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An optimal energy management system for islanded

Microgrids based on multi-period artificial bee

colony combined with Markov Chain
Mousa Marzband, Fatemeh Azarinejadian, Mehdi Savaghebi, Member, IEEE, and Josep M. Guerrero, Fellow,
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Abstract—Optimal operation programming of electrical
systems through minimization of production cost and market
clearing price (MCP) as well as better utilization of renewable
energy resources has attracted the attention of many researchers.
To reach this aim, energy management systems (EMS) has
been studied in many research activities. Moreover, demand
response (DR) expands customer participation to power
systems and results in a paradigm shift from conventional
to interactive activities in power systems due to the progress
of smart grid technology. Therefore, modelling of consumer
characteristic in DR is becoming so important issues in
these systems. The customer information as the registration
and participation information of DR is used to provide
additional indices for evaluating customer response, such
as consumer′s information based on the offer priority, DR
magnitude, duration, and minimum cost of energy (COE).
In this paper, a multi-period artificial bee colony (MABC)
optimization algorithm is implemented for economic dispatch
considering generation, storage and responsive load offers. The
better performance of the proposed algorithm is shown in
comparison with the modified conventional energy management
system (MCEMS) and its effectiveness is validated experimentally
over a Microgrid (MG) Testbed. The obtained results show
cost reduction (by around 30%), convergence speed increase
as well as remarkable improvement of efficiency and accuracy
under uncertain conditions. An artificial neural network (ANN)
combined with Markov-chain (MC) (ANN-MC) approach is used
to predict non-dispatchable power generation and load demand
considering uncertainties. Furthermore, other capabilities such
as extendibility, reliability and flexibility are examined about the
proposed approach.

Index Terms—artificial bee colony, demand response,
microgrid, Optimum energy management, optimum scheduling
of DG, responsive load demand, uncertainty.

This work was supported by the Energy Technology Development and 
Demonstration Program (EUDP) through the Sino-Danish Project “Microgrid 
Technology Research and Demonstration” (meter.et.aau.dk).

M. Marzband is (email: mousa.marzband@manchester.ac.uk) with School
of Electrical and Electronic Engineering, Faculty of Engineering and Physical
Sciences, Electrical Energy and Power Systems Group, The University of
Manchester, Ferranti Building, Manchester, M13 9PL, United kingdom.

M. Marzband (email: m.marzband@liau.ac.ir) and F. Azarinejadian (email:
niloofar.azari@yahoo.com) are with Department of Electrical Engineering,
Lahijan Branch, Islamic Azad University, Lahijan, Guilan, Iran.

M. Savaghebi and J. M. Guerrero are with the Department of Energy
Technology, Aalborg University, DK-9220 Aalborg East, Denmark (email:
mes@et.aau.dk , joz@et.aau.dk).

NOMENCLATURE

Acronyms

ABC artificial bee colony

ANN artificial neural network

DR demand response

DSM demand side management

EGP excess generated power

EMS energy management system

ES energy storage

ES+ ES during charging mode

ES- ES during discharging mode

EWH electric water heater

MG microgrid

LEM local energy market

MABC multi-period ABC

MCEMS modified conventional EMS

MC Markov-chain

MCP market clearing price

MLP multi-layer perceptron

MINLP mixed integer non-linear programming

MPE maximum prediction error

MT micro-turbine

NRL non-responsive load

PSO particle swarm optimization

PV photovoltaic

RLD responsive load demand

SOC state-of-charge

TPM transition probability matrix

UP undelivered power

WT wind turbine

Variables

πA the supply bids by A (e/kWh)

A ∈ {WT, PV, MT, ES-, ES+, UP, EGP, & EWH}
λMCP
t MCP at each time t in MCEMS (e/kWh)

λ′MCP
t MCP at each time t in EMS-MABC (e/kWh)

PA
t available power of A in MCEMS (kW)

P ′A
t available power of A in EMS-MABC (kW)

P̃A
t real power set-points of A in MCEMS (kW)

P̃ ′A
t real power set-points of A in EMS-MABC (kW)

PA
t available power of A (kW)

Pn
t non-responsive load (NRL) demand (kW)

SOCt battery SOC in MCEMS (%)

SOC ′
t battery SOC in EMS-MABC (%)

P , P limit of power (kW)

E, E limit of energy (kWh)

this document downloaded from www.microgrids.et.aau.dk is the preprintversion of the paper:
M. Marzband, F. Azarinejadian, M. Savaghebi, and J. M. Guerrero, "An optimal energy management system for islanded 
Microgrids based on multi-period artificial bee colony combined with Markov Chain",  IEEE Systems Journal, 2015.
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SOC maximum SOC (%)

SOC minimum SOC (%)

