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AN OPTIMAL DOMAIN DECOMPOSITION PRECONDITIONER
FOR LOW-FREQUENCY TIME-HARMONIC

MAXWELL EQUATIONS

ANA ALONSO AND ALBERTO VALLI

Abstract. The time-harmonic Maxwell equations are considered in the low-
frequency case. A finite element domain decomposition approach is proposed
for the numerical approximation of the exact solution. This leads to an
iteration-by-subdomain procedure, which is proven to converge. The rate of
convergence turns out to be independent of the mesh size, showing that the
preconditioner implicitly defined by the iterative procedure is optimal. For
obtaining this convergence result it has been necessary to prove a regularity
theorem for Dirichlet and Neumann harmonic fields.

1. Introduction

The Maxwell equations read

∂D
∂t

= rotH−J ,

∂B
∂t

= − rotE ,

where E andH are the electric and magnetic field, D and B the electric and magnetic
induction, respectively, and J is the density of the electric current. The following
constitutive relations

D = εE , B = µH

(where ε and µ are the dielectric and magnetic permeability coefficients, respec-
tively) are assumed to hold, as well as the Ohm’s law

J = σE

(where σ is the electric conductivity). The quantities ε, µ and σ are in general
symmetric matrices, depending on the space variable x; ε and µ are assumed to be
positive definite, whereas σ is positive definite in a conductor and vanishing in an
insulator.
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608 ANA ALONSO AND ALBERTO VALLI

Writing the Maxwell equations in terms of E and H only, we find

ε
∂E
∂t

= rotH− σE ,

µ
∂H
∂t

= − rotE .

We are interested in the so-called time-harmonic case, i.e., we assume that E and
H are given by

E(t,x) = Re[E(x) exp(iαt)],
H(t,x) = Re[H(x) exp(iαt)],

where E and H are three-dimensional complex-valued vector fields, and α 6= 0 is a
given angular frequency. Therefore, the equations become

iαεE = rotH− σE,

iαµH = − rotE,
(1.1)

and eliminating H we find

rot(µ−1 rotE)− α2(ε− iα−1σ)E = 0.(1.2)

If we are considering the low-frequency case, i.e., the parameter α is small, by
checking the effective values of the dielectric coefficient ε, the magnetic permeability
µ and the conductivity σ for general media, it can be seen that the parameter α2ε
is much smaller than µ−1 and ασ. Therefore, in this case the term α2εE can be
dropped out, and one is left with

rot(µ−1 rotE) + iασE = 0.(1.3)

Formally speaking, the low-frequency model is thus obtained from the general equa-
tion (1.2) by setting ε = 0. Afterwards we will refer to the low-frequency case as
to the case where ε = 0.

Considering (1.1) or (1.2) in a bounded domain Ω ⊂ R3, we have to impose the
boundary condition

n×E = Ψ on ∂Ω,(1.4)

where n is the unit outward normal vector on ∂Ω and Ψ is a tangential vector on
∂Ω.

Most often, it is assumed that a vector function Ê is known, satisfying n×Ê = Ψ
on ∂Ω. Then the resulting boundary value problem reads rot(µ−1 rotu)− α2(ε− iα−1σ)u = F in Ω,

(n× u)|∂Ω = 0 on ∂Ω,
(1.5)

where u = E− Ê and F = − rot(µ−1 rot Ê) + α2(ε− iα−1σ)Ê.
Let us now make precise some notation. As usual, we indicate by Hk(Ω), k ≥ 0,

the Sobolev space of (classes of equivalence of) real or complex functions belonging
to L2(Ω) together with all their distributional derivatives of order less than or equal
to k. In particular, L2(Ω) = H0(Ω). We also consider the Sobolev space Hs(Ω) for
s ∈ R, whose definition can be found in Adams [1].

It is well known that the trace space of H1(Ω) over ∂Ω is given by the Sobolev
space H1/2(∂Ω); more generally, if Σ is a proper (non-empty) subset of ∂Ω, the
trace space of H1(Ω) over Σ is given by H1/2(Σ). The spaces H−1/2(∂Ω) and
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H−1/2(Σ) are the dual spaces of H1/2(∂Ω) and H1/2(Σ), respectively. The duality
pairing between these spaces will be denoted by 〈·, ·〉∂Ω and 〈·, ·〉Σ. The norm in
the Sobolev space Hs(Ξ) will be denoted by || · ||s,Ξ, where s ∈ R and Ξ can be
either the whole domain Ω, or the boundary ∂Ω, or else a suitable surface.

The space H(rot; Ω) (respectively, H(div; Ω)) indicates the set of the real or
complex (vector) functions v ∈ (L2(Ω))3 such that rotv ∈ (L2(Ω))3 (respectively,
div v ∈ L2(Ω)).

We also need the definition of the tangential divergence of a tangential vector
field η. Being given η ∈ (H−1/2(∂Ω))3 with (η ·n)|∂Ω = 0, we define the tangential
divergence divτη of η as the distribution in H−3/2(∂Ω) which satisfies

〈〈divτη, ψ〉〉∂Ω := −〈η, (∇ψ∗2)|∂Ω〉∂Ω ∀ ψ ∈ H3/2(∂Ω),

where ψ∗2 ∈ H2(Ω) is any extension of ψ in Ω, and we have denoted by 〈〈·, ·〉〉∂Ω

the duality pairing between H−3/2(∂Ω) and H3/2(∂Ω). Notice that, due to the
condition (η ·n)|∂Ω = 0, the right hand side indeed depends only on the value of ψ
on ∂Ω.

We can now introduce the Hilbert spaces X∂Ω and XΣ, where Σ is a proper
(non-empty) subset of ∂Ω. The former one is defined as

X∂Ω := {η ∈ (H−1/2(∂Ω))3 | (η · n)|∂Ω = 0 and divτη ∈ H−1/2(∂Ω)},

with the norm

||η||X∂Ω := ||η||−1/2,∂Ω + ||divτη||−1/2,∂Ω.

Denoting by γ̃ ∈ (H−1/2(∂Ω))3 the extension of γ by 0 on ∂Ω \Σ, the space XΣ is

XΣ := {γ ∈ (H−1/2(Σ))3 | (γ · n)|Σ = 0 and divτ γ̃ ∈ H−1/2(∂Ω)},

endowed with the norm

||γ||XΣ := ||γ||−1/2,Σ + ||divτ γ̃||−1/2,∂Ω.

In Alonso and Valli [2] it has been proven that, if either ∂Ω ∈ C1,1 or Ω is a convex
polyhedron, the space X∂Ω is equal, algebraically and topologically, to the space of
tangential traces of H(rot; Ω). Similarly, XΣ is the space of tangential traces of

H∂Ω\Σ(rot; Ω) := {v ∈ H(rot; Ω) | (n× v)|∂Ω\Σ = 0}.

Furthermore, in [2] it has been shown that there exist two linear and continuous
extension operators

R∂Ω : X∂Ω → H(rot; Ω),
RΣ : XΣ → H∂Ω\Σ(rot; Ω)

satisfying

(n×R∂Ωη)|∂Ω = η, (n×RΣγ)|Σ = γ

for each η ∈ X∂Ω and γ ∈ XΣ.
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2. Weak formulation of the problem
and finite element approximation

We are going to make precise the variational formulation. First of all, we need
the following notation:

H0(rot; Ω) := {v ∈ H(rot; Ω) | (n× v)|∂Ω = 0},
H0(rot; Ω) := {v ∈ H(rot; Ω) | rotv = 0},
H0(div; Ω) := {v ∈ H(div; Ω) | (n · v)|∂Ω = 0},
H0(div; Ω) := {v ∈ H(div; Ω) | div v = 0}.

We also assume that the coefficients µ = (µij(x))1≤i,j≤3, ε = (εij(x))1≤i,j≤3 and
σ = (σij(x))1≤i,j≤3 are symmetric matrices with real coefficients belonging to
L∞(Ω). The magnetic permeability is uniformly positive definite (UPD from now
on); namely, there exists a constant µ0 > 0 such that

3∑
l,m=1

µlm(x)ξlξm ≥ µ0|ξ|2 for almost all x ∈ Ω and for all ξ ∈ C3.

