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Abstract—With the use of energy harvesting technologies,
the lifetime of a wireless sensor network (WSN) can be pro-
longed significantly. Unlike a traditional WSN powered by non-
rechargeable batteries, the energy management policy of an
energy harvesting WSN needs to take into account the energy
replenishment process. In this paper, we study the energy
allocation for sensing and transmission in an energy harvesting
sensor node with a rechargeable battery and a finite data buffer.
The sensor node aims to maximize the total throughput in a finite
horizon subject to time-varying energy harvesting rate, energy
availability in the battery, and channel fading. We formulate
the energy allocation problem as a sequential decision problem
and propose an optimal energy allocation (OEA) algorithm using
dynamic programming. We conduct simulations to compare the
performance between our proposed OEA algorithm and the
channel-aware energy allocation (CAEA) algorithm from [1].
Simulation results show that the OEA algorithm achieves a higher
throughput than the CAEA algorithm under different settings.

I. INTRODUCTION
A wireless sensor network (WSN) is composed of a large

number of sensor nodes that are deployed for environmental
sensing, monitoring, and maintenance. Traditionally, a sensor
node is mainly powered by a non-rechargeable battery, which
has a limited energy storage capacity. As a result, a WSN can
only function for a limited amount of time. A lot of research
efforts have been dedicated to prolong the lifetime of a WSN
by improving its energy efficiency [2]–[5].
Alternatively, the idea of energy harvesting was proposed

to address the problem of finite lifetime in a WSN by
enabling the wireless sensor nodes to replenish energy from
ambient sources, such as solar, wind, and vibrations [6],
[7]. The design considerations of an energy harvesting WSN
are different from a non-rechargeable battery powered WSN
in many ways. First, with a potentially infinite amount of
energy available to the sensor nodes, an energy harvesting
WSN can remain functional for a long period of time. Hence,
energy conservation is not the prime design issue. Second, the
energy management strategy for an energy harvesting WSN
needs to take into account the energy replenishment process.
For example, an overly conservative energy expenditure may
limit the throughput by failing to take the full advantage of
the energy harvesting process. On the other hand, an overly
aggressive use of energy may result in an energy outage, which
prevents some sensor nodes from functioning properly. Third,
the energy availability constraint, which requires the energy
consumption to be less than the energy stored in the battery,

must be met at all time. This constraint complicates the design
of an energy management policy, since the current energy
consumption decision would affect the outcome in the future.
Some of the recent works on energy harvesting WSNs have

formulated the energy management problem as a dynamic
programming (DP) [8], [9] problem. Ho et al. in [1] proposed
a throughput-optimal energy allocation algorithm for a time-
slotted system under time-varying fading channel and energy
source by using DP. In [10], a throughput-optimal energy
allocation policy was derived in a continuous time model and
some suboptimal online waterfilling schemes were proposed
to address the dimensionality problem inherent in the DP
solution. Chen et al. in [11] studied the energy allocation
problem of a single node using the shortest path approach.
A simple distributed heuristic scheme was proposed that
solved the joint energy allocation and routing problem in a
rechargeable WSN.
Sharma et al. in [12] proposed some energy management

schemes for a single energy harvesting sensor node that
achieved the maximum throughput and minimum mean de-
lay. Gatzianas et al. in [13] presented an online adaptive
transmission scheme for wireless networks with rechargeable
batteries that maximizes total system utility and stabilizes the
data queue using Lyapunov techniques. In [14], utility-optimal
energy allocation algorithms were proposed for systems with
predictable or stochastic energy availability.
Most of these results from [1], [10]–[14] assumed either

an infinitely long data backlog or data buffer. Yet, it is more
reasonable if a finite data buffer is considered. Besides, the
energy consumed in data sensing has always been overlooked
in the literature. This motivates us to design an optimal en-
ergy allocation (OEA) algorithm for energy harvesting WSNs
which takes into account both the data sensing energy con-
sumption and the finite capacity of the data buffer. However,
these considerations introduce new challenges. For instance, if
the sensor node consumes an insufficient amount of energy for
sensing but an excessive amount of energy for transmission,
then the data buffer may be empty, which leads to a reduction
in throughput. Thus, the sensor node needs to maintain a good
balance between the energy consumed for sensing and the
energy for transmission.
In this paper, we consider a point-to-point wireless link

