
An Optimal Dynamic Data Structure for Stabbing-Semigroup Queries∗

Pankaj K. Agarwal† Lars Arge‡ Haim Kaplan§ Eyal Molad¶

Robert E. Tarjan‖ Ke Yi∗∗

Abstract

Let S be a set ofn intervals inR, and let(S,+) be any commutative semigroup. We
assign a weightω(s) ∈ S to each interval inS. For a pointx ∈ R, let S(x) ⊆ S be the
set of intervals that containx. Given a pointq ∈ R, the stabbing-semigroupquery asks for
computing

∑

s∈S(q) ω(s). We propose a linear-size dynamic data structure, under thepointer-
machine model, that answers queries in worst-caseO(log n) time, and supports both insertions
and deletions of intervals in amortizedO(log n) time. It is the first data structure that attains
the optimalO(log n) bound for all three operations. Furthermore, our structurecan easily be
adapted to external memory, where we obtain a linear-size structure that answers queries and
supports updates inO(logB n) I/Os, whereB is the disk block size.

For the restricted case of nested family of intervals (everypair of intervals are either disjoint
or one contains the other), we present a simpler solution based on dynamic trees.

1 Introduction

Let S be a set ofn intervals inR, and let(S,+) be any commutative semigroup. We assign a
weightω(s) ∈ S to each interval inS. For a pointx ∈ R and a setR of intervals, letR(x) ⊆ R
be the set of intervals that containx. Given a pointq ∈ R, a stabbing-semigroupquery asks for
computing

∑

s∈S(q) ω(s). We are interested in developing a dynamic data structure to maintain
S dynamically, so that we can answer stabbing-semigroup queries and insert and delete intervals
to/from S efficiently. By taking different semigroups, for instance(Z,+), (R,max), (N, gcd),
({0, 1},∨), etc., we obtain different applications of our data structure. If every pair of intervals
in S is either disjoint or nested, we call the problem anested instanceof the stabbing-semigroup
problem.

∗Part of work was done while Arge and Yi were at Duke University. Work by Agarwal was supported by NSF
under grants CNS-05-40347, IIS-07-13498, CCF-09-40671, and CCF-1012254, by ARO grants W911NF-07-1-0376
and W911NF-08-1-0452, by an NIH grant 1P50-GM-08183-01, and by a grant from the U.S.–Israel Binational Science
Foundation. Work by Kaplan and Tarjan was supported by Grant no. 2006204 from the U.S.–Israel Binational Science
Foundation.

†Department of Computer Science, Duke University, Durham, NC 27708, USA. Email:pankaj@cs.duke.edu
‡Department of Computer Science, University of Aarhus, Aarhus, Denmark. Email:large@daimi.au.dk
§Depatment of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. Email:haimk@tau.ac.il
¶Depatment of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel.
‖Department of Computer Science, Princeton University, Princeton, NJand Hewlett-Packard, Palo Alto, CA. Email:

ret@cs.princeton.edu
∗∗Corresponding author. Department of Computer Science and Engieerning, HKUST. Email:yike@cse.ust.hk

1

The so-calledstabbing-max (resp. stabbing-min)problem is the special case of the problem
with the semigroup(R,max) (resp.(R,min)). This problem has applications in object oriented
programming [11, 12] andIP routing [10, 13, 17]. In IP routing, a router maintains a dynamic table
of prefixes of IP addresses which is used to pick the outgoing line for each incoming packet. The
decision is done by identifying the longest prefix of the destination addressof the packet stored in
its table. We can model this problem as a stabbing-min problem where each prefix corresponds to
an interval whose weight equals to its length. The destination address of a packet is a point and the
shortest interval containing this point corresponds to the longest prefixof the destination address.
Note that the family of intervals in this application is nested.

A more general problem arising in routers isIP packet classification. A router often classifies
each incoming packet into aflow according to some fields in the packet header. The router then
processes in the same way all packets that are in the same flow. To do the classification, the router
maintains a set of rules, each with a priority assigned to it. The highest-priorityrule that a packet
obeys determines the flow of the packet. The rules may stipulate range constraints on one or more
fields in the packets (e.g., source/destination IP addresses, source/destination ports), which corre-
sponds to one or multi-dimensional versions of the stabbing-max problem. In many networking
contexts, such as multicast routing protocols and QoS protocols, the set ofrules changes over time,
in which case we need the dynamic version of the stabbing-max problem.

Previous work. A linear-size static data structure for the stabbing-semigroup problem that sup-
ports queries inO(logn) time can be developed using the segment tree [8] — each node stores the
semigroup sum of the intervals associated with it. This structure can be extended to support inser-
tions of intervals inO(logn) time, without affecting the asymptotic query time, by using a dynamic
segment tree [18]. However, the problem becomes considerably harder when deletions are allowed.
If the weights are drawn from a group, namely in thestabbing-groupproblem, deleting an intervals
with weightω(s) can be implemented by insertings with weight−ω(s), with periodic re-building
to avoid a space blowup. However, this solution does not apply to the semigroup case because there
are no inverses. By modifying the segment tree so that each node stores the set of intervals associ-
ated with it, a query can be answered inO(logn) time, but an update takesO(log2 n) time and the
size of the data structure becomesO(n logn). Alternatively, by using an interval tree [9] one can
obtain a linear-size data structure that supports both insertions and deletions in O(logn) time but
requiresO(log2 n) time to answer a query. We discuss these structures in more detail in Section 2.

Faster data structures have been developed for the stabbing-max problem in the context of the
IP routing problem by exploiting the fact that endpoints of intervals are integers, and using the
RAM model. For example, Feldmann and Muthukrishnan [10] proposed the fat inverted segment
tree (FIS) data structure. The dynamic version of FIS supports queriesin O(log log n + ℓ) time,
whereℓ is the number of levels in the segment tree. The space requirement isO(n1+1/ℓ), and an
insertion or deletion takesO(n1/ℓ logn) time, but there is an upper bound on the total number of
insertions and deletions allowed. Thorup [20], improving the result of Feldmann and Muthukr-
ishnan, presents a linear-size data structure withO(ℓ) query time andO(n1/ℓ) update time for
ℓ = o(log n/ log log n), ℓ ≥ min{

√

log n/ log log n, log logN}, when the endpoints are integers
not exceedingN . See [13] for a survey of such results.

If the input is too large to fit in the main memory, one is interested in an external memory data
structure. In the standard two-level I/O model of computation [2], the machine consists of a finite
main memory and an infinite-size disk. In this model, a block ofB consecutive elements can be

2

transferred between main memory and disk, and this is referred to as oneI/O operation. The data
structure is stored in a number of disk blocks, each of sizeB, and the cost of an operation is mea-
sured by the number of I/O operations. See [4, 21] for surveys on external memory data structures.
For the stabbing-semigroup problem, the I/O-efficient interval tree developed by Arge and Vitter [5]
can be used to construct a linear-size data structure for answering a stabbing-semigroup query in
O(logB n) I/Os. An interval can be inserted intoS usingO(logB n) I/Os. Their structure can be
modified to handle deletions so that each update takesO(logB n) I/Os but then a query requires
O(log2B n) I/Os. An I/O-efficient structure for the stabbing-group problem is presented in [22] that
uses linear space, answers a query and performs an update inO(logB n) I/Os, but it does not work
for the semigroup problem.

Our results. The results in this paper combine and extend results from two conference ab-
stracts [1, 14]. Our main result is a linear-size data structure for the stabbing-semigroup problem,
in the pointer-machine model [19] of computation. Our structure answers queries and supports up-
dates (insertions as well as deletions) inO(logn) time. The query bound is worst-case while the
update bounds are amortized. Our solution starts from the straightforwardsolutions based on in-
terval and segment trees mentioned above. We then combine features of these two data structures
so that query time isO(logn), update time isO(logn log log n), and the size of the data structure
is O(n log logn). Next, we reduce the size and update time by a factor oflog log n by using a
base tree that is a weight-balanced tree with a large fan-out, in which each fat leaf stores the end-
points of many intervals. Our approach also leads to a data structure with a similar performance
in the I/O model. More precisely, we obtain a linear-size data structure such that a query can be
answered usingO(logB n) I/Os (worst-case) and each update takesO(logB n) I/Os (amortized).
We also propose a simpler data structure that uses dynamic trees to solve nested instances of the
problem. Finally, we prove that our structure is optimal, in the sense that for certain semigroups
none of the query, insertion, or deletion bounds can be improved without sacrificing the others. The
lower bound is established in the cell-probe model, and in fact holds for the (easier) stabbing-group
problem. Previously anΩ(log n/ log log n) lower bound was known [3] for the problem. Our struc-
ture can be extended to higher dimensions using segment trees in a standardway [14], by paying a
penalty of anO(logn) factor in both time and space for each additional dimension, but the results
may not be optimal in two or higher dimensions.

The rest of this paper is organized as follows. We begin in Section 2 by describing simple data
structures for the stabbing-semigroup problem that use interval and segment trees. In Section 3, we
describe our structure under the assumption that the endpoints of all intervals belong to a fixed set
P of O(n) points. This allows us to disregard the rebalancing issue of the base tree in our multi-
level structure. We remove this assumption in Section 4, where we describe how to rebalance the
base tree. In Section 5, we describe how our structure can be adapted toexternal memory. Section
6 presents our data structure for nested instances. We prove the lower bounds in Section 7 and
conclude with some open problems in Section 8.

2 Preliminaries and Basic Data Structures

We denote byS the set of (closed) intervals stored in the structure. We usen to denote the cardinality
of S. Note thatn changes asS is modified via insertions and deletions. For an intervalx ∈ S, we
denote byω(x) the weight ofx. Each weight belongs to a semigroupS. To simplify the presentation,

3

we assume that all the endpoints of the intervals inS, as well as the queries, are distinct. This
assumption can easily be removed by fixing an arbitrary order among identical endpoints.

