An Optimal Dynamic Data Structure for Stabbing-Semigroup Queries

Pankaj K. Agarwal Lars Argé Haim Kaplari Eyal Molad"
Robert E. Tarjah Ke Yi**

Abstract

Let S be a set ofn intervals inRR, and let(S,+) be any commutative semigroup. We
assign a weighiv(s) € S to each interval inS. For a pointz € R, let S(x) C S be the
set of intervals that contain. Given a pointy € R, the stabbing-semigrouguery asks for
computingzses(q) w(s). We propose a linear-size dynamic data structure, undgydimger-
machine model, that answers queries in worst-¢28eg n) time, and supports both insertions
and deletions of intervals in amortizéd(log n) time. It is the first data structure that attains
the optimalO(log n) bound for all three operations. Furthermore, our structare easily be
adapted to external memory, where we obtain a linear-sizetate that answers queries and
supports updates i@ (log;z n) 1/0s, whereB is the disk block size.

For the restricted case of nested family of intervals (eyaiy of intervals are either disjoint
or one contains the other), we present a simpler solutioecbas dynamic trees.

1 Introduction

Let S be a set ofn intervals inRR, and let(S, +) be any commutative semigroup. We assign a
weightw(s) € S to each interval inS. For a pointz € R and a sef? of intervals, letR(z) C R

be the set of intervals that contain Given a pointy € R, a stabbing-semigroupguery asks for
computingzses(q) w(s). We are interested in developing a dynamic data structure to maintain
S dynamically, so that we can answer stabbing-semigroup queries antlansedelete intervals
to/from S efficiently. By taking different semigroups, for instan®, +), (R, max), (N, gcd),
({0,1}, V), etc., we obtain different applications of our data structure. If eveiyqiantervals

in S is either disjoint or nested, we call the problemested instancef the stabbing-semigroup
problem.

“Part of work was done while Arge and Yi were at Duke University. Kby Agarwal was supported by NSF
under grants CNS-05-40347, 11S-07-13498, CCF-09-4067d, @8F-1012254, by ARO grants W911NF-07-1-0376
and W911NF-08-1-0452, by an NIH grant 1P50-GM-08183-04, lana grant from the U.S.—Israel Binational Science
Foundation. Work by Kaplan and Tarjan was supported by Grant ra62# from the U.S.—Israel Binational Science
Foundation.

fDepartment of Computer Science, Duke University, Durham, NC 708A. Email:pankaj @s. duke. edu

iDepartment of Computer Science, University of Aarhus, Aarhusnizek. Emaill ar ge@lai ni . au. dk

§Depatment of Computer Science, Tel Aviv University, Tel Aviv 6891&rael. Emailhai nk@ au. ac. i |

'”Depatment of Computer Science, Tel Aviv University, Tel Aviv 6891&rael.

IDepartment of Computer Science, Princeton University, PrincetomniHewlett-Packard, Palo Alto, CA. Email:
ret @s. princeton. edu

**Corresponding author. Department of Computer Science and EngigeHKUST. Emailiyi ke@se. ust . hk

The so-calledstabbing-max (resp. stabbing-mipjoblem is the special case of the problem
with the semigroug R, max) (resp.(R, min)). This problem has applications in object oriented
programming [11, 12] antP routing [10, 13, 17]. In IP routing, a router maintains a dynamic table
of prefixes of IP addresses which is used to pick the outgoing line fdr is@oming packet. The
decision is done by identifying the longest prefix of the destination addfabe packet stored in
its table. We can model this problem as a stabbing-min problem where edohqoreesponds to
an interval whose weight equals to its length. The destination addressackatps a point and the
shortest interval containing this point corresponds to the longest mkfhe destination address.
Note that the family of intervals in this application is nested.

A more general problem arising in routerdispacket classificationA router often classifies
each incoming packet into fflow according to some fields in the packet header. The router then
processes in the same way all packets that are in the same flow. To do gifcalien, the router
maintains a set of rules, each with a priority assigned to it. The highest-pniatéyhat a packet
obeys determines the flow of the packet. The rules may stipulate rangeatoisstm one or more
fields in the packets (e.g., source/destination IP addresses, souliceti@s ports), which corre-
sponds to one or multi-dimensional versions of the stabbing-max problem. rig neworking
contexts, such as multicast routing protocols and QoS protocols, thersé¢®thanges over time,
in which case we need the dynamic version of the stabbing-max problem.

Previouswork. A linear-size static data structure for the stabbing-semigroup problemupat s
ports queries i (log n) time can be developed using the segment tree [8] — each node stores the
semigroup sum of the intervals associated with it. This structure can be egtémdupport inser-
tions of intervals inO(log n) time, without affecting the asymptotic query time, by using a dynamic
segment tree [18]. However, the problem becomes considerablyrivenda deletions are allowed.
If the weights are drawn from a group, namely in ghabbing-grougproblem, deleting an interval
with weightw(s) can be implemented by insertisgvith weight —w(s), with periodic re-building
to avoid a space blowup. However, this solution does not apply to the saipigase because there
are no inverses. By modifying the segment tree so that each node st tf intervals associ-
ated with it, a query can be answeredlog n) time, but an update take3(log® ») time and the
size of the data structure becom@én logn). Alternatively, by using an interval tree [9] one can
obtain a linear-size data structure that supports both insertions and dglietioflog n) time but
requiresO(log” n) time to answer a query. We discuss these structures in more detail in Section 2.
Faster data structures have been developed for the stabbing-maxpiolilee context of the
IP routing problem by exploiting the fact that endpoints of intervals are émgggand using the
RAM model. For example, Feldmann and Muthukrishnan [10] proposedathavierted segment
tree (FIS) data structure. The dynamic version of FIS supports quar@sloglogn + ¢) time,
where/ is the number of levels in the segment tree. The space requirem@tis'/?), and an
insertion or deletion take®(n'/¢1ogn) time, but there is an upper bound on the total number of
insertions and deletions allowed. Thorup [20], improving the result ofrRaith and Muthukr-
ishnan, presents a linear-size data structure With) query time andO(n!/Y) update time for
¢ = o(logn/loglogn),¢ > min{/logn/loglogn,loglog N}, when the endpoints are integers
not exceedingV. See [13] for a survey of such results.
If the input is too large to fit in the main memory, one is interested in an external rpetata
structure. In the standard two-level /O model of computation [2], the maatonsists of a finite
main memory and an infinite-size disk. In this model, a blockBofonsecutive elements can be

transferred between main memory and disk, and this is referred to d§operation The data
structure is stored in a number of disk blocks, each of sizand the cost of an operation is mea-
sured by the number of I/0O operations. See [4, 21] for surveys omnatteiemory data structures.
For the stabbing-semigroup problem, the I/O-efficient interval tree dpedlby Arge and Vitter [5]
can be used to construct a linear-size data structure for answeringhéngtaemigroup query in
O(logg n) 1/0s. An interval can be inserted int® usingO(logg n) 1/0s. Their structure can be
modified to handle deletions so that each update tékésg; n) 1/0s but then a query requires
O(log% n) 1/0s. An I/O-efficient structure for the stabbing-group problem is @mésd in [22] that
uses linear space, answers a query and performs an updatejy; n) I/Os, but it does not work
for the semigroup problem.

Our results. The results in this paper combine and extend results from two conferdnce a
stracts [1, 14]. Our main result is a linear-size data structure for theisggebmigroup problem,

in the pointer-machine model [19] of computation. Our structure answerseguand supports up-
dates (insertions as well as deletionsYJ(log n) time. The query bound is worst-case while the
update bounds are amortized. Our solution starts from the straightfossartions based on in-
terval and segment trees mentioned above. We then combine featureseofutloedata structures
so that query time i® (logn), update time i) (log nloglogn), and the size of the data structure
is O(nloglogn). Next, we reduce the size and update time by a factdbgfogn by using a
base tree that is a weight-balanced tree with a large fan-out, in which aaldaf stores the end-
points of many intervals. Our approach also leads to a data structure with ar girilarmance

in the I/O model. More precisely, we obtain a linear-size data structure satla tiuery can be
answered usin@ (logz n) 1/0Os (worst-case) and each update takd$og; n) 1/0s (amortized).
We also propose a simpler data structure that uses dynamic trees to sa@e instances of the
problem. Finally, we prove that our structure is optimal, in the sense thaeftaic semigroups
none of the query, insertion, or deletion bounds can be improved withorifising the others. The
lower bound is established in the cell-probe model, and in fact holds foe#séef) stabbing-group
problem. Previously af¥(logn/ loglog n) lower bound was known [3] for the problem. Our struc-
ture can be extended to higher dimensions using segment trees in a staagdtd], by paying a
penalty of anO(logn) factor in both time and space for each additional dimension, but the results
may not be optimal in two or higher dimensions.