between an energy harvesting sensor node and the sink. The
channel and energy harvesting rate may vary over time. The



sensor node has a rechargeable battery and a data buffer with
finite capacity. Our objective is to maximize throughput over a
finite horizon. The sensor node needs to decide the amount of
energy it should allocate for sensing and transmission in each
time slot by taking into account the battery energy level, data
buffer level, energy harvesting rate, and channel condition.
The main contributions of our work are as follows:
• We study the energy allocation problem for sensing and
transmission in a energy harvesting WSN. We formulate
it as a finite-horizon sequential decision problem under
channel fluctuations and energy variations in a time-
slotted system.

• We obtain the optimal energy allocation policy and pro-
pose the OEA algorithm by using DP.

• We provide extensive simulation results to compare the
performance of the OEA algorithm and the channel-
aware energy allocation (CAEA) algorithm from [1]. The
results show that the OEA algorithm achieves a higher
throughput than the CAEA algorithm under different
settings. We also study the impact of the data-sensing
efficiency (i.e., the amount of data that the sensor can
sense per unit energy) on the throughput performance.

Unlike the existing works in the literature [1], [10]–[14], we
take into account a finite data buffer and the energy consumed
for sensing. The rest of the paper is organized as follows:
We describe the system model in Section II and formulate
our problem in Section III. In Section IV, we propose the
OEA algorithm that maximizes the expected throughput over
a finite horizon using DP. In Section V, we evaluate the
performance of the OEA algorithm and compare it with the
CAEA algorithm. Conclusion is given in Section VI.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a single energy har-
vesting sensor node, which contains a rechargeable battery
with capacity bmax Joule and a data buffer with size qmax

Mbits. We assume that the system is time-slotted with K
time slots and the duration of a time slot is D sec. We let
k ∈ K ! {0, 1, . . . ,K − 1} be the time slot index. The sensor
node performs sensing in the field, stores the sensed data in
the buffer, and transmits the data to the receiver Rx of the
sink over a wireless channel. We consider an additive white
Gaussian noise (AWGN) channel with block flat fading. That
is, the channel remains constant for the duration of each time
slot, but may change at the slot boundaries. Let αk be the
channel gain in time slot k.
We assume that the sink sends delayed channel state infor-

mation (CSI) of the previous time slot back to the sensor node.
In other words, at the beginning of time slot k, the sensor node
only knows the value of αk−1, but not αk. At the beginning
of time slot k, the stored battery level is bk and the amount of
stored data in the data buffer is qk. During the whole time slot
k, the sensor node is able to replenish energy by hk, which
can be used for sensing or transmission in time slot k + 1
onward. As a result, the sensor node does not know the value
of hk until the next time slot k + 1. In other words, at the





 



  



  

 

 

        







Fig. 1. The system model of an energy harvesting wireless sensor node
transmitting data to the receiver Rx of the sink. At time slot k, the random
variables are the energy to be harvested hk and the channel gain αk . Due to
channel feedback delay and the time required to track the energy harvesting
rate, we assume that the values of αk−1 and hk−1 are only known at the
beginning of time slot k. The optimization variables (or actions) are the energy
consumed for transmission ek and sensing sk . The stored battery level is bk
and the amount of data available in the buffer is qk . x(sk) is the amount of
data obtained by using sk amount of energy. The throughput in time slot k is
min{µ(ek ,αk), qk}. Our problem is to optimally allocate ek and sk such
that the total expected throughput in a total of K time slots is maximized.