For anyY ⊂ S, letω(Y) =
∑

s∈Y ω(s). For a subsetY ⊂ S and a pointq, we denote byY (q)
the subset ofY consisting of all intervals containingq. We assume that the semigroup is amonoid,
i.e., it has an identity element, which we denote by0, and defineω(∅) = 0.

Next, we describe the basic building blocks of our main data structure. The basic ingredient we
use is a structure for storing a totally ordered setX such that eachx ∈ X has aweightω(x) ∈ S,
subject to the following operations.

(i) INSERT(x): Insertx intoX.

(ii) DELETE(x): Deletex fromX.

(iii) U PDATEWT(x,w): Givenx ∈ X andw ∈ S, Updateω(x) to bew. We can implement this
by deletingx and reinsertingx with its new weight.

(iv) WT(X): Returnω(X).

(v) PREFIXSUM(b): Givenb ∈ X, return
∑

x∈X, x≤b ω(x).

We implement this data type by a dynamic balanced binary tree [7], in which we maintain the
sum of the weights of the elements in each subtree. Then all operations take timelogarithmic in
the size ofX, exceptWT(X), which takesO(1) time. The size of the data structure is linear in|X|.
We can also support aFIND(x) operation that locatesx in the search tree in logarithmic time. IfX
is unordered, we can still use this data structure by imposing an arbitrary total order onX. We call
such a basic structure aBST (for balanced search tree).Throughout this paper weshall often use the
same name for the set and theBST representing it.

Our new data structure can be viewed as a mixture of an interval tree and a segment tree [9],
so we start by reviewing these classical structures. We describe the staticversions of each of these
structures, but they can be made dynamic using the standard techniques [6].

Interval tree. In this section and Section 3, we assume that the endpoints of all intervals inS
that are ever in the structure belong to a fixed setP of m = O(n) points. We divideR into m
atomic intervals by picking an arbitrary separating point between every two consecutive points in
P . We consider these atomic intervals closed (except the leftmost and the rightmost one). LetT be
a balanced full binary tree withm leaves. Each nodev ∈ T is associated with an intervalσv. If v is
the i-th leftmost leaf ofT, thenσv is thei-th leftmost atomic interval. Ifv is an interior node with
v1 andv2 as its children, then the common endpointxv of σv1 andσv2 is stored atv, and we set
σv = σv1 ∪ σv2 . For a pointx ∈ R, let Πx denote the path inT from the root to the deepest node
z such thatσz containsx. Note that for every pointx 6∈ P , Πx is a path from the root to the leafz
whose atomic interval containsz.

In an interval tree, an intervals ∈ S is stored at the highest nodev such thatxv ∈ s. Note that
Sv is empty ifv is a leaf. LetSv ⊆ S be the set of intervals stored atv. Let s = [a, b] be an interval
in Sv. We splits into two subintervalssℓ = [a, xv] andsr = [xv, b]. We defineLv = {sℓ | s ∈ Sv},
Rv = {sr | s ∈ Sv}, L = {sℓ | s ∈ S}, andR = {sr | s ∈ S}. For a query pointq ∈ R,
ω(S(q)) = ω(L(q)) + ω(R(q)).1 We computeω(L(q)) andω(R(q)) separately and return their
sum.

1If q = xv for some separating pointxv, we query with aq+ that we consider to be symbolically larger thanq.

4

We add the following secondary structures to the interval tree to computeω(L(q)) efficiently;
the construction is symmetric for computingω(R(q)). For a nodev, let Ev be the set of the left
endpoints of the intervals inLv. We assign to each point ofEv the weight of the corresponding
interval, and storeEv in a BST. Clearly the total size of the data structure, including all secondary
structures, isO(n).

Let q be a query point, LetΠℓ
q ⊆ Πq be the set of nodesv ∈ Πq such thatv’s left child

is also inΠq. Note thatL(q) ⊆ ⋃

v∈Πℓ
q
Lv and thatω(L(q)) =

∑

v∈Πℓ
q
ω(Lv(q)). Moreover,

an interval[a, xv] ∈ Lv containsq if and only if a ≤ q. To computeω(L(q)) we traverse the
pathΠq. At each nodev ∈ Πℓ

q, we perform aPREFIXSUM(q) query onEv to obtain the weight
∑

a∈Ev ,a≤q ω(a) = ω(Lv(q)) in O(logn) time. Finally, we sum these weights and return the
overall weight. Since we spendO(logn) time at each nodev, the overall query time isO(log2 n).
We can insert or delete an intervals in an interval tree inO(logn) time by finding the nodev such
thats ∈ Sv and updating theBST representingEv.

Note that it might be tempting to use dynamic fractional cascading [15] to speedup the query
procedure, but this does not work because thePREFIXSUM(q) operation on aBST actually relies on
retrievingO(logn) weights in theBST, not just one search location. If one stores the prefix sum at
the search location, the update cost of theBST will be high.

Segment tree. A segment tree allows us to computeω(S(q)) in O(logn) time, although the up-
date time isO(log2 n) and the size isO(n logn). The base treeT of the segment tree is the same
as that of the interval tree. However, we now store an intervals = [a, b] at a nodev if σv ⊆ s and
σp(v) * s, wherep(v) denotes the parent ofv. Note that the parents of the nodes storings lie on
Πa∪Πb, and that we can find these nodes inO(logn) time. LetS̄v ⊆ S be the set of intervals stored
at v in the segment tree. We maintain̄Sv in a BST (imposing an arbitrary order on these intervals).
For a leafz, letLz be the set of intervals with an endpoint insideσz. (For now,Lz contains at most
one interval, but denoting it as a set will be convenient later on.) We storeLz atz.

Since an intervals is stored atO(log n) nodes, the total size isO(n logn). An interval can be
inserted or deleted inO(log2 n) time by first finding inO(logn) time the nodes at whichs is stored
and then updating theBST at each such node. For a query pointq ∈ R, let z be the leaf on the path
Πq, then we have

S(q) =
⋃

v∈Πq

S̄v ∪ Lz(q). (1)

Since the sets̄Sv for v ∈ Πq andLz are pairwise disjoint,ω(S(q)) =
∑

v∈Πq
ω(S̄v) + ω(Lz(q)).

Therefore,ω(S(q)) can be computed inO(logn) time by traversing the pathΠq, retrieving the
valueω(S̄v) in O(1) time from theBST representinḡSv at each nodev ∈ Πq, and finally checking
if the interval inLz containsq.

3 An Optimal Data Structure for Fixed Endpoints

In this section, we continue to assume that although the setS of intervals is dynamic, the endpoints
of these intervals belong to a fixed setP of O(n) points. Recall that our assumptions in Section 2
also imply that each point ofP is an endpoint of at most one interval. The main result is a linear-size
data structure that answers a stabbing-semigroup query inO(logn) time and performs an update in
O(logn) time. Recall that the segment tree attains an optimal query time whereas the interval tree

5

attains an optimal update time. We first describe how to combine the features of interval and segment
trees to construct a data structure of sizeO(n log logn) on the same base treePKA: Shouldn’t this
be O(n logn)? that supports queries inO(logn) time and updates inO(log n log logn) time. We
then reduce the size to linear and the update time toO(logn) without increasing the asymptotic
query time, by increasing the fan-out of the base tree and making the leavesfat, as we will explain.

3.1 Binary base tree

Intuitively, we store the intervals in secondary structures as in the intervaltree so that each interval
is stored at one node ofT. However, we maintain the weights as in a segment tree to expedite the
query procedure. We now describe the data structure in detail.

As in the interval tree described in Section 2, we split each interval into left and right intervals
and process the setsL of left intervals andR of right intervals separately. We describe the secondary
structure forL, which allows us to computeω(L(q)) for a query pointq efficiently. The construction
for R is symmetric. We assume that each point ofP that is an endpoint of an intervals stores a
bi-directional pointer tos, and to the nodeu such thats ∈ Su.

Decomposition of intervals. In what follows, we first decompose the set of left intervalsL in
multiple ways that will facilitate the query and update procedures. First, recall that Lu is the set
of intervals inL that havexu as their right endpoints. For a descendantv of a nodeu, we define
Lvu ⊆ Lu to be

Lvu = {[a, xu] ∈ Lu | a ∈ σv}. (2)

This is the set of all intervals inL whose right endpoints arexu and whose left endpoints lie
insideσv. Note that a particular interval[a, xu] ∈ Lu is included inLvu for every nodev on
the path fromu’s left child down to the leafz wherea ∈ σz. For a nodev, let Av = {u |
u is a proper ancestor ofp(v)} and

Φv =
⋃

u∈Av

Lvu. (3)

See Figure 1 for an illustration of these sets.

I6
I7

xbxc xa

I1 a

c

d

b

e

I4
I5

I3
I2

σb

σd

σc

Figure 1. Illustration of the definition of the setsΦv, Lvu’s: Lba = {I1, I2, I5, I7}, Lca = {I1, I2, I7}, Lda = {I1},
Lea = {I2, I7}, Ldb = {I4}, Leb = {I6}, andΦe = L̄d = {I2, I6, I7}. The picture shows the entire interval and not
only its part which is inL.

Since for a fixedv, the setsLvu are pairwise disjoint, we have

ω(Φv) =
∑

u∈Av

ω(Lvu). (4)

6

Let L̄w = {s ∈ L | σw ⊆ s, σp(w) 6⊆ s}, which is the subset ofL stored atw if we place the
intervals according to the rules of a segment tree. The following lemma shows how a query should
use theΦv sets.

Lemma 1 If w is a right child of its parent andv is the left sibling ofw, thenΦv = L̄w.