The rest of this paper is organized as follows. We begin in Section 2 luyides simple data
structures for the stabbing-semigroup problem that use interval antes¢grees. In Section 3, we
describe our structure under the assumption that the endpoints of alkisteeiong to a fixed set
P of O(n) points. This allows us to disregard the rebalancing issue of the base trae nmudii-
level structure. We remove this assumption in Section 4, where we desorbtotrebalance the
base tree. In Section 5, we describe how our structure can be adagtadrioal memory. Section
6 presents our data structure for nested instances. We prove the lowmisbin Section 7 and
conclude with some open problems in Section 8.

2 Preliminariesand Basic Data Structures

We denote bys the set of (closed) intervals stored in the structure. Weuwtsalenote the cardinality
of S. Note thatn changes a$' is modified via insertions and deletions. For an interval S, we
denote byv(x) the weight ofr. Each weight belongs to a semigrdsipTo simplify the presentation,

we assume that all the endpoints of the interval$jras well as the queries, are distinct. This
assumption can easily be removed by fixing an arbitrary order among ideatti@oints.

ForanyY C S, letw(Y) = > .y w(s). ForasubseY” C S and a poiny, we denote by (q)
the subset of” consisting of all intervals containing We assume that the semigroup isianoid
i.e., it has an identity element, which we denotedbgnd definev(()) = 0.

Next, we describe the basic building blocks of our main data structure. d$ie ingredient we
use is a structure for storing a totally ordered ¥etuch that each € X has aweightw(z) € S,
subject to the following operations.

(i) INSERT(z): Insertx into X.
(i) DELETE(z): Deletex from X.

(i) UPDATEWT(z,w): Givenz € X andw € S, Updatew(z) to bew. We can implement this
by deletingx and reinserting: with its new weight.

(iv) wt(X): Returnw(X).
(V) PREFIXSUM(): Givenb € X, returny_ s <, w(x).

We implement this data type by a dynamic balanced binary tree [7], in which weaimathe
sum of the weights of the elements in each subtree. Then all operations takedemi¢mic in
the size ofX, exceptwT(X), which takesD(1) time. The size of the data structure is lineafXq.
We can also support@ND(z) operation that locates in the search tree in logarithmic time. Xf
is unordered, we can still use this data structure by imposing an arbitrarpitdéea onX. We call
such a basic structuressT (for balanced search treeljhroughout this paper w&hall often use the
same name for the set and 8T representing it.

Our new data structure can be viewed as a mixture of an interval tree agirest tree [9],
so we start by reviewing these classical structures. We describe thevstaians of each of these
structures, but they can be made dynamic using the standard technifjues [6

Interval tree. In this section and Section 3, we assume that the endpoints of all intervéls in
that are ever in the structure belong to a fixed Betf m = O(n) points. We divideR into m
atomicintervals by picking an arbitrary separating point between every twoecoitise points in
P. We consider these atomic intervals closed (except the leftmost and the rijltn®). LetT be
a balanced full binary tree withu leaves. Each node € T is associated with an interval,. If v is
thei-th leftmost leaf ofT, theno, is thei-th leftmost atomic interval. IH is an interior node with
v; andwvy as its children, then the common endpointof o, ando,, is stored at, and we set
o, = oy, Uoy,,. Forapointr € R, letIl, denote the path ifff from the root to the deepest node
z such thatr, containsz. Note that for every point ¢ P, 1, is a path from the root to the leaf
whose atomic interval contains

In an interval tree, an interval € S is stored at the highest nodesuch thatr,, € s. Note that
S, is empty ifv is a leaf. LetS,, C S be the set of intervals storedatLet s = [a, b] be an interval
in S,.. We splits into two subintervals’ = [a, z,,] ands™ = [z,,, b]. We defineL, = {s’ | s € S, },
R, ={s"|s€S,},L=1{s'|se S} andR = {s" | s € S}. For aquery poing € R,
w(S(q)) = w(L(q)) + w(R(q)).r We computev(L(q)) andw(R(q)) separately and return their
sum.

Yf ¢ = z, for some separating point,, we query with a;™ that we consider to be symbolically larger than

4

We add the following secondary structures to the interval tree to compui§;)) efficiently;
the construction is symmetric for computingR(q)). For a nodev, let £, be the set of the left
endpoints of the intervals if,,. We assign to each point df, the weight of the corresponding
interval, and stordv, in aBST. Clearly the total size of the data structure, including all secondary
structures, i$)(n).

Let ¢ be a query point, Leﬂg C II, be the set of nodes < II, such thatv’s left child
is also inIl,. Note thatL(q) C Uveng L, and thatw(L(q)) = Zvengw(Lv(Q))- Moreover,
an interval(a, z,] € L, containsg if and only if a < ¢. To computew(L(q)) we traverse the
pathII,. At each nodey € Hg, we perform aPREFIXSUM(q) query onE, to obtain the weight
> acE,a<qw(@) = w(Ly(q)) in O(logn) time. Finally, we sum these weights and return the
overall weight. Since we sper@(log n) time at each node, the overall query time i€ (log” n).

We can insert or delete an intervain an interval tree irO(log n) time by finding the node such
thats € S, and updating thesT representing,,.

Note that it might be tempting to use dynamic fractional cascading [15] to sgeéte query
procedure, but this does not work becauseRREFIXSUM(¢) operation on @sT actually relies on
retrievingO(log n) weights in thessT, not just one search location. If one stores the prefix sum at
the search location, the update cost ofglsa will be high.

Segment tree. A segment tree allows us to comput€S(q)) in O(logn) time, although the up-
date time isO(log? n) and the size i©)(nlogn). The base tred of the segment tree is the same
as that of the interval tree. However, we now store an interval[a, b] at a nodev if o, C s and
Tp(v) ¢ s, wherep(v) denotes the parent of Note that the parents of the nodes storirige on
11, UII,, and that we can find these nodegiflog n) time. LetS, C S be the set of intervals stored
atv in the segment tree. We maintaf) in aBsT (imposing an arbitrary order on these intervals).
For a leafz, let £, be the set of intervals with an endpoint insige (For now,£ ., contains at most
one interval, but denoting it as a set will be convenient later on.) We $toed z.

Since an intervas is stored at(log n) nodes, the total size i9(nlogn). An interval can be
inserted or deleted i@ (log? n) time by first finding inO (log) time the nodes at whichis stored
and then updating thesT at each such node. For a query pajrg R, let z be the leaf on the path
I1,, then we have

S(g) = |J SsUL.(9). (1)
velly

Since the set§, for v € II, and £, are pairwise disjointw(S(q)) = Zuenq w(Sy) +w(L:(q)).
Therefore,w(S(¢)) can be computed i (logn) time by traversing the pathl,, retrieving the
valuew(S,) in O(1) time from theBST representings, at each node € I1,, and finally checking
if the interval in£, contains.

3 An Optimal Data Structurefor Fixed Endpoints

In this section, we continue to assume that although th8 séintervals is dynamic, the endpoints

of these intervals belong to a fixed getof O(n) points. Recall that our assumptions in Section 2
also imply that each point d? is an endpoint of at most one interval. The main result is a linear-size
data structure that answers a stabbing-semigroup quépyliag n) time and performs an update in
O(log n) time. Recall that the segment tree attains an optimal query time whereas thel inesrva

attains an optimal update time. We first describe how to combine the featurésrgéirand segment
trees to construct a data structure of Si¥e: log log n) on the same base tré& A: Shouldn’t this
be O(nlogn)? that supports queries i0(logn) time and updates i®(log nloglogn) time. We
then reduce the size to linear and the update tim@ (tiog n) without increasing the asymptotic
query time, by increasing the fan-out of the base tree and making the fatvas we will explain.

3.1 Binary basetree

Intuitively, we store the intervals in secondary structures as in the inteeeko that each interval
is stored at one node Gf. However, we maintain the weights as in a segment tree to expedite the
query procedure. We now describe the data structure in detail.

As in the interval tree described in Section 2, we split each interval intoneffright intervals
and process the sefsof left intervals andr of right intervals separately. We describe the secondary
structure forL, which allows us to compute(L(q)) for a query poiny efficiently. The construction
for R is symmetric. We assume that each pointothat is an endpoint of an intervalstores a
bi-directional pointer t®, and to the node such thats € .S,,.

Decomposition of intervals. In what follows, we first decompose the set of left intervalsn
multiple ways that will facilitate the query and update procedures. Firstll thea L, is the set
of intervals inL that haver,, as their right endpoints. For a descendamif a nhodeu, we define
L., € L, tobe

Ly, ={la,zy] € Ly, | a € 0y} 2

This is the set of all intervals i, whose right endpoints are, and whose left endpoints lie
inside o,,. Note that a particular intervak, z,,] € L, is included inL,,, for every nodev on
the path fromu’s left child down to the leal: wherea € o,. For a nodev, let A, = {u |
wis a proper ancestor @fv)} and
P, = U L. (3)
uEA,
See Figure 1 for an illustration of these sets.

