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Abstract—As an extension to a previous paper, this paper
describes the optimization of a second-order, feedforward po-
larization-mode dispersion (PMD) compensation scheme by re-
ducing its degrees of freedom (DOF) by two. The new design is
optimal in the sense that the number of DOF used is the same
as the minimal number of DOF required. Also derived is a set
of constraint equations that govern the choice of various system
parameters.

Index Terms—Compensation, differential group delay, feedfor-
ward systems, optical communication, polarization-mode disper-
sion (PMD).

I. INTRODUCTION

S INCE impairment due to polarization-mode dispersion
(PMD) limits channel bit rate and transmission distance,

PMD compensation is a key issue in high-speed, long-distance
optical transmission. Various schemes, both feedback and
feedforward, have been proposed to combat the PMD effect
[1]–[5]. As a general rule, given an efficient scheme to extract
the transmission fiber’s PMD parameters, feedforward com-
pensators are almost always the preferred method because they
are faster and easier to implement, i.e., they do not require a
feedback loop and a complex algorithm to optimize the control
parameters.

In a previous paper [6], Phua et al. reported a feedforward
technique capable of diagnosing and determining the relevant
PMD parameters of a transmission fiber up to the second order.
Based on the PMD information obtained using this technique,
they presented in another paper [7] a compensation scheme
using a deterministic approach. The resulting compensator,
while straightforward in design, uses more degrees of freedom
(DOF) than necessary. This paper serves to illustrate this point
and tries to find ways to reduce the number of DOF to the most
minimum value possible.

The paper is organized as follows. Section II reviews and
summarizes the results of [7] and shows that the Phua compen-
sator actually uses two DOF more than needed to fully compen-
sate the PMD up to the second order. In Section III, solutions
are proposed to reduce the extra DOF one by one.
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II. REVIEW

In Fig. 1, we redraw the compensator first proposed by Phua
et al. in [7]. It consists of a series of alternating polarization
rotators and frequency-independent delay segments.

, , , , , and are the Muller rotation matrices.
It is assumed that , , and are frequency independent
over the frequency range of interest, and , , and have
negligible second-order and higher order PMD effects. Since
the fiber parameters and are known a priori [6], the only
remaining issue is how to set the compensator appropriately so
that the net PMD vectors and equal to zero.

From Fig. 1, the total first- and second-order PMD vectors
and are found using the PMD vector concatenation rules [8]

(1)

(2)

Setting and to zero as required for total PMD compen-
sation, we find

(3)

(4)

Equations (3) and (4) clearly dictate that the vector pair
be related to by a rigid body rotation. In

other words, they impose the following requirements on and
, , and . Con-

structing and directly using Fig. 1 and the PMD vector
concatenation rules, we arrive at a second set of expressions for

and

(5)

(6)

Simplified, we get

(7)

(8)

where

(9)

(10)

In [7], it is assumed that and are fixed and known PMD
vectors, whereas is fixed and known in orientation but ad-
justable in magnitude. Hence, from (9) and (10), it follows im-
mediately that the vector is adjustable in orientation via rota-
tion , while is adjustable in both magnitude and orientation
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Fig. 1. Three-segment compensator proposed in [7]. It consists of three polarization rotators and three first-order PMD delay segments. Each segment gives a
frequency-independent differential group delay (DGD), with �� , �� , and �� being their respective PMD vectors. Note that in [7], the compensator refers only to
the section in the dashed box whose first- and second-order PMD vectors are �� and �� , respectively, but in this paper, it is more convenient to also incorporate
� into the compensator, as the DOF of the overall compensator system is to be considered.

via and . The aim is to solve for and so that their re-
spective rotation matrices and can be computed from (9)
and (10).

First, we realize , the angle between and , can be
calculated from (7) and (8). Dot multiply the two equations, and
we have

(11)

Recall , , and . We
then find

(12)

where , the angle between and (or between and ),
is determined a priori.

By requiring that and lie on some arbitrary but conve-
niently chosen plane with and knowing the angles and ,
the positions of and are also fixed. The vectors and
can then be solved analytically. The solution of is

(13)

where is the unit vector in the direction of , is the
unit vector in the direction of ,
and is the angle between and given by

(14)

After solving for , is solved using (7), where is set
to whatever value is needed to satisfy the equation. The rotation
matrices and are then solved from (9) and (10)

(15)

(16)

Knowing and , follows from (3) and (4)

(17)

(18)

The total number of DOF of the system can be computed from
(15)–(18). It is well known that two DOF are required to trans-
form a fixed polarization direction (e.g., ) to any arbitrary di-
rection (e.g., ) and three DOF to transform a pair of fixed
polarizations (e.g., ) through a rigid body rotation to a
pair of arbitrary polarizations (e.g., ). This means that

and each contain two DOF while contains three. In ad-
dition, there is one more DOF contributed by the variable delay

. This brings the total number of DOF of the system to

Total number of DOF of the system

However, the minimal number of DOF needed for complete
PMD compensation is only six (three for and three for ).
This means that the Phua compensator contains two DOF too
many, and in theory, we should be able to remove the redun-
dancy with a better design. Furthermore, it is worth noting that
the system also comes with two constraint equations, namely
(12) and (14). Both equations have to have solutions in order to
ensure robust PMD compensation, which in turn imposes con-
straints upon the magnitudes of and [7].