Proof: Let s = [a, b] be an interval inΦv, and letu = p(v) = p(w). Thena must be inσv, andb
must be to the right ofσu. So clearlys ∈ L̄w. To prove the converse, assume thats = [a, b] ∈ L̄w.
Then by the definition of a segment tree,σw ⊆ s butσp(w) 6⊆ s. It follows thata ∈ σv. Therefore,
there is a proper ancestoru′ of u such thats ∈ Lvu′ . This implies thats ∈ Φv. �

Let w be a node that is the left child of its parent. An intervals = [a, b] ∈ L that containsσw
must containσp(w). Indeed, if this is not case, thenb = xp(w), but thena must be inσw (otherwises
is not a left interval), which contradicts the assumption thatσw ⊆ s. It follows from this observation
that if w is a left child, then̄Lw = ∅. Combining this with Lemma 1 and Property (1) of a segment
tree, we obtain the following. For a query pointq, let z be the leaf on the pathΠq andLz the set of
intervals inL with an endpoint inσz (there is at most one), we have

L(q) =

(

⋃

w∈Πq

L̄w

)

∪ Lz(q) =

(

⋃

w∈Πq
w: right child

L̄w

)

∪ Lz(q) =

(

⋃

w∈Πq

w: right child
v: sibling ofw

Φv

)

∪ Lz(q).

Since theΦv sets are pairwise disjoint for nodes whose right siblings belong to the pathΠq, we have

ω(L(q)) =

(

∑

w∈Πq

w: right child
v: sibling ofw

ω(Φv)

)

+ ω(Lz(q)). (5)

The secondary structures. We will use (5) to answer a query by adding up all the necessary
ω(Φv)’s, while building secondary structures to maintain theω(Φv)’s according to (4) under up-
dates. More precisely, for each nodev, we build aBST on Av usingω(Lvu) as the weight of
u ∈ Av. Clearly, thisBST has sizeO(logn), andω(Av) = ω(Φv) can be retrieved inO(1) time.
When anyω(Lvu) changes, theBST can be updated inO(log logn) time. The total size of all the
secondary data structures isO(n+

∑

v∈T |Av|) = O(n logn).
The query procedure is easy. Letq be a query point. We traverse the pathΠq and compute

ω(L(q)) in O(logn) time using (5), as follows: If a nodew ∈ Πq is a right child andv is its left
sibling, then we retrieveω(Φv) in O(1) time, and we add up these weights. Finally, we check if the
intervals ∈ Lz (if there is one) containsq, and if so, add its weight as well.

To insert or delete an intervals = [a, b], we first find the nodeu such thats ∈ Su. Let
sℓ = [a, xu] andsr = [xu, b]. We only describe how to handlesℓ. We traverse the pathΠa from the
leaf z such thata ∈ σz, to the root ofT, updating the secondary structures bottom-up, as follows.
At z, we update the weight ofu in Az, ω(Lzu), in theBST at z to ω(s) (for an insertion) or0 (for
a deletion). Next, suppose we are at an internal nodev ∈ Πa, a descendant ofu, with childrenv1
andv2, wherev1 is the child ofv preceding it onΠa that we have just processed. At this point we
already have an updated value ofω(Lv1u). Sinceσv = σv1 ∪ σv2 , we have

ω(Lvu) = ω(Lv1u) + ω(Lv2u).

7

We retrieveω(Lv2u) from Av2 , which is not affected by the insertion/deletion ofs, and compute
the newω(Lvu). Then we update, inO(log log n) time, the weight ofu, ω(Lvu), in the BST on
Av. We stop this bottom-up traversal ofΠa at the grandchild ofu onΠa, and the total time spent is
O(logn log logn).

Remark. Kaplan, Molad, and Tarjan [14] showed that if we redefineAv to be the set of those
ancestors ofv for whichLvu 6= ∅, then the size of the structure reduces toO(n log logn) without
affecting the query or update time. Furthermore by maintaining only the top partof T explicitly
and storing the intervals of nodes of depth larger thann/ logn separately, the space can be made
linear and the insertion timeO(log n), but the deletion time remainsO(log n log logn). We omit
these details as we will show a different approach that achieves optimality onboth insertions and
deletions.

3.2 Non-binary base tree

We now improve the update time toO(log n) and the space bound toO(n), without increasing the
asymptotic query time. We do this by increasing the fan-out of each node in thebase treeT and by
making each leaf ofT fat. As a result of the large fan-out, we need more complicated secondary
structures, which will be the focus of this section.

The base tree. As above, letP be the fixed set ofm = Θ(n) points that contains all the endpoints
of the intervals inS. We continue to assume that at any time each point inP is an endpoint of at
most one interval inS. We divideR into ⌈m/ logm⌉ = O(n/ logn) atomic intervals, by adding a
break point every⌈logm⌉ consecutive points ofP . Let f = ⌈√log n⌉. We build anf -ary tree on
top of these atomic intervals where each leaf corresponds to one. For ease of exposition, we assume
that the number of leaves is a power off ; otherwise, the fan-out of each internal node isΘ(f), but
that does not affect our asymptotic results.

We chose the size of a leaf and the fanout so thatT hasO(n/ log3/2 n) internal nodes. This
choice allows to keep secondary data structures of sizeO(log3/2 n) = O(f3) in each internal node
while keeping the overall space linear, as we will do.

v

v1 v2 v3 v4 v5

σv2 σv4 σv5σv1

b−(v1) b−(v2) b−(v3) b−(v4) b−(v5) b+(v5)

σv3

Iℓ2 Im2

σv

Iℓ1 Ir1
Ir2 I2

I1

Figure 2. An internal nodev in the base treeT. Im1 is undefined.

As in Section 2, we associate an intervalσv with every nodev of T. If v is a leaf, thenσv is the
corresponding atomic interval. Ifv is an internal node with childrenv1, . . . , vf , from left to right,
thenσv = σv1 ∪ · · · ∪ σvf . We refer to eachσvi as aslabof v associated withvi. For a childvi

8

of v, let b−(vi) be the left endpoint ofσvi and letb+(vi) be the right endpoint ofσvi . Note that
b+(vi) = b−(vi+1) for 1 ≤ i < f , andb−(v1) andb+(vf) are the boundaries of the slab ofp(v)
associated withv. For two childrenv′ andv′′ of v, we writev′ < v′′ if v′′ is to the right ofv′, i.e.,
b+(v′) ≤ b−(v′′). We writev′ ≤ v′′ if either v′ = v′′ or v′ < v′′. We store the slab boundaries of
each internal node in a balanced binary search tree so that we can determine inO(log log n) time
the slab ofv that contains a pointx ∈ σv. This allows us to traverse the search pathΠx from the
root to the leafv containing a pointx in O(logn) time.

An intervals is associated withv if s is contained inσv but not a slab associated with any of
v’s children. In particular, if an intervals has both endpoints stored in the same leafz, thens is
associated withz. As earlier, letSv ⊆ S be the subset of intervals associated withv. Clearly each
interval is associated with exactly one nodev.

As when the base tree was binary, we store with each point inP that is an endpoint of an interval
s a bi-directional pointer tos and to the nodeu such thats ∈ Su. Given a new intervals = [a, b],
we can easily find the nodeu such thats ∈ Su in O(logn) time. We traverse the pathΠa top-down.
For each internal nodev on this path, we determine inO(log logn) time the slabσv′ that contains
a. If b ∈ σv′ , we recursively visit the childv′. If b 6∈ σv′ , thens ∈ Sv. If we reached a leafz, then
s ∈ Sz.

Let v ∈ T be an internal node, and lets = [a, b] ∈ Sv. Assume first thatv′ andv′′ are children
of v such thata ∈ σv′ and b ∈ σv′′ . If b+(v′) = b−(v′′), then we splits into two intervals:
sℓ = [a, b+(v′)] and sr = [b+(v′), b] (e.g. intervalI1 in Figure 2). Otherwise, we splits into
three intervals:sℓ = [a, b+(v′)], sm = [b+(v′), b−(v′′)], andsr = [b−(v′′), b] (e.g. intervalI2 in
Figure 2). We refer tosℓ, sm, andsr as the left, middle, and right intervals ofs, and their weights
are the same as the weight ofs. For an internal nodev, let

Lv = {sℓ | s ∈ Sv}, Rv = {sr | s ∈ Sv}, Mv = {sm | s ∈ Sv},

and for a leafv let Lv = Rv = Mv = ∅. Let L =
⋃

v Lv, R =
⋃

v Rv, M =
⋃

v Mv, where the
union is taken over all internal nodesv of T.

Let q be a query point, and letz be the leaf ofT such thatq ∈ σz. Then

ω(S(q)) = ω(L(q)) + ω(R(q)) + ω(M(q)) + ω(Sz(q)).

For each leafz, we maintain a linked list of the intervals inSz. Since each point ofP is an
endpoint of at most one interval,|Sz| = O(logn). To computeω(Sz(q)) we traverseSz and sum
the weights of all intervals inSz(q).

Below we describe the secondary structures stored at each node in order to computeω(L(q)),
ω(M(q)), andω(R(q)) efficiently. We first describe the secondary data structures for the middle
intervals, which are new. The secondary data structures for the left intervals and right intervals are
similar to the ones we had when we used a binary base tree in Section 3.1, but some additional ideas
are needed to cope with the large fanout.

Middle intervals. At each internal nodev, we use severalmultislabBST structures to store the
middle intervals. First, for each pair of childrenv′ andv′′ of v with v′ ≤ v′′, we have a multislab
structureMv(v

′, v′′) storing the subset of all intervalss ∈ Sv such thatsm = [b−(v′), b+(v′′)]. (We
order these intervals arbitrarily in theBST.) We maintain these

(

f
2

)

= O(logn) multislab structures
in a linked list. Since each interval inMv is stored in exactly one multislab, the total size of these
multislab structures atv isO(|Mv|).