∆t time step

I. INTRODUCTION

FEXIBILITY requirements in electric power systems

and presence of non-dispatchable intermittent generation

leads to development of Microgrids (MG)s [1]. An MG

can be defined as a small power system consisting of

power converter-based generation, energy storage devices,

small classic synchronous generation and various types of

loads. This configuration with a proper control could provide

lots of advantages to consumers such as better power

quality, higher reliability, more flexibility, and less operation

and generation cost [2]–[5]. Adequate amount of demand

side delivery in MGs has significant importance due to

limitations of using non-dispatchable resources [6], [7]. The

problem of demand-supply mismatch exists in these systems

if energy generation resources are not adequate to supply

the requested load and no proper EMS is employed. An

EMS makes optimal use of available DGs while ensuring

the flexibility, reliability and quality of the supply. However,

it may also fail to produce the load demand if total

demand is more than the total generated power. Under such

scenarios, utilizing backup systems such as energy storage

(ES), diesel generators or applying demand response (DR)

helps to reduce the demand-supply mismatch [8], [9]. At

present, ES can be implemented only in small scale and for

a short-time supply. Moreover, DR mechanism may leads

to reduction of the fluctuations resulting from random and

unwanted requests which may help to provide peak shaving

[10], [11]. The combined operation of ES and DR with

DG technologies provide more reliability for MG operation

[8], [9], [12]. Hence, intelligent control systems must be

developed to accommodate ES and DR in MGs in order to

supply consumers as required [6], [13]. Optimal management

of MG generation units requires exact determination of

constraints to describe the operation problem considering the

output power generation with the least possible generation

cost [14]. These are often represented as a large scale,

non-convex, nonlinear, mixed-integer problems. Therefore,

presenting powerful optimization algorithms to extract the best

possible solution for the MGs is very important. Deterministic

optimization methods are highly dependent on the system and

their definition is very difficult for large complex systems.

In solving optimization problems with a high-dimensional

search space particularly in UC and ED problems, the

deterministic and stochastic optimization algorithms do not

provide a suitable solution because the search space increases

exponentially with the problem size, therefore solving these

problems using exact techniques (such as [15]) is not practical.

On the other hand, these problems can be solved with

the non-deterministic polynomial-hard (NP-hard) problem.

Heuristic algorithms such as genetic algorithm [16], particle

swarm optimization [17], ant colony optimization [18] and bee

colony optimization [19] are some optimization methods used

for unit commitment within MGs [14]. Some algorithms give a

better solution for some particular problems than others. These

techniques are trying to seek good (near-optimal) solutions at a

reasonable computational cost without being able to guarantee

either feasibility or optimality, or even in many cases to state

how close to optimality a particular feasible solution is. In

addition, most of these approaches have a stochastic behaviour.

Therefore, it is made effort to present a deterministic heuristic

search algorithm based on a swarm meta-heuristic algorithm.

In [1], the design of an energy management system (EMS)

is developed in order to obtain the best purchasing price

in day-ahead market (DAM), as well as to maximize the

utilization of existing DER and study the system stability

is reported. However, no optimization approach was used in

that work. Furthermore, the research work presented in this

paper is a continuation of the work by the authors [15],

where a framework for combining stochastic optimization,

non-dispatchable resources/load demand uncertainties, and

local optimization is needed.

Amongst them, special attention is paid to the optimization

algorithms based on artificial bee colony (ABC) for solving

optimization problems due to the population-based search

capability, simplicity of implementation, adequate convergence

speed and robustness [14], [20]–[23]. According to the

advantages of this method, it is applied in the present paper

for the optimization of MG operation in terms of performance,

generation resources scheduling and economic power dispatch.

For increasing effectiveness and usability in MG applications,

an algorithm based on multi-period ABC (MABC) is proposed

in this paper for solving energy management problems over

a real MG for a day-ahead period. It is noteworthy that the

proposed algorithm can also find the global optimal point in

the multi-dimensional and great search space.

Another approach proposed in this paper is based on

modeling the uncertainty in load demands and the generation

of renewable resources. A model is presented for very

short-term prediction by using artificial neural network (ANN),

Markov-chain (MC) and linear regression. The proposed

model utilizes ANN for primary predictions. Then, the

second-order MC is applied to determine transition probability

matrix (TPM) for primary prediction. Finally, a linear

regression is used between the primary predictions and

probability values obtained by MC for the final prediction.

The MC is applied to modify the predicted values according

to long-term pattern of the resource data. Applying ANN

without using statistical models, increases the number of input

variables for both training and utilization [24]. Further, two

limitations on the use of ANN models also exist that seriously

affect the prediction performance, namely, over-training and

extrapolation [25]. Over-training occurs when the capacity of

the ANN for training is too great, because too many training

iterations is allowed. For extrapolation, the advantages of the

ANNs have not been determined when they are required to

perform estimation beyond available experimental data [25].

Both of these ANN imperfections are taken into account in

the model proposed in this paper.

The contributions of the paper are as follows:

1) development of an intelligent algorithm based on

ABC within a real MG towards supporting real time

applications;
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2) presentation of an algorithm based on artificial neural

network (ANN) combined with Marcov chain to consider

system uncertainties;

a) prediction of wind speed in a very short-time (adequate

for real-time optimization);

b) reduction of prediction error and uncertainty of

predictions;

c) significant reduction in calculation time which is

considered very critical in real-time applications.

