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AN OPTIMAL DOMAIN DECOMPOSITION PRECONDITIONER
FOR LOW-FREQUENCY TIME-HARMONIC
MAXWELL EQUATIONS

ANA ALONSO AND ALBERTO VALLI

ABSTRACT. The time-harmonic Maxwell equations are considered in the low-
frequency case. A finite element domain decomposition approach is proposed
for the numerical approximation of the exact solution. This leads to an
iteration-by-subdomain procedure, which is proven to converge. The rate of
convergence turns out to be independent of the mesh size, showing that the
preconditioner implicitly defined by the iterative procedure is optimal. For
obtaining this convergence result it has been necessary to prove a regularity
theorem for Dirichlet and Neumann harmonic fields.

1. INTRODUCTION

The Maxwell equations read

oD

E —l"OtH_J,
oB

E = —I‘Otg,

where £ and H are the electric and magnetic field, D and B the electric and magnetic
induction, respectively, and J is the density of the electric current. The following
constitutive relations

D=¢e£, B=uH

(where € and p are the dielectric and magnetic permeability coefficients, respec-
tively) are assumed to hold, as well as the Ohm’s law

J =o€

(where o is the electric conductivity). The quantities €, p and o are in general
symmetric matrices, depending on the space variable x; £ and p are assumed to be
positive definite, whereas o is positive definite in a conductor and vanishing in an
insulator.
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608 ANA ALONSO AND ALBERTO VALLI

Writing the Maxwell equations in terms of £ and H only, we find

68—5 =rotH — o€,

ot

OH

ot

We are interested in the so-called time-harmonic case, i.e., we assume that & and
‘H are given by

= —roté&.

E(t,x) = Re[E(x) exp(iat)],
H(t,x) = Re[H(x) exp(iat)],

where E and H are three-dimensional complex-valued vector fields, and o # 0 is a
given angular frequency. Therefore, the equations become

iacE =rotH — oE,

(1.1) tapH = — 1ot E,

and eliminating H we find
(1.2) rot(u ' rot E) — o?(e —ia"'o)E = 0.

If we are considering the low-frequency case, i.e., the parameter a is small, by
checking the effective values of the dielectric coefficient &, the magnetic permeability
p and the conductivity o for general media, it can be seen that the parameter a’e
is much smaller than p~! and ao. Therefore, in this case the term a?cE can be

dropped out, and one is left with
(1.3) rot(u ' rot E) + iaoE = 0.

Formally speaking, the low-frequency model is thus obtained from the general equa-
tion (1.2) by setting e = 0. Afterwards we will refer to the low-frequency case as
to the case where € = 0.

Considering (1.1) or (1.2) in a bounded domain 2 C R?, we have to impose the
boundary condition

(1.4) nx E=¥ on 0Q,
where n is the unit outward normal vector on 02 and ¥ is a tangential vector on
o9.

Most often, it is assumed that a vector function E is known, satisfying n x E=w
on J). Then the resulting boundary value problem reads

rot(u~trotu) — a?(e —ia"lo)u=F in Q,
(1.5)
(nxu)pp =0 on 092,

where u =E — E and F = —rot(u~ ! rot E) + o?(e — ia~10)E.

Let us now make precise some notation. As usual, we indicate by H*(Q2), k > 0,
the Sobolev space of (classes of equivalence of) real or complex functions belonging
to L2(2) together with all their distributional derivatives of order less than or equal
to k. In particular, L2(Q2) = H°(Q2). We also consider the Sobolev space H*(f2) for
s € R, whose definition can be found in Adams [1].

It is well known that the trace space of H!(Q) over 95 is given by the Sobolev
space H'/2(0Q); more generally, if ¥ is a proper (non-empty) subset of 9Q, the
trace space of H'(2) over X is given by H/?(X). The spaces H~/?(9Q) and
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A DOMAIN DECOMPOSITION METHOD FOR MAXWELL EQUATIONS 609

H~'/2(%) are the dual spaces of H'/2(9Q) and H'/2(X), respectively. The duality
pairing between these spaces will be denoted by (-, -}sq and (-,-)s. The norm in
the Sobolev space H*(E) will be denoted by || - ||s,z, where s € R and = can be
either the whole domain €2, or the boundary 052, or else a suitable surface.

The space H(rot; Q) (respectively, H(div;€?)) indicates the set of the real or
complex (vector) functions v € (L2?(2))? such that rotv € (L*(Q2))? (respectively,
divv € L*(Q)).

We also need the definition of the tangential divergence of a tangential vector
field . Being given n € (H~1/2(09))? with (n-n);sq = 0, we define the tangential
divergence div,n of 1 as the distribution in H~3/2(9) which satisfies

(divem, ¥))oq = —(m, (V3)jan)ae ¥ ¥ € HY?(09),

where ¢35 € H?(Q2) is any extension of ¢ in 2, and we have denoted by ({-,-))aq
the duality pairing between H~3/2(9Q) and H3/?(992). Notice that, due to the
condition (n-n)jpn = 0, the right hand side indeed depends only on the value of ¢
on 0f).

We can now introduce the Hilbert spaces Xpq and Ay, where X is a proper
(non-empty) subset of 9. The former one is defined as

KXo = {n € (H2(0Q))*| (n - n)jpq = 0 and div,n € H~'/23(0Q)},
with the norm
x50 = [I0ll-1/2,00 + ||diven||—1/2,00-
Denoting by 7 € (H~/2(952))? the extension of v by 0 on 92\ ¥, the space X is
Xs = {v € (HY3(2))?| (v n)z =0 and div,5y € H~/3(9Q)},
endowed with the norm
Y xs = l[Yl[=1/2,2 + |divey[|=1/2,00-

In Alonso and Valli [2] it has been proven that, if either 9Q € C1! or Q is a convex
polyhedron, the space Xsq is equal, algebraically and topologically, to the space of
tangential traces of H(rot;{2). Similarly, Xy is the space of tangential traces of

Hpo\s(rot; Q) := {v € H(rot; Q) | (n X v)p0\ 5 = 0}.

Furthermore, in [2] it has been shown that there exist two linear and continuous
extension operators

Roq : Xoq — H(l‘Ot; Q),
RE : XE — HBQ\E(rOt; Q)

satisfying
(n x Raan)joe =1, (0 X Rey)z =7

for each n € Xpq and v € Ax.
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610 ANA ALONSO AND ALBERTO VALLI
2. WEAK FORMULATION OF THE PROBLEM
AND FINITE ELEMENT APPROXIMATION

We are going to make precise the variational formulation. First of all, we need
the following notation:

Hy(rot; Q) := {v € H(rot; Q) | (n x v)|pq = 0},
HO(rot; Q) := {v € H(rot; Q) | rot v = 0},
Hy(div; ) := {v € H(div; Q) | (n - v)pq = 0},

HO(div; Q) := {v € H(div;

)
We also assume that the coefficients 1 = (1i5(x))1<i j<3, € = (€i5(%))1<i,j<3 and
o = (04j(x))1<i,j<s are symmetric matrices with real coefficients belonging to
L>°(Q). The magnetic permeability is uniformly positive definite (UPD from now
on); namely, there exists a constant pg > 0 such that

—~

| divv = 0}.