Te Ty Ta
[Il a

Ioe

I3 e—o

Ije—— @ b
16 15077
L2 ° I C
. 7 e d
04

0

Ob

Figure 1. lllustration of the definition of the se®., Lvu's: Lva = {I1, 2, I5, I7}, Lea = {11, 12,17}, Laa = {11},
Lea = {I2,17}, Lay = {14}, Lew = {6}, and®. = Ly = {I2, Is, I }. The picture shows the entire interval and not
only its part which is inL.

Since for a fixed, the setd.,,, are pairwise disjoint, we have

w((I)U) - Z w(L7Ju)~ (4)

U,EAU

6

LetL, = {s€ L | o, C 8, Op(w) £ s}, which is the subset of stored atw if we place the
intervals according to the rules of a segment tree. The following lemma shtawa kuery should

use thed, sets.

Lemma 1 If w is a right child of its parent ana is the left sibling ofw, then®, = L,,.

Proof: Let s = [a, b] be an interval ind,,, and letu = p(v) = p(w). Thena must be ino,, andb
must be to the right of,. So clearlys € L,,. To prove the converse, assume that [a,b] € L,,.
Then by the definition of a segment treg, C s butoy,,,) £ s. It follows thata € o,. Therefore,
there is a proper ancestar of v such thats € L,,,,. This implies that € ®,,. O

Let w be a node that is the left child of its parent. An intervak [a,b] € L that contains,,
must contair,,,,y. Indeed, if this is not case, thén= x,,,, but thena must be ino,, (otherwises
is not a left interval), which contradicts the assumption thatC s. It follows from this observation
that if w is a left child, thenL,, = (). Combining this with Lemma 1 and Property (1) of a segment
tree, we obtain the following. For a query poiptlet = be the leaf on the patli, and £ the set of
intervals inL with an endpoint inr, (there is at most one), we have

L(g) = (U Ew> UL(q) = (U Ew> UL.(q) = (U <I>U) U L(q)-

welly wellg welly
w: right child w: right child
v: sibling of w

Since thed,, sets are pairwise disjoint for nodes whose right siblings belong to thdatke have

@)= X (@) +elto) ©
wellg
o siing ot

The secondary structures. We will use (5) to answer a query by adding up all the necessary
w(®P,)’s, while building secondary structures to maintain th@,)’s according to (4) under up-
dates. More precisely, for each nodewe build aBsST on A, usingw(L,,,) as the weight of
u € A,. Clearly, thisBsT has sizeD(logn), andw(A,) = w(®,) can be retrieved i®(1) time.
When anyw(L,,) changes, thesT can be updated i®(loglogn) time. The total size of all the
secondary data structuresign + s |A,|) = O(nlogn).

The query procedure is easy. Lgbe a query point. We traverse the path and compute
w(L(q)) in O(log n) time using (5), as follows: If a node < II, is a right child andv is its left
sibling, then we retrieve/(®,) in O(1) time, and we add up these weights. Finally, we check if the
intervals € £, (if there is one) containg, and if so, add its weight as well.

To insert or delete an interval = [a,b], we first find the node: such thats € S,. Let
st = [a, 2] ands” = [z, b]. We only describe how to handié. We traverse the path, from the
leaf z such thatz € o, to the root ofJ, updating the secondary structures bottom-up, as follows.
At z, we update the weight af in A, w(L,,), intheBsT atz to w(s) (for an insertion) o (for
a deletion). Next, suppose we are at an internal nodell,,, a descendant af, with childrenwv
andwvs, wherew; is the child ofv preceding it oril, that we have just processed. At this point we
already have an updated valuedfZ,,). Sinces, = o, U 0,,, we have

wW(Lyu) = wW(Lyyu) + w(Lyyu)-

7

We retrievew(L,,,,,) from A,,, which is not affected by the insertion/deletion ofand compute
the neww(L,,). Then we update, i (loglogn) time, the weight ofu, w(L,,), in the BST on
A,. We stop this bottom-up traversal 0f, at the grandchild of. onTI,, and the total time spent is
O(lognloglogn).

Remark. Kaplan, Molad, and Tarjan [14] showed that if we redefibeto be the set of those
ancestors of for which L,,, # (), then the size of the structure reduce$Xg: log log n) without
affecting the query or update time. Furthermore by maintaining only the topdarexplicitly
and storing the intervals of nodes of depth larger thaiog n separately, the space can be made
linear and the insertion tim@(logn), but the deletion time remain@(log nloglogn). We omit
these details as we will show a different approach that achieves optimalligtbrinsertions and
deletions.

3.2 Non-binary basetree

We now improve the update time €(logn) and the space bound €(n), without increasing the
asymptotic query time. We do this by increasing the fan-out of each node baeetre€ and by
making each leaf of” fat. As a result of the large fan-out, we need more complicated secondary
structures, which will be the focus of this section.

Thebasetree. As above, let” be the fixed set of» = ©(n) points that contains all the endpoints
of the intervals inS. We continue to assume that at any time each poirit is an endpoint of at
most one interval irf. We divideR into [m/logm] = O(n/logn) atomic intervals, by adding a
break point everylog m| consecutive points aP. Let f = [y/logn]. We build anf-ary tree on
top of these atomic intervals where each leaf corresponds to one. [earfeagosition, we assume
that the number of leaves is a powerfafotherwise, the fan-out of each internal nod®isf), but
that does not affect our asymptotic results.

We chose the size of a leaf and the fanout so fhaasO(n/log®? n) internal nodes. This
choice allows to keep secondary data structures of@(ieg3/2 n) = O(f?) in each internal node
while keeping the overall space linear, as we will do.

Figure 2. An internal nodev in the base tre@. I7" is undefined.

As in Section 2, we associate an interwalwith every nodey of 7. If v is a leaf, therv, is the
corresponding atomic interval. ifis an internal node with children, ..., v, from left to right,
theno, = o, U--- U oy, We refer to eacla,, as aslab of v associated with;. For a childv;

8

of v, let b~ (v;) be the left endpoint of,, and letb™ (v;) be the right endpoint of,,. Note that
bt (v;) = b (viy1) for 1 < i < f, andb™ (v1) andb™ (vy) are the boundaries of the slab)
associated with. For two childrenv’ andv” of v, we writev’ < »” if v” is to the right ofv’, i.e.,
bt (v') < b~ (v"). We writev’ < o if eitherv’ = v” orv’ < v”. We store the slab boundaries of
each internal node in a balanced binary search tree so that we camidetar O (loglogn) time
the slab ofv that contains a point € ,. This allows us to traverse the search pHthfrom the
root to the leaky containing a point: in O(log n) time.

An interval s is associated with if s is contained inr, but not a slab associated with any of
v's children. In particular, if an intervad has both endpoints stored in the same leahens is
associated with. As earlier, letS,, C S be the subset of intervals associated wittClearly each
interval is associated with exactly one nade

As when the base tree was binary, we store with each poiftiat is an endpoint of an interval
s a bi-directional pointer te and to the node such thats € S,,. Given a new interva = [a, b,
we can easily find the nodesuch that € S, in O(log n) time. We traverse the patfh, top-down.
For each internal node on this path, we determine @(loglog n) time the slabr,, that contains
a. If b € o,, we recursively visit the child’. If b € o,/, thens € S,,. If we reached a leaf, then
seS,.

Letv € T be an internal node, and let= [a, b] € S,. Assume first that’ andv” are children
of v such thata € o, andb € o, If b (') = b (v”), then we splits into two intervals:
st = [a,b"(v)] ands” = [bT(v),b] (e.g. intervall; in Figure 2). Otherwise, we split into
three intervals:s® = [a, b (v')], s™ = [b*(v'),b~ (v")], ands” = [b~(v"),b] (e.g. intervally in
Figure 2). We refer ta!, s™, ands” as the left, middle, and right intervals efand their weights
are the same as the weight«ofFor an internal node, let

LU:{s£|s€SU}, R,={s"|s€e€S,}, M,={s"|seS,},

and for aleafv letL, = R, = M, = 0. LetL = J, L,, R = U, Rv, M = |, M,, where the
union is taken over all internal nodeof 7.
Let ¢ be a query point, and letbe the leaf ofl such thaty € .. Then

w(S(q)) = w(L(q)) + w(R(q)) +w(M(q)) + w(5:(q))-

For each leak, we maintain a linked list of the intervals ifl,. Since each point oP is an
endpoint of at most one intervals,| = O(logn). To computev(S,(q)) we traverseS, and sum
the weights of all intervals i (q).

Below we describe the secondary structures stored at each nodesimobmputev(L(q)),
w(M(q)), andw(R(q)) efficiently. We first describe the secondary data structures for the middle
intervals, which are new. The secondary data structures for the leftatgeand right intervals are
similar to the ones we had when we used a binary base tree in Section 3. disuadditional ideas
are needed to cope with the large fanout.

Middle intervals. At each internal node, we use severahultislabBST structures to store the
middle intervals. First, for each pair of childrehandv” of v with ' < v”, we have a multislab
structurel, (v',v") storing the subset of all intervatse S, such that™ = [b~ (v'), bT (v")]. (We
order these intervals arbitrarily in tiBsT.) We maintain thes(ag) = O(logn) multislab structures

in a linked list. Since each interval i/, is stored in exactly one multislab, the total size of these
multislab structures atis O(|M,|).