3) experimental implementation of the proposed smart

algorithm demonstrating some benefits including flexible

multi-device support, fast development with a running

time proper for real-time applications.

II. ALGORITHMS IMPLEMENTATION FOR EMS

The EMS proposed in this paper is depicted in Fig. 1.

It comprises different units, namely ANN-MC, EMS and

LEM units. As shown in Fig. 1, four different algorithms

are presented for implementing EMS based on LEM by using

heuristic techniques or without using any optimization method.

Flexibility, good accuracy, speed in decision making and

plug and play abilities of LEM unit, MCEMS, EMS-MINLP

(EMS based on mixed integer non-linear programming) and

EMS-PSO (EMS based on particle swarm optimization)

algorithms are discussed in detail in the previous studies [1],

[14], [15]. Therefore, these are not addressed in the present

paper and only EMS-MABC algorithm is described.

PV WT n
t t tP ,P ,P

PV WT n
t t tP ,P ,P

Fig. 1: Proposed algorithm for implementing EMS

A. EMS-MABC algorithm

This algorithm encompasses ANN-MC, MABC and LEM

units as illustrated in Fig. 1. Since LEM unit is explained in

detail in [1] and [15], only ANN-MC and MABC units are

discussed bellow.

1) ANN-MC unit: In this study, MC method is applied

for obtaining long-term trends in wind speed data. Thus,

a simple ANN structure with the minimum number of

input variables and data regulations is required for training

and the over-training problem can be solved with the

proposed structure. As the MC method keeps the signals

long-term behavior in the memory, the error obtained from

the extrapolated prediction is also reduced. As another solution

for extrapolation problem, the artificial samples covering the

entire range are drawn as much as possible based on the

existing knowledge about the proposed problem then used for

ANN initializing to ensure that most of the future prediction

involves interpolation. The outline of the proposed model is

shown in Fig. 2. A set of wind speed data 2.5s in a 175min

period is used to improve the model accuracy for predicting

wind speed up to 7.5s ahead (total of 4200 wind speed

data). In Fig. 2, TPM is transition probabilities matrix for the

primary prediction, forward neighborhood indices (FNI)s and

Backward neighborhood indices (BNIs) are two upper/lower

states and their corresponding probabilities, respectively. vit−k

is the real speed data at time t-k, and v̂t−k|t is the predicted

wind speed data for t+k and i states an index of the model

ith vector used in ANN-1. Also, vt−1, vt−2, · · · , vt−n are

considered as wind real speed data which are used for forming

TPM by MC. In the proposed model, two ANNs are used for

prediction. The first ANN (ANN-1) is applied for primary

prediction and short-term obtaining of wind speed signal,

where 10 real-time speed data from t to t-10 are used as input

variables. Primary prediction can take place by ANN-1 for

different time horizon. For training, 30 sets of data with 10

measured wind speed in each set are selected. After primary

prediction, the provided TPS for the values and four other

indices with primary predictions are fed as input variables

to the second ANN (ANN-2). At the end, the implemented

model based on two ANNs and MC method can be utilized

for predicting different time horizons. Multi-layer perceptron

(MLP) is used for ANN-1 which includes an input layer, a

hidden layer and an output layer. In the output layer, only

one neuron is used as v̂t−k|t in which k is the time step

and v̂ is the anticipated wind speed at time t+k (calculated

at time t). Because the number of neurons in each layer

have an effect on the speed and network stability, sensitivity

analysis shows that the structure of ANN-1 with the least

mean absolute percentage error (MAPE) is equal to 5, 2

and 1 neurons for input, hidden and output layers with 30

training vectors and 0.01-0.08 learning rates. Based on the

wind speed data histogram, wind speed states have become

compatible with the 1m/s upper and lower limit difference of

the wind speed for reaching high accuracy at an acceptable

time. Based on the state matrix, it is possible to find the

number of transitions from the two previous states during wind

speed data sequence to the next state at time t+k. Finally,

TPM is calculated. TPM is formed by using 600 wind speed

data and the calculated matrix is used as primary prediction

values (Fig. 2). At the beginning, Markov state is calculated for

the primary prediction values by ANN-1 for one step ahead.

Then, according to TPM, the probability of predicted value

is calculated during the next step. This process is carried out

for all of the primary predictions. It must be noted that the

prediction values of the previous step are generated by ANN-1.

For the final prediction, MLP has been used for ANN-2. The

number of neurons in the input layer is selected by considering

the calculation of time and error (maximum prediction error

(MPE) and MAPE). Since ANN-2 has six input and one output
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variables, the number of neurons in each layer must be located

in the range of variables and the best structure for ANN-2 with

the least MAPE is estimated as 3,0 and 1 neuron for the input,

hidden and output layers with 10 training vector and learning

rate between 0.01-0.05. In Fig. 3, the proposed model is shown

for ANN-MC unit.