beginning of time slot k, the sensor node knows the value of
hk−1, but not hk.
If the channel gain is αk and the allocated transmission

energy is ek in time slot k, then the instantaneous transmission
power is ek

D
, and the sensor node is able to transmit µ(ek,αk)

bits of data in time slot k. In general, µ(ek,αk) is a mono-
tonically non-decreasing and concave function in ek given αk.
One such function is given by [15]:

µ(ek,αk) = DW log2

(

1 +
αkek

N0WD

)

bits, (1)

where N0 is the power spectral density of the Gaussian noise,
and W is the bandwidth of the channel.
For sensing in time slot k, we let x(sk) be the amount of

data generated when sk units of energy are used for sensing. In
general, x(sk) is a monotonically non-decreasing and concave
function in sk. The data obtained by sensing in time slot
k will be stored in the data buffer until it is transmitted in
the following time slots. Except for sensing and transmission,
we assume that other circuits in the sensor node consume
negligible energy.
The sensor node needs to decide on ek and sk, for all k ∈ K

such that the overall expected throughput in the K time slots
is maximized. To achieve this goal, it has to maintain a good
tradeoff between the energy allocation for ek and sk. Given
a fixed energy budget in a time slot, if ek is too small, then
the throughput in time slot k will be small. However, if ek
is too large, then sk will be small that insufficient amount
of sensing data is stored in the buffer for transmission in the
next time slot, which leads to a reduction in throughput. In
addition, the total energy budget ek+ sk in time slot k should
also be carefully controlled. If the energy management policy
is overly aggressive such that the rate of energy consumption
is greater than the rate of energy harvesting, it may result
in an energy outage, which prevents the sensor node from
functioning properly. On the other hand, an overly conservative
energy management policy would limit the throughput in each



time slot. Thus it is a challenging problem to decide the values
of ek and sk optimally in each time slot k ∈ K.

III. PROBLEM FORMULATION
In this section, we formulate the problem of finding the

optimal energy allocation for sensing and transmission as
a finite-horizon sequential decision problem [8], [9], which
consists of five elements: decision epochs, states, actions, state
transition probabilities, and rewards. The decision epochs are

k ∈ K = {0, 1, . . . ,K − 1}. (2)

At the beginning of time slot k, the state of the system is
denoted as

yk = (bk, qk, hk−1,αk−1), (3)

which includes the battery energy state bk and data buffer state
qk for the current time slot k, as well as the energy harvesting
state hk−1 and channel state αk−1 in the previous time slot
k − 1. First, for the battery energy state in time slot k, the
sensor node harvests hk units of energy from the environment.
On the other hand, it consumes ek units of energy for data
transmission and sk units of energy for sensing. Since the
battery has a finite capacity bmax, the energy stored in the
battery is updated as

bk+1 = min{bk − (ek + sk) + hk, bmax}, ∀ k ∈ K. (4)

It ensures that the maximum stored energy bmax is not
exceeded. We assume that the initial energy b0 is known and
satisfies the constraint that 0 ≤ b0 ≤ bmax. Moreover, the
amount of energy consumed for sensing and transmission must
be no more than the battery level:

ek + sk ≤ bk, ∀ k ∈ K. (5)

Second, for the data buffer state in time slot k, x(sk) amount
of sensing data are generated and queued up in the data
buffer if sk units of energy are allocated for sensing. On
the other hand, µ(ek,αk) amount of data are transmitted and
removed from the data buffer if ek units of energy are used
for transmission. However, since the data available in the data
buffer for transmission at time slot k is qk, the throughput
at time slot k is given by min{µ(ek,αk), qk}. Since the data
buffer is finite with capacity qmax, the amount of data in the
buffer is then updated as:

qk+1 = min{[qk −µ(ek,αk)]
++x(sk), qmax}, ∀ k ∈ K, (6)