Furthermore, for each child of v, we have a&labBsT structureM,, (v"). The structuré\/, (v")
has an element for each pair of childrenand v, of v, such thaty; < v’ < vy. The weight of
this element iso(M, (v1, v2)). We keep a pointer from’ to M, (v'). The size of each slabsT is
O(logn) as there may b&(log n) pairs of childrerv; andvs, such that; < v" < v,. Since there
areO(+/log n) slabesT structures ab, the total size of all slaBsT structures ab is O (log®/? n). It
follows that the total size of all multislab and slabT structures at is O(|M,,| + log®/?n). Since
we haveO(n/ log®? n) internal nodes, and each interval contributes a middle part only to one set
M, all multislab and slab structures at all nodetskeO(n) space.

Let ¢ € R be a query point. Since the seld, are pairwise disjointw(M(q)) =
> verl, w(M,(q)).?> Furthermorew(M,(q)) is exactlyw(M,(v')) wherev' is the child ofv on
I1,. So to computev(M,(q)), we traverse the patli, as described before, and when we move
from a nodev to its childv’, we query the structuré/, (v') and obtainv(M,(v")) in O(1) time.
We add these values to obtaii}/(q)). The overall query time i€ (logn).

Next, we consider updates. Suppose we insert or delete an intewlabse middle part™
exists. Letv be the node such thate S,. (Recall thaty can be computed i®(logn) time.) Let
s™=1[b(v'),b"(v")]. We find the multislalBsT M, (v, v") in O(log n) time by searching the list
of the multislab structures. Then we inserinto or deletes from M, (v, v"”) and then query this
BST for the updated weight (M, (v',v")). Finally for everyw with v/ < w < v”, we update the
weight of the element corresponding to the péjrn” in the slabBsT M, (w), to bew(M, (v/,v")).
This update take® (log log n) time for eachw, andO(y/Togn - loglogn) = O(log n) for all slab
structures.

Lemma2 The setM of middle intervals is stored in multislab and slalsT structures of the
internal nodes ofl" so that a stabbing-semigroup query on the middle intervals can be aadwer
in O(logn) time. Furthermore, when a segmenis inserted or deleted angl™ exists,s” can be
inserted into or deleted from these secondary structurés(ing n) time.

Left intervals. We now describe the secondary data structures for maintaining the leftalsterv
The secondary data structures for maintaining the right intervals are syimnigdrstore the left
intervals, we follow the same approach as in Section 3.1. The large faaost€ additional com-
plications, however.

Decomposition of intervaldVe defineL,,, and®, the same way as in (2) and (3), respectively,
but bear in mind that the intervals in these sets are different becausestnéréa is different now.
Note that (4) still holds. Since each node hfashildren, we need to refine (5). For a nodeet
A(v) be the set of siblings af that precede. For a leafz, let £, be the set of intervals i that
have their left endpoints iai,. The following lemma generalizes (5). See Figure 3.

Lemma 3 Letq be a query point, lefl, be the search path afin T, and letz be the leaf node in
II,. Then
W(L(@) =Y > w(®y) +w(L:(q). (6)

velly yeA(v)

Proof: Clearly the set®, whose weights we sum in (6) are disjoint, and are also disjoint #fgm
So it suffices to show that every left interval= [a, x] that containg; is contained in eithef , or
one of the set®,,.

“Recall thatMl. = { for the leafz € TI,,.

10

[=]

i g
D ¢ A(b) b
L | | — I3 c

* I, Ale) _ d

[]
[]
&

Figure 3. Querying among leftintervalg), .,) ®y = {12}, Uyen(e) Pv = {11, I3}, Uyenay Pv = {1a, I }-

Let v be the deepest common nodeldf andIl,. If v is a leaf, therw = 2, ¢ € 0., and
s € L,. Otherwise, let/ be the node following onII, andv” the node followingv onII,. By
the definition ofv, v' # v”, and sinces containsg, v’ < v”. Moreover,s € L, for some proper
ancestor, of v = p(v'); otherwises must befa, b (v')] and cannot contaip. Sos € ®,, and
v e A(").

For the converse, it is easy to verify that everg ®(y) for y € A(v) andv € II,, contains
q.]

Secondary structuredAs in the binary case we mainta@sT structures that allow us to obtain
w(P,) in O(1) time, for every node. But two new difficulties arise. The first is that the ability
to getw(®,) in O(1) time is not sufficient to answer a query in logarithmic time. By Lemma 3,
to guarantee logarithmic query time we have to be able to con@@\(v) w(Py) in O(loglogn)
time for any nodev. Since|A(v)| = O(y/logn), computing this explicitly would be too slow.
The second difficulty is how to update the value@b,). We introduce the following secondary
structures to address these difficulties.

e L.: We store the lisC, atz. This list has siz&(logn) and allows us to compute the second
term of (6) inO(log n) time.

e A,: Asinthe binary case, for each internal nad&e maintain the set
A, = {u € T | uis aproper ancestor @fv)}

in aBsTwhere the weight of; in this structure iss(L,,,). So it follows from (3) thatv(A,) =
w(®,). The size ofA, is O(logn/loglogn) for our non-binary base tree.

e B,: For each internal node we maintain aBsT, B,, over the children ofv where the
weight of a childw is w(®,,). By aPREFIXSUMw) query toB, with a childw of v, we get
EyeA(w) w(®,) in O(loglog n) time. With thesessTs we can answer a query in a straight-
forward way using (6). The size @, is O(y/logn).

e (. To be able to efficiently update the BSTs dn’s, hence also thé3,’s, we introduce
a third secondary structuré,,,, for every pair of nodes andu € A,. In C,, we have an
element for each chilady of v, whose weight igv(L,,,,). Itis clear thato(Cyy,) = w(Lyy).
The size ofC,,, is O(y/logn).

11

L]
. W(Lp(vyu)

et L
" Cpoyu Ap(v) Bp(v)
U.J(Lvu) 4 W("bv) T
wllw) Lt) !
' . }
W(Lzw) w(®2)

Figure 4. Updating the secondary structures of left intervals. Heiea leaf,w = p(z) andv = p(w).

The reason for introducing thegg,,’s is the following. When we insert an interval infg,
or delete an interva = [a, x] from L,,, the weightsv(L,,,) may change for some nodes
on the path fromu to the leaf containing. Letvy, ..., v, be the children of, we have

w(Lyu) = Z w(Lou),

=1

and theC,,’s are connected in this way that allows for efficient updates. Wheh,,,,)
changes for somg we update the weight ef, in C,,,. Then we get the new value of L,,).
Once we havey(L,,,) we update the weight ofin C,,,, and the process continues upward.
We also use the new value®f L,,,) to update the weight af in A,,. Then fromA,, we obtain
w(®,) and update the weight efin B,,,). See Figure 4 for an illustration of this process.

We now argue that all secondary structures representimgquire O(n) space. The to-
tal size of all thel, lists is clearlyO(n). Consider an internal node. The structureA,
has sizeO(logn/loglogn); the structureB, has sizeO(y/logn); we haveO(logn/loglogn)
structuresC,,,, one for every ancestar of v each of sizeD(y/logn), so together they occupy
O(log®? n/loglog n) space. Summing this bound over @/ log®? n) internal nodes i we
get that the total size of all the secondary structurés(is).

After getting the relationship of all the secondary structures right, theycaret update proce-
dures are relatively straightforward. We nevertheless describe thmrfdr completeness.

Answering a queryLet ¢ € R be a query point. We comput&L(q)) using (6). We traverse
the pathlI, in a top-down manner. For an internal nodes TI, that is followed byv" € II,, we
perform a quenpREFIXSUMv') on B, and getd " cn() w(Py). When we reach the leafe 11,
we scan the lisg, stored at: and computev(£.(q)) by summing the weights of all intervals in
£ that containg. We then sum the values obtained at the nodd$ ofnd return the result. The
overall query time i€ (log n) since we spend(loglogn) time at each of thé(logn/ loglogn)
nodes orll,, andO(log n) time at the leaf that is the last node Oy.

Updating L. Suppose we are to insert or delete an intesvat [a,b]. Assume that € S,
and let[a, 2] be the left interval ofs which is in L,,. Let z be the leaf such that € o,. We first

12

add/removes to/from the list£, and then traversé .. We compute the new value of(L.,) by
adding the weights of all left intervals i, N L,,, andw(®,) by adding the weights of all left
intervals inL, \ L,, wherew = p(z). Next, the weights ot in B, is updated tav(®,) and its
weight inC\,, to w(L.,). After having the updated value of C,,,), we first update the weight of
win Ay tow(Lyy,), and then retrieve the new valuewfA,,) = w(®,,) from A,,.