The dielectric coefficient ε is assumed to be UPD in the high-frequency case and 0
in the low-frequency case. The conductivity σ can be UPD (when Ω is a conductor),
or else given by σ = σ̂χΩ\Ω0 , where Ω0 is a (non-empty) subset of Ω (representing
an insulator), χΩ\Ω0 is the characteristic function of Ω \ Ω0, and σ̂ is UPD. In
particular, the case Ω0 = Ω corresponds to the case of a perfect insulator.

We introduce in H(rot; Ω) the following bilinear form:

aε(w,v) := (µ−1 rotw, rotv) − α2([ε− iα−1σ]w,v),

where (·, ·) denotes the (L2(Ω))3-scalar product (for complex-valued vector func-
tions), and we set L(v) := (F,v).

Definition 2.1. A weak solution of (1.5) is a function u ∈ H0(rot; Ω) such that

aε(u,v) = L(v) ∀ v ∈ H0(rot; Ω).(2.1)

The high-frequency case (ε is assumed to be UPD) has been considered by Leis
[9]. First of all, the bilinear form aε(·, ·) has been proven to be coercive in H(rot; Ω)
when σ is UPD. Moreover, the Fredholm alternative theorem holds for problem (2.1)
when σ = 0 (i.e., Ω0 = Ω) (see [9]). A unique solvability result has been proven by
Alonso and Valli [4] for the conductivity given by σ = σ̂χΩ\Ω0 , Ω0 6= Ω.

We are mainly interested in the sequel in the low-frequency case (ε is taken to
be 0) for a conductor (σ is assumed to be UPD). In that case we can verify at once
that the bilinear form a0(·, ·) is continuous and coercive in H(rot; Ω); therefore, the
Lax-Milgram lemma yields

Theorem 2.2. Let Ω be a bounded domain, and assume that ε = 0 and σ is UPD.
Then there exists a unique solution of (2.1).

A different approach is needed in the low-frequency case when the conductivity
is given by σ = σ̂χΩ\Ω0 . In this case the problem

rot(µ−1 rotu) + iασu = F in Ω,

(n× u)|∂Ω = 0 on ∂Ω,
(2.2)
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does not have a unique solution, as we can always add the gradient of a harmonic
function supported in Ω0 to a solution. Therefore, we have to complete the differ-
ential model by adding suitable equations.

Alonso and Valli [3], by means of a perturbation argument, have proposed the
following problem:

rot(µ−1 rotu) + iασu = F in Ω,

div(u|Ω0) = 0 in Ω0,

(n× u)|∂Ω = 0 on ∂Ω,

〈(u|Ω0 · n)|Γ0,j
, 1〉Γ0,j = 0 ∀ j = 1, ..., p,

(2.3)

where Γ0,j are the internal connected components of ∂Ω0. In [3] it has been proven
that (2.3) has a unique solution when Ω0 6= Ω, and the interface ∂Ω0 ∩ ∂(Ω \Ω0) is
either a C1,1 surface or a convex polyhedral portion of ∂Ω0.

Finally, in the case Ω0 = Ω (i.e., σ = 0) problem (2.3) reduces to a coercive
problem in H0(rot; Ω) ∩H(div; Ω) ∩H(e)⊥, having set

H(e) := {ω ∈ H0(rot; Ω) ∩H0(div; Ω) | (n× ω)|∂Ω = 0}

(see Saranen [15], Valli [17]).
We are now going to present some approximation results that have been obtained

for problem (2.1) via the finite element method.
In the low-frequency case for a conductor, the bilinear form a0(·, ·) is coercive

in H(rot; Ω); therefore, the problem is rather standard, and one only needs to con-
struct a suitable internal finite dimensional approximation of the space H(rot; Ω).
To this end, the so-called Nédélec finite elements (see Nédélec [12], [13]) can be
used, as they are conforming in H(rot; Ω) (their tangential components are contin-
uous across the faces of the finite elements). An optimal order error estimate can
be obtained straightforwardly.

In the same case, by means of a different approach, Kř́ıžek and Neittaanmäki
[8] proposed a finite element space given by standard Lagrangian piecewise-linear
vector functions satisfying suitable conditions on the interfaces. In particular, when
σ is a constant, these conditions reduce to the continuity across the interfaces, thus
furnishing a finite dimensional subspace of (H1(Ω))3.

Also in the high-frequency case Monk [10] has used the Nédélec finite elements,
both for the case where σ is assumed to be UPD and for σ = 0, yielding an optimal
order error estimate.

The low-frequency heterogeneous problem (2.3), in which σ = σ̂χΩ\Ω0 , Ω0 6= Ω,
has been considered in [3]. At first the problem has been rewritten in an equivalent
two-domain formulation, and then the Nédélec finite elements are employed in
Ω \Ω0, whereas Lagrangian piecewise-polynomial finite elements are used in Ω0 for
approximating a scalar potential of the magnetic field.

Due to the heterogeneous nature of the problem, a natural domain decomposition
algorithm can be devised, solving the problem iteratively in Ω0 and in Ω \Ω0. The
convergence of this iterative procedure is proven in [3], where the rate of convergence
is also shown to be independent of the mesh size h.

Clearly, it is also interesting to use a domain decomposition technique for solving
the two subproblems in Ω0 and in Ω\Ω0. For what is concerned with the problem in
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the perfect insulator Ω0, is equivalent to the construction of an extension operator
from X∂Ω0 into H(rot; Ω0) (see Alonso and Valli [2]). Moreover, this last prob-
lem can be reduced to a non-homogeneous Neumann boundary value problem for
the Laplace operator, and domain decomposition techniques for its finite element
approximation are well known.

In the next section we are going to consider the domain decomposition approach
to the finite element approximation of the low-frequency conductor problem, namely
the case where it is assumed that ε = 0 and that σ is UPD.

3. The domain decomposition procedure

We consider the low-frequency conductor problem
rot(µ−1 rotu) + iασu = F in Ω,

(n× u)|∂Ω = 0 on ∂Ω.
(3.1)

The bilinear form associated to (3.1) is given by

a0(w,v) :=
∫

Ω

(µ−1 rotw · rotv + iασw · v),(3.2)

and the weak formulation reads as in Definition 2.1.
Let the bounded domain Ω be decomposed in two subdomains Ω1 and Ω2 such

that Ω = Ω1 ∪ Ω2 and Ω1 ∩Ω2 = ∅. We will set Γ := Ω1 ∩ Ω2.
In each subdomain we want to solve

rot(µ−1 rotuj) + iασuj = F in Ωj ,

(n× uj)|∂Ωj\Γ = 0 on ∂Ωj \ Γ

with the interface conditions

(nΓ × u1)|Γ = (nΓ × u2)|Γ,(3.3)

(nΓ × µ−1 rotu1)|Γ = (nΓ × µ−1 rotu2)|Γ.(3.4)

Set

Vj := {vj ∈ H(rot; Ωj) | (n× vj)|∂Ωj\Γ = 0},(3.5)

aj(wj ,vj) :=
∫

Ωj

(µ−1 rotwj · rotvj + iασwj · vj), ∀ wj ,vj ∈ Vj ,(3.6)

Lj(vj) :=
∫

Ωj

F · vj .(3.7)
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The bilinear forms aj are clearly continuous and coercive in Vj . The variational
formulation of the two-domain problem reads

find, (u1,u2) ∈ V1 × V2 :

a1(u1,v1) = L1(v1) ∀ v1 ∈ H0(rot; Ω1)

(nΓ × u1)|Γ = (nΓ × u2)|Γ

a2(u2,v2) = L2(v2) + L1(R1(nΓ × v2)|Γ)
−a1(u1,R1(nΓ × v2)|Γ) ∀ v2 ∈ V2,

(3.8)

where R1 : XΓ → V1 is any extension operator.
The equivalence of the formulations (2.1) and (3.8) can be easily proven (see, for

instance, Alonso and Valli [3], where a similar situation is considered).
For the numerical approximation, we will use the Nédélec finite elements of the

first kind (see Nédélec [12]). However, the same results could be proven also for
the Nédélec finite elements of the second kind (see Nédélec [13]). For the reader’s
convenience, we present here the precise definitions of the former elements.

Let us assume that Ω, Ω1 and Ω2 are a Lipschitz polyhedrons. Let {Th}h>0 be
a family of triangulations composed by tetrahedrons, where h is their maximum
diameter. Moreover, assume that each element of Th only intersects either Ω1 or
Ω2. Let Pk, k ≥ 1, be the space of polynomials of degree less than or equal to k,
and denote by P∗k the space of homogeneous polynomials of degree k. We set

Sk := {p ∈ (P∗k)3| p(x) · x = 0}, Rk := (Pk−1)3 ⊕ Sk.