3
Z i (X)EE,, > wol€)? for almost all z € Q and for all £ € C3.

I,m=1

The dielectric coefficient € is assumed to be UPD in the high-frequency case and 0
in the low-frequency case. The conductivity o can be UPD (when €2 is a conductor),
or else given by 0 = Fxq\q,, where Qq is a (non-empty) subset of Q2 (representing
an insulator), xo\q, is the characteristic function of Q\ Qp, and & is UPD. In
particular, the case g = {2 corresponds to the case of a perfect insulator.

We introduce in H(rot; §2) the following bilinear form:

a:(w,v) := (u~trot w,rot v) — o?([e — ia"'o]w, V),

where (-,-) denotes the (L?(£2))3-scalar product (for complex-valued vector func-
tions), and we set L(v) := (F,v).

Definition 2.1. A weak solution of (1.5) is a function u € Hy(rot; Q) such that
(2.1) as(u,v) = L(v) YV v € Hy(rot; ).

The high-frequency case (¢ is assumed to be UPD) has been considered by Leis
[9]. First of all, the bilinear form a.(-, -) has been proven to be coercive in H (rot; §2)
when ¢ is UPD. Moreover, the Fredholm alternative theorem holds for problem (2.1)
when o =0 (i.e., Qo = Q) (see [9]). A unique solvability result has been proven by
Alonso and Valli [4] for the conductivity given by o = oxa\q,, Q0o # Q.

We are mainly interested in the sequel in the low-frequency case (¢ is taken to
be 0) for a conductor (o is assumed to be UPD). In that case we can verify at once
that the bilinear form ag(-, -) is continuous and coercive in H (rot; 2); therefore, the
Lax-Milgram lemma yields

Theorem 2.2. Let Q) be a bounded domain, and assume that e =0 and o is UPD.
Then there exists a unique solution of (2.1).

A different approach is needed in the low-frequency case when the conductivity
is given by 0 = Gxq\q,- In this case the problem

rot(p~trotu) +icou=F in Q,
(2.2)
(nxu)po =0 on 01,
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A DOMAIN DECOMPOSITION METHOD FOR MAXWELL EQUATIONS 611

does not have a unique solution, as we can always add the gradient of a harmonic
function supported in €y to a solution. Therefore, we have to complete the differ-
ential model by adding suitable equations.

Alonso and Valli [3], by means of a perturbation argument, have proposed the
following problem:

rot(p~trotu) + icou=F in Q,
div(ujq,) =0 in Qo,

(nxu)pn =0 on 01,

<(u\90 .n)IFO,j’ 1>F0,j =0 Vj = 1, s Py

where I'g ; are the internal connected components of 0€. In [3] it has been proven
that (2.3) has a unique solution when Qg # €2, and the interface Q0 NA(Q2\ Q) is
either a C! surface or a convex polyhedral portion of 9.

Finally, in the case Q9 = Q (i.e., ¢ = 0) problem (2.3) reduces to a coercive
problem in Hy(rot; ) N H(div; Q) N H(e)*, having set

H(e) == {w € H(rot; ) N H°(div; Q) | (n x w)jgq = 0}

(see Saranen [15], Valli [17]).

We are now going to present some approximation results that have been obtained
for problem (2.1) via the finite element method.

In the low-frequency case for a conductor, the bilinear form ag(-,-) is coercive
in H(rot; Q); therefore, the problem is rather standard, and one only needs to con-
struct a suitable internal finite dimensional approximation of the space H (rot; Q).
To this end, the so-called Nédélec finite elements (see Nédélec [12], [13]) can be
used, as they are conforming in H(rot;2) (their tangential components are contin-
uous across the faces of the finite elements). An optimal order error estimate can
be obtained straightforwardly.

In the same case, by means of a different approach, Kiizek and Neittaanméki
[8] proposed a finite element space given by standard Lagrangian piecewise-linear
vector functions satisfying suitable conditions on the interfaces. In particular, when
o is a constant, these conditions reduce to the continuity across the interfaces, thus
furnishing a finite dimensional subspace of (H*(£2))3.

Also in the high-frequency case Monk [10] has used the Nédélec finite elements,
both for the case where o is assumed to be UPD and for o = 0, yielding an optimal
order error estimate.

The low-frequency heterogeneous problem (2.3), in which o = gxo\0,, Q0 # 2,
has been considered in [3]. At first the problem has been rewritten in an equivalent
two-domain formulation, and then the Nédélec finite elements are employed in
Q\ Qp, whereas Lagrangian piecewise-polynomial finite elements are used in Qg for
approximating a scalar potential of the magnetic field.

Due to the heterogeneous nature of the problem, a natural domain decomposition
algorithm can be devised, solving the problem iteratively in Qy and in 2\ Q. The
convergence of this iterative procedure is proven in [3], where the rate of convergence
is also shown to be independent of the mesh size h.

Clearly, it is also interesting to use a domain decomposition technique for solving
the two subproblems in Qg and in Q\ Q. For what is concerned with the problem in
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612 ANA ALONSO AND ALBERTO VALLI

the perfect insulator 0, is equivalent to the construction of an extension operator
from Xpq, into H(rot;€y) (see Alonso and Valli [2]). Moreover, this last prob-
lem can be reduced to a non-homogeneous Neumann boundary value problem for
the Laplace operator, and domain decomposition techniques for its finite element
approximation are well known.

In the next section we are going to consider the domain decomposition approach
to the finite element approximation of the low-frequency conductor problem, namely
the case where it is assumed that ¢ = 0 and that ¢ is UPD.

3. THE DOMAIN DECOMPOSITION PROCEDURE

We consider the low-frequency conductor problem
rot(p~trotu) +icou=F in Q,
(3.1)
(nxu)pn =0 on 9.

The bilinear form associated to (3.1) is given by
(3.2) ap(w,v) = / (utrot w - 10t ¥V 4 icow - V),
Q

and the weak formulation reads as in Definition 2.1.

Let the bounded domain €2 be decomposed in two subdomains 21 and €5 such
that = QU Qs and Q4 N Qs = 0. We will set T := O N Q.