9

Furthermore, for each childv′ of v, we have aslabBST structureMv(v
′). The structureMv(v

′)
has an element for each pair of childrenv1 andv2 of v, such thatv1 ≤ v′ ≤ v2. The weight of
this element isω(Mv(v1, v2)). We keep a pointer fromv′ to Mv(v

′). The size of each slabBST is
O(logn) as there may beO(logn) pairs of childrenv1 andv2, such thatv1 ≤ v′ ≤ v2. Since there
areO(

√
log n) slabBST structures atv, the total size of all slabBST structures atv isO(log3/2 n). It

follows that the total size of all multislab and slabBST structures atv isO(|Mv|+ log3/2 n). Since
we haveO(n/ log3/2 n) internal nodes, and each interval contributes a middle part only to one set
Mv, all multislab and slab structures at all nodesv takeO(n) space.

Let q ∈ R be a query point. Since the setsMv are pairwise disjoint,ω(M(q)) =
∑

v∈Πq
ω(Mv(q)).2 Furthermore,ω(Mv(q)) is exactlyω(Mv(v

′)) wherev′ is the child ofv on
Πq. So to computeω(Mv(q)), we traverse the pathΠq as described before, and when we move
from a nodev to its childv′, we query the structureMv(v

′) and obtainω(Mv(v
′)) in O(1) time.

We add these values to obtainω(M(q)). The overall query time isO(logn).
Next, we consider updates. Suppose we insert or delete an intervals whose middle partsm

exists. Letv be the node such thats ∈ Sv. (Recall thatv can be computed inO(log n) time.) Let
sm = [b−(v′), b+(v′′)]. We find the multislabBSTMv(v

′, v′′) in O(log n) time by searching the list
of the multislab structures. Then we inserts into or deletes from Mv(v

′, v′′) and then query this
BST for the updated weightω(Mv(v

′, v′′)). Finally for everyw with v′ ≤ w ≤ v′′, we update the
weight of the element corresponding to the pairv′, v′′ in the slabBSTMv(w), to beω(Mv(v

′, v′′)).
This update takesO(log log n) time for eachw, andO(

√
log n · log log n) = O(logn) for all slab

structures.

Lemma 2 The setM of middle intervals is stored in multislab and slabBST structures of the
internal nodes ofT so that a stabbing-semigroup query on the middle intervals can be answered
in O(logn) time. Furthermore, when a segments is inserted or deleted andsm exists,sm can be
inserted into or deleted from these secondary structures inO(logn) time.

Left intervals. We now describe the secondary data structures for maintaining the left intervals.
The secondary data structures for maintaining the right intervals are symmetric. To store the left
intervals, we follow the same approach as in Section 3.1. The large fanout causes additional com-
plications, however.

Decomposition of intervals.We defineLvu andΦv the same way as in (2) and (3), respectively,
but bear in mind that the intervals in these sets are different because the base tree is different now.
Note that (4) still holds. Since each node hasf children, we need to refine (5). For a nodev, let
Λ(v) be the set of siblings ofv that precedev. For a leafz, let Lz be the set of intervals inL that
have their left endpoints inσz. The following lemma generalizes (5). See Figure 3.

Lemma 3 Let q be a query point, letΠq be the search path ofq in T, and letz be the leaf node in
Πq. Then

ω(L(q)) =
∑

v∈Πq

∑

y∈Λ(v)

ω(Φy) + ω(Lz(q)). (6)

Proof: Clearly the setsΦy whose weights we sum in (6) are disjoint, and are also disjoint fromLz.
So it suffices to show that every left intervals = [a, x] that containsq is contained in eitherLz or
one of the setsΦy.

2Recall thatMz = ∅ for the leafz ∈ Πq.

10

b

a

σc

σa

σb

q

Λ(b)

Λ(c)

c

d

Λ(d)

σd

I5

I1

I2
I4

I3

Figure 3. Querying among left intervals;
⋃

y∈Λ(b) Φy = {I2},
⋃

y∈Λ(c) Φy = {I1, I3},
⋃

y∈Λ(d) Φy = {I4, I5}.

Let v be the deepest common node ofΠq andΠa. If v is a leaf, thenv = z, q ∈ σz, and
s ∈ Lz. Otherwise, letv′ be the node followingv onΠa andv′′ the node followingv onΠq. By
the definition ofv, v′ 6= v′′, and sinces containsq, v′ < v′′. Moreover,s ∈ Lu for some proper
ancestoru of v = p(v′); otherwises must be[a, b+(v′)] and cannot containq. Sos ∈ Φv′ and
v′ ∈ Λ(v′′).

For the converse, it is easy to verify that everys ∈ Φ(y) for y ∈ Λ(v) andv ∈ Πq, contains
q. �

Secondary structures.As in the binary case we maintainBST structures that allow us to obtain
ω(Φv) in O(1) time, for every nodev. But two new difficulties arise. The first is that the ability
to getω(Φv) in O(1) time is not sufficient to answer a query in logarithmic time. By Lemma 3,
to guarantee logarithmic query time we have to be able to compute

∑

y∈Λ(v) ω(Φy) in O(log log n)

time for any nodev. Since|Λ(v)| = O(
√
log n), computing this explicitly would be too slow.

The second difficulty is how to update the valuesω(Φv). We introduce the following secondary
structures to address these difficulties.

• Lz: We store the listLz atz. This list has sizeO(logn) and allows us to compute the second
term of (6) inO(log n) time.

• Av: As in the binary case, for each internal nodev we maintain the set

Av = {u ∈ T | u is a proper ancestor ofp(v)}

in aBST where the weight ofu in this structure isω(Lvu). So it follows from (3) thatω(Av) =
ω(Φv). The size ofAv is O(logn/ log log n) for our non-binary base tree.

• Bv: For each internal nodev we maintain aBST, Bv, over the children ofv where the
weight of a childw is ω(Φw). By a PREFIXSUM(w) query toBv with a childw of v, we get
∑

y∈Λ(w) ω(Φy) in O(log log n) time. With theseBSTs we can answer a query in a straight-
forward way using (6). The size ofBv isO(

√
log n).

• Cvu: To be able to efficiently update the BSTs onAv ’s, hence also theBv ’s, we introduce
a third secondary structure,Cvu, for every pair of nodesv andu ∈ Av. In Cvu we have an
element for each childw of v, whose weight isω(Lwu). It is clear thatω(Cvu) = ω(Lvu).
The size ofCvu is O(

√
log n).

11

ω(Φw)

ω(Φv)

ω(Lwu)

ω(Lvu)

ω(Lp(v)u)

ω(Lzu) ω(Φz)

Cp(v)u

Cvu

Cwu

Av

Ap(v)

Aw Bw

Bv

Bp(v)

Figure 4. Updating the secondary structures of left intervals. Herez is a leaf,w = p(z) andv = p(w).

The reason for introducing theseCvu’s is the following. When we insert an interval intoLu

or delete an intervals = [a, x] from Lu, the weightsω(Lvu) may change for some nodesv,
on the path fromu to the leaf containinga. Let v1, . . . , vf be the children ofv, we have

ω(Lvu) =

f
∑

i=1

ω(Lviu),

and theCvu’s are connected in this way that allows for efficient updates. Whenω(Lviu)
changes for somei, we update the weight ofvi in Cvu. Then we get the new value ofω(Lvu).
Once we haveω(Lvu) we update the weight ofv in Cp(v)u, and the process continues upward.
We also use the new value ofω(Lvu) to update the weight ofu in Av. Then fromAv we obtain
ω(Φv) and update the weight ofv in Bp(v). See Figure 4 for an illustration of this process.

We now argue that all secondary structures representingL requireO(n) space. The to-
tal size of all theLz lists is clearlyO(n). Consider an internal nodev. The structureAv

has sizeO(log n/ log log n); the structureBv has sizeO(
√
log n); we haveO(logn/ log log n)

structuresCvu, one for every ancestoru of v each of sizeO(
√
logn), so together they occupy

O(log3/2 n/ log log n) space. Summing this bound over allO(n/ log3/2 n) internal nodes inT we
get that the total size of all the secondary structures isO(n).

After getting the relationship of all the secondary structures right, the query and update proce-
dures are relatively straightforward. We nevertheless describe them here for completeness.

Answering a query.Let q ∈ R be a query point. We computeω(L(q)) using (6). We traverse
the pathΠq in a top-down manner. For an internal nodev ∈ Πq that is followed byv′ ∈ Πq, we
perform a queryPREFIXSUM(v′) onBv and get

∑

y∈Λ(v′) ω(Φy). When we reach the leafz ∈ Πq,
we scan the listLz stored atz and computeω(Lz(q)) by summing the weights of all intervals in
Lz that containq. We then sum the values obtained at the nodes ofΠq and return the result. The
overall query time isO(log n) since we spendO(log log n) time at each of theO(logn/ log log n)
nodes onΠq, andO(logn) time at the leaf that is the last node onΠq.

UpdatingL. Suppose we are to insert or delete an intervals = [a, b]. Assume thats ∈ Su

and let[a, x] be the left interval ofs which is inLu. Let z be the leaf such thata ∈ σz. We first

12

add/removes to/from the listLz and then traverseLz. We compute the new value ofω(Lzu) by
adding the weights of all left intervals inLz ∩ Lu, andω(Φz) by adding the weights of all left
intervals inLz \ Lw wherew = p(z). Next, the weights ofz in Bw is updated toω(Φz) and its
weight inCwu to ω(Lzu). After having the updated value ofω(Cwu), we first update the weight of
u in Aw to ω(Lwu), and then retrieve the new value ofω(Aw) = ω(Φw) fromAw.