1−
i
tv

ANN-1 for 

primary 

prediction 

(m=10)

2−
i
tv

−
i
t mv

1−tv

2−tv

−t nv

+t k tv

( )0 1:TPM

( )0 1:FNIs

( )1 0:−BNIs

Fig. 2: General outline for the proposed model in ANN-MC

unit

Step 1: 

MC transition probability matrix formation

Step 2: 

ANN-1 design for primary prediction

[600,1] [30,10]

Step 3: 

ANN-1 test and ANN-2 design

[10,10]
TPM

FNI

BNI

Ack

Step 4: 

Final test

[3200,10]

[3200,3][3200,1]

Fig. 3: Flowchart of four stages for implementation of the

proposed model for ANN-MC unit

Annual pattern of non-dispatchable power generation and

load demand are captured by ANN. Then, second-order MC

is applied to calculate TPM. Basically in TPM formation,

the non-dispatchable power generation and load demand

time series are converted to power states which contain the

generated and consumed powers among certain values. Based

on state matrix, it is possible to find the number of transition

from two preceding states in the sequence of power data

to another state at time. Firstly, Markov state for primary

values predicted by ANN-1 is calculated for one step ahead.

Then, according to TPM, the probability of predicted value

is calculated in the next step. This process is carried out for

all primary predictions. It should be noted that the predicted

values are produced in the previous step by ANN-1. For longer

prediction horizon, transition probabilities are necessary for

steps ahead. In these cases, the above TPM is multiplied in

ANN-1 according to the number of time steps in the future. It

is difficult to determine the relationships between the primary

prediction and the coefficients obtained from MC. Since ANNs

can encode complex and non-linear relations, ANN-2 is used

to capture the relationships between the primary prediction

and obtained probabilities. The transition probability of the

predicted values state and ANN-1 output are fed to ANN-2

in order to achieve higher prediction accuracy under uncertain

conditions in comparison with primary predicted values. The

procedure can be summarized as follows (Fig. 3):

Step 1

TPM calculation based on 600 data points of wind speed;

Step 2

Design of ANN-1 for primary prediction by using 300

other points of wind speed data;

• Calculation of MAPE and MPE

Step 3

Implementation of MC model for testing ANN-1 and

designing ANN-2 (another 100 data set);

• finding non-dispatchable and load demand data state

• evaluation of different states transition

• TPM calculation

• TPM accumulation

According to Fig. 3, ANN-1 designed in the previous

step is applied for the primary prediction. Then, the TPM

calculated in step 1 is used to calculate the required

coefficients. ANN-2 provides six input variables of

primary wind speed prediction, their transition probability

values, FNI-1 and FNI-2 of the current predicted states

and BNI-1 and BNI-2 of previous predicted states.

Step 4

Design of ANN-2 for secondary prediction by using

ANN-1 and TPM.

Both ANNs and TPM obtained are applied steps for the

final prediction.

All the above steps must be applied for different prediction

time horizons.

2) MABC unit: The flowchart of MABC unit is shown

in Fig. 4. The highlighted areas in this Figure are the

modifications made to ABC algorithm in order to adapt it in

MG application. Each response of the optimization problem

has D variables. In this paper, D = 7 is considered including

WT (PWT
t ), PV (PPV

t ), MT (PMT
t ), charging and discharging

power ES (PES+
t and PES−

t ), EWH (PEWH
t ) and DR (PDR

t )

variables. The proposed algorithm is trying to find the optimal

values for the design variables that minimize the objective

function. Therefore, Xi
t is defined as Xi

t = x
i,1
t , x

i,2
t , · · · , xi,7

t

vector. The elements are x
i,1
t = P

i,WT
t , x

i,2
t = P

i,PV
t , x

i,3
t =

P
i,MT
t , x

i,4
t = P

i,ES+
t , x

i,5
t = P

i,ES−
t , x

i,6
t = P

i,EWH
t and

x
i,7
t = P

i,DR
t . These variables are divided into two categories

of dependent (P
i,MT
t , P

i,ES+
t , P

i,ES−
t , P

i,EWH
t and P

i,DR
t )

and independent (P
i,WT
t and P

i,PV
t ) variables. Since WT

and PV are non-dispatchable resources which are affected

by weather conditions, MT and ES powers can be varied

depending on the power generated by WT and PV and energy

consumed by load. To begin, independent variables must

be made considering ANN-MC unit output. It is necessary

to involve target population members in program planning,

implementation and evaluation of objective function. It must

be checked during optimization process if the generated

population members satisfy constraints or not. Then, by using

valid values for these independent variables and associated

constraints, dependent variables can be generated randomly.

Furthermore, after selecting a food source, the onlooker bee

generates a new food source. MABC unit is illustrated by a
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Pseudo-code in Algorithm 1.

Start

Yes

NoAll employed bees 

distributed?