In each subdomain we want to solve

rot(u~'rotu;) +icou; =F  in €y,
(n X uj)|3Qj\p =0 on 8Qj \F

with the interface conditions

(3.3) (Ilp X ul)‘p = (Ilp X u2)‘p,

(3.4) (nr x p~*rot uy)r = (nr x ptrot uz)p-
Set

(35) ‘/J = {Vj S H(I’Ot; Qj) | (l'l X Vj)‘agj\p = 0},

(3.6) aj(wj,vy) = /Q (™' rot wj - Tt Vj + iaow; - V), Vw;,v;eV,
g

(3.7) Liv)= [ B,

J
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A DOMAIN DECOMPOSITION METHOD FOR MAXWELL EQUATIONS 613

The bilinear forms a; are clearly continuous and coercive in V;. The variational
formulation of the two-domain problem reads

find, (ul,uQ) eVix Vs
al(ul,vl) = Ll(Vl) A4 vV, € HQ(I’Ot;Ql)
(nr x ul)\l“ = (nr x UQ)\F

GQ(UQ, Vg) = L2(V2) + L1 (Rl(l’lr X Vg)‘p)
—al(ul,Rl(np X Vg)‘p) YV vy € Vg,

where R4 : Ar — V3 is any extension operator.

The equivalence of the formulations (2.1) and (3.8) can be easily proven (see, for
instance, Alonso and Valli [3], where a similar situation is considered).

For the numerical approximation, we will use the Nédélec finite elements of the
first kind (see Nédélec [12]). However, the same results could be proven also for
the Nédélec finite elements of the second kind (see Nédélec [13]). For the reader’s
convenience, we present here the precise definitions of the former elements.

Let us assume that Q, Qy and Qg are a Lipschitz polyhedrons. Let {7p}r>0 be
a family of triangulations composed by tetrahedrons, where A is their maximum
diameter. Moreover, assume that each element of 7, only intersects either 21 or
Q. Let Pg, k > 1, be the space of polynomials of degree less than or equal to k,
and denote by P} the space of homogeneous polynomials of degree k. We set

Sk i={p € (P})°| p(x) - x =0}, Ry = (Pr-1)” & Sp.
Notice that (Pr_1)? C Ry C (Px)®. We will employ the finite element space
le-fh = {vn € H(rot;) | viyx € Rx ¥V K € Tj 5}

and we define

(3.9) Vin =N, 0V,
(3.10) V2, := Nj), 0 Ho(rot; ),

(311)  Arpi={(ar x vip)r | vin € Vin} ={(ar X vau)r [ von € Vau}
The finite dimensional approximation problem reads

find, (a1 p,u2,n) € Vip X Vo -

ar1(u,p, vin) = Li(vig) Vv € VRh

3.12
(3.12) (np X uy p)r = (nr X wgp)r

az(U2,n,von) = La(van) + L1(Ryn(nr X vau)r)
—ar(up, Rip(nr X vop)r) YV vapn € Vo,

where R} is any extension operator from &}, r to Vi j.
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614 ANA ALONSO AND ALBERTO VALLI

Let us introduce now for each =, € X}, r the solution E;'L,F’Yh of the problem

E?,F’Yh S V‘)h :
(3.13) aj (Bl ryp, vin) =0 Vv € V),

(np x E?J'Yh)\l“ =Yh»
and also the solution ;5 € V7, of
(314) ﬁj)h c ‘/7?}1 : a,j(ﬁj_,h,vj,h) = Lj(Vj_’h) A Vihn € ‘G?h’
whose existence and uniqueness is a consequence of Lax-Milgram Lemma. Then
the couple (E’f)r)\h + Uy p, Egp)\h +Uy,) is a solution to (3.12) if and only if
(3.15) az(BY p A + Uo.n, Vo) = La(va ) + Li(EY p(np X va ) r)
. —a1(BY pAn + 010, B p(nr X va)r) ¥V van € Vo

is satisfied. Due to (3.13) and (3.14), this is equivalent to

(3.16) aQ(Eg,FAha E}QL,Fnh) + as(ta p, Eg,r"?h) = LQ(ES,Fnh) + Ll(E}f,F"?h)
- al(E}f,F)‘hv E’f,r"?h) —ay (U, E’f,r"?h) vy, € Ao

We define the Steklov-Poincaré operators S5, j = 1,2, in the following way:

(3.17) (S nYhs M) 0 o= a’j(E?,F'Yhﬂ E;'L,rrlh) YV Yh My, € X1 s

where ((-,-))n denotes the duality pairing between (Xp ;) and Ap .
Define moreover

(®r,mp))n = Ll(E}f,rnh) — a1 (Uy,n, E}f,rnh)
+ L2(E}2L,r77h) — as(Ug,p, Eg,rnh) vV ny, € X h.
Problem (3.12) is therefore reduced to finding

(3.18)  An € X (((Stn+Sen)Ans ) = (Prmp))n YV 0y, € A

We will see that the operators S; 5, are continuous and coercive in Ar p; hence,
for solving (3.18) we can apply the Richardson method with one of these operators
(say, S2.5) as a preconditioner.

In other words, given )\2 € At p, for each m > 0 solve
(3.19) Ay = A4 0855 (®n — (Sun + San) A
= (1= A} + 0S5, (®h — S1pAR).

By proceeding in a standard way (see, for instance, Alonso and Valli [3], Section 5,
for a similar computation), it can be seen that (3.19) is equivalent to the following
iteration-by-subdomain algorithm: being given )\2 € A, for each m > 0 solve

UTZA S V17h :
(3.20) al(uf,jl,vl_,h) = Ll(Vl,h) v Vi, € Vl(fh
(nr x u’l’?}fl)‘r ="
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A DOMAIN DECOMPOSITION METHOD FOR MAXWELL EQUATIONS 615

(3.21) u;’f;l € Vo ag(ugf}jl, van) = La(van) + L1(E’f7p(np X Vo.n)r)
- al(“fﬁrla E} p(nr X van)r) V vop € Vo,

and pose

(3.22) AL = (1= )X+ O(nr x ufy ) p.

The convergence of the sequence A}" constructed in (3.19) is a consequence of
the following abstract theorem.

Theorem 3.1. Let X be a complex Hilbert space and let S1 and Sz be two
linear operators from a finite dimensional space Xy C X into its dual X,. Let X,
s =1,...., My, a basis of Xp. Define the matrices S; associated to the operators
Sjn as

(Sj,h’)’an)h = <<Sj,h7h7nh>>h \V/ Y,n € CMha .] = 11 27

where (-, ), denotes the euclidean scalar product in CMr and

Mh Mh
(3.23) Vh =) VeXer Mh = D MeXs-
s=1 s=1
Let us assume that there exist two constants C; > 0 and Cy > 0, independent of h,
such that
(3.24) [(Sepvnmhinl < Crllvallxlmnllx - ¥ yn,mn € X,
(3.25) [{(Senvns M)l = Collmallx ¥ vi € X,

Re((S1,nYh> V) n Re((Sa,n Vs Vi) )n
+ Im<<81,h’7ha’7h>>h, Im<<82,h’7ha’7h>>h >0 v Yn € Xh.