Notice that (Pk−1)3 ⊂ Rk ⊂ (Pk)3. We will employ the finite element space

Nk
j,h := {vh ∈ H(rot; Ωj) | vh|K ∈ Rk ∀ K ∈ Tj,h}

and we define

Vj,h := Nk
j,h ∩ Vj ,(3.9)

V 0
j,h := Nk

j,h ∩H0(rot; Ωj),(3.10)

XΓ,h := {(nΓ × v1,h)|Γ | v1,h ∈ V1,h} = {(nΓ × v2,h)|Γ | v2,h ∈ V2,h}.(3.11)

The finite dimensional approximation problem reads

find, (u1,h,u2,h) ∈ V1,h × V2,h :

a1(u1,h,v1,h) = L1(v1,h) ∀ v1,h ∈ V 0
1,h

(nΓ × u1,h)|Γ = (nΓ × u2,h)|Γ

a2(u2,h,v2,h) = L2(v2,h) + L1(R1,h(nΓ × v2,h)|Γ)
−a1(u1,h,R1,h(nΓ × v2,h)|Γ) ∀ v2,h ∈ V2,h,

(3.12)

where R1,h is any extension operator from Xh,Γ to V1,h.
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Let us introduce now for each γh ∈ Xh,Γ the solution Eh
j,Γγh of the problem

Eh
j,Γγh ∈ Vj,h :

aj(Eh
j,Γγh,vj,h) = 0 ∀ vj,h ∈ V 0

j,h

(nΓ ×Eh
j,Γγh)|Γ = γh,

(3.13)

and also the solution ûj,h ∈ V 0
j,h of

ûj,h ∈ V 0
j,h : aj(ûj,h,vj,h) = Lj(vj,h) ∀ vj,h ∈ V 0

j,h,(3.14)

whose existence and uniqueness is a consequence of Lax-Milgram Lemma. Then
the couple (Eh

1,Γλh + û1,h,Eh
2,Γλh + û2,h) is a solution to (3.12) if and only if

a2(Eh
2,Γλh + û2,h,v2,h) = L2(v2,h) + L1(Eh

1,Γ(nΓ × v2,h)|Γ)

− a1(Eh
1,Γλh + û1,h,Eh

1,Γ(nΓ × v2,h)|Γ) ∀ v2,h ∈ V2,h

(3.15)

is satisfied. Due to (3.13) and (3.14), this is equivalent to

a2(Eh
2,Γλh,Eh

2,Γηh) + a2(û2,h,Eh
2,Γηh) = L2(Eh

2,Γηh) + L1(Eh
1,Γηh)

− a1(Eh
1,Γλh,Eh

1,Γηh)− a1(û1,h,Eh
1,Γηh) ∀ ηh ∈ XΓ,h.

(3.16)

We define the Steklov-Poincaré operators Sj,h, j = 1, 2, in the following way:

〈〈Sj,hγh,ηh〉〉h := aj(Eh
j,Γγh,E

h
j,Γηh) ∀ γh,ηh ∈ XΓ,h,(3.17)

where 〈〈·, ·〉〉h denotes the duality pairing between (XΓ,h)′ and XΓ,h.
Define moreover

〈〈Φh,ηh〉〉h := L1(Eh
1,Γηh)− a1(û1,h,Eh

1,Γηh)
+ L2(Eh

2,Γηh)− a2(û2,h,Eh
2,Γηh) ∀ ηh ∈ XΓ,h.

Problem (3.12) is therefore reduced to finding

λh ∈ XΓ,h : 〈〈(S1,h + S2,h)λh,ηh〉〉h = 〈〈Φh,ηh〉〉h ∀ ηh ∈ XΓ,h.(3.18)

We will see that the operators Sj,h are continuous and coercive in XΓ,h; hence,
for solving (3.18) we can apply the Richardson method with one of these operators
(say, S2,h) as a preconditioner.

In other words, given λ0
h ∈ XΓ,h, for each m ≥ 0 solve

λm+1
h = λm

h + θS−1
2,h[Φh − (S1,h + S2,h)λm

h ]

= (1− θ)λm
h + θS−1

2,h(Φh − S1,hλ
m
h ).

(3.19)

By proceeding in a standard way (see, for instance, Alonso and Valli [3], Section 5,
for a similar computation), it can be seen that (3.19) is equivalent to the following
iteration-by-subdomain algorithm: being given λ0

h ∈ XΓ,h, for each m ≥ 0 solve
um+1

1,h ∈ V1,h :

a1(um+1
1,h ,v1,h) = L1(v1,h) ∀ v1,h ∈ V 0

1,h

(nΓ × um+1
1,h )|Γ = λm

h ,

(3.20)
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um+1
2,h ∈ V2,h : a2(um+1

2,h ,v2,h) = L2(v2,h) + L1(Eh
1,Γ(nΓ × v2,h)|Γ)

− a1(um+1
1,h ,Eh

1,Γ(nΓ × v2,h)|Γ) ∀ v2,h ∈ V2,h,
(3.21)

and pose

λm+1
h := (1− θ)λm

h + θ(nΓ × um+1
2,h )|Γ.(3.22)

The convergence of the sequence λm
h constructed in (3.19) is a consequence of

the following abstract theorem.

Theorem 3.1. Let X be a complex Hilbert space and let S1,h and S2,h be two
linear operators from a finite dimensional space Xh ⊂ X into its dual X ′

h. Let χs,
s = 1, ...,Mh, a basis of Xh. Define the matrices Sj,h associated to the operators
Sj,h as

(Sj,hγ,η)h := 〈〈Sj,hγh,ηh〉〉h ∀ γ,η ∈ CMh , j = 1, 2,

where (·, ·)h denotes the euclidean scalar product in CMh and

γh :=
Mh∑
s=1

γsχs, ηh :=
Mh∑
s=1

ηsχs.(3.23)

Let us assume that there exist two constants C1 > 0 and C2 > 0, independent of h,
such that

|〈〈S1,hγh,ηh〉〉h| ≤ C1||γh||X ||ηh||X ∀ γh,ηh ∈ Xh,(3.24)

|〈〈S2,hγh,γh〉〉h| ≥ C2||γh||2X ∀ γh ∈ Xh,(3.25)

Re〈〈S1,hγh,γh〉〉h Re〈〈S2,hγh,γh〉〉h
+ Im〈〈S1,hγh,γh〉〉h, Im〈〈S2,hγh,γh〉〉h ≥ 0 ∀ γh ∈ Xh.

(3.26)

Then each eigenvalue νs of S−1
2,h(S1,h + S2,h) satisfies

C∗ ≤ 2
Re νs

|νs|2
∀ s = 1, ...,Mh,

where

C∗ := min
(

1,
2C2

2

C2
1 + C2

2

)
.

Therefore, for any θ ∈ (0, C∗) one has

|νs|2 <
2
θ

Re νs ∀ s = 1, ...,Mh,

and the preconditioned Richardson iterations converge with a rate independent of
h.

Proof. The proof is similar to that of Theorem 7.2 in [3]. However, for the reader’s
convenience we will give it in complete detail.

If ν is an eigenvalue of S−1
2,h(S1,h + S2,h) = I + S−1

2,hS1,h, we can write ν = 1 + κ,
where κ is an eigenvalue of S−1

2,hS1,h. The corresponding eigenvector γ ∈ CMh ,
γ 6= 0, satisfies S1,hγ = κS2,hγ; therefore,

〈〈S1,hγh,γh〉〉h = κ〈〈S2,hγh,γh〉〉h,
where γh ∈ Xh is the function defined in (3.23).
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Writing κ = κ1 + iκ2, κ1, κ2 ∈ R, we have

Re〈〈S1,hγh,γh〉〉h = κ1Re〈〈S2,hγh,γh〉〉h − κ2Im〈〈S2,hγh,γh〉〉h,
Im〈〈S1,hγh,γh〉〉h = κ1Im〈〈S2,hγh,γh〉〉h + κ2Re〈〈S2,hγh,γh〉〉h.