Initial population

Evaluate population

Set cycle = 1

Search the neighborhood of 

positions by employed bees

Evaluate population

Apply greedy selection process

Calculate the probability value

Produce new solutions

Allocate Onlooker bees to each 

employed bee to a food source

Evaluate population

Find abandoned solution

Adjust bee with Scout bees to replace 

abandoned solution with new solution

Evaluate population

Memorize best position

cycle = cycle +1

cycle<MEN

End

Yes

No

Set k = 1

Generate independent random variables 

Generate dependent random variables 

considering independent variables and 

problem constraints 

Place all the variables in an            

matrix implying as a new population
1 D×

k = k+1

Popk N<

Generate independent random variables 

Generate dependent random variables 

considering independent variables and 

problem constraints 

Place all the variables in an            

matrix implying as a new population
1 D×

Fig. 4: The graphical representation of the process undergone

in the MABC unit

III. MODIFIED ABC ALGORITHM

Several attempts, employing classical ABC were made in

the past for solving UC. However, ABC algorithm is good at

exploration but poor at exploitation. These drawbacks become

more prominent in case multimodal problems having several

optima. This paper presents a modified ABC algorithm for

optimization problems to improve the exploitation capability

of the ABC algorithm and to further improve its performance.

In this paper, to improve exploitation process of classic ABC, a

different probability function modifying searching mechanism

has been applied to the original ABC algorithm. Probability

value of selecting a food source determines the exploitation

rate. In order to improve the exploitation mechanism of

onlooker bees, a modified probability function has been

proposed in this paper (Eq. (2)). In addition, to increase the

population diversity, avoid the premature coverture as well

as to improve the exploitation of classic ABC algorithm,

a second modification has been proposed by using a new

searching mechanism (Eq. (1)). In the first modification, the

worst fitness valued solution has the best chance to local

search then algorithm uses the best solution in the current

population to mutate parameters in the second modification.

Generally, these modifications are based on reducing the

colony size; maintaining the perturbation scheme; and using

a rank selection strategy for maintaining diversity. In the

Algorithm 1 MABC UNIT

Require: PV, WT and load demand profile of the MG, the

initial SOC of ES and the characteristic of system.

Initialize control parameters/ the problem specific

parameters

for t = 0 : m do ⊲ m: the number of time periods

Generate the initial population by

X
i,j
t = xj + ρ× (xj − xj) (1)

⊲ X
i,j
t : jth variable from the ith response at time t,

i ∈ {1, 2, · · · , NP }, j ∈ {1, 2, · · · , D} ⊲ xj and xj : upper

and lower of component x ⊲ ρ: random number in [0, 1]

interval

Evaluate (Eq.(7))

cycle =1

while cycle <MCN do ⊲ MCN: maximum cycle

number

Employed bee Generates x
′i,j
t by

x
′i,j
t = x

i,j
t + ρ′ × (xi,j

t − x
k,j
t ) (2)

⊲ k ∈ {1, 2, · · · , NP }, k 6∈ i ⊲ x
′i,j
t : new food source

in the neighborhood of x
i,j
t position

Evaluate and apply the greedy selection process

Onlookers Calculate P i
t for x

i,j
t by

P i
t =

fitit
NP∑

j=1

fit
j
t

(3)

⊲ fit
j
t : fitness value of ith response at t

Generates x
′i,j
t based on P i

t

Evaluate and apply the greedy process

Scout Determine the abandoned x
i,j
t if exist

Update it by Eq.(7)

Update the best solution acquired so far

end while

Return optimal power set-points

end for

proposed MABC, binary numbers 1 and 0 are used to indicate

the status of generating units ON/OFF whereas the economic

dispatch is solved using the real coded ABC. Whereas classical

ABC algorithm is essentially a real-coded algorithm, thus,

some modifications are needed to deal with the binary-coded

optimization problem. In the proposed ABC, the relevant

variables are interpreted in terms of changes of probability.

The onlookers produce a modification in the position selected

by it using (Eq. (1)) and evaluate the nectar amount of

the new source. Improving strategy throughput by constraint

based management in MABC whenever the commitment

status for each time interval is generated randomly or

by the modification of employed/onlooker bee′s position,

dispatchable constraint must be checked as follows:

Step 1: If dispatchable resources constraints are met, then go

to Step 3. Otherwise, go to next step.
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Step 2: The less expensive units which are shut OFF can be

identified and should be turned ON. Then go to Step 1.

Step 3: If dispatchable resources constraint is satisfied, then

the maximum and minimum operating times constraints

are checked for each unit. If there is any violation in

the minimum up or down time constraint then a repair

scheme is performed to overcome the violation.

Step 4: The modified scheme for Step 3 can effect on the

dispatchable resources constraint. If the reliability level

is sufficient, then return the feasible solution. Otherwise

go to Step 1.

IV. PROBLEM FORMULATION

The problem formulation is divided into two parts which

are closely connected and dependent on each other. The first

part is related to the prediction error of uncertainty model and

the other include MG constraints.