Then each eigenvalue v of 52_}1(51,}1 + Sa2.5) satisfies

(3.26)

Rewv,
cr <28V g1 My,
|vs|?
where
) . 203
O = min <1, m) .

Therefore, for any 6 € (0,C*) one has
2
lvg|? < gReus Vs=1,.., My,

and the preconditioned Richardson iterations converge with a rate independent of
h.

Proof. The proof is similar to that of Theorem 7.2 in [3]. However, for the reader’s
convenience we will give it in complete detail.

If v is an eigenvalue of S;)}I(Sl,h +Sop) =1+ SQ_),lISl,h, we can write v = 1 + &,
where  is an eigenvalue of S, }lsl,h. The corresponding eigenvector v € CMn,
v # 0, satisfies S; v = fng,h'y;/therefore7

(St Y Y h = E{S2mYhs Y Ih
where v, € X}, is the function defined in (3.23).
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Writing kK = k1 + ke, K1, k2 € R, we have
Re((S1.nYhs Ya))n = w1Re((S2.n Vs Vi) h — k2T ((S2.n Yy Vi) ko
Im((S1 w7 hs Yi))n = K1 Im{(Sa Yy, Yp))n + K2Re((Sa.nYpy Yi))n-

Multiply now these equations by Re((Sa2.n v, Yn))n and Im{((S2 n¥p, V) ) ns respec-
tively: by adding the results we find

ka[(Re((Sa.nyn, Ya))n)? + (I {(S.n v Yi))n)]
= Re((S1,7h Yn))n Re{(S2,nYn, Y ) )n
+Im{(S1,nYhs Yr))n I ((S2, Y5 V) D

From (3.25) we have that |((S2,n v, Yn))n| # 0; therefore, (3.26) yields k1 > 0.
On the other hand, from (3.24), (3.25) it follows

e = Sty vl (g )
[(S2n v Ye)nl> ~ \C2 )

therefore,

Rev 14+ k1 14+ K1
22 =2 - >2 —.
V] 1+ 2k + |K] 142k + (51)2

Notice now that the function
1+¢
F(&) =2 Ci\2

1428+ (&)
is strictly increasing when Cy > (s, strictly decreasing when C; < C5 and con-
stantly equal to 1 when C7 = Cy. Moreover,

203
0)= —==, lim F(§ =1;
hence, C* is the infimum of F' for £ > 0. O

The proof of the convergence of the iterations (3.19) reduces now to verify that
the operators Sy 5, and Saj satisfy the assumptions of Theorem 3.1, i.e., (3.24)-
(3.26).

Noting that

Re((S; a7 1)) = / i rot Bl oy, 2,

Q;

Im((S; 4 Yi))n = 0 / o|E py, .

J

estimate (3.26) is trivially satisfied.
By using the coerciveness of aa(+,-) and the following tangential trace inequality
(see Alonso and Valli [2])

||(np X V)\FHECF < C*HVH%{(rot;QQ)
we have
h 2 h 2 C 2
[(S2m v 0nl = CUB vl G, + 1 rot BE pvallE ) > vl e

hence, (3.25) holds.
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The proof of (3.24) is more difficult. The crucial point is the proof of the conti-
nuity of the extension operator Efll-,F uniformly with respect to h. Let us start by
introducing for each § > 0 the space

Xio = {n € (H*(09))*| (n - n)jpq = 0 and div,n € H°(09)},
and for each r > 0 the space
H"(rot; Q) := {v € (H"(2))?| rotv € (H"(Q))*},
endowed with the following norms, respectively:
)1/2’

1/2

[l xs,, = (Inll5 00 + [1divenll3 o
IVl ot sy = (IIVII7 + [ 10t v][7 )

Let us denote by Fir : Ar — V; the extension operator which at each v € At
associates Fy r~ such that

FiryeVWi:
((F1rv,vi))a, =0 YV vi € Hy(rot; Q1)

(nr X Firy)ir =1,

where

((w1,v1))a, ::/ (rot wy - TOt VY + Wy - V7).
Q1

The existence of such an operator is guaranteed provided that we can characterize
AT as the space of tangential traces on I' of V7. In that case, as a consequence of
the closed graph theorem, it easily follows that F; r is a continuous operator, i.e.,

(3.27) IF1rylHeot00) < CollVllar Vv € Ap.

The needed characterization result on AT was proved in [2], under the assumption
that T is either a C'1'! surface or a convex polyhedral portion of 9.

Finally, introduce the extension operator F% . : X, r — Vi p,, which is the finite
dimensional counterpart of Fy r: '

F}II,F’)/h S Vl’h .
((F}f,F’Yha vin))o, =0 Vvip € Vl?h

(np x F’f,r’)’h)w =Yh-

We need the following regularity result, which is Proposition 3.7 in Amrouche,
Bernardi, Dauge and Girault [5]. Let us set

X := H(rot; 2) N Ho(div; §2),
Xn := Ho(rot; Q) N H(div; ),

both endowed with the norm
[[vlo, + [ div v||o,0 + [[ rot v[|o,0.

Theorem 3.2. Let Q be a Lipschitz polyhedron. Then there exists sq € (1/2,1)
such that the spaces Xt and Xy are both continuously imbedded in (H**(Q))3.
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We notice that s only depends on the geometry of Q. It is related to the
exponent of maximal regularity of the solutions to the Laplace operator with L?(£2)
on the right-hand side and homogeneous Dirichlet or Neumann boundary datum
(see Amrouche, Bernardi, Dauge and Girault [5], Remark 3.8).

The proof of (3.24) is based on the following three theorems, which will be proven
in the Sections 4, 5 and 6. From now on the subdomain §2; is always assumed to
be a Lipschitz polyhedron. Finally, set kg := sq — 1/2, where sq is as in Theorem
3.2.

Theorem A. Assume that T' is a convexr portion of 0Q1. Given § € (0,kq,],
there exists K1 > 0 such that for all v € Xp with v € Xng one has Firvy €
HY?%3(rot; Q1) and

P10 s oy S Kl g,

Here, as usual, 4 denotes the extension of o by 0 on 9Q; \ T

Theorem B. Let 7, be a regular family of triangulations. Assume that v, € Xrn
and that F1pvy, € H"(rot;Qy) for a certain v € (1/2,1). Then there exists a
constant Ko > 0, independent of h, such that

[1F1,0v, — F}f,r’YhHH(roc;Ql) < Koh[|F ey Hr (ot ;04 Vv, € Arh.