Next, we continue to the parentv of w. We update the weight ofw in Bv to beω(Φw). We
then update the weight ofw in Cvu to be (the updated)ω(Cwu), and fromCvu we obtain the new
value ofω(Lvu). Then we update the weight ofu in Av to beω(Lvu) and obtain the new value of
ω(Av) = ω(Φv). We continue updating the nodes onΠa bottom-up, maintaining the invariant that
after processing nodev, we know the value ofω(Lvu), we have updatedAv so thatω(Av) = ω(Φv),
and that the structuresCvu andBv are updated. We stop when we reach the child ofu onΠa.

We spendO(logn) time to update the leafz since the length ofLz isO(logn). At each internal
node we update and queryBST structures of sizeO(logn) so these operations takeO(log log n)
time, and overall the update procedure takesO(logn) time.

Lemma 4 The setL of left intervals can be maintained in secondary structures using linear space
so that a stabbing-semigroup query with respect toL can be answered inO(logn) time. A left
interval can be inserted into or deleted fromL in O(log n) time.

UsingT and all secondary structures together (Lemmas 2 and 4) as well as the lists representing
Sz at each leafz, we obtain the main result of this section.

Theorem 1 A setS of n intervals, whose endpoints belong to a fixed set ofO(n) points, can be
maintained in a data structure of linear size so that a stabbing-semigroup query can be answered
in O(logn) time. An interval can be inserted intoS or deleted fromS in O(log n) time.

4 Rebalancing the Base Tree

In the previous section we assumed that the endpoints of the input intervals are from a fixed set
of O(n) points, and thus the base treeT was static. In this section we show how to remove this
restriction, that is, how to insert the endpoints of a new intervals into T before we inserts into
the secondary structures, and how to delete the endpoints ofs from T after we deletes from the
secondary structures.

The easiest way to handle deletions is using the standard technique of global rebuilding. Say
T containedn intervals when we last rebuilt it. When deleting an endpoint we simply mark it as
deleted in the node ofT that contains it. Aftern/2 deletions we discard the old structure, completely
rebuild the base treeT without the deleted endpoints, and insert the intervals from the secondary
structures of the old structure into the secondary structures of the new structure one by one. We can
rebuild the base tree (without the secondary structures)T in O(n) time and performΘ(n) insertions
in O(n logn) time to construct the secondary structures. Thus, the amortized cost of a deletion of
an endpoint isO(log n). Since the fan-outf =

⌈√

log2 n
⌉

depends onn we also rebuildT when the
number of intervals that it contains doubles since the last time it was rebuilt. So inbetween global
rebuildings ofT the number of intervals inT is betweenn/2 and2n andf is fixed to be

⌈√

log2 n
⌉

wheren is the number of intervals that were inT right after its last rebuilding. There are no simple
tricks to perform insertions easily, and the rest of this section is devoted to this task.

13

4.1 The base tree

In order to handle insertions of endpoints, we make the base treeT a weight-balanced B-tree with
branching factorf and leaf parameterlog n [5]. The weightof a nodev of T (not to be confused
with the weight of an interval), denoted bynv, is the number of endpoints stored at the leaves of
the subtree rooted atv. The weight of each leaf is between12 log n and2 logn, and the weight
of each internal node (except for the root) at levelℓ (leaves are at level 0) is between12f

ℓ logn
and2f ℓ log n. It is easy to see that the condition on the weights implies that the fan-out of each
internal node (except for the root) is betweenf/4 and4f , and that the root has fan-out between 2
and4f [5]. The slight variation in the number of endpoints in a leaf and the fan-outof the internal
nodes ofT does not affect any of the arguments we used when discussing the secondary structures
in the previous section, i.e., we can still query and update the secondary structures inO(log n) time
(Lemmas 2 and 4).

w w

v v′′v′

b+(v)b−(v) b+(v)b−(v)b b

Figure 5. Nodev is split into two nodesv′ andv′′ at the slab boundaryb; b becomes a slab boundary atw = p(v) after
the split, withσv′ = [b−(v), b] andσv′′ = [b, b+(v)].

After an insertion of an endpoint into a leafz of the weight-balanced treeT, the weight constraint
of the nodes on the path fromz to the root ofT may be violated. That is, the weight of the leafz
may become larger than2 logn, and the weight of an ancestorv of z at levelℓ may become larger
than2f ℓ log n. If the weight ofz is too large, then we define a new slab boundaryb, and splitz
alongb into two leavesz′ andz′′ of weightslogn andlog n + 1, respectively. If an internal node
v at levelℓ becomes too large, then we splitv along a slab boundaryb into two nodesv′ andv′′

of weight roughlyf ℓ log n—more precisely, the weight of each of the two new nodes is between
(f ℓ − 2f ℓ−1) log n and(f ℓ + 2f ℓ−1) log n. In either case,b becomes a new slab boundary atp(z)
or p(v), respectively, and we update the binary search tree of the slab boundaries at that node. Refer
to Figure 5.

Next, we need to update all the affected secondary structures following the split. The proce-
dures are different depending on whether a leaf or an interval node issplit, and below we describe
them separately. In either case, our goal is to update all the necessary secondary structures in
O(nv log log n) time. Since we split a nodev only once everyO(nv) insertions of endpoints into
its subtree, if we chargeO(log log n) time to each endpoint inserted into the subtree ofv since its
last split, then the total charges pay for the split. An endpoint may be charged by each ancestor of
the leaf to which it belongs. This givesO(logn) charges in total per endpoint.

4.2 Splitting a leaf

Suppose we are splitting a leafz into new leavesz′ andz′′ at a slab boundaryb = b+(z′) = b−(z′′),
and letw = p(z). This affects a sequence of secondary structures:

14

(i) It first affects the way how the intervals are associated with the nodes of T. More precisely,
the intervals inSz that crossb will move toSw, with the other intervals splitting intoSz′ and
Sz′′ . An interval moving fromSz to Sw is broken into a left interval and a right interval (we
will only talk about the left intervals below), which in turn affects the listsLz,Lz′ ,Lz′′ .

(ii) Since a slab atw is split into two, the secondary structures atw for the middle intervalsMw

are affected.

(iii) Some secondary structures for the left intervals are also affected, includingBw andCwu for
proper ancestorsu of w, becausew now has one more child.

Note that although we have some new left intervals (generated from the intervals moving fromSz

to Sw), they only appear in theLz′ ,Lz′′ lists, not theAv, Bv, Cvu structures. Below we describe
how to perform all the necessary updates in detail.

The lists Sz, Sz
′, Sz

′′, Sw. We split the listSz of intervals with both endpoints inz into two
lists: Sz′ , containing intervals with both endpoints inz′, andSz′′ containing intervals with both
endpoints inz′′. The other intervals inSz have their left endpoint inz′ and right endpoint inz′′, and
all of them now belong toSw. Any such intervals = [a1, a2] added toSw breaks into a left interval
sℓ = [a1, b], and a right intervalsr = [b, a2]. We addsℓ to the listLz′ . We also splitLz into Lz′

andLz′′ . An interval inLz with a left endpoint inz′ is added toLz′ , and a left interval with a left
endpoint inz′′ is added toLz′′ . All these take timeO(logn) = O(nz) sinceSz andLz both have
sizeO(logn).

The middle interval structures at w. The secondary structures for the middle intervals atw are
affected by the split ofz. Since each middle interval spanning the multislab defined byz andy
for some childy > z, now spans the multislab defined byz′ andy, the multislabBST Mw(z, y)
becomesMw(z

′, y). Similarly, the multislabBST Mw(y, z) for y < z becomesMw(y, z
′′). The

multislabMw(z, z) also becomesMw(z
′, z′′). These are merely notational changes.

Now supposez has a right siblingzr. Consider an intervals ∈ Sw with left endpoint inz′ and
right endpoint not inz. If sm existed before the split ofz, then it must have been in a multislab
Mw(zr, y) for somey ≥ zr. We deletes from Mw(zr, y) and insert it intoMw(z

′′, y) instead. If
sm did not exist before the split ofz, then after the splitsm = [b−(z′′), b+(z′′)], so we inserts
into the multislab structureMw(z

′′, z′′). Similarly, supposez has a left siblingzℓ, and consider an
intervals ∈ Sw with left endpoint not inz and right endpoint inz′′. If sm existed before the split
of z, then it must have been in a multislabMw(y, zℓ) for somey < zℓ. We deletes fromMw(y, zℓ)
and insert it intoMw(y, z

′) instead. Ifsm did not exist before the split ofz, then after the split
sm = [b−(z′), b+(z′)], so we inserts into the multislab structureMw(z

′, z′). See Figure 6.
After updating the multislab structures atw we continue and update the slab structures atw.

Let Mw(z1) be a slab structure of a leafz1 > z. We delete fromMw(z1) all the pairs(z, y) for
y > z1 and insert the pairs(z′, y) and(z′′, y) instead with weightsω(Mw(z

′, y)) andω(Mw(z
′′, y)),

respectively. We update the slab structuresMw(z1) for z1 < z analogously. Finally we discard the
slab structureMw(z) and construct two new slab structuresMw(z

′) andMw(z
′′). The structure

Mw(z
′) contains all the pairs inMw(z) and pairs(y, z′) for y < z′. Similarly, the structureMw(z

′′)
contains all the pairs inMw(z) and pairs(z′′, y) for z′′ < y. The weight of each pair(y1, y2) is
ω(Mw(y1, y2)). This completes the updates to the data structures representing middle intervals.
Note that the middle intervals at nodes other thanw are not affected.