A. Error criteria for uncertainty consideration

The prediction error of a model is classically defined as

the difference between the measured and predicted values. A

horizon dependent model error ett+∆t is given by

ett+∆t = PX
t+∆t − P̂X

t+∆t (4)

where X denotes non-dispatchable resources and load demand

entries. PX
t+∆t is the measured X power at time t+∆t, P̂X

t+∆t

is the power prediction for X computed at time t. The most

commonly used evaluation criterion is the MAPE defined as

follows [24].

MAPEk =
1

N

N∑

t=1

(|
ett+∆t

PX
t+∆t

| × 100) (5)

where ∆t and N describe the prediction horizon and number

of prediction, respectively. It is very important to reduce

MPE because a large prediction error and consequently

wrong control commands may cause an unstable condition for

non-dispatchable resources. MPE is calculated as [24].

MPE∆t = max|
ett+∆t

PX
t+∆t

| × 100; t = 1, · · · , N (6)

B. MG mathematical modeling

The system under study is considered as an islanded MG

including non-dispatchable (WT and PV in this study) and

dispatchable generation resources (MT in this study) and ES

supplying some responsive (EWH and DR in this study)/

non-responsive loads (NRL). The optimization problem is

defined as the following cost function:

min

m∑

t=1

(Cg
t + C

′g
t + C

ES−
t − C

ℓ
t − C

ES+
t +Ωt)×∆t (7)

where m is the number of the simulation periods in time

interval t, C
g
t and C

′g
t are the cost of the energy generated

by non-dispatchable and dispatchable resources, respectively,

C
ES+
t and C

ES−
t are the energy generation cost by ES unit

during charging and discharging operation modes, respectively,

C
ℓ
t is the cost of the energy consumed by responsive load

demand (RLD) (EWH and DR are respectively termed as

shiftable and controllable loads in this study) and Ωt is

the penalty cost resulting from undelivered power (UP)

during the time period t. The objective of economic dispatch

problem is in fact minimizing the total production cost while

satisfying generation resources constraints. Ωt is included in

the objective function as a penalty cost for the MG operator to

avoid undelivered power to the NRL. Each one of these costs

can be calculated as follows

C
g
t =

ng∑

k=1

π
k,g
t · P k,g

t (8)

C
′g
t =

n′g∑

k=1

π
′k,g
t · P ′k,g

t (9)

C
ℓ
t =

nℓ∑

k=1

π
k,ℓ
t · P k,ℓ

t (10)

C
ES+
t =

nES∑

k=1

π
k,ES+
t ·XES

t · P k,ES+
t (11)

C
ES−
t =

nES∑

k=1

π
k,ES−
t · (1−XES

t ) · P k,ES−
t (12)

Ωt = πUP
t · PUP

t (13)

where π
k,g
t and π

′k,g
t are the kth non-dispatchable and

dispatchable resources, P
k,g
t and P

′k,g
t are the output power

generated by the kth non-dispatchable and dispatchable

resources, ng and n′g are the number of non-dispatchable and

dispatchable units installed in the MG system, ∆t is duration

of the period t, π
k,ℓ
t is the offer price by kth RLD, P

k,ℓ
t is the

output power consumed by kth RLD during the time period

t, πUP
t is the offer price when the system is encountered UP

and PUP
t is the amount of power is not supplied by MG.

XES
t is status of ES operation mode (i.e. XES

t =0 when ES

is in the discharging mode and XES
t = 1, otherwise).

Equality and unequally constraints are formulated in the

following:

• Power balance

ng∑

k=1

P
k,g
t +

n′g∑

k=1

P
′k,g
t +

nES∑

k=1

(1−XES
t ) · P k,ES−

t

+PUP
t = PNRL

t +

nℓ∑

k=1

P
k,ℓ
t +

nES∑

k=1

XES
t · P k,ES+

t

(14)

• non-dispatchable resources

0 ≤

ng∑

k=1

P
k,g
t ≤ P

g
(15)
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where P
g

t is the maximum power generated by

non-dispatchable generation units during the time period

t.

• dispatchable resources [15]

– electricity generation unit boundaries

– ramp-up and ramp-down limits

– maximum and minimum operating times

• ES constraints [15], [26]–[28]

– energy storage limits;

– maximum charge/discharge power limit;

– maximum charge/discharge energy stored limit;

– energy balance in ES;

– SOC limit;

– ES limit.

• RLD constraints

PRLD
t = P

RLD

t (16)

∑

t

PDR
t =

∑

t

PUP
t (17)

PEGP
t = XES

t · PES+
t +XDR

t · PDR
t + PEWH

t (18)

∑

t

PEGP
t =

∑

t

XES
t · PES+

t +
∑

t

XDR
t · PDR

t +
∑

t

PEWH
t

(19)

where XDR
t is a binary variable indicating DR status (i.e.

1 if the request is in service and 0 otherwise). Eq. (17)

guarantees that the total consumed power by DR should be

equal to the total PUP
t during daily operation system, whereas

EGP at each interval can be supplied for charging of ES,

DR and EWH as formulated in Eq. (18). In addition, the

summation of consumed power by these customers should

be equal to the summation of EGP during a daily operation

system as shown mathematically in Eq. (19).