Theorem C. Let My, be the family of triangulations of 0Q1 induced by Tp,. As-
sume that My, is quasi-uniform. Then for each € € (0,1/2) there exists a constant
K3 > 0, independent of h, such that

~ _1_
nllxgy, < Ksh™>lyullar Vi € Abn.

Once we have established these results, we are in a condition to prove the fol-
lowing

Proposition 3.3. Assume that T is convex portion of 001 and that My, is a quasi-
uniform family of triangulations of 021. Then there exists a constant Kq4 > 0,
independent of h, such that

[(Sen v madnl < Kallypllxclnnllee Y vism, € X0,
which is estimate (3.24).
Proof. From the definition of the Steklov-Poincaré operator S; ;, we have
[((SLaY s )0l = |al(E}f7F’7haE}f,rnh>|
< ﬁIHE}lI,F'Yh”H(rot;Ql)||E}f,Fnh||H(rot;Q1)7

where (31 > 0 is the continuity constant of a1 (-,-). Therefore, the proof is complete
if we show that there exists a constant C' > 0, independent of h, such that

||E}f,1‘7h||H(rot;Ql) < C||’Yh||Xr V vy € X h
Taking in (3.13) the test function vi , = Ef 1y, — F} y;, we have

h h h h
a1 (El,F’Yha E1,F’Yh) = al(ELF’Yha Fl,r’)’h)-
Hence

B
(3'28) ||E}f,F7h||H(rot;Ql) < a_l||F}f,F7h||H(rot;Q1)7

where oy is the coerciveness constant of the bilinear form aq(, -).
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Moreover

(3.29) ||F}11,F'7h||H(rot;Ql) < ||F}11,F'7h - Fl,F'YhHH(rot;Ql) + ||F17F7h||H(rot Q1)
therefore, from (3.27) we only have to estimate the first term in (3.29).

At first, remark that v, € AT, yields ), € X, for each d € (0,1/2), as both 7,
and div, 4}, are (discontinuous) piecewise-polynomial. Therefore, from Theorem A
we have that Fy py, € H'/?T(rot;Q;) for any d € (0, kg, ]. Using also Theorem B
(where r =1/2 4 ) we have

1is
1E L evn = Frrvallron o) < Kah? P IE eyl s 0 )
< KaKoh A, |, -
59,

Now we can apply Theorem C (for e = §) and we find

(3.30) EY 2vh = Frovalla ot o) < KiKaKs| v, .-
The proof follows from (3.27)—(3.30). O

Remark 3.4. In Theorem A and in Proposition 3.3 the assumption on I' is only
needed to assure that AT is the space of tangential traces on I' of V.

4. PROOF OF THEOREM A

Let us introduce the finite dimensional spaces
H(e) == {w € (L*(2))*| rotw = 0, divw =0, (n x )9 = 0},
H(m) := {o € (L*(Q))*| roto =0, dive =0, (0" n)po = 0}.

We start recalling the following theorems, whose proof can be essentially found
in Saranen [16] (see also Valli [17]).

Theorem 4.1. Let Q C R? be a bounded domain with Lipschitz boundary OS).
Each function w € (L*(Q))? can be written as

(4.1) W:rotp—l—Vq—i—Zakgk,
k=1

where p satisfies

rotrotp =rotw  in Q
divp=0 in Q
(4.2)
(nxp)ag =0 on 0%
(p,w) =0 Y w e H(e),
q satisfies
Ag =divw in
3(])
— =(w-n on 02
(4.3) <an 20 (w-n)jon
/ q=0,
Q
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the functions {g}}_, are an orthonormal basis of H(m), and the coefficients oy,
are given by o = (W, 0;), k=1,...,n.
Theorem 4.2. Let Q C R? be a bounded domain with Lipschitz boundary OS).
Then there exists a constant Cq > 0 such that
[[W]lo.0 < Ca(l|rot w||o,q + || divw||o,q) Vwe XprnH(m)®t.
We are now in a position to prove some auxiliary results, which are interesting
on their own as they are regularity results for harmonic fields. In the particular

case in which the parameter ¢ is equal to 0, Costabel [6] proved the same regularity
result for a simply connected Lipschitz domain with connected boundary.

Theorem 4.3 (Regularity for Dirichlet harmonic fields). Let ©Q be a Lipschitz
polyhedron. Then for each § € (0,1/2) the space

W= {w € H(rot; Q) N H(div; Q) | (n x W) a0 € (H°(0))*}
is continuously imbedded in (HY/?t¢(Q))?, where €, := min(6, ko).

Proof. From Theorem 4.1 each function w € W can be written as

(4.4) w:rotp+Vq+Zakgk.
k=1

Since rotrotp = rotw € (L*(€2))?, and (n X p)jpg = 0 yields (rotp - n)jgo =
—div,(n x p)jan = 0, we have that rotp € X7. Moreover, g, € H(m) C Xr;
hence, from Theorem 3.2 we find that rot p and each g, belong to (H/2t#2(Q))3.
From ay = (w, g;,) it follows at once that

(4.5) > laxlllewlly sne.0 < Cliwlloo:
k=1

Moreover, it is easily verified that rot p € H(m)*; hence, from Theorems 3.2 and
4.2 we have

Irot p[l1 1 4p.0 < Cllrot pllx,
(4.6) < C(1+4 Cq)(||rotrot pllo.o + || divrot pllo,a)
= C(1 4+ Cq)||rot w||o.q-
On the other hand, from
Vg = (Vg -n)pon —n x (n x Vq)an
we have
Voo = —n x (n x Vq)aq,
and therefore
Vigoa = —n X ((n X W)jan — (n X Tot p)jag — (0 x Z Oéka)mQ) .
k=1
The unit normal vector n is piecewise constant, as () is a polyhedron; hence,
Vg0 € (H" ().