Multiply now these equations by Re〈〈S2,hγh,γh〉〉h and Im〈〈S2,hγh,γh〉〉h, respec-
tively: by adding the results we find

κ1[(Re〈〈S2,hγh,γh〉〉h)2 + (Im〈〈S2,hγh,γh〉〉h)2]
= Re〈〈S1,hγh,γh〉〉h Re〈〈S2,hγh,γh〉〉h

+ Im〈〈S1,hγh,γh〉〉h Im〈〈S2,hγh,γh〉〉h.

From (3.25) we have that |〈〈S2,hγh,γh〉〉h| 6= 0; therefore, (3.26) yields κ1 ≥ 0.
On the other hand, from (3.24), (3.25) it follows

|κ|2 =
|〈〈S1,hγh,γh〉〉h|2
|〈〈S2,hγh,γh〉〉h|2

≤
(
C1

C2

)2

;

therefore,

2
Re ν
|ν|2 = 2

1 + κ1

1 + 2κ1 + |κ|2 ≥ 2
1 + κ1

1 + 2κ1 + (C1
C2

)2
.

Notice now that the function

F (ξ) := 2
1 + ξ

1 + 2ξ + (C1
C2

)2

is strictly increasing when C1 > C2, strictly decreasing when C1 < C2 and con-
stantly equal to 1 when C1 = C2. Moreover,

F (0) =
2C2

2

C2
1 + C2

2

, lim
ξ→∞

F (ξ) = 1;

hence, C∗ is the infimum of F for ξ ≥ 0.

The proof of the convergence of the iterations (3.19) reduces now to verify that
the operators S1,h and S2,h satisfy the assumptions of Theorem 3.1, i.e., (3.24)–
(3.26).

Noting that

Re〈〈Sj,hγh,γh〉〉h =
∫

Ωj

µ−1| rotEh
j,Γγh|2,

Im〈〈Sj,hγh,γh〉〉h = α

∫
Ωj

σ|Eh
j,Γγh|2,

estimate (3.26) is trivially satisfied.
By using the coerciveness of a2(·, ·) and the following tangential trace inequality

(see Alonso and Valli [2])

||(nΓ × v)|Γ||2XΓ
≤ C∗||v||2H(rot;Ω2)

we have

|〈〈S2,hγh,γh〉〉h| ≥ C(||Eh
2,Γγh||20,Ω2

+ || rotEh
2,Γγh||20,Ω2

) ≥ C

C∗
||γh||2XΓ

;

hence, (3.25) holds.
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The proof of (3.24) is more difficult. The crucial point is the proof of the conti-
nuity of the extension operator Eh

1,Γ uniformly with respect to h. Let us start by
introducing for each δ > 0 the space

X δ
∂Ω := {η ∈ (Hδ(∂Ω))3 | (η · n)|∂Ω = 0 and divτη ∈ Hδ(∂Ω)},

and for each r > 0 the space

Hr(rot; Ω) := {v ∈ (Hr(Ω))3 | rotv ∈ (Hr(Ω))3},
endowed with the following norms, respectively:

||η||X δ
∂Ω

:=
(
||η||2δ,∂Ω + ||divτη||2δ,∂Ω

)1/2
,

||v||Hr(rot ;Ω) :=
(
||v||2r,Ω + || rotv||2r,Ω

)1/2
.

Let us denote by F1,Γ : XΓ → V1 the extension operator which at each γ ∈ XΓ

associates F1,Γγ such that
F1,Γγ ∈ V1 :

((F1,Γγ,v1))Ω1 = 0 ∀ v1 ∈ H0(rot; Ω1)

(nΓ × F1,Γγ)|Γ = γ,

where

((w1,v1))Ω1 :=
∫

Ω1

(rotw1 · rotv1 + w1 · v1).

The existence of such an operator is guaranteed provided that we can characterize
XΓ as the space of tangential traces on Γ of V1. In that case, as a consequence of
the closed graph theorem, it easily follows that F1,Γ is a continuous operator, i.e.,

||F1,Γγ||H(rot ;Ω1) ≤ C0||γ||XΓ ∀ γ ∈ XΓ.(3.27)

The needed characterization result on XΓ was proved in [2], under the assumption
that Γ is either a C1,1 surface or a convex polyhedral portion of ∂Ω1.

Finally, introduce the extension operator Fh
1,Γ : Xh,Γ → V1,h, which is the finite

dimensional counterpart of F1,Γ:
Fh

1,Γγh ∈ V1,h :

((Fh
1,Γγh,v1,h))Ω1 = 0 ∀ v1,h ∈ V 0

1,h

(nΓ × Fh
1,Γγh)|Γ = γh.

We need the following regularity result, which is Proposition 3.7 in Amrouche,
Bernardi, Dauge and Girault [5]. Let us set

XT := H(rot; Ω) ∩H0(div; Ω),
XN := H0(rot; Ω) ∩H(div; Ω),

both endowed with the norm

||v||0,Ω + || div v||0,Ω + || rotv||0,Ω.

Theorem 3.2. Let Ω be a Lipschitz polyhedron. Then there exists sΩ ∈ (1/2, 1)
such that the spaces XT and XN are both continuously imbedded in (HsΩ(Ω))3.
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We notice that sΩ only depends on the geometry of Ω. It is related to the
exponent of maximal regularity of the solutions to the Laplace operator with L2(Ω)
on the right-hand side and homogeneous Dirichlet or Neumann boundary datum
(see Amrouche, Bernardi, Dauge and Girault [5], Remark 3.8).

The proof of (3.24) is based on the following three theorems, which will be proven
in the Sections 4, 5 and 6. From now on the subdomain Ω1 is always assumed to
be a Lipschitz polyhedron. Finally, set κΩ := sΩ − 1/2, where sΩ is as in Theorem
3.2.

Theorem A. Assume that Γ is a convex portion of ∂Ω1. Given δ ∈ (0, κΩ1 ],
there exists K1 > 0 such that for all γ ∈ XΓ with γ̃ ∈ X δ

∂Ω1
one has F1,Γγ ∈

H1/2+δ(rot; Ω1) and

||F1,Γγ||
H

1
2 +δ(rot ;Ω1)

≤ K1||γ̃||X δ
∂Ω1

.

Here, as usual, γ̃ denotes the extension of γ by 0 on ∂Ω1 \ Γ.

Theorem B. Let Th be a regular family of triangulations. Assume that γh ∈ XΓ,h

and that F1,Γγh ∈ Hr(rot; Ω1) for a certain r ∈ (1/2, 1). Then there exists a
constant K2 > 0, independent of h, such that

||F1,Γγh − Fh
1,Γγh||H(rot ;Ω1) ≤ K2h

r||F1,Γγh||Hr(rot ;Ω1) ∀ γh ∈ XΓ,h.

Theorem C. Let Mh be the family of triangulations of ∂Ω1 induced by Th. As-
sume that Mh is quasi-uniform. Then for each ε ∈ (0, 1/2) there exists a constant
K3 > 0, independent of h, such that

||γ̃h||X ε
∂Ω1

≤ K3h
− 1

2−ε||γh||XΓ ∀ γh ∈ XΓ,h.

Once we have established these results, we are in a condition to prove the fol-
lowing

Proposition 3.3. Assume that Γ is convex portion of ∂Ω1 and that Mh is a quasi-
uniform family of triangulations of ∂Ω1. Then there exists a constant K4 > 0,
independent of h, such that

|〈〈S1,hγh,ηh〉〉h| ≤ K4||γh||XΓ ||ηh||XΓ ∀ γh,ηh ∈ XΓ,h,

which is estimate (3.24).

Proof. From the definition of the Steklov-Poincaré operator S1,h we have

|〈〈S1,hγh,ηh〉〉h| = |a1(Eh
1,Γγh,E

h
1,Γηh)|

≤ β1||Eh
1,Γγh||H(rot ;Ω1)||Eh

1,Γηh||H(rot ;Ω1),

where β1 > 0 is the continuity constant of a1(·, ·). Therefore, the proof is complete
if we show that there exists a constant C > 0, independent of h, such that

||Eh
1,Γγh||H(rot ;Ω1) ≤ C||γh||XΓ ∀ γh ∈ XΓ,h.

Taking in (3.13) the test function v1,h = Eh
1,Γγh − Fh

1,Γγh we have

a1(Eh
1,Γγh,E

h
1,Γγh) = a1(Eh

1,Γγh,F
h
1,Γγh).