15

w w

z z′ z′′zrzℓ zℓ zr

I1

I3

I2
I4

I6
I5

I1

I3

I5
I6

I2
I4

b
b−(z) b+(z) b+(z)b−(z)

Figure 6. Updating the multislabs atw = p(z) whenz splits. Before the splitIm5 , Im6 are undefined and after the split
Im5 ∈ Mw(z

′, z′) andIm6 ∈ Mw(z
′′, z′′). Before the splitIm1 ∈ Mw(zr, zr) and after the splitIm1 ∈ Mw(z

′′, zr).
Before the splitIm2 ∈ Mw(zℓ, zℓ) and after the a splitIm2 ∈ Mw(zℓ, z

′). The intervalsIm3 , andIm4 remain in the same
multislabs.

The updates to the middle intervals structures atw takeO(log n log logn) = O(nz log log n)
time. We delete and insertO(logn) intervals into multislab structuresMw(z

′′, ·) andMw(·, z′) in
O(logn log logn) time. We performO(

√
log n) deletions and insertions of pairs containingz, z′,

andz′′, into each slab structureMw(z1) for z1 6= z′, z′′. As there areO(
√
logn) slab structures,

and each update takeO(log log n) time, all updates to slab structures takeO(logn log logn) time.
We also construct from scratch the slab structuresMw(z

′) andMw(z
′′), by insertingO(log n) pairs

each inO(log log n) time.

Left interval structures. Consider now the left interval structures affected by the split ofz. These
structures areBw andCwu for proper ancestorsu of w. Other structures for the left intervals are not
affected by the split.

We first computeω(Φz′) by summing the weights of all the intervals inLz′ that are not inLw.
We computeω(Φz′′) similarly. Then we deletez fromBw and insertz′ andz′′ with weightsω(Φz′)
andω(Φz′′), respectively. This step takesO(log n) time.

To updateCwu, we sort the intervalss in Lz′ according to the ancestoru of w wheres ∈ Lu. For
each proper ancestoru of w, we sum the weights of all intervals inLu and obtainω(Lz′u). Similarly
we obtainω(Lz′′u). Then we deletez from Cwu and insertz′ andz′′ instead with weightsω(Lz′u)
andω(Lz′′u), respectively. Note thatω(Lwu) does not change soAw is not affected. This step takes
O(logn log logn) time: It takesO(logn log log n) time to sort and traverseLz′ andLz′′ , and it
takesO(logn) time to update theO(logn/ log logn) structuresCwu, each in timeO(log logn).

This completes the description of the updates when we split a leaf.

4.3 Splitting an internal node

Consider now a split of an internal nodev into v′ andv′′ at a slab boundaryb. Letw be the parent of
v. The changes needed following this split are similar to those following a leaf split, but the details
are more involved. On the high level, we still have the following three steps:

(i) The split first affects the way how the intervals are associated with the nodes ofT: The
intervals inSv that crossb will move toSw, while the others are partitioned intoSv′ andSv′′ .
An interval moving fromSv to Sw is split into a left interval and a right interval atb (we will
only talk about the left intervals below). Unlike the leaf split case, here the new left intervals

16

are not only stored in theLz lists, but also someAv, Bv, Cvu structures, which need to be
updated.

(ii) As in the leaf-split case, a slab atw is split into two slabs, which affects the secondary struc-
tures built atw on the middle intervals. Furthermore, sincev′ andv′′ are two new internal
nodes, their middle interval structures need to be built.

(iii) Many left interval structures are also affected, and there are threetypes of changes we need
to perform. First, each interval moving fromSv to Sw has a new left interval, so we update
these left intervals in the secondary structures. Second,v is split intov′ andv′′, so we discard
Av, Bv, Cyv (for every descendanty of v) and rebuildAv′ , Av′′ , Bv′ , Bv′′ , Cyv′ (for every
descendanty of v′), Cyv′′ (for every descendanty of v′′), Cv′u andCv′′u (for every ancestor
u of w). Finally, analogous to the leaf-split case, a child ofw is being split, soBw and all the
Cwu’s for proper ancestorsu of w are updated.

We now describe in detail how all the necessary updates are performed.

The lists Sv, Sv
′, Sv

′′, Sw. The listSv is partitioned as follows. Lets = [a1, a2] be an interval
in Sv; a1, a2 ∈ σv. If both a1, a2 lie in σv′ (resp.σv′′), thens is moved toSv′ (resp.Sv′′); if s
intersects the common boundaryb of σv′ andσv′′ , thens is moved toSw. When associated withv,
s had a left interval, a right interval, and possibly a middle interval when associated withv. When
moving tow, the middle interval disappears, while the left and right intervals becomesℓ = [a1, b]
andsr = [b, a2], possibly longer than they were previously. See Figure 7. We update the left interval
with the endpointa in the listLz wherea ∈ σz to this newsℓ (recall that we have a pointer froms
to its left endpointa, which is stored atz). These steps takeO(|Sv|) = O(nv) time.

b
b−(v)

σv
σv1 σv2

b+(v)

Figure 7. Solid intervals move fromSv to Sw; the left interval derived from each of these intervals changes. The right
endpoint of the new left intervals isb. Dotted intervals are now inSv′ or Sv′′ ; their partitions into left, middle, and right
intervals do not change.

The middle interval structures at v′, v′′, w. The multislabs ofv′ andv′′ are multislabs ofv
corresponding to pairs of children ofv that are either both children ofv′ or both children ofv′′.
They can be copied over directly. We can obtain the slab structures ofv′ andv′′ from slab structures
of v. Let y be a child ofv′. We obtainMv′(y) by deleting fromMv(y) all pairs which are not both
children ofv′. We construct the slab structures of children ofv′′ similarly. All of these operations
take time at mostO(|Sv|) = O(nv).

We also update the middle-interval structures atw. This is analogous to update procedure for a
leaf split. Here, to identify the middle intervals of the multislabsMw(v

′′, y), for the rights siblingsy
of v′′, we traverse the subtree ofv′ to find all intervals whose other endpoint is inσw but was not in
σv. When we find an intervals ∈ Sw, such thatsm after the split is not empty, starts atb+(v′), and

17

ends atb+(y), we addsm to Mw(v
′′, y). We identify middle intervals of the multislabsMw(y, v

′)
analogously.

We claim that updating middle-interval data structures atw takesO(nv log logn) time. In-
deed, insertingO(nv) pairs into multislab structuresMw(v

′′, ·) andMw(·, v′), after deleting them
from the multislab structures that previously contained them, takesO(nv log log n) time. We obtain
each of theO(

√
log n) slab structures ofv′ andv′′ by O(log n) updates to slab structures ofv in

O(log3/2 n log log n) time. Sincenv = Ω(log3/2 n), this bound is alsoO(nv log log n). Construct-
ing the slab structuresMw(v

′) andMw(v
′′) takesO(log n log logn) time, which is again bounded

byO(nv log log n).

The left interval structures. We update the affected left interval structures by traversing the sub-
trees ofv′ andv′′ (i.e., the former subtree ofv) bottom-up. For each leafz in the subtree ofv′, we
scanLz and identify the intervals inLz ∩ Lv′ . We sum the weights of these intervals and obtain
ω(Lzv′). At each proper descendanty of v′, we discardCyv and constructCyv′ by inserting every
child y′ of y into Cyv′ with weightω(Ly′v′). From the newCyv′ we getω(Lyv′), which allows
us to continue to build theCyv′ structures upward until reachingv′. Meanwhile, we also deletev
from Ay and insertv′ instead, with weightω(Lyv′). In addition,w = p(v) we rebuild theCyw

structures for all descendantsy of v′ during this bottom-up traversal, sinceLw now contains new
left intervals—the ones that intersect the new slab boundaryb. Finally, we also update the weight
of w in Ay to beω(Lyw). Similarly, we perform these changes for every descendanty of v′′. It is
easy to verify that all the updates during this bottom-up traversal takesO(nv) time. Recall thatnv

is the number of points in the subtree ofv and the number of internal nodes in this subtree is only
O(nv/ log n).

After we have completed the rebuilding of the structuresCyw, Cyv′ , andCyv′′ , and updatedAy

for all y in the former subtree ofv, we also rebuild the structuresBy for all nodesy in this subtree.
For each nodey and a childy′ of y, we inserty′ into By with the updated weightω(Ay′). The time
for this is proportional to the number of nodes in the subtree ofv, which isO(nv/

√
log n). PKA:

Earlier it said: the number of internal nodes, which I think is wrong.
Consider now ancestorsu of w. For each suchu, we build the structuresCv′u andCv′′u: We

insert each childy of v′ intoCv′u with weightω(Lyu), and similarly buildCv′′u. Then we construct
Av′ andAv′′ by inserting each proper ancestoru of v′ andv′′ toAv′ andAv′′ with weightsω(Lv′u)
andω(Lv′′u), respectively. (We also associate the occurrence ofu in Av′ with Cv′u and similarly
for Av′′ .) Lastly, we constructBv′ andBv′′ . The time taken by These operations is proprtional to
the total size of the structures that we construct, which is

O(
√

logn logn/ log logn) = O(log3/2 n) = O(nv).

Finally, for every proper ancestoru of w we updateCwu. We deletev from Cwu and insert
v′ andv′′ instead, with weightsω(Lv′u) andω(Lv′′u), respectively. Then we make corresponding
updates toBw.

Putting it together. This completes the description of the split of a nodev, whether it is a leaf or
an internal node. The time it takes to perform the split isO(nv log logn); the split time at an internal
node is dominated by the time it takes to rearrange the middle intervals in the subtreeof v into their
multislab structures. By the earlier argument, this translates to an amortized costof O(logn) per
insertion. Combining this with the global rebuilding technique mentioned in the beginning of the

18

section implies that the amortized cost of a delete opration is alsoO(logn). We thus obtain the
following.

Theorem 2 A set ofn intervals can be maintained in linear-size data structure so that a stabbing-
semigroup query can be answered inO(logn) time worst-case, and an interval can be inserted or
deleted in amortizedO(logn) time.