III. DESIGN MODIFICATIONS

A. Fix the Magnitude of

The compensator system we propose has the same structure
as that in [7] (also see Fig. 1). The only difference is that the
magnitude of is now fixed to reduce the total number of DOF
by one. This change in design has practical significance as well,
for a fixed differential-group-delay (DGD) segment introduces
a smaller loss than a variable-delay segment and is less likely to
require an optical amplifier [7].

Equations (1)–(12) are still valid, for the structure of the com-
pensator remains unchanged. Specifically, this means the angle
between and is still and the one between and still

. We do not, however, require in our new scheme that , ,
and be coplanar. Instead, we set the direction of to be the

direction and the plane spanned by and the plane.
is then located on a cone centered around , as shown in

Fig. 2.
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Fig. 2. Relative orientations of �� , �� , �� , ��, and ��. (a) �� and �� lie in
the �� plane, and � is the angle between them. �� lies on a cone centered
on �� with an apex angle �. The orientation of �� is determined by �, the
azimuthal angle on the bottom surface of the cone. (b) ��, ���, and ��� � �� �
form a triangle, and � is the angle between �� and���. Note the triangle is free
to rotate about ��� � �� � to whatever orientation needed to satisfy (8).

In vectorial form

(19)

and

(20)

The direction of is given by the azimuthal angle , which is
yet to be determined at this point. To solve for , we go back to
(7) and (8). Although both equations are vectorial in nature, we
claim that it is only the magnitude we have to worry about. For
(7), we recall both and are adjustable in orientation. There-
fore, provided that and are sufficiently large, they will
always be able to form a triangle with as in Fig. 2(b),
hence, satisfying (7). For (8), we notice all three terms involved
are perpendicular to (see (7) and (11)), or in other
words, , , and are all located in a plane
perpendicular to . Moreover, because and are ad-
justable in orientation, we can rotate to point in any
direction in this plane [by rotating the triangle around
in Fig. 2(b)] without changing its magnitude. Hence, (8) will
also be satisfied as long as they are satisfied in magnitude.

We proceed by taking the squared magnitude on both sides of
(7) and (8), as follows:

(21)

(22)

where is the angle between and . However,
in (22) is also given by the trigonometric

identity

(23)

Solve for using (21) and substitute it into (23),
and we have

(24)
Equate the right sides of (22) and (24), and we get

(25)
Substituting into (19) and (20) and noting ,
, , and , (25) becomes (26), shown

at the bottom of the page, which can be transformed into a
quadratic equation in (or ). Thus, can be solved
from (26), and and can be determined from (20) and (21),
respectively. Once and are known, the orientations of and

can be easily solved from (7) and (8).
We note that (12), (21), and (25) now serve as the constraint

equations of the new system. To ensure robust PMD compen-
sation, we need to choose the magnitude of , , and ap-
propriately so that we can always have solutions for the three
constraint equations with any anticipated magnitude of and

.
It is worth comparing the new set of constraint equations with

those of Phua’s original design [7], in which (12) and (14) pro-
vide the constraint conditions. In the new scheme, we kept (12),
got rid of (14), and added (21) and (25). Equation (21) in prin-
ciple does not impose too severe a constraint on the system. For
instance, if we set

then

or, equivalently

and (21) is satisfied for all time (i.e., a angle can always be
found). That leaves us with (25), which basically replaces (14)
in the original design as the more restrictive condition that could
potentially cause problems in actual implementation. Neither
of these two conditions is straightforward to implement, and
their satisfaction requires further numerical and experimental
analysis.

(26)
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B. Reduce the Number of DOF in by One

In both designs discussed so far, the polarization rotator
contains three DOF and is required to perform a rigid body ro-
tation between two pairs of time-varying states of polarization
(SOP) (see (17) and (18)). We can represent this transformation
in the Jones space by a generic SU(2) matrix

where the angles , , and are determined by solving (17) and
(18).

It has long been demonstrated that wave-plate polarization ro-
tators are capable of continuously transforming a time-varying
SOP of arbitrary polarization into a time-varying SOP of another
polarization [9]. However, such devices contain only two DOF
and work on only one SOP at a time. We can, of course, always
use two such rotators to implement , but we show in this sec-
tion that with a slight modification in our scheme, we can reduce
the number of DOF in by one, hence making it realizable with
a single polarization rotator. (We would like to point out that for
continuous and reset-free operations, all commercially available
polarization rotators today require three DOF. The third DOF,
however, is employed purely for engineering reasons and should
be differentiated from the first two “essential” DOF [10].)

In the last section, we begin with the assumption that and
are in the plane and then proceed to find and . After

a solution for and has been found, or in other words, after
we have constructed a configuration of vectors in Fig. 2 that
satisfies (7) and (8), we realize that it remains a solution even if
we rotate all the vectors around by a fixed but arbitrary angle
. This amounts to redefining every vector in (7) and (8) (and in

Fig. 2) by applying on them a rigid body rotation, an operator
that conserves equalities (7) and (8).

A rotation about the axis by a fixed angle in the Stokes
space gets translated into the Jones space as [8]

Apply the above rotation operator after the original ma-
trix, and we get

Choose and define , and
becomes

and we obtain a rotation matrix with only two DOF.

IV. CONCLUSION

In this paper, a feedforward PMD compensator capable of
complete PMD compensation up to the second order is opti-
mized. A reduction in cost and complexity by minimizing the
total number of DOF of the system is achieved. Also derived is
a new set of constraint equations, which govern the choice of
various system parameters. More analytic and simulation work

is required to compare the performance of the two designs as
well as to verify the validity of our approach in general. This
will be the subject of a future publication.
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