From ¢ € H(Q) we also have that qpo € HY2(9Q) C L*(9Q); therefore, we
conclude that

qloo € H'(09)
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and we find the estimate

llg00ll14<.,00 < C(llgllo,00 + |IVrq0alle..00) < C(lldllie + [[V-qoalle. 00)
< C(|[wllo,e + [|(n x W)jaalls,00

n
+ ot pll14pg.0 + Z |k | @411 1+ q.9)-
k=1

Since Ag = divw € L%(Q), from the regularity results for the Dirichlet boundary

value problem for the Laplace operator it follows that ¢ € H3/2T¢+(Q) (see Dauge
[7], Corollary 18.13), and

(4.7) IVall1ie.0 < Nldllg e, 0 < CUldivwllog +[lgoall1+-. 00)-

From the representation formula (4.1) we finally have w € (H3/2%¢(Q2))? and from
(4.5)-(4.7)

n
agy lsene S 10Bl 18l o4 D ol s
. k=1
< O([|wllo,e + [|rot wllo,0 + [| div wl[o,0 + [[(n X W)jaqlls,00),
which concludes the proof. O

A similar result is the following

Theorem 4.4 (Regularity for Neumann harmonic fields). Let Q be a Lipschitz
polyhedron. Then for each 6 € (0,1/2) the space

V= {w e H(rot; Q) N H(div; Q) | (n- W) a0 € H°(09)}
is continuously imbedded in (HY/?t(Q))3, where €, := min(6, kq).

Proof. As in the proof of Theorem 4.3, we use the representation formula (4.1).
The first and the third term can be treated as done there; hence, we have only to
check the regularity of q.

It is the solution of a Neumann boundary value problem for the Laplace operator
with L2(Q) right-hand side, and H°(9€2) Neumann datum. As a consequence of
Corollary 23.5 in Dauge [7] we have that ¢ € H3/?*¢(Q) and

IVdlly1c. 0 < C([divwllog + [|(n - w)aallsen)-
Using (4.5), (4.6) we finally have

n
Wl 11e. 0 <IT0tPI110g.0 +IVAll1ie, 0+ ) lanlllor]l11n0,0
2 2 2 2
k=1

< C(l[wllo.o + [[rot wllo.o + [|div w0, + [|[(n - W)|a0ll5.00)

(4.9)

and the proof is concluded. O
We are now in a position to give the proof of Theorem A.

Proof of Theorem A. Fq v € H(rot;{);) satisfies
rot rot Fl,F')’ + F1,F7 =0 in Qq;

therefore, divF;ry = 0 in ©;. We can apply Theorem 4.3 and we find that
Firy € HY?9(Q) and

||F1,F7||%+5791 < C(||F1,F7||H(rot;ﬂ1) + ||:)7||5,391)'

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



622 ANA ALONSO AND ALBERTO VALLI

Assuming that I' is convex portion of 9§, from (3.27) we finally have
(4.10) L7y a0, < CUAlls00, + 1AVl 2,.00,):
Let us denote by G rv :=rot F; rv. We first notice that

(G117 - n)jaq, = —div,7 € H°(09)

and that rot G ry = —F1 ry € (L*(Q1))3. We can apply Theorem 4.4 and we find
that Gy ry € HY/?+9(Q;) and

G171 15.0, < CUIGLM Y HEor00) + [|diveYs,00,)-
On the other hand, it is at once verified that
|G 1,rY/|H(rot:01) < ClF 1,0 H(rot :01);
hence, from (3.27)
(4.11) Irot F1ryll1450, < CUIl-1/2,r + [[diveYlls,00,)-
From (4.10), (4.11) we have
(4.12) IPLl 0y < Kl

which concludes the proof.

5. PROOF OoF THEOREM B

The proof of Theorem B is based on the estimate for the interpolation error.
Let us recall that the finite elements we are going to employ are the Nédélec finite
element of first type (however, as we already noticed, the same results hold also for
the Nédélec finite element of second type introduced in [13]). They are defined for
k>1as

(5.1) NF = {v), € H(rot; Q) | ik € R VK € Tp},
where
Ry = (Pk_l)g ® Sk, Sp:= {p S (PZ)3| p(X) CX = 0}

and P} is the space of homogeneous polynomials of degree k. The degrees of
freedom of N} are given by

(5.2) mi(v) = {/ v - t, q for all ¢ € Py_4(a) for the six edges a of K} )

a
where t, is a unit vector having the same direction as the edge a; when k£ > 2 one
has to add

(5.3)
mao(Vv) = {/f(v x n)-q for all q € (Py_2(f))? for the four faces f of K} ;
and finally for £ > 3 one has to take also
(5.4) mg(v) := {/K v-qforall q€ (Pk_3(K))3} .
Nédélec [12] has proven that these degrees of freedom are “curl-conforming” and

determine a unique element of Rj. Let us denote by Hﬁ the interpolation operator
valued in N, ,]f
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Lemma 5.1. The interpolation operator Hﬁ is defined in H"(rot; Q) for any r >
1/2.

Proof. Tt is only necessary to see that the moments introduced in (5.2)—(5.4) are
well defined.

If v.e H"(rot;€2) for » > 1/2, then in particular v|x € (H"(K))* and from
the trace theorem v|; € (L?(f))?; therefore, the moments ms(v) and my(v) are
defined.

Concerning the moments mi(v), let a be one of the edges of a face f. Denote
as usual by n the unit outward normal vector on K and by v the unit vector
contained in the plane identified by f, pointing outward f and normal to a. The
unit vector t, can be written as t, = n x v. Therefore we have

(5.5) /le-taq:Av-(nxu)q:/Ll(vxn)-uq.

From the assumption on v we know v|; x n € (H"~1/2(f))3 and div,(v|; x n) =
(rotv)|;-n € H"~1/2(f); hence, in particular v|; xn € (LP(f))? for a suitable p > 2
and div,(v|; x n) € L?(f). This easily yields ((v|; x n) - v)jo; € W™Y/PP(9f) and
then the moments m4(v) are defined by means of a duality argument. O

Now we want to prove that
(5.6) v = v Hrot 0y < Chmin(r’k)||v||HT(mt;Q) Vv e H"(rot; ),

where, as before, r > 1/2 and k > 1.
This result is already known when r > k, as for any v € H*(rot; Q) Nédélec [12]
has proven

(57) ||V — H£V||O,Q S Chk(|V|k79 + |I‘OtV|k79),
and Monk [11] has obtained
(5.8) [| rot(v — Hiv)”o@ < Chk|| rot v||g.q-

By following their proofs, it is an easy matter to verify that (5.6) holds also for a
positive integer r, r < k — 1. Therefore, we are left with the proof of (5.6) in the
case of a non-integer r, 1/2 < r < k.

The reference tetrahedron K is the one with vertices Py == (0,0,0), P :=
(1,0,0), P, := (0,1,0) and P3 := (0,0,1), and each tetrahedron K € 7} can be
obtained from K by means of an invertible affine map Fg (X) = BxX + bk.