Next, we continue to the parentof w. We update the weight af in B, to bew(®,,). We
then update the weight ef in C,,, to be (the updated)(C,), and fromC,,, we obtain the new
value ofw(L,,). Then we update the weight ofin A4, to bew(L,,,) and obtain the new value of
w(Ay) = w(®,). We continue updating the nodes Hp bottom-up, maintaining the invariant that
after processing node we know the value af (L.,), we have updated,, so thatu(A4,) = w(P,),
and that the structures,,, and B, are updated. We stop when we reach the child oh II,.

We spendD(log n) time to update the leafsince the length of , is O(logn). At each internal
node we update and queBsT structures of siz&)(logn) so these operations take(loglogn)
time, and overall the update procedure taldgig n) time.

Lemma4 The setl of left intervals can be maintained in secondary structures using lineasespa
so that a stabbing-semigroup query with respecftcan be answered i@ (logn) time. A left
interval can be inserted into or deleted frabnn O(logn) time.

UsingT and all secondary structures together (Lemmas 2 and 4) as well as thepigisanting
S, at each leat, we obtain the main result of this section.

Theorem 1 A setS of n intervals, whose endpoints belong to a fixed seD6f) points, can be
maintained in a data structure of linear size so that a stabbing-semigroap/gqan be answered
in O(log n) time. An interval can be inserted inor deleted fromS in O(log n) time.

4 Rebalancingthe Base Tree

In the previous section we assumed that the endpoints of the input intergdioom a fixed set
of O(n) points, and thus the base tr@ewas static. In this section we show how to remove this
restriction, that is, how to insert the endpoints of a new intesvimto T before we insert into
the secondary structures, and how to delete the endpointdrofm T after we deletes from the
secondary structures.

The easiest way to handle deletions is using the standard technique df rglobiiding. Say
T containedn intervals when we last rebuilt it. When deleting an endpoint we simply mark it as
deleted in the node @f that contains it. After./2 deletions we discard the old structure, completely
rebuild the base tre& without the deleted endpoints, and insert the intervals from the secondary
structures of the old structure into the secondary structures of the nestuse one by one. We can
rebuild the base tree (without the secondary struct@és))(n) time and perforn®(n) insertions
in O(nlogn) time to construct the secondary structures. Thus, the amortized cosetdtmd of
an endpointi€)(logn). Since the fan-ouf = [\ /log, n| depends om we also rebuild” when the
number of intervals that it contains doubles since the last time it was rebuilt. I8sireen global
rebuildings ofT the number of intervals iff is betweem /2 and2n and f is fixed to be[|/log, n
wheren is the number of intervals that werenright after its last rebuilding. There are no simple
tricks to perform insertions easily, and the rest of this section is devotedsttagk.

13

41 Thebasetree

In order to handle insertions of endpoints, we make the baséteeeeight-balanced B-tree with
branching factorf and leaf parametdpg n [5]. The weightof a nodev of 7 (not to be confused
with the weight of an interval), denoted hy,, is the number of endpoints stored at the leaves of
the subtree rooted at The weight of each leaf is betwe%riogn and2logn, and the weight

of each internal node (except for the root) at le¥dleaves are at level 0) is betweélfé logn
and2f¢logn. Itis easy to see that the condition on the weights implies that the fan-outbf ea
internal node (except for the root) is betwegfl and4 f, and that the root has fan-out between 2
and4f [5]. The slight variation in the number of endpoints in a leaf and the farebilite internal
nodes ofJ does not affect any of the arguments we used when discussing thedsegstructures

in the previous section, i.e., we can still query and update the secondastustss inO(log n) time
(Lemmas 2 and 4).

bbbt e b e

Figure5. Nodew is split into two nodes’ andv” at the slab boundarly, b becomes a slab boundarywat= p(v) after
the split, witho,, = [b™ (v),] ando,» = [b, b1 (v)].

After an insertion of an endpoint into a leabf the weight-balanced trég the weight constraint
of the nodes on the path fromto the root ofT may be violated. That is, the weight of the leaf
may become larger thahlog n, and the weight of an ancestorof z at level/ may become larger
than2f*logn. If the weight ofz is too large, then we define a new slab boundargnd splitz
alongb into two leaves:’ andz” of weightslog n andlogn + 1, respectively. If an internal node
v at level/ becomes too large, then we splialong a slab boundaryinto two nodesy’ andv”
of weight roughly ¢ log n—more precisely, the weight of each of the two new nodes is between
(ff —2f N logn and(f* + 2f1)logn. In either casel becomes a new slab boundarypét)
or p(v), respectively, and we update the binary search tree of the slab b@sdtthat node. Refer
to Figure 5.

Next, we need to update all the affected secondary structures followengplit. The proce-
dures are different depending on whether a leaf or an interval na@diisand below we describe
them separately. In either case, our goal is to update all the necessarydary structures in
O(nyloglogn) time. Since we split a node only once everyO(n,,) insertions of endpoints into
its subtree, if we charg€(loglogn) time to each endpoint inserted into the subtree eince its
last split, then the total charges pay for the split. An endpoint may be ahésgeach ancestor of
the leaf to which it belongs. This givé3(log n) charges in total per endpoint.

4.2 Splitting a leaf

Suppose we are splitting a leafnto new leaves’ and:" at a slab boundary= b"(2") = b= (2"),
and letw = p(z). This affects a sequence of secondary structures:

14

(i) It first affects the way how the intervals are associated with the nod&s blore precisely,
the intervals inS, that cros$ will move to S,,, with the other intervals splitting int§,. and
S.». An interval moving fromsS, to S,, is broken into a left interval and a right interval (we
will only talk about the left intervals below), which in turn affects the lists £/, L.

(i) Since a slab atv is split into two, the secondary structuresafor the middle intervals\/,,
are affected.

(i) Some secondary structures for the left intervals are also affecteldding B,, andC,,, for
proper ancestors of w, becauser now has one more child.

Note that although we have some new left intervals (generated from thedilstenoving froms,
to S.,), they only appear in thé ./, £~ lists, not theA,, B,, C,, Structures. Below we describe
how to perform all the necessary updates in detalil.

Thelists S., S,/, S,», Sw. We split the listS, of intervals with both endpoints ia into two
lists: S.., containing intervals with both endpoints i\ and S, containing intervals with both
endpoints ire”. The other intervals it$, have their left endpoint in’ and right endpointin”, and
all of them now belong t&,,. Any such intervak = [a;, as] added taS,, breaks into a left interval
s' = [ay,b], and a right intervak™ = [b, as]. We adds’ to the listL,,. We also splitl into £/
andL.». Aninterval in£, with a left endpoint inz’ is added toC .., and a left interval with a left
endpoint inz” is added toC,~. All these take time)(logn) = O(n.) sinceS, and£, both have
sizeO(logn).

Themiddleinterval structuresat w. The secondary structures for the middle intervalg are
affected by the split of. Since each middle interval spanning the multislab defined byndy
for some childy > z, now spans the multislab defined byandy, the multislabssT M,,(z, y)
becomesM,, (2, y). Similarly, the multislabBsT M,,(y, z) for y < =z becomesM,,(y, z”). The
multislabM,,(z, z) also becomed/,,(2’, 2”). These are merely notational changes.

Now suppose has a right sibling:,.. Consider an interval € S,, with left endpoint inz’ and
right endpoint not inz. If s™ existed before the split of, then it must have been in a multislab
My (2, y) for somey > z.. We deletes from M,,(z,,y) and insert it intoM,, (2", y) instead. If
s™ did not exist before the split of, then after the splits” = [b~(z"),b"(z")], so we inserts
into the multislab structurd/,, (2", z”’). Similarly, suppose has a left sibling:y, and consider an
interval s € S,, with left endpoint not inz and right endpoint in”. If s™ existed before the split
of z, then it must have been in a multislab,, (v, z,) for somey < z,. We deletes from M,,(y, z¢)
and insert it intoM,,(y, 2’) instead. Ifs™ did not exist before the split of, then after the split
s™ = [b(2'),b"(z)], so we insert into the multislab structuré/,,(z’, z'). See Figure 6.

After updating the multislab structures @atwe continue and update the slab structures .at
Let M, (z1) be a slab structure of a leaf > z. We delete fromM,,(z,) all the pairs(z, y) for
y > z and insert the pair&’, y) and(z”, y) instead with weights) (M, (2’, y)) andw(M,, (", y)),
respectively. We update the slab structukés(z) for z; < z analogously. Finally we discard the
slab structureM,,(z) and construct two new slab structurkg,(z’) and M,,(z"”). The structure
M,,(z") contains all the pairs in/,,(z) and pairgy, ') fory < 2’. Similarly, the structurd/,,(z")
contains all the pairs i/, (z) and pairs(z”,y) for z”” < y. The weight of each paify;, y2) is
w(My(y1,y2)). This completes the updates to the data structures representing middle intervals
Note that the middle intervals at nodes other thaare not affected.

15

b~ (z) (2 b~ (z) lb bt (2)
N w
Ze Z Zr zZe o S zZr

Figure 6. Updating the multislabs at = p(z) whenz splits. Before the splif5", 15" are undefined and after the split
I € M, (2',2") andI§" € M, (2", z"). Before the split!i" € M, (zr,2-) and after the splifi* € M., (2", z).
Before the splitl3* € M,,(z¢, 2¢) and after the a split3* € M., (2, 2’). The intervals/5*, andI;* remain in the same
multislabs.