Hence

||Eh
1,Γγh||H(rot ;Ω1) ≤

β1

α1
||Fh

1,Γγh||H(rot ;Ω1),(3.28)

where α1 is the coerciveness constant of the bilinear form a1(·, ·).
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Moreover

||Fh
1,Γγh||H(rot ;Ω1) ≤ ||Fh

1,Γγh − F1,Γγh||H(rot ;Ω1) + ||F1,Γγh||H(rot ;Ω1);(3.29)

therefore, from (3.27) we only have to estimate the first term in (3.29).
At first, remark that γh ∈ XΓ,h yields γ̃h ∈ X δ

∂Ω1
for each δ ∈ (0, 1/2), as both γ̃h

and divτ γ̃h are (discontinuous) piecewise-polynomial. Therefore, from Theorem A
we have that F1,Γγh ∈ H1/2+δ(rot; Ω1) for any δ ∈ (0, κΩ1 ]. Using also Theorem B
(where r = 1/2 + δ) we have

||Fh
1,Γγh − F1,Γγh||H(rot ;Ω1) ≤ K2h

1
2+δ||F1,Γγh||H 1

2+δ(rot ;Ω1)

≤ K1K2h
1
2+δ||γ̃h||X δ

∂Ω1
.

Now we can apply Theorem C (for ε = δ) and we find

||Fh
1,Γγh − F1,Γγh||H(rot ;Ω1) ≤ K1K2K3||γh||XΓ .(3.30)

The proof follows from (3.27)–(3.30).

Remark 3.4. In Theorem A and in Proposition 3.3 the assumption on Γ is only
needed to assure that XΓ is the space of tangential traces on Γ of V1.

4. Proof of Theorem A

Let us introduce the finite dimensional spaces

H(e) := {ω ∈ (L2(Ω))3 | rotω = 0, divω = 0, (n× ω)|∂Ω = 0},
H(m) := {% ∈ (L2(Ω))3 | rot% = 0, div % = 0, (% · n)|∂Ω = 0}.

We start recalling the following theorems, whose proof can be essentially found
in Saranen [16] (see also Valli [17]).

Theorem 4.1. Let Ω ⊂ R3 be a bounded domain with Lipschitz boundary ∂Ω.
Each function w ∈ (L2(Ω))3 can be written as

w = rotp +∇q +
n∑

k=1

αk%k,(4.1)

where p satisfies 

rot rotp = rotw in Ω

div p = 0 in Ω

(n× p)|∂Ω = 0 on ∂Ω

(p,ω) = 0 ∀ ω ∈ H(e),

(4.2)

q satisfies 

∆q = div w in Ω(
∂q

∂n

)
|∂Ω

= (w · n)|∂Ω on ∂Ω

∫
Ω

q = 0,

(4.3)
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the functions {%k}n
k=1 are an orthonormal basis of H(m), and the coefficients αk

are given by αk = (w,%k), k = 1, ..., n.

Theorem 4.2. Let Ω ⊂ R3 be a bounded domain with Lipschitz boundary ∂Ω.
Then there exists a constant CΩ > 0 such that

||w||0,Ω ≤ CΩ(|| rotw||0,Ω + || div w||0,Ω) ∀ w ∈ XT ∩H(m)⊥.

We are now in a position to prove some auxiliary results, which are interesting
on their own as they are regularity results for harmonic fields. In the particular
case in which the parameter δ is equal to 0, Costabel [6] proved the same regularity
result for a simply connected Lipschitz domain with connected boundary.

Theorem 4.3 (Regularity for Dirichlet harmonic fields). Let Ω be a Lipschitz
polyhedron. Then for each δ ∈ (0, 1/2) the space

W := {w ∈ H(rot; Ω) ∩H(div; Ω) | (n×w)|∂Ω ∈ (Hδ(∂Ω))3}
is continuously imbedded in (H1/2+ε∗(Ω))3, where ε∗ := min(δ, κΩ).

Proof. From Theorem 4.1 each function w ∈W can be written as

w = rotp +∇q +
n∑

k=1

αk%k.(4.4)

Since rot rotp = rotw ∈ (L2(Ω))3, and (n × p)|∂Ω = 0 yields (rotp · n)|∂Ω =
− divτ (n × p)|∂Ω = 0, we have that rotp ∈ XT . Moreover, %k ∈ H(m) ⊂ XT ;
hence, from Theorem 3.2 we find that rotp and each %k belong to (H1/2+κΩ(Ω))3.
From αk = (w,%k) it follows at once that

n∑
k=1

|αk| ||%k|| 12+κΩ,Ω ≤ C||w||0,Ω.(4.5)

Moreover, it is easily verified that rotp ∈ H(m)⊥; hence, from Theorems 3.2 and
4.2 we have

|| rotp|| 1
2+κΩ,Ω ≤ C|| rotp||XT

≤ C(1 + CΩ)(|| rot rotp||0,Ω + || div rotp||0,Ω)

= C(1 + CΩ)|| rotw||0,Ω.

(4.6)

On the other hand, from

∇q = (∇q · n)|∂Ωn− n× (n×∇q)|∂Ω

we have

∇τ q|∂Ω = −n× (n×∇q)|∂Ω,

and therefore

∇τq|∂Ω = −n×
(

(n×w)|∂Ω − (n× rotp)|∂Ω − (n×
n∑

k=1

αk%k)|∂Ω

)
.

The unit normal vector n is piecewise constant, as Ω is a polyhedron; hence,

∇τ q|∂Ω ∈ (Hε∗(Ω))3.

From q ∈ H1(Ω) we also have that q|∂Ω ∈ H1/2(∂Ω) ⊂ L2(∂Ω); therefore, we
conclude that

q|∂Ω ∈ H1+ε∗(∂Ω)
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and we find the estimate
||q|∂Ω||1+ε∗,∂Ω ≤ C(||q||0,∂Ω + ||∇τq|∂Ω||ε∗,∂Ω) ≤ C(||q||1,Ω + ||∇τ q|∂Ω||ε∗,∂Ω)

≤ C(||w||0,Ω + ||(n×w)|∂Ω||δ,∂Ω

+ || rotp|| 1
2 +κΩ,Ω +

n∑
k=1

|αk| ||%k|| 12 +κΩ,Ω).

Since ∆q = div w ∈ L2(Ω), from the regularity results for the Dirichlet boundary
value problem for the Laplace operator it follows that q ∈ H3/2+ε∗(Ω) (see Dauge
[7], Corollary 18.13), and

||∇q|| 1
2+ε∗,Ω ≤ ||q|| 3

2+ε∗,Ω ≤ C(|| div w||0,Ω + ||q|∂Ω||1+ε∗,∂Ω).(4.7)

From the representation formula (4.1) we finally have w ∈ (H3/2+ε∗(Ω))3 and from
(4.5)–(4.7)

||w|| 1
2+ε∗,Ω ≤ || rotp|| 1

2+κΩ,Ω + ||∇q|| 1
2+ε∗,Ω +

n∑
k=1

|αk| ||%k|| 12+κΩ,Ω

≤ C(||w||0,Ω + || rotw||0,Ω + || div w||0,Ω + ||(n×w)|∂Ω||δ,∂Ω),

(4.8)

which concludes the proof.

A similar result is the following

Theorem 4.4 (Regularity for Neumann harmonic fields). Let Ω be a Lipschitz
polyhedron. Then for each δ ∈ (0, 1/2) the space

V := {w ∈ H(rot; Ω) ∩H(div; Ω) | (n ·w)|∂Ω ∈ Hδ(∂Ω)}

is continuously imbedded in (H1/2+ε∗(Ω))3, where ε∗ := min(δ, κΩ).

Proof. As in the proof of Theorem 4.3, we use the representation formula (4.1).
The first and the third term can be treated as done there; hence, we have only to
check the regularity of q.

It is the solution of a Neumann boundary value problem for the Laplace operator
with L2(Ω) right-hand side, and Hδ(∂Ω) Neumann datum. As a consequence of
Corollary 23.5 in Dauge [7] we have that q ∈ H3/2+ε∗(Ω) and

||∇q|| 1
2+ε∗,Ω ≤ C(|| div w||0,Ω + ||(n ·w)|∂Ω||δ,∂Ω).