Let us denote the local interpolation operator by II}. The relation IT% (v k) =

(IIfv) i clearly holds. Moreover, as in Nédélec [12], consider the map
v = Blvo Fg,

which easily yields (IT§v)" = H%\Af.
Finally, for the sake of convenience we introduce the matrix

0 vy _ Ouy Ovz _ Ovy
Ox1 Ox2 Ox1 Ox3
- Qv _ vy Ovz __ Oua
ROtV T Oxo Oxq O Oxo Oxs ?
Ov1 _ Ous vy _ Ous 0
T3 Ox1 Oxs3 Oxa
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in such a way that
Rot v(x) = (B%) ' Rot v(F'(x)) Bx'.
We have

Lemma 5.2. Let Ty, be a regular family of triangulations. Then there exists a
constant C' > 0 such that

V1[5 < Chic|IVIIE &

ot v[§ i < Chi [ rot ¥|I7
for each v € H(rot; K) and K € Tj,.

Proof. The procedure is classic, and we report it here for the sake of completeness.
Firstly we have

IVl = [ ooPax = [ 1BR)e(r 00) Pax
K K
= |detBK|[ |(B) ™'V (%)[?dx
K
< | det B[ [|(Bi) " IPIVIIG 4
Analogously,
1 1
ot = 5 [ [RotvGPdx =5 [ 1(8F) Rotv(F () By Pax
K K
1
- 5| det B| /K |(B%) ™! Rot v(%) Br'|*dx
< Cldet B |[|(Bie) TP B 1Pl vot ¥[[§ 4
The proof then follows by noticing that ||Bx'|| < Chy' and |det Bx| < Ch3,. O
Using this Lemma we find
(5.9) [V =5 [F o i) < Clhxcl[v =TV o 4 bt || vot (v — D)3 1)

Now we want to write the term rot(H’}(fr) in an equivalent form.
To start with, let us consider the case k > 2. As in Nédélec [13], for | > 1
introduce the finite element space

Mj, = {vy € H(div; Q) | vy € (P1)° V K € Tp},

with the moments
mi(v) = {/(v -m) ¢ for all ¢ € Py(f) for the four faces f of K} ,
f

at which one has to add, in the case [ > 2, also

ma(Vv) = {/Kv-qfor all gq € Rl_l(K)}.

These moments are “div-conforming” and determine a unique element of (P;)3. We
will denote by 772 the interpolation operator related to M, ,lL, which is clearly well
defined and continuous in (H"())3, » > 1/2, and by 7% the local interpolation
operator. Again, we have 7l (v|x) = (7},v) k.

The following lemma was proved by Nédélec in [13], Proposition 2.
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Lemma 5.3. For each function v € H"(rot; K), v > 1/2, and for each k > 2 the
following relation

rot(H]}{\Af) = wf{l (rotv)
holds.

Notice that the proof in [13] refers to the curl-conforming Nédélec elements
of second type; however, the curl of the interpolant is the same for both types
of Nédélec elements. Notice also that (though not explicitly underlined) in [13],
Proposition 2, it is assumed that £ — 1 > 1, i.e., £ > 2. Finally, there the result is
stated for v € H Q(K ), but this assumption can be weakened, as a consequence of
Lemma 5.1.

Consider now the case k = 1. We denote by f; the face of K orthogonal to the
axis x;, i = 1,2,3. The following operator w% (H™(K))* — R3,

/ PR

TV = —2 fh\A’-H ,

0
K
ffs v-n
is clearly well defined and continuous for each r > 1/2. Moreover
Lemma 5.4. For each function ¥ € H"(rot; K), r > 1/2, the following relation
rot(H}({r) = W%(I‘Ot V)
holds.

Proof. As k =1 we only have to deal with the moments of the first type mq(v) =
fa V - t,. Denote by m?®(v) the degree of freedom on K associated to the edge as,
s = 1,...,67 where a; = P()Pl, az = PQPQ, az = PQP3, ay = P3P2, as = P1P3
and ag = P> P;. It can be easily shown that the basis 12;5 of Ry on K satisfying
Ths(ibj) = J,; is given by

. 1—9g—2 R Y . Z
,l/)l = z ) ’lan = 1-2-2 ’ ¢3 = z )
T i 1l—-2—79
. 0 R —Z R U
¢4 = 2 ) ¢5 = 0 ) wﬁ = _‘/i.
—q T 0
Let us notice that
. 0 . 2 R -2
rotp, = —2 |, roty, = 0 , Totpg = 2 ,
2 -2 0
R -2 . 0 R 0
rot, = 0 ,rotps = | =2 |, rotypg = 0 ,
0 0 -2
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and therefore

Wl (V) — (V) — mb ()

Taking the unit vector t = n X v as in Lemma 5.1, it follows that

fafl‘}'tl ffl rotv - n
rot(Mv) = =2 | [y, vtz | ==2| [,rot¥-n | =7%(rot¥),
faf3€f~t3 ffsrotfwn
having used the Stokes Theorem on each face f;. O

We are now in a position to consider the operators
I—H%:qumkje(ﬁﬂaﬁ,I—ﬂgJWHWK»Wau?mw{

which are clearly linear and continuous. Since we are dealing with a non-integer r,
with 1/2 < r < k, it follows that the integral part [r] of r satisfies [r] < k—1. Hence,
the operators above take value zero for each polynomial in P}, and applying the
Bramble-Hilbert Lemma we find

k Ve |12 .
(5.10) I =¥l e <O it

[r]

RN
)3 ||V + p||HT(rot;k)’

(5.11) 11 = 7)ot 92 o < C 6&%ﬂ3”rot04-ﬁ”iK

By repeating the proof of the Deny-Lions Lemma we finally have

: o 112 < S12 12 S12
(512) nf N Bl oy S OOV g+ 1ot VI, g+ [rot v ),
5.13 inf rot v+ p||? . < Clrot¥|? ..
(5.13) pelnf | llvot v+ I} g < Clrot ¥l

We recall that for an integer k the semi-norm in (H*(2))? is defined as

1/2
Whow = S ID%I2 ]
|| =k
whereas for a non-integer value s it holds
1/2
5 ._ 12
|V|57[A( = Z |DO¢V|S_[S])K )
lor|=[s]

where for 6 € (0, 1) we have set

V(%) I
|V|0K — </ / |3+20 ———dx dy) .
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From (5.9)—(5.13) we have thus obtained
[|v — H];(VHH(mt;K) < C(hk||v — H%f/”é -+ hit|| ot v — wl;{l(rot \7)||2 %)
<C [hK(|\7|f)R + 1ot v[2, o+ 1ot 9% o) + B 1|r0tv|2 }
< C a9 g + rot 912, ) + b rot o]
We need the following result.

Lemma 5.5. Let 7, be a reqular family of triangulations. Then there exists a
constant C' > 0 such that

|V|2 < Ch_1+25|v|s K>

[ rot v|2 < Chit?|rot V|2 i
for each real number s > 0.

Proof. We will present the proof only for 0 < s < 1, the other cases being standard.