The updates to the middle intervals structures)dbke O(lognloglogn) = O(n,loglogn)
time. We delete and insef?(log n) intervals into multislab structure®/,, (=", -) and M, (-, z’) in
O(lognloglogn) time. We performO(y/log n) deletions and insertions of pairs containing:’,
andz”, into each slab structur®/,,(z;) for z; # 2/, 2”. As there are)(y/logn) slab structures,
and each update take(log log n) time, all updates to slab structures tak@og n loglog n) time.
We also construct from scratch the slab structurgg z’') and M,, ("), by insertingO (log n) pairs
each inO(loglogn) time.

Left interval structures. Consider now the left interval structures affected by the split dthese
structures arés,, andC,,, for proper ancestors of w. Other structures for the left intervals are not
affected by the split.

We first computev(®,,) by summing the weights of all the intervals4n. that are not in_,,.
We computeu(®.~) similarly. Then we delete from B,, and insert’ andz" with weightsw(®./)
andw(®,~), respectively. This step také¥logn) time.

To update”,,,,,, we sort the intervalsin £ ., according to the ancestarof w wheres € L,,. For
each proper ancestarof w, we sum the weights of all intervals iy, and obtainu(L.,,). Similarly
we obtainw(L.~,). Then we delete from C,,, and insert’ andz" instead with weightss(L.,,)
andw(L,,), respectively. Note that(L,,,) does not change sé,, is not affected. This step takes
O(lognloglogn) time: It takesO(lognloglogn) time to sort and traversé,, and £.~, and it
takesO(logn) time to update th€®(log n/ loglog n) structures”,,,, each in timeD(log log n).

This completes the description of the updates when we split a leaf.

4.3 Splitting an internal node

Consider now a split of an internal nodénto ' andv” at a slab boundary. Letw be the parent of
v. The changes needed following this split are similar to those following a léiaflsyt the details
are more involved. On the high level, we still have the following three steps:

(i) The split first affects the way how the intervals are associated with thdesofJ: The
intervals inS, that cros$ will move to S,,, while the others are partitioned int, and.S,,.
An interval moving fromsS,, to S, is split into a left interval and a right interval ajwe will
only talk about the left intervals below). Unlike the leaf split case, here ¢helaft intervals

16

are not only stored in thé, lists, but also some!,,, B,, C,,, structures, which need to be
updated.

(i) Asin the leaf-split case, a slab atis split into two slabs, which affects the secondary struc-
tures built atw on the middle intervals. Furthermore, sindeandv” are two new internal
nodes, their middle interval structures need to be built.

(i) Many left interval structures are also affected, and there are tiyyees of changes we need
to perform. First, each interval moving frof), to S,, has a new left interval, so we update
these left intervals in the secondary structures. Seeoisdsplit intov’ andv”, so we discard
Ay, By, Cy, (for every descendant of v) and rebuildA,, A,, By, By, Cy,y (for every
descendany of v'), Cy,~ (for every descendantof v"), C,, andC,, (for every ancestor
u of w). Finally, analogous to the leaf-split case, a childwaf being split, sa3,, and all the
Cwy's for proper ancestors of w are updated.

We now describe in detail how all the necessary updates are performed.

Thelists Sy, Syry Syrry Sw. The listS, is partitioned as follows. Let = [a;, az] be an interval
in Sy; ai,as € o,. If both ay,as lie in o, (resp.o,~), thens is moved toS,. (resp.S,~); if s

intersects the common bounddrgf o, ando,, thens is moved toS,,. When associated with,

s had a left interval, a right interval, and possibly a middle interval whencéatsal withv. When
moving tow, the middle interval disappears, while the left and right intervals becdme [y, b]

ands” = [b, az], possibly longer than they were previously. See Figure 7. We updateithedeval

with the endpoint in the list£, wherea € o to this news’ (recall that we have a pointer from
to its left endpoint, which is stored at). These steps tak@(|S,|) = O(n,) time.

Ov
vy Tvg

b~ (’l)) bt (U)

Figure 7. Solid intervals move front, to S,,; the left interval derived from each of these intervals changes. ighe r
endpoint of the new left intervals is Dotted intervals are now i, or S, ; their partitions into left, middle, and right
intervals do not change.

The middle interval structures at v/, v”’, w. The multislabs ofv” andv” are multislabs of
corresponding to pairs of children ofthat are either both children af or both children ofv”.
They can be copied over directly. We can obtain the slab structurésatlv” from slab structures
of v. Lety be a child ofv’. We obtain)M,(y) by deleting fromM/,(y) all pairs which are not both
children ofv’. We construct the slab structures of childreny6fsimilarly. All of these operations
take time at mos©(|.S,|) = O(ny).

We also update the middle-interval structures)aflhis is analogous to update procedure for a
leaf split. Here, to identify the middle intervals of the multislaldg (v”,), for the rights siblingg
of v”, we traverse the subtree d@fto find all intervals whose other endpoint isap but was not in
o, When we find an interval € S,,, such that™ after the split is not empty, startsét(v'), and

17

ends ab™ (y), we adds™ to M,,(v”, y). We identify middle intervals of the multislab¥/,,(y, v")
analogously.

We claim that updating middle-interval data structuresvabkesO(n, loglogn) time. In-
deed, inserting)(n,,) pairs into multislab structures/,,(v”, -) and M,, (-, "), after deleting them
from the multislab structures that previously contained them, t&Kes log log n) time. We obtain
each of theD(y/logn) slab structures of’ andv” by O(logn) updates to slab structures ofin
O(log®/? nloglogn) time. Sincen,, = Q(log®?n), this bound is als®(n, loglogn). Construct-
ing the slab structure&/,,(v') and M,,(v") takesO(log n loglog n) time, which is again bounded
by O(n, loglogn).

Theleft interval structures. We update the affected left interval structures by traversing the sub-
trees ofv’ andv” (i.e., the former subtree af) bottom-up. For each leafin the subtree of’, we
scan{, and identify the intervals i , N L,». We sum the weights of these intervals and obtain
w(L,). At each proper descendandf v/, we discard”,,, and construcC,,, by inserting every
child ¢’ of y into Cy,» with weightw(L,s). From the newC,, we getw(L,,), which allows

us to continue to build thée’,,, structures upward until reaching. Meanwhile, we also delete
from A, and insert’ instead, with weightv(L,,/). In addition,w = p(v) we rebuild theC,,
structures for all descendanfsof v’ during this bottom-up traversal, sindg, now contains new
left intervals—the ones that intersect the new slab boundarfinally, we also update the weight
of win A, to bew(Ly,). Similarly, we perform these changes for every descengaft”. It is
easy to verify that all the updates during this bottom-up traversal takes) time. Recall that,

is the number of points in the subtreew&nd the number of internal nodes in this subtree is only
O(ny/logn).

After we have completed the rebuilding of the structutgs, Cy,/, andC,,, and updatedt,
for all y in the former subtree af, we also rebuild the structurds, for all nodesy in this subtree.
For each nodg and a childy’ of y, we inserty’ into B, with the updated weight(A,,). The time
for this is proportional to the number of nodes in the subtreg, @fhich isO(n, /v/logn). PKA:
Earlier it said: the number of internal nodes, which | think iswrong.

Consider now ancestoisof w. For each such, we build the structure§’,,, andC,,: We
insert each child of v’ into C,,, with weightw(L,,,), and similarly buildC,,,. Then we construct
A, and A, by inserting each proper ancestoof v' andv” to A, and A,» with weightsw(L,,,)
andw(L,,), respectively. (We also associate the occurrence iof A,, with C,,, and similarly
for A,.) Lastly, we construcB,, and B,». The time taken by These operations is proprtional to
the total size of the structures that we construct, which is

O(\/lognlogn/loglogn) = O(log®? n) = O(n,).

Finally, for every proper ancestar of w we updateC,,,. We deletev from C,,, and insert
v andv” instead, with weightss(L,,,) andw(L,,), respectively. Then we make corresponding
updates ta3,,.

Putting it together. This completes the description of the split of a nedevhether it is a leaf or
aninternal node. The time it takes to perform the spli?{&., log log n); the split time at an internal
node is dominated by the time it takes to rearrange the middle intervals in the sofbtrieo their
multislab structures. By the earlier argument, this translates to an amortizeof €d8bg n) per
insertion. Combining this with the global rebuilding technique mentioned in the hiegirf the

18

section implies that the amortized cost of a delete opration is@($egn). We thus obtain the
following.

Theorem 2 A set ofn intervals can be maintained in linear-size data structure so that a stabbing-
semigroup query can be answeredirlog n) time worst-case, and an interval can be inserted or
deleted in amortized (log n) time.