with [z]+ = max[z, 0]. We assume that the initial amount of
data in the data buffer q0 is known and satisfies 0 ≤ q0 ≤
qmax. Equation (6) implies that if the sensor allocates too
much energy for transmission so that µ(ek,αk) > qk, then
energy is wasted. On the other hand, if the sensor allocates too
much energy for sensing so that x(sk) > qmax, then the data
buffer overflows and energy is wasted. Thus the sensor should
make a proper energy allocation decision at each time slot.
Third, since the energy harvesting rate and the current channel
state information at time slot k is not known to the sensor, we
use two independent first-order stationary Markovian models

to model hk and αk. The random variable hk takes values in
some finite set H = {H1, H2, . . . , HN}. The random variable
αk takes values in some finite set A = {A1, A2, . . . , AM}.
The transition probability of these two independent random
variables are denoted as P(hk |hk−1) and P(αk |αk−1).
Based on the current state yk at time slot k, the sensor will

choose to consume ek units of energy for data transmission
and sk units of energy for sensing. That is, an action (ek, sk)
is taken for transmission and sensing energy allocation from
its feasible set Uk(yk). We have

(ek, sk) ∈ Uk(yk) = {(e, s) | e+ s ≤ bk, e ≥ 0, s ≥ 0}, (7)

where Uk(yk) represents the feasible set of (ek, sk) at time
slot k. The constraint ek + sk ≤ bk, ∀ k ∈ K ensures that the
amount of energy consumed for sensing and transmission must
be no more than the battery level. In addition, it is possible
to impose additional constraints on (ek, sk). For example, a
constraint on the minimum amount of energy for sensing or
transmission to ensure a minimum amount of sensed data or
transmitted data for each time slot, respectively. Also, the
maximum transmission power constraint can be imposed.
The state transition probability P(yk+1 |yk, ek, sk) is the

probability that the system will go into state yk+1 if action
(ek, sk) is taken at state yk at time slot k. Due to the inde-
pendence between (bk+1, hk) and (qk+1,αk) for all k ∈ K,
we can simplify the state transition probability as

P(yk+1 |yk, ek, sk)

= P(bk+1, qk+1, hk,αk | bk, qk, hk−1,αk−1, ek, sk)

= P(bk+1, hk | bk, hk−1, ek, sk)P(qk+1,αk | qk,αk−1, ek, sk)

= P(bk+1 | bk, hk, ek, sk)P(hk |hk−1)

×P(qk+1 | qk,αk, ek, sk)P(αk |αk−1), (8)

where

P(bk+1 | bk, hk, ek, sk) =

{

1, if (4) is satisfied,
0, otherwise, (9)

P(qk+1 | qk,αk, ek, sk) =

{

1, if (6) is satisfied,
0, otherwise. (10)

P(hk |hk−1) and P(αk |αk−1) are defined according to the
corresponding Markov model.
Given the current state yk and the action (ek, sk),

Eαk
[µ(ek,αk)] is the expected amount of data that can be

transmitted when ek units of energy are used for transmission.
However, since the data available in the data buffer for
transmission at time slot k is qk, the expected throughput (i.e.,
the amount of data transmitted in the time slot) at time slot k
is given by Eαk

[min{µ(ek,αk), qk}]. We define the expected
reward at time slot k to be the expected throughput. That is,

Eαk
[min{µ(ek,αk), qk}]

= min

{

∑

α∈A

µ(ek,α)P(α |αk−1), qk

}

. (11)

Let π = {(ek(yk), sk(yk)), ∀yk, k ∈ K} be the power
allocation policy, where (ek(yk), sk(yk)) is the transmission



and sensing power allocation at state yk under policy π. A
feasible policy should satisfy (7) in all the time slots. Let Π be
the feasible set of π. Since αk and hk are random variables, the
sensor node aims to find an optimal and feasible sensing and
transmit power allocation policy π∗ that maximizes the total
expected reward, i.e., the total expected throughput summed
over a finite horizon of K time slots. That is, given the initial
state y0 = (b0, q0, h−1,α−1) in the first time slot, it aims to
solve the following optimization problem

T ∗ = max
π∈Π

K−1
∑

k=0

E
[

min{qk, µ(ek,αk)}
∣

∣

∣
y0,π

]