Using (4.5), (4.6) we finally have

||w|| 1
2+ε∗,Ω ≤ || rotp|| 1

2 +κΩ,Ω + ||∇q|| 1
2+ε∗,Ω +

n∑
k=1

|αk| ||%k|| 12+κΩ,Ω

≤ C(||w||0,Ω + || rotw||0,Ω + || div w||0,Ω + ||(n ·w)|∂Ω||δ,∂Ω)

(4.9)

and the proof is concluded.

We are now in a position to give the proof of Theorem A.

Proof of Theorem A. F1,Γγ ∈ H(rot; Ω1) satisfies

rot rotF1,Γγ + F1,Γγ = 0 in Ω1;

therefore, div F1,Γγ = 0 in Ω1. We can apply Theorem 4.3 and we find that
F1,Γγ ∈ H1/2+δ(Ω1) and

||F1,Γγ|| 1
2+δ,Ω1

≤ C(||F1,Γγ||H(rot ;Ω1) + ||γ̃||δ,∂Ω1).
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Assuming that Γ is convex portion of ∂Ω1, from (3.27) we finally have

||F1,Γγ|| 1
2+δ,Ω1

≤ C(||γ̃||δ,∂Ω1 + ||divτ γ̃||−1/2,∂Ω1).(4.10)

Let us denote by G1,Γγ := rotF1,Γγ. We first notice that

(G1,Γγ · n)|∂Ω1 = −divτ γ̃ ∈ Hδ(∂Ω1)

and that rotG1,Γγ = −F1,Γγ ∈ (L2(Ω1))3. We can apply Theorem 4.4 and we find
that G1,Γγ ∈ H1/2+δ(Ω1) and

||G1,Γγ|| 1
2+δ,Ω1

≤ C(||G1,Γγ||H(rot ;Ω1) + ||divτ γ̃||δ,∂Ω1).

On the other hand, it is at once verified that

||G1,Γγ||H(rot ;Ω1) ≤ C||F1,Γγ||H(rot ;Ω1);

hence, from (3.27)

|| rotF1,Γγ|| 1
2+δ,Ω1

≤ C(||γ||−1/2,Γ + ||divτ γ̃||δ,∂Ω1).(4.11)

From (4.10), (4.11) we have

||F1,Γγ||
H

1
2 +δ(rot ;Ω1)

≤ K1||γ̃||X δ
∂Ω1

,(4.12)

which concludes the proof.

5. Proof of Theorem B

The proof of Theorem B is based on the estimate for the interpolation error.
Let us recall that the finite elements we are going to employ are the Nédélec finite
element of first type (however, as we already noticed, the same results hold also for
the Nédélec finite element of second type introduced in [13]). They are defined for
k ≥ 1 as

Nk
h := {vh ∈ H(rot; Ω) | vh|K ∈ Rk ∀ K ∈ Th},(5.1)

where

Rk := (Pk−1)3 ⊕ Sk, Sk := {p ∈ (P∗k)3| p(x) · x = 0}
and P∗k is the space of homogeneous polynomials of degree k. The degrees of
freedom of Nk

h are given by

m1(v) :=
{∫

a

v · ta q for all q ∈ Pk−1(a) for the six edges a of K
}
,(5.2)

where ta is a unit vector having the same direction as the edge a; when k ≥ 2 one
has to add

m2(v) :=
{∫

f

(v × n) · q for all q ∈ (Pk−2(f))2 for the four faces f of K
}

;

(5.3)

and finally for k ≥ 3 one has to take also

m3(v) :=
{∫

K

v · q for all q ∈ (Pk−3(K))3
}
.(5.4)

Nédélec [12] has proven that these degrees of freedom are “curl-conforming” and
determine a unique element of Rk. Let us denote by Πk

h the interpolation operator
valued in Nk

h .
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Lemma 5.1. The interpolation operator Πk
h is defined in Hr(rot; Ω) for any r >

1/2.

Proof. It is only necessary to see that the moments introduced in (5.2)–(5.4) are
well defined.

If v ∈ Hr(rot; Ω) for r > 1/2, then in particular v|K ∈ (Hr(K))3 and from
the trace theorem v|f ∈ (L2(f))3; therefore, the moments m3(v) and m2(v) are
defined.

Concerning the moments m1(v), let a be one of the edges of a face f . Denote
as usual by n the unit outward normal vector on ∂K and by ν the unit vector
contained in the plane identified by f , pointing outward f and normal to a. The
unit vector ta can be written as ta = n× ν. Therefore we have∫

a

v · ta q =
∫

a

v · (n× ν) q =
∫

a

(v × n) · ν q.(5.5)

From the assumption on v we know v|f × n ∈ (Hr−1/2(f))3 and divτ (v|f × n) =
(rotv)|f ·n ∈ Hr−1/2(f); hence, in particular v|f×n ∈ (Lp(f))3 for a suitable p > 2
and divτ (v|f × n) ∈ L2(f). This easily yields ((v|f ×n) · ν)|∂f ∈W−1/p,p(∂f) and
then the moments m1(v) are defined by means of a duality argument.

Now we want to prove that

||v − Πk
hv||H(rot ;Ω) ≤ Chmin(r,k)||v||Hr (rot ;Ω) ∀v ∈ Hr(rot; Ω),(5.6)

where, as before, r > 1/2 and k ≥ 1.
This result is already known when r ≥ k, as for any v ∈ Hk(rot; Ω) Nédélec [12]

has proven

||v −Πk
hv||0,Ω ≤ Chk(|v|k,Ω + | rotv|k,Ω),(5.7)

and Monk [11] has obtained

|| rot(v −Πk
hv)||0,Ω ≤ Chk|| rotv||k,Ω.(5.8)

By following their proofs, it is an easy matter to verify that (5.6) holds also for a
positive integer r, r ≤ k − 1. Therefore, we are left with the proof of (5.6) in the
case of a non-integer r, 1/2 < r < k.

The reference tetrahedron K̂ is the one with vertices P0 := (0, 0, 0), P1 :=
(1, 0, 0), P2 := (0, 1, 0) and P3 := (0, 0, 1), and each tetrahedron K ∈ Th can be
obtained from K̂ by means of an invertible affine map FK(x̂) = BK x̂ + bK .

Let us denote the local interpolation operator by Πk
K . The relation Πk

K(v|K) =
(Πk

hv)|K clearly holds. Moreover, as in Nédélec [12], consider the map

v̂ = BT
Kv ◦ FK ,

which easily yields (Πk
Kv)∧ = Πk

K̂
v̂.

Finally, for the sake of convenience we introduce the matrix

Rotv :=


0 ∂v2

∂x1
− ∂v1

∂x2

∂v3
∂x1

− ∂v1
∂x3

∂v1
∂x2

− ∂v2
∂x1

0 ∂v3
∂x2

− ∂v2
∂x3

∂v1
∂x3

− ∂v3
∂x1

∂v2
∂x3

− ∂v3
∂x2

0

 ,
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in such a way that

Rotv(x) = (BT
K)−1 Rot v̂(F−1

K (x)) B−1
K .

We have

Lemma 5.2. Let Th be a regular family of triangulations. Then there exists a
constant C > 0 such that

||v||20,K ≤ ChK ||v̂||20,K̂

|| rotv||20,K ≤ Ch−1
K || rot v̂||2

0,K̂

for each v ∈ H(rot;K) and K ∈ Th.

Proof. The procedure is classic, and we report it here for the sake of completeness.
Firstly we have

||v||20,K =
∫

K

|v(x)|2dx =
∫

K

|(BT
K)−1v̂(F−1

K (x))|2dx

= | detBK |
∫

K̂

|(BT
K)−1v̂(x̂)|2dx̂

≤ | detBK | ||(BT
K)−1||2||v̂||2

0,K̂
.

Analogously,

|| rotv||20,K =
1
2

∫
K

|Rotv(x)|2dx =
1
2

∫
K

|(BT
K)−1 Rot v̂(F−1

K (x))B−1
K |2dx

=
1
2
| detBK |

∫
K̂

|(BT
K)−1 Rot v̂(x̂)B−1

K |2dx̂

≤ C| detBK | ||(BT
K)−1||2||B−1

K ||2|| rot v̂||2
0,K̂

.

The proof then follows by noticing that ||B−1
K || ≤ Ch−1

K and | detBK | ≤ Ch3
K .