5 External Memory Structure

Let B be the size of a block that we can transfer in one I/O operation from external to internal
memory. Our data structure can be easily adapted to external memory by usingthe following pa-
rameters: we let each leaf of the base tree containB logB n endpoints, and let the fan-outf be
max{

√

logB n,
√
B}, that is, whenn < BB, the fan-out is fixed at

√
B; asn gets larger thanBB,

the fan-out increases at
√

logB n. We also change the fan-out of all theBST structures toB, so
that we can update and query aBST structure onm elements inO(⌈logB m⌉) I/Os. To see that the
analysis goes through, consider the following two cases.

Case 1: logB n ≥ B. In this case the fan-out isf =
√

logB n. Noticing thatlogB logB n ≥ 1, one
can verify that the analysis in Sections 3 and 4 goes through, by replacingevery base-2 logarithm
with a base-B logarithm.

Case 2: logB n < B. In this case by our choice off , the height of the base treeT is O(logB n),
that is, it is essentially a B-tree. Recall that we attach secondary structures to the base tree for the
middle intervalsM and the left intervalsL and handle them separately. We consider them one by
one.

Since there areO(f2) = O(B) multislabs at each nodev, the middle interval structures atv
now answer a query inO(1) I/Os, so the total query cost isO(logB n) I/Os. The total update cost is
alsoO(logB n). The size of the middle interval structures atv takesO(1+ (|Mv|+ f3)/B) blocks.
Since there areO(n/(Bf logB n)) internal nodes and middle interval structures exist at only the
internal nodes, the total size of all these structures is stillO(n/B) blocks.

Next we consider the secondary structures for the left intervals. We spendO(1) I/Os to query
Bv at each nodev on a root-to-leaf path, and spendO(logB n) I/Os at the leaf, so the total query cost
is still O(logB n) I/Os. To perform an update, we update oneAv, oneBv, and oneCuv structure
at each node on a root-to-leaf path. The cost isO(⌈logB logB n⌉) I/Os for updatingAv, which is
O(1) sincelogB n < B. The cost to update aBv or aCuv structure is alsoO(1) I/Os. So the total
update cost, summed over all nodes, isO(logB n) I/Os. The space requirement of these structures
isO(n/(B logB n)) = O(n/B) blocks.

Finally, it can be verified that the procedure in Section 4 spendsO(nv ·⌈logB logB n⌉) = O(nv)
I/Os to split a nodev during rebalancing, so the amortized cost of an update isO(logB n) I/Os.

Theorem 3 A set ofn intervals can be stored in an external memory data structure usingO(n/B)
blocks, so that a stabbing-semigroup query can be answered inO(logB n) I/Os in the worst-case
and each update can be performed inO(logB n) amortized I/Os.

19

6 Nested Intervals

In this section we propose a simpler data structure, based on dynamic trees [18], for the special case
in which the intervals inS are nested, i.e., at any given time, two intervals inS are either disjoint
or one is contained in the other. It requires linear space, and each operation takesO(logn) time.
Without loss of generality, we assume thatS always contains the intervalξ = [−∞,∞] whose
weight is 0.

(a)
(b)

q

1 a

d
j

3

c

12ihg
10

9

lk

e f

ξ

5

ξ

0

0

0

0

0

0

0

0

0

0

4

b6

2 11

0

0
ξ

k
4 53

e
72

1

b

6 9

i
1011

128
87

1

2

3
k

4
l

5 0

e7

a

8

b
6 0

0
c

9
g

10
h

11
i

12

c

hgf

j l

d

a

d

j
f

(c)

Figure 8. (a) Nested intervals, numbers denote the weights of the intervals;ξ = (−∞,∞) is the interval of weight0
added toS; sq = l. (b) Containment treeC, bold path denotesΠ(sq,C). (c) Binary treeB, bold path denotesΠ(sq,B).

We define acontainment tree, C, on the intervals inS. Each interval inS is a node inC, and the
parent of an intervals is the smallest interval inS that containss. We order the children of a node
in increasing order of their left endpoints. We define the weight of an edgee in C, denoted byω(e),
from an intervals to its parent to beω(s); see Figure 8. For a nodes ∈ C, let Π(s,C) be the path
in C from the root tos, and letp(s) denote the parent ofs in C. For a pointx ∈ R, let sx be the
smallest interval that containsx. By definition,

ω(S(x)) =
∑

e∈Π(sx,C)

ω(e). (7)

A weakness ofC is that an insertion or a deletion of an interval may require insertions and
deletions of many edges. We therefore representC by a binary treeB, as follows. The nodes ofB
are the same as the nodes ofC. The left child of a nodev in B is the first child ofv in C, or null
if v is a leaf inC. The weight of the edge betweenv and its left child is the weight of the interval
associated withv. The right child ofv in B is the right sibling ofv in C, or null if v is the rightmost
child of its parent inC. The weight of the edge fromv to its right child is 0. For any (non-null) node
s ∈ B,

∑

e∈Π(s,B)

ω(e) =
∑

e∈Π(p(s),C)

ω(e), (8)

20

which implies that
ω(S(x)) =

∑

e∈Π(sx,B)

ω(e) + ω(sx). (9)

See Figure 8. It is easy to verify that an insertion or a deletion of an interval requires onlyO(1)
insertion and deletions of edges to/fromB.

We maintainB as a dynamic tree data structure, introduced by Sleator and Tarjan [18].3 Recall
that dynamic trees support each of the following operations inO(log n) time:

• M INCOST(v): finds the minimum cost of an edge on the path fromv to the root of its tree.

• L INK(v, w, c): v should be the root of a tree andw a node in another tree. This operation
connects the tree containingv with the tree containingw by adding an edge with costc
betweenv andw with w being the parent.

• CUT(v): Splits the tree containingv by removing the edge fromv to its parent.

We change the standard implementation of dynamic trees in a straightforward way so that
weights of the edges are elements of a semigroup, and instead of MINCOST(v) we support the
following query:

• SUMCOST(v): returns the sum of the weights of the edges on the path fromv to the root of
its tree.

We also store the endpoints of all intervals in a balanced search treeT. If x is an endpoint of an
intervals ∈ S, we store a pointer at the node ofT that storesx to the node ofB corresponding to
the intervals. The overall size of the structure is linear.

Let q ∈ R be a query point. We computeω(S(q)) as follows. We first find inO(logn) time the
predecessorx of q in T. Supposex is an endpoint of the intervals ∈ S. If x is the right endpoint of
an intervals, thensq = p(s). By (7) and (8),

ω(S(q)) =
∑

e∈Π(s,B)

ω(e),

and therefore we return the value of SUMCOST(s). If x is the left endpoint of an intervals, then
s = sq. In this case, by (9), we returnω(S(q)) = SUMCOST(s) + ω(s).

To insert an intervals = [a, b], we need to update bothT andB. We first updateB, and add to
it a node representings and then we inserta andb to T. When we adda andb to T, we also store
pointers in the nodes containinga andb to the node containings in B.

We first find the predecessor and successora−, a+ (resp.b−, andb+) of a (resp.b) in T. Suppose
a−, a+, b−, andb+ are the endpoints of the intervalsℓ−, ℓ+, r−, andr+, respectively. We allocate
a new node fors and update its children as follows. (We also uses to refer to the node containings
when no confusion arises.) Ifa+ > b, thens does not contain an interval ofS, sos is a leaf ofC.
PKA: It used to be B. Otherwise,ℓ+ should be the leftmost child ofs in C andr− should be the
rightmost child ofs in C. So we makeℓ+ the left child ofs in B by performing CUT(ℓ+) followed
by LINK(ℓ+, s, ω(s)). The right child ofs in B should be the right sibling ofs in C. If b+ is the

3In this representationB is an unordered tree, that is, it does not distinguish between a right child of a nodev ∈ B

and its left child. This does not interfere with the correctness of the structure.

21

4
s

1

3

1

4

3
3

4

B

2

1 1

2 s 5

C

2 3 4 5

43

2
s

B

3
4

5

2

3

4

5

1

s

1

2 3

42

C

4s

1

s
1

5432(b)

2

1

(a)

2 3

1

Figure 9. Inserting an intervals: (a) s is the leftmost child of1; ℓ− = 1, ℓ+ = 2, r− = 3, andr+ = 4. (b) s has a left
sibling2; ℓ− = 2, ℓ+ = 3, r− = 4, andr+ = 5. Thick lines indicate the newly created edges inB.

right endpoint ofr+, thens is the rightmost child of its parent inC sos does not have another child
in B. If b+ is the left endpoint ofr+, thenr+ should be the next sibling ofs in C. So to updateB
we perform CUT(r+) followed by LINK(r+, s, 0). See Figure 9.

Finally, we set the parent ofs in C. If a− is the left endpoint ofℓ−, thens is the leftmost child of
ℓ− in C, and we perform LINK(s, ℓ−, ω(ℓ−)); see Figure 9 (a). Otherwise,ℓ− is the left sibling ofs
in C, and we perform LINK(s, ℓ−, 0); see Figure 9 (b). (In the latter case ifℓ− was not the rightmost
child of its parent inC before the insertion ofs, then this right sibling ofℓ− was eitherℓ+ or r+.
In either case we have made a cut such thatℓ− has no right child prior to the link which mades its
child inB.)

This implementation of insert takesO(logn) time: By searching inT, a−, a+, b−, andb+ can
be computed inO(logn) time. Once we locate these points we perform a constant number of links
and cuts which also takeO(log n) time. The implementation of delete is similar.

Remark. By exploiting the internal structure of the dynamic trees [18], we can maintain additional
information at each node of the dynamic tree so that there is no need forT. Using this additional
information we can find the predecessor and the successor of a point using the dynamic tree itself.
We omit these details from this paper.

