than zero
which is meaningless. Thus, it complies with our requirement that the value of
Ri should be between 0 and 1. The graph of this function is illustrated in Fig. 2.

We use the idea presented by Ganesan et al to define the relationship between
user accuracy requirement and the error with the compressed data [4]. Users gen-
erally expect less errors for queries referring to recent data. If queries refer to the
older data, larger error is tolerable. With data cached at the hierarchical caching
structure, the errors are represented by a step function. Fig. 3 illustrates the re-
lationship between the user requirements and the errors, where z(t) represents
user requirements, f(t) represents the errors obtained. The values of f(t) should
be less than z(t) to meet user requirements. For instance, within (t1, t2], f(t1)
should be less than z(t1) to keep f(t) over (t1, t2] satisfy the user requirements.
Thus z(t1) is threshold of error tolerance for level 2, which is defined as Te2. To
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answer queries with data at level 2, there is e2 < Te2 = z(t1). In general, the
error threshold is given by:

Tei = z(ti−1).

4 Solution of the Optimization Problem

It appears that the optimization problem in Equation(4) is too difficult to solve
in general. However, we can solve it numerically for a given set of parameters.
In the following, we use two sets of parameters to illustrate the capability and
usefulness of the proposed optimization technique.

4.1 Sample Problem with Two Levels

We consider a sensor network with two-level caching. At level 0, there are N0
sensors and each sensor produces data at the rate of b0. The raw data is com-
pressed and sent to level 1 at reduction ratio r1. For this case, the problem
described by Equation(4) can be simplified as following:

Minimize
C = ctb0N0r1+kce

q1
q0+q1

1−r1
r1

(6a)

Subject to:
0 < k 1−r1

r1
< z(t0); (6b)

0 < r1 < 1; (6c)
0 < t0 < t1. (6d)

For simplicity, we assume the user specified accuracy requirement is a linear
function, i.e. z(t) = t. The time span for data at level 0 is t0, which equals
M0/b0. Thus, the constraint(6b) can be rewritten as:

0 < k 1−r1
r1

< M0
b0

To obtain the minimum value of C, let C
′
= 0. Then we can get:
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r1 =
√

kce
q1

q0+q1
(ctb0N0)−1

To illustrate the nature of the solution, we use sample values in the equations
above. Some of them are based on the typical values presented in the literature
[5,6].

ct = 10−6¢/b ce = 1¢/% b0 = 10Kb/s
N0 = 500 M0 = 512KB q0 = 10, q1 = 20, q = 30
The optimal reduction ratio for this case is r∗1 = 0.516.
Fig. 4 indicates the effect of ratio r1 on the transmission and error cost. We

observe that, in accordance with Equation(1) and (3) respectively, the trans-
mission cost increases linearly and the error cost reduces dramatically with r1.
Furthermore, the optimal reduction ratio will be different with varying network
parameters, such as ct and ce. In Fig. 4(a), the transmission cost changes slower
than the error cost over the reduction ratio 0.1 to 0.9. Increased the unit trans-
mission cost ct to 3 × 10−6¢/b, we get another curve of transmission cost illus-
trated in Fig. 4(b), where the transmission cost increases rapidly. The optimal
reduction ratio then decreases, which indicates that the data is sent to level 1
at higher compression degree when the unit transmission cost increases.
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Fig. 4. Cost Trade-off for the 2-level Caching Structure (b0 = 10Kb/s, ce = 1¢/%, N0 =
500, k = 2, q0 = 10, q1 = 20)

Except the network parameters, the time span of data requested by queries
also affects the optimal reduction ratio r∗1 . This is illustrated in Fig. 5. Given a
group of queries, when there are more queries referring historical data at level
1, i.e. q1/q increases, the optimal reduction ratio increases. This enables more
data send to level 1, so that those queries get less errors in results. We also plot
another curve by changing the value of the error function coefficient k. Since the
increase in k causes the rapid increase in errors, r∗1 will increase to allow more
data send to level 1. This is verified by the experiment results reported in Fig. 5,
where r∗1 increases rapidly with k = 3 comparing the one with k = 2.

2-level case is a special example as it only has one reduction ratio parameter
r1. As it can clearly show the effect on costs from the change of reduction ratio,
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we discuss it in a separate section. In the following, an example of multi-level is
used to analyze the effect on reduction ratios from the change of data requests
and network parameters.

4.2 Sample Problem with Four Levels

We use 4-level caching structure in a sensor network as an example to illustrate
the multi-level problem. The transmission cost in Equation(1) can be simplified
as:

CT = ctb0N0
∑4−1

i=1
∏i

j=1 rj = ctb0N0(r1 + r1r2 + r1r2r3)

Same error function ei and user requirement function z(t) as the ones in the
2-level case are used here. Then the error cost is:

CE = ce

∑4−1
i=1 (qig(

∏i
j=1 rj))/

∑4−1
i=0 qi = kce

q (q1
1−r1

r1
+ q2

1−r1r2
r1r2

+ q3
1−r3

r3
)

The threshold of error tolerances on level 1 to level 3 is Tei = z(ti−1) =
ti−1, i ∈ [1, 3]. Suppose all the nodes have same number of children n. Then
Equation(4) is simplified as:

Minimize:
C = ctb0N0(r1 + r1r2 + r1r2r3) + kce

q (q1
1−r1

r1
+ q2

1−r1r2
r1r2

+ q3
1−r1r2r3

r1r2r3
)