5 External Memory Structure

Let B be the size of a block that we can transfer in one I/O operation from ettrinternal
memory. Our data structure can be easily adapted to external memory bythssifgdlowing pa-
rameters: we let each leaf of the base tree confalog n endpoints, and let the fan-outbe
max{+/logz n, B}, that is, whem < B, the fan-out is fixed at/B; asn gets larger thaB?,
the fan-out increases gflogg n. We also change the fan-out of all tBsT structures ta3, so
that we can update and quergarT structure onmn elements irO([logg m]) I/Os. To see that the
analysis goes through, consider the following two cases.

Case 1: logg n > B. In this case the fan-out i = \/logz n. Noticing thatlogz loggzn > 1, one
can verify that the analysis in Sections 3 and 4 goes through, by repleeény base-2 logarithm
with a baseB logarithm.

Case 2: loggn < B. In this case by our choice df, the height of the base tréeis O(logz n),

that is, it is essentially a B-tree. Recall that we attach secondary strsi¢tutiee base tree for the
middle intervalsM and the left intervald, and handle them separately. We consider them one by
one.

Since there ar@(f?) = O(B) multislabs at each node the middle interval structures at
now answer a query i@(1) 1/Os, so the total query costig(logz n) I/Os. The total update cost is
alsoO(log g n). The size of the middle interval structuressatkesO(1 + (| M,| + f3)/B) blocks.
Since there ar®(n/(Bflogg n)) internal nodes and middle interval structures exist at only the
internal nodes, the total size of all these structures is@fitl/ B) blocks.

Next we consider the secondary structures for the left intervals. \&edsp(1) I/Os to query
B, ateach node on a root-to-leaf path, and spe@dlog;) I/Os at the leaf, so the total query cost
is still O(log n) 1/0s. To perform an update, we update ofig one B,, and oneC),,, structure
at each node on a root-to-leaf path. The cosP{slogy logg n]) I/Os for updatingA,, which is
O(1) sincelogz n < B. The cost to update B, or aC, structure is als@(1) 1/0s. So the total
update cost, summed over all nodespidogz n) 1/0s. The space requirement of these structures
isO(n/(Bloggn)) = O(n/B) blocks.

Finally, it can be verified that the procedure in Section 4 spéhds - [log logg n]) = O(ny)

I/Os to split a node during rebalancing, so the amortized cost of an updatisg n) /Os.

Theorem 3 A set ofn intervals can be stored in an external memory data structure uSifig/ B)
blocks, so that a stabbing-semigroup query can be answerédlisg; n) 1/0Os in the worst-case
and each update can be performediflog ; n) amortized I/Os.

19

6 Nested Intervals

In this section we propose a simpler data structure, based on dynamicli8gds(the special case
in which the intervals inS are nested, i.e., at any given time, two interval$iare either disjoint
or one is contained in the other. It requires linear space, and eachtiopeiakesO(logn) time.

Without loss of generality, we assume thfatlways contains the intervgl = [—oo, co] whose
weight is 0.
3
0
1 a 62 9 c
2 d 72 gf 109 14h g
3 4k 15

Figure 8. (a) Nested intervals, numbers denote the weights of the inteals;(—oo, 0o) is the interval of weight)
added taS; s, = I. (b) Containment tre€, bold path denoteH (s, €). (c) Binary treeB, bold path denoteH(s,, B).

We define a&ontainment tregC, on the intervals irb. Each interval inS is a node in2, and the
parent of an intervas is the smallest interval i¥ that contains;. We order the children of a node
in increasing order of their left endpoints. We define the weight of ae edyC, denoted by (e),
from an intervals to its parent to bev(s); see Figure 8. For a nodec C, letIl(s, C) be the path
in € from the root tos, and letp(s) denote the parent ofin C. For a pointz € R, let s, be the
smallest interval that contains By definition,

w(S@)= 3 wle). ()

e€ll(ss,C)

A weakness of® is that an insertion or a deletion of an interval may require insertions and
deletions of many edges. We therefore repre€dmy a binary treeB, as follows. The nodes &
are the same as the nodes®fThe left child of a node in B is the first child ofv in €, or null
if vis aleafinC. The weight of the edge betweerand its left child is the weight of the interval
associated with. The right child ofv in B is the right sibling ofv in €, or null if v is the rightmost
child of its parent irC. The weight of the edge fromto its right child is 0. For any (non-null) node

s € B,
dYoowle)=) wle), ®)

e€ll(s,B) e€ll(p(s),C)

20

which implies that
w(S(@) = Y wle)+wlss) 9)
e€ll(sq,B)
See Figure 8. It is easy to verify that an insertion or a deletion of an intezgaires onlyO(1)
insertion and deletions of edges to/frdn
We maintainB as a dynamic tree data structure, introduced by Sleator and Tarjah Re3jall
that dynamic trees support each of the following operatiorg(liog) time:

e MINCOST(v): finds the minimum cost of an edge on the path froto the root of its tree.

e LINK(v,w,c): v should be the root of a tree anda node in another tree. This operation
connects the tree containingwith the tree containingv by adding an edge with cost
betweerv andw with w being the parent.

e CuT(v): Splits the tree containing by removing the edge fromto its parent.

We change the standard implementation of dynamic trees in a straightforwgrdontat
weights of the edges are elements of a semigroup, and insteadNngEd&T(v) we support the
following query:

e SUuMCosT(v): returns the sum of the weights of the edges on the path fréonthe root of
its tree.

We also store the endpoints of all intervals in a balanced searcfi ttée is an endpoint of an
interval s € S, we store a pointer at the node Btthat stores: to the node ofB corresponding to
the intervals. The overall size of the structure is linear.

Let ¢ € R be a query point. We compuig.S(q)) as follows. We first find irO(log n) time the
predecessor of ¢ in 7. Suppose: is an endpoint of the interval € S. If z is the right endpoint of
an intervals, thens, = p(s). By (7) and (8),

e€ll(s,B)

and therefore we return the value o 8CosT(s). If x is the left endpoint of an interval, then
s = sq4. In this case, by (9), we retutn(S(g)) = SUMCOST(s) + w(s).

To insert an intervaé = [a, b], we need to update bothandB. We first updateéB, and add to
it a node representingand then we insekt andb to 7. When we addi andb to T, we also store
pointers in the nodes containimgandb to the node containingin B.

We first find the predecessor and succeasou ™ (resp.b—, andb™) of a (resp.b) in T. Suppose
a—,a™,b”,andb™ are the endpoints of the intervals, ¢+, r—, andr™, respectively. We allocate
a new node fos and update its children as follows. (We also wge refer to the node containing
when no confusion arises.) df~ > b, thens does not contain an interval &f, sos is a leaf ofC.
PKA: It used to be B. Otherwise /T should be the leftmost child afin € andr~ should be the
rightmost child ofs in €. So we make™ the left child ofs in B by performing @T(¢*) followed
by LINK (£T, s,w(s)). The right child ofs in B should be the right sibling of in €. If b is the

3In this representatiof is an unordered tree, that is, it does not distinguish between a right drildadey € B
and its left child. This does not interfere with the correctness of the steictu

21

(a) s 4 9

1 @
—
® %37 5 szﬁ%@ Ay
e & ®
B @

Figure 9. Inserting an intervak: (a) s is the leftmost child ofi; £~ = 1, ¢ = 2,7~ = 3, andr* = 4. (b) s has a left
sibling2; ¢~ = 2,¢T = 3,r~ =4, andr™ = 5. Thick lines indicate the newly created edge$in

right endpoint of-, thens is the rightmost child of its parent i@ sos does not have another child
in B. If bT is the left endpoint of *, thenr* should be the next sibling afin C. So to updatéd
we perform @WT(r*) followed by LINK (7T, s,0). See Figure 9.

Finally, we set the parent afin C. If o™ is the left endpoint of —, thens is the leftmost child of
¢~ in €, and we perform INK (s, £~,w(¢™)); see Figure 9 (a). Otherwisé; is the left sibling ofs
in €, and we perform INK (s, £~,0); see Figure 9 (b). (In the latter case’if was not the rightmost
child of its parent inC before the insertion of, then this right sibling of ~ was either’™ or .
In either case we have made a cut such thatas no right child prior to the link which madsdts
child in B.)

This implementation of insert takeé3(log n) time: By searching iff, a—, a™*, b~, andb™ can
be computed irD (log n) time. Once we locate these points we perform a constant number of links
and cuts which also tak@(log n) time. The implementation of delete is similar.

Remark. By exploiting the internal structure of the dynamic trees [18], we can maindaiitianal
information at each node of the dynamic tree so that there is no neéd 1dsing this additional
information we can find the predecessor and the successor of a pinigttihs dynamic tree itself.
We omit these details from this paper.

7 Lower Bounds

In this section, we prove lower bounds for the dynamsiiabbing-groupproblem, i.e., returning
the sum of the weights of intervals containing a query point, but the weightgesfals are now
drawn from a group and thus both addition and subtraction operatiorslaned on the weights.
Since it is easier to answer stabbing-group queries, these lower bloaldder stabbing-semigroup
queries as well. The lower bounds are proved in the cell-probe modesiby reductions from the
partial-sum problem.