We have
.12 V) —v@)I? .
L= 7 dxd
A

T _ 2
= | det BK|_2/ |BK_(Y(X) V(3y)2)| dxdy.
KJK |Bg (x—y)]3t2s

We can write
x —y| = Bx B! (x — y)| < ||Bx|| |Bg' (x — y);
therefore, | Bi' (x — y)| > || B ||~ }|x — y|. Hence,
. - s B (v(x) — v(y))I?
92 e < Lot Bic| 2002 [ [ IPEED W iy
< Cldet Br|~?|| B |[[****|| Bi|*IVIE «
< Chi ™IV k

In an analogous way

. 1 |Rot\7(A) — Rotv(y)[? .
|rotv|§)f( = _/ — dxdy
2
:—|detB - 2// |BL( Rotv (x) —Rot v(y)) Bxk| dxdy
x — y)[3tes

< Cldet B[~ 2||BK||5+2S||BK|| |1"0tV|§,K
< Ch1+2s|rotv|sK,

which concludes the proof. O
We can conclude with the following interpolation result.

Proposition 5.6. Let r be a non-integer with 1/2 < r < k. Let T}, be a regular
family of triangulations. Then there exists a constant C' > 0, independent of h,
such that

(5.14) v =TV ot s0) < CRT||V 5 (rot i)
for each v € H"(rot; (2).
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Proof. Using the additivity of the integral we can write

IV = TV reor iy = 2 (v = TevI[5 i + [l ot v — wf rot vI[g x)
KeT,,

<y [hK(|<r|f7k+ |r0t\7|[2rl7k)+h1}1|r0t(f|f)f<}.
KeTy,

From Lemma 5.5 we find
— r 14+2[r
IV = TV o) € [hK<hK1+2 VI ke + B ot 2 )
KeTy,

+ hi h? rot v|Z

<O (VP g + b ot vIE) o + B3| ot v]? )
KeTy,
< ChQTHVH?{T(rot;Q)’

and the thesis is proved. O

The estimates (5.7), (5.8) and (5.14) yield the interpolation estimate (5.6), and
we are now in a position to conclude the proof of Theorem B.

Proof of Theorem B. We are going to follow the lines of the proof of Céa Lemma.
We have

(5.15)
||F17F7h - F}II,F’YhH%I(rot;Ql) =(Firy, — F?I'th Firvyy, — F}fm’Yh))m

=((Frry, — Fif")lha Firv, — IEF1 ), + I3 F oy, — F}f,r’)’h))m-

Let us take now 7, € A p. A basis @, ; in At p, is given by (nr x 4, ;)r, where
1, ; are basis functions of V3 5. Moreover, due to relation (5.5), for any tangential

element v € (H"~Y/2(I"))? N H(div,;T) the degrees of freedom related to A j, are
given by — [ ~-v ¢ for each ¢ € Pr_1(a) and by — ff ~-q for each q € (Pr_2(f))?,
where a and f are any edge and face of I, respectively. Therefore, for any v; €
H"(rot; Q1) the interpolant on I' of (np x v1)r is given by (np x IIfvy)r; hence,
(np X IFFy ry,)ir = 5, Consequently, we have (IIFFy py,, — F}1y,,) € VY, and

(F1,rv, — F’f,r’)’haHﬁFLF’Yh - F}lL,F’yh))Ql =0.
Hence we find
[|F1,0v, — F}f,r’YhHH(roc;Ql) <||Firv, — HlﬁFLF’Y}LHH(roc;Qly

From the assumption Fy rv; € H"(rot; ;) and the interpolation inequality (5.6)
we finally find

IF Ly, = Flrvallmeor o < Ko [[FLevy|lar ot 0.

and Theorem B is completely proved.
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6. PROOF OF THEOREM C
We have to prove that if My, is a quasi-uniform family of triangulations of 02,
then there exists a constant C' > 0 such that for each 1, € Xsq 5 it holds
. 1. .
(6.1) ||77h||€739 + ||d1Vr"7h||e789 <Ch™z (||77h||—1/2,89 =+ ||d1v‘rnh||—1/2769)-

Noticing that both n;, and div, n;, are polynomials in each triangle on 92, one can
apply the inverse inequality for the non-integer exponent € obtaining

(6.2) 11 le.00 + [|divemg|leoo < Ch™ ([ llo,00 + ||divemylo,00)-

It remains for us to show that for each real scalar function z;, € L%(99) and such
that zj, |7 € Py for each triangle T' € M), we have

(6.3) l|znllo,00 < CR™Y2|z1]| 21 /2,00

A similar result in the two-dimensional case can be found in Quarteroni, Sacchi
Landriani and Valli [14]. We are going to adapt their proof to the case under
consideration. Let us set My = {v € H'(0Q)|vr € Prys VT € My}. For
each ¢ € L?(09Q) denote by ¢} the L?(9Q)-orthogonal projection of ¢ onto My,.
Moreover, denote by ¢;* the function belonging to M), which is defined as

(6:4) Ghir = hr + D (&= 65, IM(X))*)7 P,

o] <k
where M(x) is the rigid motion sending T' on the (z,y)-plane with one vertex in
(0,0), and P, € Pyyq satisfies P, 797 = 0 and

Par MG ={ | 920 lalial <k

Clearly, the function zj7 can be written as a linear combination of [M(x)]%, [a| < k;
therefore, it follows at once that [, zn¢ = [, zn¢}* for each ¢ € L*(2), and we

have
l[2nllo,00 =  sup Jog 19 _ Jog #n9%
’ ser?o9) 100,00 ser2oa) [19llo.00
‘15750 ¢¢0
< l12nll—1/2,.00 1195 |11/2,00
 per?(00) [1ll0.00
##0

By using the inverse inequality as in (6.2) we obtain

165" 112,00 < Ch™ 2|64 [|o,00

hence,
_ @3, [lo,00
lelloon < Ch 2|zl 1jnpn sup LZEll022
$€L?(09) ||¢||0 oQ
¢#0
To conclude the proof, we have to show that
(6.5) |65 lo,00 < Cl8]]o,00.
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We have

l6ilon= 3 loitlhr= 3 [ (di+ 3 (6 i MO

TeM, Tem, ' T la| <k
<oy / i+ S (6 — g, M2 P2 1
Tem, T la| <k

<cItlBoat S [o-aBr 3 /T (M ()2 /T P2,

TeEMy loo| <k

By a straightforward computation it can be shown that

ws [ MeoP [ P2<c

TeEMy

uniformly with respect to h, and (6.5) follows by recalling that ¢ is the L?(99)-
orthogonal projection of ¢ onto Mj,.

10.

11.

12.
13.

14.

15.
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