Using this Lemma we find

||v −Πk
Kv||2H(rot ;K) ≤ C(hK ||v̂ −Πk

K̂
v̂||2

0,K̂
+ h−1

K || rot(v̂ −Πk
K̂

v̂)||2
0,K̂

).(5.9)

Now we want to write the term rot(Πk
K̂

v̂) in an equivalent form.
To start with, let us consider the case k ≥ 2. As in Nédélec [13], for l ≥ 1

introduce the finite element space

M l
h := {vh ∈ H(div; Ω) | vh|K ∈ (Pl)3 ∀ K ∈ Th},

with the moments

m̃1(v) :=
{∫

f

(v · n) q for all q ∈ Pl(f) for the four faces f of K
}
,

at which one has to add, in the case l ≥ 2, also

m̃2(v) :=
{∫

K

v · q for all q q ∈ Rl−1(K)
}
.

These moments are “div-conforming” and determine a unique element of (Pl)3. We
will denote by πl

h the interpolation operator related to M l
h, which is clearly well

defined and continuous in (Hr(Ω))3, r > 1/2, and by πl
K the local interpolation

operator. Again, we have πl
K(v|K) = (πl

hv)|K .
The following lemma was proved by Nédélec in [13], Proposition 2.
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Lemma 5.3. For each function v̂ ∈ Hr(rot; K̂), r > 1/2, and for each k ≥ 2 the
following relation

rot(Πk
K̂

v̂) = πk−1

K̂
(rot v̂)

holds.

Notice that the proof in [13] refers to the curl-conforming Nédélec elements
of second type; however, the curl of the interpolant is the same for both types
of Nédélec elements. Notice also that (though not explicitly underlined) in [13],
Proposition 2, it is assumed that k − 1 ≥ 1, i.e., k ≥ 2. Finally, there the result is
stated for v̂ ∈ H2(K̂), but this assumption can be weakened, as a consequence of
Lemma 5.1.

Consider now the case k = 1. We denote by fi the face of K̂ orthogonal to the
axis xi, i = 1, 2, 3. The following operator π0

K̂
: (Hr(K̂))3 → R3,

π0
K̂

v̂ = −2


∫

f1
v̂ · n∫

f2
v̂ · n∫

f3
v̂ · n

 ,

is clearly well defined and continuous for each r > 1/2. Moreover

Lemma 5.4. For each function v̂ ∈ Hr(rot; K̂), r > 1/2, the following relation

rot(Π1
K̂

v̂) = π0
K̂

(rot v̂)

holds.

Proof. As k = 1 we only have to deal with the moments of the first type m̂1(v̂) =∫
a
v̂ · ta. Denote by m̂s(v̂) the degree of freedom on K̂ associated to the edge as,

s = 1, ..., 6, where a1 = P0P1, a2 = P0P2, a3 = P0P3, a4 = P3P2, a5 = P1P3

and a6 = P2P1. It can be easily shown that the basis ψ̂s of R1 on K̂ satisfying
m̂s(ψ̂j) = δsj is given by

ψ̂1 =

 1− ŷ − ẑ
x̂
x̂

 , ψ̂2 =

 ŷ
1− x̂− ẑ

ŷ

 , ψ̂3 =

 ẑ
ẑ

1− x̂− ŷ

 ,

ψ̂4 =

 0
ẑ
−ŷ

 , ψ̂5 =

 −ẑ
0
x̂

 , ψ̂6 =

 ŷ
−x̂
0

 .

Let us notice that

rot ψ̂1 =

 0
−2
2

 , rot ψ̂2 =

 2
0
−2

 , rot ψ̂3 =

 −2
2
0

 ,

rot ψ̂4 =

 −2
0
0

 , rot ψ̂5 =

 0
−2
0

 , rot ψ̂6 =

 0
0
−2

 ,
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and therefore

rot(Π1
K̂

v̂) = 2


m̂2(v̂)− m̂3(v̂)− m̂4(v̂)

−m̂1(v̂) + m̂3(v̂)− m̂5(v̂)

m̂1(v̂)− m̂2(v̂)− m̂6(v̂)

 .

Taking the unit vector t = n× ν as in Lemma 5.1, it follows that

rot(Π1
K̂

v̂) = −2


∫

∂f1
v̂ · t1∫

∂f2
v̂ · t2∫

∂f3
v̂ · t3

 = −2


∫

f1
rot v̂ · n∫

f2
rot v̂ · n∫

f3
rot v̂ · n

 = π0
K̂

(rot v̂),

having used the Stokes Theorem on each face fi.

We are now in a position to consider the operators

I −Πk
K̂

: Hr(rot, K̂) → (L2(K̂))3, I − πk−1

K̂
: (Hr(K̂))3 → (L2(K̂))3,

which are clearly linear and continuous. Since we are dealing with a non-integer r,
with 1/2 < r < k, it follows that the integral part [r] of r satisfies [r] ≤ k−1. Hence,
the operators above take value zero for each polynomial in P[r], and applying the
Bramble-Hilbert Lemma we find

||(I −Πk
K̂

)v̂||2
0,K̂

≤ C inf
p̂∈(P[r])3

||v̂ + p̂||2
Hr(rot ;K̂)

,(5.10)

||(I − πk−1

K̂
) rot v̂||2

0,K̂
≤ C inf

p̂∈(P[r])3
|| rot v̂ + p̂||2

r,K̂
.(5.11)

By repeating the proof of the Deny-Lions Lemma we finally have

inf
p̂∈(P[r])3

||v̂ + p̂||2
Hr(rot ;K̂)

≤ C(|v̂|2
r,K̂

+ | rot v̂|2
[r],K̂

+ | rot v̂|2
r,K̂

),(5.12)

inf
p̂∈(P[r])3

|| rot v̂ + p̂||2
r,K̂

≤ C| rot v̂|2
r,K̂

.(5.13)

We recall that for an integer k the semi-norm in (Hk(Ω))3 is defined as

|v̂|k,K̂ :=

∑
|α|=k

||Dαv̂||2
0,K̂

1/2

,

whereas for a non-integer value s it holds

|v̂|s,K̂ :=

 ∑
|α|=[s]

|Dαv̂|2
s−[s],K̂

1/2

,

where for θ ∈ (0, 1) we have set

|v̂|θ,K̂ :=
(∫

K̂

∫
K̂

|v̂(x̂)− v̂(ŷ)|2
|x̂− ŷ|3+2θ

dx̂dŷ
)1/2

.
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From (5.9)–(5.13) we have thus obtained

||v −Πk
Kv||H(rot ;K) ≤ C(hK ||v̂ −Πk

K̂
v̂||2

0,K̂
+ h−1

K || rot v̂ − πk−1

K̂
(rot v̂)||2

0,K̂
)

≤ C
[
hK(|v̂|2

r,K̂
+ | rot v̂|2

[r],K̂
+ | rot v̂|2

r,K̂
) + h−1

K | rot v̂|2
r,K̂

]
≤ C

[
hK(|v̂|2

r,K̂
+ | rot v̂|2

[r],K̂
) + h−1

K | rot v̂|2
r,K̂

]
.

We need the following result.

Lemma 5.5. Let Th be a regular family of triangulations. Then there exists a
constant C > 0 such that

|v̂|2
s,K̂

≤ Ch−1+2s
K |v|2s,K ,

| rot v̂|2
s,K̂

≤ Ch1+2s
K | rotv|2s,K

for each real number s ≥ 0.

Proof. We will present the proof only for 0 < s < 1, the other cases being standard.
We have

|v̂|2
s,K̂

=
∫

K̂

∫
K̂

|v̂(x̂)− v̂(ŷ)|2
|x̂− ŷ|3+2s

dx̂dŷ

= | detBK |−2

∫
K

∫
K

|BT
K(v(x) − v(y))|2

|B−1
K (x− y)|3+2s

dxdy.

We can write

|x− y| = |BKB
−1
K (x− y)| ≤ ||BK || |B−1

K (x− y)|;

therefore, |B−1
K (x− y)| ≥ ||BK ||−1|x− y|. Hence,

|v̂|2
s,K̂

≤ | detBK |−2||BK ||3+2s

∫
K

∫
K

|BT
K(v(x) − v(y))|2
|x− y|3+2s

dxdy

≤ C| detBK |−2||BK ||3+2s||BT
K ||2|v|2s,K

≤ Ch−1+2s
K |v|2s,K .