Thecell-probemodel, introduced by Yao [23], assumes that the memory is a collection of fixed-
size cells (words). To perform a query or an update, the algorithnmsraad writes cells of the
memory, and the cost of the operation is simply the number of cells read andnhwriteother
computation is free. We assume that a memory cell®ésgn) bits, to ensure that can be

22

represented in one word. We also assume that any endpoint or weightimterval is represented
in one word.

The partial-sumproblem asks to maintain an arraly1..n] subject to the following two opera-
tions:

UPDATE(k, A): SetAlk] to beA, and
PREFIXSUMK): Returny_ % A[i].

Patrascu and Demaine [16] proved the following lower bound for the petia problem in the
cell-probe model. Suppose the array elements belong to the group = {0,1,...,n — 1} with
addition/subtraction modula. Let 7 be thebit-reversalpermutation, i.e.r(¢) is the integer ob-
tained by reversing thivg, n bits of i (for simplicity assume that is power of2). Perform the
following alternating WDATE andPREFIXSUMoOperations. The-th operation is BDATE(7 (i), A)
for odd i, where A is chosen uniformly at random frof0,...,n — 1}; and the operation is
PREFIXSUM(7(4)) if i is even. Note that even though the indices affected by the operations are
fixed, theA values in the update operations define a distribution on input sequenees, and
t, be the expected amortized time of thehATE andPREFIXSUMoOperations, respectively, on this
distribution of input sequences of a data structure for the partial-subigmo Fatrascu and De-
maine [16] proved that, log(t,/t,;) = (logn) andt, log(t,/t,) = Q(logn), irrespective of the
number of memory cells used by the data structure, initial preprocessing tithe déta structure,
and the initial values ofi[:]. For simplicity, we assume that initiallyt[i] = 0 for all .

A sequence of operations for the partial-sum problem can be solvedriyrming a sequence
of insert and query operations on a dynamic stabbing-group data s&ufu the groupZ/nZ,
as follows. For an BUDATE(k,A) operation, we insert an intervak, n| with weight A; for a
PREFIXSUM k) query, we issue a stabbing-group query att is easy to verify that this solves the
partial-sum problem on any sequence of operations. Hence, fortalnlyiisg-group data structure
with insert and query time; andt,, respectivelyt,log(t;/t;) = Q(logn) andt;log(t,/t;) =
Q(logn).

We also show how to use the lower bound BtrBscu and Demaine [16] for partial sums to
prove a lower bound on the trade-off between the query time and the delietiernn a deletion-
only data structure for the stabbing-group problem. Specifically, weressiat a set of intervals
preprocessed into a data structure such that we can delete intervalshizotiata structure and
perform stabbing-group queries, and show a trade-off betweeretbtah time and the query time.

Let p be a prime number and let= p?. The weights are chosen from the grdipZ. Define
afamily S of n intervalss; ; = [i,p], for 0 <4, j < p, with weightsw(s; ;) = j. Suppose we have
a stabbing-group structufe initialized to containsS that supports deletions and queries. Consider
the sequence gf UPDATE andPREFIXSUMoOperations in the construction of [16] described above,
with array sizep and the groufZ./pZ. We can simulate such a sequence by deletions and queries on
D as follows. For WDATE(k, A), we delete the interval, ,,_A. Note thatv(sy ,—a) = p—A. For
any k, we delete at most one interval amosg, . . ., sx,—1, as each BDATE operation updates
a different array element. F®REFIXSUMk), we issue a stabbing-group querykat Before the
abovePREFIXSUM operation was performed, suppoé&PDATE operations were performed on
array elements with index at mokt with weightsA4, ..., A,. Then the weight of the intervals

23

currently inS that containk is

L 4

kp(p—1)/2=> (p—A:)=>_A; (modp),

i=1 i=1

which is the same as the outputRREFIXSUM(k).
The following theorem summarizes the lower bounds that we obtain via thetieats from
partial sums that we described.

Theorem 4 For any stabbing-group data structure in the cell-probe model storirigtervals, if
the amortized insertion, deletion, and query timestare;, andt,, respectively, then the following
trade-offs hold:

tqlog(ti/ty) = Q(logn); tilog(tq/ti) = Q(logn);
tqlog(ta/ty) = Qlogn); tylog(ty/ta) = Qlogn).

Remark. Our deletion-query trade-off holds only for the amortized cost of the firs= /n
deletions in a data structure storing= p? intervals. Although it is straightforward to prove the
same trade-off for the firgb(n! =) deletions, for any small constantit seems difficult to extend
the argument to the fir§2(n) deletions. However, we believe that the trade-off indeed still holds if
Q2(n) deletions are considered.

8 Open Problems

In this paper we consider data structures that work with any semigroappra@sent an optimal
solution. However, our lower bound does not prevent us from obgismimproved structure with
some special semigroups, such as the stabbing-max problem ((&jng:x)), or the existence
problem (using{0, 1}, V)). So far there are no better results on these special problems than our
general-purpose stabbing-semigroup data structure in the pointer-raacloitel, although sub-
logarithmic bounds can be obtained on a RAM [20]. Another interestingtigne® ask is the
counting problem, which is the case where we use the gf@ypZ, +), but all weights are fixed

to be one. Our lower bound does not hold for this case as it assumessdiightswcan be arbitrarily
chosen from(Z/nZ, +).

Acknowledgment. The authors thank Mihai&rascu for helpful discussions on the lower bound
of the problem. They also thank two anonymous referees for their usafuinents.
References

[1] P. K. Agarwal, L. Arge, and K. Yi. An optimal dynamic interval stabbinmx data structure?
In Proc. ACM-SIAM Symposium on Discrete Algorithpesges 803-812, 2005.

[2] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting aelted problems.
Communications of the ACN31(9):1116-1127, 1988.

24

[3] S. Alstrup, T. Husfeldt, and T. Rauhe. Marked ancestor probldmBroc. IEEE Symposium
on Foundations of Computer Scienpages 534-543, 1998.

[4] L. Arge. External memory data structures.Handbook of Massive Data Sepmges 313-357.
Kluwer Academic Publishers, 2002.

[5] L. Arge and J. S. Vitter. Optimal external memory interval managem&mM Journal on
Computing 32(6):1488-1508, 2003.

[6] Y.-J. Chiang and R. Tamassia. Dynamic algorithms in computational geanirrtgeedings
of the IEEE 80(9):1412-1434, 1992.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stdimroduction to Algorithms, 2nd
Edition. The MIT Press, 2001.

[8] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwartzkdpdmputational Geometry:
Algorithms and ApplicationsSpringer, 2000.

[9] H. Edelsbrunner. A new approach to rectangle intersections].parternational Journal of
Computer Mathemati¢4.3:209-219, 1983.

[10] A. Feldmann and S. Muthukrishnan. Tradeoffs for packet dlaason. InProc. IEEE INFO-
COM, pages 1193-1202, 2000.

[11] P. Ferragina and S. Muthukrishnan. Efficient dynamic methoddpdkr object oriented
languages. IfProc. Annual European Symposium on Algorithpeges 107-120, 1996.

[12] P. Ferragina, S. Muthukrishnan, and M. de Berg. Multi-methodadidpng: a geometric
approach with applications to string matching problemsroc. ACM Symposium on Theory
of Computingpages 483491, 1999.

[13] P. Gupta and N. McKeown. Algorithms for packet classificatiEE Network 15(2):24-32,
2001.

[14] H. Kaplan, E. Molad, and R. E. Tarjan. Dynamic rectangular intgi@e with priorities. In
Proc. ACM Symposium on Theory of Computipgges 639-648, 2003.

[15] K. Mehlhorn and S. ldher. Dynamic fractional cascadinglgorithmica 5:215-241, 1990.

[16] M. Patrascu and E. Demaine. Logarithmic lower bounds in the cell-probe mdsiéiM
Journal on Computing35(4):932-963, 2006.

[17] S. Sahni, K. Kim, and H. Lu. Data structures for one-dimensionekgiaclassification us-
ing most-specific-rule matching. Proc. International Symposium on Parallel Architectures,
Algorithms and Networkgages 3—-14, 2002.

[18] D. D. Sleator and R. E. Tarjan. A data structure for dynamic tréesrnal of Computer and
System Science?6(3):362—-391, 1983.

[19] R. E. Tarjan. A class of algorithms which require non-linear time to mairdejoint sets.
Journal of Computer and System Sciendé2):110-127, 1979.

25

[20] M. Thorup. Space efficient dynamic stabbing with fast querie®rat. ACM Symposium on
Theory of Computingpages 649—-658, 2003.

[21] J. S. Vitter. External memory algorithms and data structureExtarnal memory algorithms
pages 1-38. American Mathematical Society, 1999.

[22] J. Yang and J. Widom. Incremental computation and maintenance of tehaggregates. In
Proc. IEEE International Conference on Data Engineeripgges 51-60, 2001.

[23] A. Yao. Should tables be sorted®urnal of the ACM28(3):615-628, 1981.

26