V. APPLICATION TO TEST GRID

EMS-MABC algorithm is implemented and validated

experimentally over the IREC′s MG. In this MG, all the

microsources with any characteristic can easily be emulated

by digital signal processing. This MG is used to investigate

various concepts such as control design and implementation

of EMS [1], [15], [28]–[30]. A general scheme of this

system including emulators is shown in Figs. 5 and 6. This

MG has two non-dispatchable resources (PV and WT), a

dispatchable resource (MT), and ES integrated with some

responsive (EWH and DR) and NRL. Emulators specifications

are presented in the previous papers [1]. Furthermore, the

system has a controller that EMS-MABC algorithm should

be loaded in that. To begin, the central controller receives

data including generated power and load demand (PWT
t ,

PPV
t and Pn

t ) provided by ANN-MC unit, SOC, and bid

offers. Then, all optimal power set-point of each microsource

will be dispatched to them at each time interval based on

PV system Wind farm

Renewable resources Non-renewable resources Energy storage

LV Bus

Communication 

bus

Responsible Load Demand Non-Responsible Load 

Demand

Central 

Controller 

Unit

Fig. 5: Schematic of the MG system under study

PV

emulator

ES 

emulator

WT 

emulator

Load 

demand 

emulator

EWH 

emulator

MT 

emulator

CCU

(a) IREC′s MG

Three-phase voltage 

sources

Power

analyzer

(b) Cabinet inside details

Fig. 6: System configuration of IREC′s MG Testbed

EMS algorithm. WT, PV and load demand profiles are shown

respectively in Figs. 7(a)- 7(c) [1].

The ability of the proposed algorithm under several

scenarios is considered for optimal scheduling and operation of

resources, minimizing the generation cost as well as applying

demand side management.

The following scenarios are studied:

- Scenario ♯1: Normal operation

- Scenario ♯2: Sudden load increase

- Scenario ♯3: Plug and play ability

VI. RESULTS AND DISCUSSION

In this section, the results of experimental evaluation of the

proposed algorithm over IREC′s MG are presented.

SOC and ES power during the 24 hour system operation

are shown in Figs. 8 and 9, respectively. As it is observed

in Fig. 8, during 00:00-06:00 period, SOCt is almost always

decreasing and at the end of this operation interval reached to

SOC. However, in EMS-MABC a part of the power needed

for charging the ES is provided by MT. As a result, SOC ′
t

is reached about to 70% at the end of this time interval.

More SOC causes the increase of the ability for supplying

the loads during the rest of the system daily operation.

During 06:00-12:00 period, MCEMS has already used ES for

supplying a part of power shortage, while in EMS-MABC,

ES is operated in the charging mode and continuing to reach

SOC. It is still clamped until the end of this interval. Scenarios



8

00:00 05:00 10:00 15:00 20:00
0

2

4

6

8

Time [h]

T
h

e 
p

ro
d

u
ce

d
 p

o
w

er
 [

k
W

]

 

 

P̃
′WT
t

(a) WT emulator

00:00 05:00 10:00 15:00 20:00
0

2

4

6

Time [h]

T
h

e 
p

ro
d

u
ce

d
 p

o
w

er
 [

k
W

]

 

 

P̃
′PV
t

(b) PV emulator
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Fig. 7: the power generated by the emulators WT, PV and load

demand

♯2 and ♯3 are occurred between 12:00-18:00 period and

despite in both of the algorithms MT is served and ES is

fully discharged, MG is not able to completely supply the

load demand. During 18:00-24:00, ES in MCEMS operates

in discharging mode reaching SOC. However, by proper

selection of MT, ES is operated in the charging mode in

EMS-MABC and at the end of this time interval, SOC is about

80%. Dispite of higher MT offer relative to ES, EMS-MABC

has recognized that if it can use MT for compensating the

shortage of power and meanwhile use the rest of the generated

power for charging ES, the total generation cost will be

minimized. In addition to cost reduction, ES stored more

energy for supplying the loads in the next day.

The bar graphs of ES charging/ discharging, RLD, UP and
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Fig. 8: SOC during system operation (Solid light-gray line

indicates MCEMS algorithm. Also, dash black line with circle

marker type represent output of EMS-MABC algorithm)
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Fig. 9: Charging/discharging power of ES emulator during

system operation

EGP power are shown in Fig. 10. As it is observed in both

algorithms, MG is not able to supply the power required by all

consumers in scenarios ♯2 and ♯3 during 12:00-18:00. UP in

MCEMS is more than EMS-MABC and ES is fully discharged.