In an analogous way

| rot v̂|2
s,K̂

=
1
2

∫
K̂

∫
K̂

|Rot v̂(x̂)− Rot v̂(ŷ)|2
|x̂− ŷ|3+2s

dx̂dŷ

=
1
2
| detBK |−2

∫
K

∫
K

|BT
K(Rotv(x) − Rotv(y))BK |2

|B−1
K (x − y)|3+2s

dxdy

≤ C| detBK |−2||BK ||5+2s||BT
K ||2| rotv|2s,K

≤ Ch1+2s
K | rotv|2s,K ,

which concludes the proof.

We can conclude with the following interpolation result.

Proposition 5.6. Let r be a non-integer with 1/2 < r < k. Let Th be a regular
family of triangulations. Then there exists a constant C > 0, independent of h,
such that

||v −Πk
hv||H(rot ;Ω) ≤ Chr||v||Hr(rot ;Ω)(5.14)

for each v ∈ Hr(rot; Ω).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



628 ANA ALONSO AND ALBERTO VALLI

Proof. Using the additivity of the integral we can write

||v −Πk
hv||2H(rot ;Ω) =

∑
K∈Th

(||v −Πk
Kv||20,K + || rotv − πk−1

K rotv||20,K)

≤
∑

K∈Th

[
hK(|v̂|2

r,K̂
+ | rot v̂|2

[r],K̂
) + h−1

K | rot v̂|2
r,K̂

]
.

From Lemma 5.5 we find

||v −Πk
hv||2H(rot ;Ω) ≤

∑
K∈Th

[
hK(h−1+2r

K |v|2r,K + h
1+2[r]
K | rotv|2[r],K)

+ h−1
K h1+2r

K | rotv|2r,K
]

≤ C
∑

K∈Th

(h2r
K |v|2r,K + h

2+2[r]
K | rotv|2[r],K + h2r

K | rotv|2r,K)

≤ Ch2r||v||2Hr(rot ;Ω),

and the thesis is proved.

The estimates (5.7), (5.8) and (5.14) yield the interpolation estimate (5.6), and
we are now in a position to conclude the proof of Theorem B.

Proof of Theorem B. We are going to follow the lines of the proof of Céa Lemma.
We have

||F1,Γγh − Fh
1,Γγh||2H(rot ;Ω1)

= ((F1,Γγh − Fh
1,Γγh,F1,Γγh − Fh

1,Γγh))Ω1

= ((F1,Γγh − Fh
1,Γγh,F1,Γγh −Πk

hF1,Γγh + Πk
hF1,Γγh − Fh

1,Γγh))Ω1 .

(5.15)

Let us take now γh ∈ XΓ,h. A basis φ1,j in XΓ,h is given by (nΓ×ψ1,j)|Γ, where
ψ1,j are basis functions of V1,h. Moreover, due to relation (5.5), for any tangential
element γ ∈ (Hr−1/2(Γ))3 ∩H(divτ ; Γ) the degrees of freedom related to XΓ,h are
given by −

∫
a γ ·ν q for each q ∈ Pk−1(a) and by −

∫
f γ ·q for each q ∈ (Pk−2(f))2,

where a and f are any edge and face of Γ, respectively. Therefore, for any v1 ∈
Hr(rot; Ω1) the interpolant on Γ of (nΓ × v1)|Γ is given by (nΓ × Πk

hv1)|Γ; hence,
(nΓ ×Πk

hF1,Γγh)|Γ = γh. Consequently, we have (Πk
hF1,Γγh − Fh

1,Γγh) ∈ V 0
1,h and

((F1,Γγh − Fh
1,Γγh,Π

k
hF1,Γγh − Fh

1,Γγh))Ω1 = 0.

Hence we find

||F1,Γγh − Fh
1,Γγh||H(rot ;Ω1) ≤ ||F1,Γγh −Πk

hF1,Γγh||H(rot ;Ω1).

From the assumption F1,Γγh ∈ Hr(rot; Ω1) and the interpolation inequality (5.6)
we finally find

||F1,Γγh − Fh
1,Γγh||H(rot ;Ω1) ≤ K2h

r||F1,Γγh||Hr(rot ;Ω1),

and Theorem B is completely proved.
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6. Proof of Theorem C

We have to prove that if Mh is a quasi-uniform family of triangulations of ∂Ω,
then there exists a constant C > 0 such that for each ηh ∈ X∂Ω,h it holds

||ηh||ε,∂Ω + ||divτηh||ε,∂Ω ≤ Ch−
1
2−ε(||ηh||−1/2,∂Ω + ||divτηh||−1/2,∂Ω).(6.1)

Noticing that both ηh and divτ ηh are polynomials in each triangle on ∂Ω, one can
apply the inverse inequality for the non-integer exponent ε obtaining

||ηh||ε,∂Ω + ||divτηh||ε,∂Ω ≤ Ch−ε(||ηh||0,∂Ω + ||divτηh||0,∂Ω).(6.2)

It remains for us to show that for each real scalar function zh ∈ L2(∂Ω) and such
that zh|T ∈ Pk for each triangle T ∈Mh we have

||zh||0,∂Ω ≤ Ch−1/2||zh||−1/2,∂Ω.(6.3)

A similar result in the two-dimensional case can be found in Quarteroni, Sacchi
Landriani and Valli [14]. We are going to adapt their proof to the case under
consideration. Let us set Mh := {v ∈ H1(∂Ω) | v|T ∈ Pk+3 ∀ T ∈ Mh}. For
each φ ∈ L2(∂Ω) denote by φ∗h the L2(∂Ω)-orthogonal projection of φ onto Mh.
Moreover, denote by φ∗∗h the function belonging to Mh which is defined as

φ∗∗h|T = φ∗h|T +
∑
|α|≤k

(φ− φ∗h, [M(x)]α)TPα,T ,(6.4)

where M(x) is the rigid motion sending T on the (x, y)-plane with one vertex in
(0, 0), and Pα,T ∈ Pk+1 satisfies Pα,T |∂T = 0 and

(Pα,T , [M(x)]β)T =
{

0 if α 6= β
1 if α = β,

|α|, |β| ≤ k.

Clearly, the function zh|T can be written as a linear combination of [M(x)]α, |α| ≤ k;
therefore, it follows at once that

∫
Ω
zhφ =

∫
Ω
zhφ

∗∗
h for each φ ∈ L2(Ω), and we

have

||zh||0,∂Ω = sup
φ∈L2(∂Ω)

φ 6=0

∫
∂Ω
zhφ

||φ||0,∂Ω
= sup

φ∈L2(∂Ω)
φ 6=0

∫
∂Ω
zhφ

∗∗
h

||φ||0,∂Ω

≤ sup
φ∈L2(∂Ω)

φ 6=0

||zh||−1/2,∂Ω ||φ∗∗h ||1/2,∂Ω

||φ||0,∂Ω
.

By using the inverse inequality as in (6.2) we obtain

||φ∗∗h ||1/2,∂Ω ≤ Ch−1/2||φ∗∗h ||0,∂Ω;

hence,

||zh||0,∂Ω ≤ Ch−1/2||zh||−1/2,∂Ω sup
φ∈L2(∂Ω)

φ 6=0

||φ∗∗h ||0,∂Ω

||φ||0,∂Ω
.

To conclude the proof, we have to show that

||φ∗∗h ||0,∂Ω ≤ C||φ||0,∂Ω.(6.5)
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We have

||φ∗∗h ||20,∂Ω =
∑

T∈Mh

||φ∗∗h ||20,T =
∑

T∈Mh

∫
T

φ∗h +
∑
|α|≤k

(φ− φ∗h, [M(x)]α)TPα,T

2

≤ C
∑

T∈Mh

∫
T

|φ∗h|2 +
∑
|α|≤k

(φ − φ∗h, [M(x)]α)2TP
2
α,T


≤ C

||φ∗h||20,∂Ω +
∑

T∈Mh

||φ− φ∗h||20,T

∑
|α|≤k

∫
T

[M(x)]2α

∫
T

P 2
α,T

 .
By a straightforward computation it can be shown that

max
T∈Mh

∫
T

[M(x)]2α

∫
T

P 2
α,T ≤ C,

uniformly with respect to h, and (6.5) follows by recalling that φ∗h is the L2(∂Ω)-
orthogonal projection of φ onto Mh.
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