7 Lower Bounds

In this section, we prove lower bounds for the dynamicstabbing-groupproblem, i.e., returning
the sum of the weights of intervals containing a query point, but the weights ofintervals are now
drawn from a group and thus both addition and subtraction operations areallowed on the weights.
Since it is easier to answer stabbing-group queries, these lower boundshold for stabbing-semigroup
queries as well. The lower bounds are proved in the cell-probe model, by using reductions from the
partial-sum problem.

Thecell-probemodel, introduced by Yao [23], assumes that the memory is a collection of fixed-
size cells (words). To perform a query or an update, the algorithm reads and writes cells of the
memory, and the cost of the operation is simply the number of cells read and written. All other
computation is free. We assume that a memory cell hasΘ(log n) bits, to ensure thatn can be

22

represented in one word. We also assume that any endpoint or weight ofan interval is represented
in one word.

Thepartial-sumproblem asks to maintain an arrayA[1..n] subject to the following two opera-
tions:

UPDATE(k,∆): SetA[k] to be∆, and

PREFIXSUM(k): Return
∑k

i=1A[i].

Pǎtraşcu and Demaine [16] proved the following lower bound for the partial-sum problem in the
cell-probe model. Suppose the array elements belong to the groupZ/nZ = {0, 1, . . . , n− 1} with
addition/subtraction modulon. Let π be thebit-reversalpermutation, i.e.,π(i) is the integer ob-
tained by reversing thelog2 n bits of i (for simplicity assume thatn is power of2). Perform the
following alternating UPDATE andPREFIXSUMoperations. Thei-th operation is UPDATE(π(i),∆)
for odd i, where∆ is chosen uniformly at random from{0, . . . , n − 1}; and the operation is
PREFIXSUM(π(i)) if i is even. Note that even though the indices affected by the operations are
fixed, the∆ values in the update operations define a distribution on input sequences. Let tu and
tq be the expected amortized time of the UPDATE andPREFIXSUMoperations, respectively, on this
distribution of input sequences of a data structure for the partial-sum problem. P̌atraşcu and De-
maine [16] proved thattq log(tu/tq) = Ω(log n) andtu log(tq/tu) = Ω(log n), irrespective of the
number of memory cells used by the data structure, initial preprocessing time ofthe data structure,
and the initial values ofA[i]. For simplicity, we assume that initiallyA[i] = 0 for all i.

A sequence of operations for the partial-sum problem can be solved by performing a sequence
of insert and query operations on a dynamic stabbing-group data structure, for the groupZ/nZ,
as follows. For an UPDATE(k,∆) operation, we insert an interval[k, n] with weight ∆; for a
PREFIXSUM(k) query, we issue a stabbing-group query atk. It is easy to verify that this solves the
partial-sum problem on any sequence of operations. Hence, for any stabbing-group data structure
with insert and query timeti and tq, respectively,tq log(ti/tq) = Ω(log n) and ti log(tq/ti) =
Ω(log n).

We also show how to use the lower bound by Pǎtraşcu and Demaine [16] for partial sums to
prove a lower bound on the trade-off between the query time and the deletiontime in a deletion-
only data structure for the stabbing-group problem. Specifically, we assume that a set of intervals
preprocessed into a data structure such that we can delete intervals fromthe data structure and
perform stabbing-group queries, and show a trade-off between the deletion time and the query time.

Let p be a prime number and letn = p2. The weights are chosen from the groupZ/pZ. Define
a familyS of n intervalssi,j = [i, p], for 0 ≤ i, j < p, with weightsω(si,j) = j. Suppose we have
a stabbing-group structureD initialized to containsS that supports deletions and queries. Consider
the sequence ofp UPDATE andPREFIXSUMoperations in the construction of [16] described above,
with array sizep and the groupZ/pZ. We can simulate such a sequence by deletions and queries on
D as follows. For UPDATE(k,∆), we delete the intervalsk,p−∆. Note thatω(sk,p−∆) = p−∆. For
anyk, we delete at most one interval amongsk,0, . . . , sk,p−1, as each UPDATE operation updates
a different array element. ForPREFIXSUM(k), we issue a stabbing-group query atk. Before the
abovePREFIXSUM operation was performed, supposeℓ UPDATE operations were performed on
array elements with index at mostk, with weights∆1, . . . ,∆ℓ. Then the weight of the intervals

23

currently inS that containk is

kp(p− 1)/2−
ℓ

∑

i=1

(p−∆i) ≡
ℓ

∑

i=1

∆i (modp),

which is the same as the output ofPREFIXSUM(k).
The following theorem summarizes the lower bounds that we obtain via the reductions from

partial sums that we described.

Theorem 4 For any stabbing-group data structure in the cell-probe model storingn intervals, if
the amortized insertion, deletion, and query times areti, td, andtq, respectively, then the following
trade-offs hold:

tq log(ti/tq) = Ω(log n); ti log(tq/ti) = Ω(log n);

tq log(td/tq) = Ω(log n); td log(tq/td) = Ω(log n).

Remark. Our deletion-query trade-off holds only for the amortized cost of the first p =
√
n

deletions in a data structure storingn = p2 intervals. Although it is straightforward to prove the
same trade-off for the firstO(n1−ǫ) deletions, for any small constantǫ, it seems difficult to extend
the argument to the firstΩ(n) deletions. However, we believe that the trade-off indeed still holds if
Ω(n) deletions are considered.

8 Open Problems

In this paper we consider data structures that work with any semigroup, and present an optimal
solution. However, our lower bound does not prevent us from obtaining an improved structure with
some special semigroups, such as the stabbing-max problem (using(R,max)), or the existence
problem (using({0, 1},∨)). So far there are no better results on these special problems than our
general-purpose stabbing-semigroup data structure in the pointer-machine model, although sub-
logarithmic bounds can be obtained on a RAM [20]. Another interesting question to ask is the
counting problem, which is the case where we use the group(Z/nZ,+), but all weights are fixed
to be one. Our lower bound does not hold for this case as it assumes that weights can be arbitrarily
chosen from(Z/nZ,+).

Acknowledgment. The authors thank Mihai P̌atraşcu for helpful discussions on the lower bound
of the problem. They also thank two anonymous referees for their usefulcomments.

References

[1] P. K. Agarwal, L. Arge, and K. Yi. An optimal dynamic interval stabbing-max data structure?
In Proc. ACM-SIAM Symposium on Discrete Algorithms, pages 803–812, 2005.

[2] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting andrelated problems.
Communications of the ACM, 31(9):1116–1127, 1988.

24

[3] S. Alstrup, T. Husfeldt, and T. Rauhe. Marked ancestor problems.In Proc. IEEE Symposium
on Foundations of Computer Science, pages 534–543, 1998.

[4] L. Arge. External memory data structures. InHandbook of Massive Data Sets, pages 313–357.
Kluwer Academic Publishers, 2002.

[5] L. Arge and J. S. Vitter. Optimal external memory interval management.SIAM Journal on
Computing, 32(6):1488–1508, 2003.

[6] Y.-J. Chiang and R. Tamassia. Dynamic algorithms in computational geometry. Proceedings
of the IEEE, 80(9):1412–1434, 1992.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction to Algorithms, 2nd
Edition. The MIT Press, 2001.

[8] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwartzkopf.Computational Geometry:
Algorithms and Applications. Springer, 2000.

[9] H. Edelsbrunner. A new approach to rectangle intersections, partI. International Journal of
Computer Mathematics, 13:209–219, 1983.

[10] A. Feldmann and S. Muthukrishnan. Tradeoffs for packet classification. InProc. IEEE INFO-
COM, pages 1193–1202, 2000.

[11] P. Ferragina and S. Muthukrishnan. Efficient dynamic method-lookup for object oriented
languages. InProc. Annual European Symposium on Algorithms, pages 107–120, 1996.

[12] P. Ferragina, S. Muthukrishnan, and M. de Berg. Multi-method dispatching: a geometric
approach with applications to string matching problems. InProc. ACM Symposium on Theory
of Computing, pages 483–491, 1999.

[13] P. Gupta and N. McKeown. Algorithms for packet classification.IEEE Network, 15(2):24–32,
2001.

[14] H. Kaplan, E. Molad, and R. E. Tarjan. Dynamic rectangular intersection with priorities. In
Proc. ACM Symposium on Theory of Computing, pages 639–648, 2003.

[15] K. Mehlhorn and S. N̈aher. Dynamic fractional cascading.Algorithmica, 5:215–241, 1990.

[16] M. Pǎtraşcu and E. Demaine. Logarithmic lower bounds in the cell-probe model.SIAM
Journal on Computing, 35(4):932–963, 2006.

[17] S. Sahni, K. Kim, and H. Lu. Data structures for one-dimensional packet classification us-
ing most-specific-rule matching. InProc. International Symposium on Parallel Architectures,
Algorithms and Networks, pages 3–14, 2002.

[18] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees.Journal of Computer and
System Sciences, 26(3):362–391, 1983.

[19] R. E. Tarjan. A class of algorithms which require non-linear time to maintaindisjoint sets.
Journal of Computer and System Sciences, 18(2):110–127, 1979.

25

[20] M. Thorup. Space efficient dynamic stabbing with fast queries. InProc. ACM Symposium on
Theory of Computing, pages 649–658, 2003.

[21] J. S. Vitter. External memory algorithms and data structures. InExternal memory algorithms,
pages 1–38. American Mathematical Society, 1999.

[22] J. Yang and J. Widom. Incremental computation and maintenance of temporal aggregates. In
Proc. IEEE International Conference on Data Engineering, pages 51–60, 2001.

[23] A. Yao. Should tables be sorted?Journal of the ACM, 28(3):615–628, 1981.

26