It is noticeable that in this time interval, PES−
t is about

30% more than its value in EMS-MABC. Therefore, more

penalty cost due to lack of delivery of the power required

by consumers should be paid. In these time intervals, λ′MCP
t

is about 0.3 e/kWh, but when UP exists, MCP is about 0.9

e/kWh. On the other hand, EMS-MABC has significantly

reduced the electricity cost by curtailing a number of

consumers (when MCP is relatively high) and feeding them

at other hours with cheaper MCP. EWH is mainly supplied in

the afternoon for both algorithms. λMCP
t is about 37% greater

than the respective value of λ′MCP
t at the same time. As it is

observed in Fig. 10(a), ES in MCEMS is mainly charged with

P
ES+

power. In the time intervals in which ES operates in the

charging mode, λMCP
t is about 0.49 e/kWh, while λ′MCP

t for

charging ES is about 0.32 e/kWh that is approximately 34%
less than the MCP in MCEMS.

For experimental evaluation, the proposed algorithms are

implemented in C environment on a PC with i5-3320 M, 4

GB RAM, 2.6 GHz. Table I shows the experimental results

of proposed algorithm including computation time and total

generation cost which is compared with the conventional PSO

method. It is clearly seen in this table that EMS-MABC
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Fig. 10: Bar graph related to the responsive loads power,

charging/discharging ES and UP during the system 24 hours

performance

TABLE I: Run time and total generation cost for case study

corresponding to 100 iteration

MABC PSO

Execution time (S) 10.14 27.45
Total generation cost (e) 35.35 36.42
Error (%) 1.26 4.32

algorithm got the minimal total generation cost around 35.35

e and needed shorter computation time than PSO algorithm.

Also, the nearest value of objective function compared to

realistic method (MINLP) is achieved in MABC algorithm.

MCP during daily operation system of shown in Fig. 11.

λMCP
t and λ′MCP

t during the day are respectively 0.52

e/kWh and 0.32 e/kWh that shows a 39% reduction in

EMS-MABC. The maximum value of λMCP
t (1.33 e/kWh)

is observed during scenario ♯2, while the maximum value

of λ′MCP
t is 0.90 e/kWh and is obtained during scenarios

♯2 and ♯3. The minimum value of λMCP
t and λ′MCP

t are

respectively 0.2 e/kWh and 0.13 e/kWh which are obtained

for both algorithms during 00:00-06:00. MCP values during

24 hours of system operation are listed in Table II for

both algorithms. As observed, MCPs in both algorithms are

minimum during 00:00-06:00, so it is proper to supply more

number of RLD and ES loads in this time interval. During this

period, the supplied RLD and ES in EMS-MABC algorithm

TABLE II: The average value of MCP during system operation

00:00-06:00 06:00-12:00 12:00-18:00 18:00-24:00 MCP

0.62 0.49 0.56 0.57 λMCP
t

0.50 0.43 0.35 0.52 λ′MCP
t

are totaly about 46% more than their values in MCEMS. As a

result, these consumers are supplied with lower price. During

06:00-12:00, in both algorithms, MT is placed in service and

with attention to its higher offer in comparison with other

generation sources, MCP is significantly increased. Hence,

RLD and ES is supplied in EMS-MABC for a proportionately

less time (about 85%). During 12:00-18:00, PV is started to

generate power when the sun is starting to rise and MT is

gone out of service. Since PV offer is less than MT, MCP is

drastically reduced. Furthermore, in this time interval, about

6% more of RLD and ES loads are supplied in MCEMS in

comparison with EMS-MABC. During 18:00-24:00, MCP is

maximum in both algorithms, so it is beneficial that the loads

with less offers are supplied in this time interval. Only ES

with highest offer is charged in MCEMS while EWH is also

fed in EMS-MABC. EWH has proposed minimum offer and

as a result, consumers are considerably less cost-effective for

feeding their loads.

Fig. 11: MCP for each interval during the system daily

performance

VII. CONCLUSIONS

In this paper, modeling of consumers′ information has

been addressed by using EMS-MABC to present RLD

characteristics in a DR program as well as to estimate the

participation quality and commitment in a LEM structure with

the aim of reducing MCP. In addition, a new concept for

the virtual generation sources derived from demand resources

has been introduced to estimate the optimal scheduling

of generation resources and DR in an isolated MG. The

DR constraints are expressed with various status flags,

the information of other consumers and the excess power

generated has been modeled to obtain the minimum total

generation cost and less market clearing price. These points

have been considered for modeling the limiting conditions for
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the consumers participating in a demand response program.

The optimal programing for generation scheduling combined

with DR has been performed to minimize the operation

cost of MG linked to customer information. This combined

programming has been evaluated over a MG Testbed. Since

renewable resources such as WT and PV have intermittent

characteristic, approaches to analyze economic dispatch in

MGs would be stochastic rather than deterministic. To take

the uncertainties into account, ANN-MC method according to

artificial neural network combined with Markov-chain concept

is implemented.

The obtained experimental and simulation results show

the reduction of the total operation cost (about 30%) also

significant reduction of MCP in each time interval with

adequate and real time control of DR in the proposed

algorithm. The proposed approach shows more decrease in the

objective function than EMS-PSO algorithm while reducing

computation time.
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