, (12)

where E [·] denotes the statistical expectation taken over all
relevant random variables given initial state y0 and policy π.
In general, the optimization problem in (12) cannot be

solved independently for each time slot due to the causality
constraints on different variables. For example, the current
energy consumption affects the energy availability in the next
time slot, and thus affects the future energy allocation. Also,
the energy allocated for sensing at the current time slot affects
the amount of data in the queue for transmission in the next
time slot. For such sequential optimization problem (12) under
channel condition and energy harvesting rate uncertainties, we
can solve it optimally using finite-horizon DP.

IV. FINITE-HORIZON DYNAMIC PROGRAMMING
In this section, we solve problem (12) by using finite-

horizon DP. An OEA algorithm is proposed that achieves the
maximal expected throughput in problem (12).
Let Jk(bk, qk, hk−1,αk−1) be the maximum expected

throughput from time slot k to K−1, given that the system is
in state (bk, qk, hk−1,αk−1) immediately before the decision
at time slot k. The Bellman’s equations are given by the
following recursive equations starting from k = K − 1 to
k = 0.

For k = K − 1, we have
JK−1(bK−1, qK−1, hK−2,αK−2)

= max
(eK−1,sK−1) ∈ UK−1(yK−1)

EαK−1
[min{µ(eK−1,αK−1), qK−1} |αK−2]. (13a)

For k = K − 2, . . . , 0, we have
Jk(bk, qk, hk−1,αk−1)

= max
(ek,sk) ∈ Uk(yk)

{

Eαk
[min{µ(ek,αk), qk} |αk−1] (13b)

+ Ehk,αk
[Jk+1(bk+1, qk+1, hk,αk) |hk−1,αk−1]

}

,

where bk+1 and qk+1 are updated as in (4) and (6), respec-
tively. Notice that if the feasible set of (ek, sk) is Uk(yk) as
defined in (7), then (13a) can be simplified as

JK−1(bK−1, qK−1, hK−2,αK−2)

=EαK−1
[min{µ(bK−1,αK−1), qK−1} | αK−2]. (14)

Algorithm 1 Optimal Energy Allocation (OEA) Algorithm for
Energy Harvesting Sensor Node.
1: Planning Phase:
2: Set JK−1(bK−1, qK−1, hK−2,αK−2), ∀ bK−1, ∀ qK−1,

∀hK−2, ∀αK−2, using (13a).
3: Set k := K − 2.
4: while k ≥ 0 do
5: Calculate Jk(bk, qk, hk−1,αk−1), ∀ bk, ∀ qk, ∀hk−1, ∀αk−1,

using (13b).
6: Find the optimal action (e∗k(yk), s

∗

k(yk)), using (15).
7: Set k := k − 1.
8: end while
9: Sensing and Transmission Phase:
10: Set k := 0.
11: while k ≤ K − 1 do
12: Track the energy harvesting rate of the previous time slot

hk−1.
13: Track the energy available for use in the battery bk.
14: Track the amount of data in the buffer qk.
15: Obtain the channel feedback αk−1 from the sink.
16: Set yk := (bk, qk, hk−1,αk−1).
17: Obtain (e∗k(yk), s

∗

k(yk)) based on optimal policy π∗.
18: Consume e∗k(yk) amount of energy for transmission and

s∗k(yk) amount of energy for sensing.
19: Update battery energy bk+1 by using (4) and the amount of

data in the buffer qk+1 by using (6).
20: Set k := k + 1.
21: end while

That is, we use all the available energy for transmission in the
final time slot. Thus the optimal energy allocation for the final
time slot is (e∗K−1, s

∗
K−1) = (bK−1, 0). For (13b), the first and

second terms on the right hand side represent, respectively,
the expected immediate throughput for time slot k and the
expected total future throughput for time slot k + 1 to K −
1 if action (ek, sk) is chosen. Hence, the equation in (13b)
describes the tradeoff between the current rewards and the
future rewards.
Theorem 1: The optimal policy of problem (12) is π∗ =