Subject to:
0 < k 1−r1

r1
< M0

b0
0 < k 1−r1r2

r2
< M1

nb0
0 < k 1−r1r2r3

r3
< M2

n2b0
0 < r1 < 1 0 < r2 < 1 0 < r3 < 1
0 < t0 < t1 < t2 < t3

Suppose the relevant parameters are set as:

ct = 1 × 10−6¢/b ce = 1¢/1% b0 = 10Kb/s
n = 8 N0 = 512 k = 2
M0 = M1 = M2 = 512KB q0 = 10, q1 = 500, q2 = 100, q3 = 80
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This nonlinear constraint problem can be solved using Matlab tool and the
solution is:

r∗1 = 0.50, r∗2 = 0.58, r∗3 = 0.89

Next, we consider the effect of the user queries and network parameters on the
reduction ratios. The results are reported in Fig. 6. Fig. 6(a) illustrates the effect
on the reduction ratios when the percentage of q1 increases. r∗1 increases along
with the increase in q1/q. This enables more data sent to level 1 so that less error
generated in answering queries at this level. r∗2 and r∗3 decrease because of the
decrease in the percentage of q2 and q3. Fig. 6(b) reports the effect of the increase
in percentage of q2 on reduction ratios. r∗2 increases along with the increase in
q2/q. This enables more data sent to level 2 so that less error generated at this
level. When q2/q is less than 50%, its rise leads to the slight decrease in r∗1
because of the decrease in q1/q. When q2/q is over 50%, its effect on r∗1 turns
to be determinant, thus r∗1 starts to rise. Because of the decrease in q3/q and
the increase in r∗2 , r∗3 rapidly drops. Fig. 6(c) shows the effect of the increase in
q3/q. The effect on r∗1 is similar with the one in Fig. 6(b). When q3/q is less than
50%, r∗2 shows a gradual increase as the consequence of the interaction between
the slight decrease in r∗1 and rapid increase in r∗3 . When q3/q is over 50%, its
effect turns to be determinant. Thus r∗2 approximately reaches 1 to allow more
data to be received at level 2 and to be sent to level 3. In a summary, Fig. 6
indicates that the change in the percentage of queries at certain level has direct
effect on the reduction ratio at the corresponding level and also strong effect on
the immediate upper level. Furthermore, the results show that more queries are
answered at a certain level, more data is sent and less errors will be generated
at this level.

Unit transmission cost ct and unit error cost ce also have effect on the re-
duction ratios. Fig. 7(a) illustrates the effect of ct on r∗i , where log(ct) is used
as x-axis value for better display. When ct increases from 10−6¢/b, r∗1 firstly
decreases while r∗2 and r∗3 keep constant. When ct increases up to 3.16 ∗ 10−5¢/b
(i.e. log(ct) = −4.5), r∗1 stops decreasing and r∗2 starts to decrease. The sim-
ilar process is taken place on r∗2 and r∗3 . When ct reaches 3.16 ∗ 10−3¢/b (i.e.
log(ct) = −2.5), r∗2 stops decreasing and r∗3 starts to rapid decrease. The de-
crease process among r∗i indicates that the increase in ct gradually affects the
reduction ratios from lower level. This is due to the total amount of data trans-
mitted at lower levels is larger than the one at higher levels. Fig. 7(b) illustrates
the effect of ce on r∗i . The reduction ratios in the hierarchical structure shows the
same change order as the ones in Fig. 7(a), but with different change direction.
The increase process among r∗i indicates that the ce also gradually affects the
reduction ratios from lower levels. The first increase of r∗1 enables more data to
be sent from lower level, and alleviates total error cost.

In summary, these results show the effect of reduction ratio on the cost of
query answering, and the effect of user requests and network parameters on the
distribution of data reduction. We observe that the scheme is adaptive to keep
the overall cost minimum. Further, in this scheme, the increase in the percentage
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Fig. 6. Reduction Ratios as A Function of q1/q, q2/q, q3/q (ct = 10−6¢/b, b0 =
10Kb/s, ce = 1¢/1%, n = 8, N0 = 512, k = 2, M0 = M1 = M2 = 512KB)

of queries posed at a certain level leads to the increase in the reduction ratio at
this level, i.e., less compression is applied on the data sent to this level.

5 Related Work

A wide range of methods have been proposed to reduce data transmission to con-
serve energy in wireless sensor networks. These can be roughly divided into three
categories: data routing, data compression, data prediction. Some researchers in-
vestigate to route the sensor data efficiently. Meliou et al present an algorithm to
compute the optimal communication path for data transmission [7]. An analyt-
ical model and a heuristic algorithm are proposed in [8] to construct an energy
efficient routing for real time data aggregation gathering. Exploiting the corre-
lation character in sensor data, some researchers have devoted to sensor data
compression or approximation to reduce data transmission. Exploiting spatial
correlation in sensor data, a distributed wavelet compression algorithm is pro-
posed in [9]. Lazaridis et al represent sensor data in an approximate format by
dividing the time series into segments [10]. Some researchers investigate to re-
duce data transmission by predicting data in sink node. For example, an ARIMA
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model is used to predict data in sink node in [11]. Although these work consider
the trade-off between energy consumption and data quality, they neither pay
attention on the cost of query answering nor put the error cost in overall cost
for optimizing their solutions.

Our work is similar to that of Ganesan et al, where the compressed data
is stored in a hierarchical structure [4]. Their work focuses on optimizing the
memory usage, i.e. how long the data can be cached at each level, to satisfy
user accuracy requirements given the limited total memory capacity. Our work
focuses on optimizing the data reduction ratios while keep the overall cost to a
minimum.

6 Conclusion

Given a group of queries to be answered with hierarchically cached sensor data,
different data reduction schemes lead to different costs of data transmission and
error. In this paper, we provided a technique for determining the optimal strategy
for data compression to minimize the energy consumed while meeting the user
requirement. We used example data drawn from the literature to illustrate the
practicality of the technique presented. The results show that the optimal data
reduction scheme can adaptively change according to network parameters and
user requirements.
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