{(e∗k(yk), s∗k(yk)), ∀yk, k ∈ K}, where

(e∗k(yk), s
∗
k(yk))

= argmax
(ek,sk)∈Uk(yk)

{

Eαk
[min{µ(ek,αk), qk} |αk−1]

+ Ehk,αk
[Jk+1(bk+1, qk+1, hk,αk) |hk−1,αk−1]

}

. (15)

Moreover, for every initial state y0 = (b0, q0, h−1,α−1), the
maximum throughput T ∗ is given by J0(b0, q0, h−1,α−1).

Proof: The proof follows by applying the Bellman’s
equations and backward induction [8] and using (4) and (6).

We then propose our OEA algorithm in Algorithm 1. In the
planning phase, the sensor solves for the optimal policy π∗ and
records it as a lookup table. In the sensing and transmission
phase, the sensor first tracks the energy harvesting rate of
the previous time slot hk−1, the battery energy level bk, the
amount of data in the buffer qk, and obtains the channel
feedback αk−1 from the sink. Then, the sensor chooses the



action (e∗k, s
∗
k) based on current system state yk and the

optimal policy π∗. That is, it consumes e∗k and s∗k amount
of energy for transmission and sensing, respectively.

V. PERFORMANCE EVALUATION
In this section, we evaluate the performance of our OEA

algorithm by comparing its achieved throughput with that of
the CAEA algorithm from [1]. We consider a band-limited
AWGN channel, where the channel bandwidth is W = 100
KHz and the noise power spectral density is N0 = 10−18

W/Hz. The channel state can be “G = Good”, “N = Normal”,
or “B = Bad”. It evolves according to the three-state Markov
chain as shown in Fig. 2 [16] with the transition matrix of the
Markov chain given by

Pα=





PBB PBN PBG

PNB PNN PNG

PGB PGN PGG



=





0.3 0.7 0
0.25 0.5 0.25
0 0.7 0.3



, (16)

where PXY represents the probability of the channel state
going from state X to state Y , X and Y ∈ {B,N,G}. The
channel gain α is 0.5 × 10−13, 1 × 10−13, and 1.5 × 10−13

when the channel state is “Bad”, “Normal”, and “Good”,
respectively. The battery buffer size bmax is set to be 100
Joules, and the data buffer size qmax is set to be 1 Mbits.
For tractability, we assume that the energy harvesting state hk

takes values from the finite set H = {H1, H2, H3, H4} and
evolves according to the four-stateMarkov chain with the state
transition probability given by

Ph =









PH1H1
PH1H2

PH1H3
PH1H4

PH2H1
PH2H2

PH2H3
PH2H4

PH3H1
PH3H2

PH3H3
PH3H4

PH4H1
PH4H2

PH4H3
PH4H4









=









0.3 0.7 0 0
0.25 0.5 0.25 0
0 0.25 0.5 0.25
0 0 0.7 0.3









, (17)

where PHiHj
represents the probability of the energy har-

vesting state going from state Hi to state Hj , ∀ i, j ∈
{1, 2, 3, 4}. The steady state probability is then given by
[PH1

PH2
PH3

PH4
] = [0.13 0.37 0.37 0.13]. x(sk) is as-

sumed to be a linear function of sk [11], given by

x(sk) = γsk, (18)

where γ is the data-sensing efficiency parameter. We denote
the average throughput as T̄ , which is given by

T̄ =
T ∗

K
, (19)

where T ∗ is the maximal total expected throughput over K
time slots defined in (12).
The CAEA algorithm in [1] assumed infinite backlogged

data and neglected the sensing energy. For a fair comparison,
we modify the CAEA algorithm by allowing the data buffer to
be finite with size qmax. We assume that the sensor allocates a
fixed percentage of energy available in the battery for sensing

  



 









Fig. 2. A three-state Markov chain for the channel gain, where “B”, “N”,
and “G” represent the channel in the bad, normal, and good state, respectively.
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OEA algorithm
CAEA algorithm

32%

Fig. 3. Average throughput of the two algorithms for different number of
total time slots K .

in each time slot, and optimizes the energy allocated for
transmission to achieve the maximal expected throughput.
We start by examining the average throughput T̄ of the OEA

algorithm and the CAEA algorithm with different number of
total time slots K . The data-sensing efficiency parameter γ
is set to be 0.02 Mbits/J. We set the fixed percentage of
energy for sensing to be 10% in the CAEA algorithm, which
is reasonable in WSNs. The value of energy harvesting rate is
taken from the set H = {H1, H2, H3, H4} = {6, 12, 18, 24}
J/time slot. As shown in Fig. 3, our proposed OEA algorithm
outperforms the CAEA algorithm in terms of the achieved
average throughput. For example, our OEA algorithm achieves
32% higher average throughput than the CAEA algorithm
when K = 30. The reason is that in the CAEA algorithm,
the sensor just optimally controls the energy for transmission,
while the sensing energy is fixed. However, in our OEA
algorithm, both the sensing and transmitting energy is opti-
mally allocated, which results in a better performance than
the CAEA algorithm.
Next, we consider the performance of the two algorithms

under different average energy harvesting rates H̄ , where
H̄ =

∑4
i=1 PHi

Hi. In Fig. 4, we plot the average throughput
against the average energy harvesting rate when the total
number of time slots K = 30. We observe that our OEA
algorithm performs much better than the CAEA algorithm,
especially when the average energy harvesting rate H̄ is high.
As shown in Fig. 4, our OEA algorithm achieves 105%
higher average throughput than the CAEA algorithm when the
average energy harvesting rate H̄ = 35 J/time slot. Moreover,
the throughput of the CAEA algorithm saturates very quickly
as the average harvesting rate is increased. It is because the
harvested energy cannot be accommodated, and more and
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Fig. 4. Average throughput of the two algorithms for different energy
harvesting rates when K = 30 and Bmax = 100 Joules.
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Fig. 5. Average throughput of the two algorithms for different values of
data-sensing efficiency parameter γ.

more energy is lost due to the overflow of the battery energy.
However, in our algorithm, energy wastage will not occur as
long as the harvesting rate is less than bmax and the data buffer
is large enough. The reason is that under the OEA algorithm,
the sensor node maintains a good balance between the energy
allocated for sensing and transmission, and thus achieves a
better performance.
Finally, we study the impact of the data-sensing efficiency

on the average throughput. We fix K to be 30 and examine
the throughput under different values of γ. A larger value of
γ corresponds to a higher data-sensing efficiency, since the
sensor node spends less energy for sensing the same amount of
data. As shown in Fig. 5, when γ is increased, the throughput
increases as well, because more energy is available for data
transmission. However, the performance saturates as γ is
increased beyond a certain value. When γ approaches infinity,
it corresponds to the case where the sensing is extremely
efficient. The throughput of this case provides an upper bound
for the performance of the OEA algorithm for sensor nodes
with different sensing efficiency.

VI. CONCLUSION
In this paper, we studied the problem of maximizing the

finite horizon expected throughput for an energy harvesting

sensor node under energy harvesting rate variations and chan-
nel fluctuations in a time-slotted system. A finite data buffer
and the energy consumed for sensing data were considered
for the first time. In this case, the sensor should achieve a
good tradeoff between the energy consumed for sensing and
transmission so as to achieve a high throughput. We obtained
the optimal energy allocation policy using DP and proposed
an OEA algorithm. Finally, we provided extensive simulation
results to compare the performances of the OEA algorithm
and the CAEA algorithm, and studied the impact of data-
sensing efficiency on the throughput. The results showed that
the OEA algorithm achieved a much higher throughput than
the CAEA algorithm under different settings. An interesting
topic for future work is the extension of our model to a multi-
hop setting for data transmission.
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