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Abstract: This study is focused towards analyzing the heat and flow movement among two stretching
rotating disks inside water-based carbon nanotubes. The idea of thermal boundary conditions and
heat convection is used and the system is expressed in partial differential equations. Using the
similarity techniques, the model is successfully converted to a nonlinear ordinary differential equation.
A familiar collocation method is used to simulate the outcomes of the governed system while the
method is validated through a set of tables and assessed with existing literature. The physical aspects
of the proposed model have been studied in detail and assisted via graphical diagrams against the
variation of different parameters. It is found that the multiple-wall carbon nanotubes intensify the
system quickly and improve the rate of heat transmission. It is also noted that the proposed method
is in excellent in agreement with already published studies and can be extended for other physical
problems. Moreover, when values of Re parameter increase, a drop is noted in the magnitude of
radial velocity near the faces of the disks. It is very clear from the tabular comparison that collocation
scheme is in good agreement with already published studies and homotopic solutions.

Keywords: carbon nanotubes; convective fluid flow; collocation approach; numerical solution
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1. Introduction

The area of nanofluids and their extensive real-life application gained a realistic
devotion among science and engineering scholars. The area of nanofluids was initiated
by Choi and Eastman by introducing a new sort of thermo-fluid tag for “nanofluids”
in which solid-liquid combination takes base fluid (mostly bad conductors) and solid
nanometer dimensions particles—“nanoparticles” [1]. If we look at the engineering and
industrial aspects then operation of nanoparticle arises in various arena, such as biological,
chemotherapy, medicine, therapy, surgery, environmental, chemical, material, physical
and other interdisciplinary sciences. Later on, various nanofluid models were proposed
by different scholars, including Buongiorno, Xuan and Li, Tiwari and Das and Xue and
Xu [2–5]. Numerous investigations have been shown with the similar ideology of studying
nanofluids using different nanoparticles including aluminum oxide, copper, copper-oxide,
molybdenum disulfide, silver, carbon and other shapes of carbon, such as CNTs [6–9].
Literature discloses that CNTs display outstanding motorized, ocular, electrical and thermal
physiognomies [10]. CNTs are testified and noted as having great elasticity (500 by steel),
higher current capacity (1K times) and huge density (1/2 by aluminum), compared with
copper (Cu) and ample advanced conductivity (15 times). Moreover, the presence of
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carbon chain CNTs are not risky factors and it could be useful to the scientific community
and environment.

Many studies are available in the literature that deal with thermal analysis using
carbon nanotubes. Hayat et al. analyzed the mixed convection flow of blood containing
carbon nanotubes (CNTs; both single and multi-wall) over a curved stretching sheet [11].
The nanofluids-based modeling is performed through the concept of Xu idea, while dis-
sipation and Joule heating impacts are incorporated into energy expression. Haq et al.
presented viscosity and thermal conductivity of carbon nanotubes (CNTs) including single
and multi-walls inside the base fluid of comparable volume over a fluid stream on shallow
stretching [12]. Conclusions have been established in support of the entire examination
and it is was discovered that engine oil-based CNTs have advanced skin friction and heat
transmission rate compared to ethylene glycol and water-based CNTs. Mohyud-Din et al.
analyzed the impacts of thermal radiation and carbon nanotubes (CNTs), both single-wall
and multi-wall, in the Marangoni convection boundary-layer viscous liquid flow [13]. A nu-
merical study using least squares methods and comparative analysis with existing method
is made. Raza et al. presented an arithmetical study to pursue the influences of chemical
reaction and radiation features in MHD flow of nanofluids induced by outwardly elastic
diskette taking the effects of non-uniform heat sink and source [14]. The modeled equations
have been efficiently solved through MATLAB-based numerical command and outcomes
analysis is reported via graphical plots. Haq et al. explored a study to seek the impacts
of volume fraction of carbon nanotubes (CNTs) on magneto-hydrodynamics stream and
heat transmission in dual cross directions over a stretching sheet with convective boundary
conditions [15]. Three sorts of base fluids including water, ethylene glycol and engine oil
are used and compared while impacts of single and multi-wall carbon nanotubes were
studied. The readers can obtain more information on the topic in [16–24].

Hamid et al. explored the hydromagnetic flow and heat control inside a partly
heated rectangular fin-shaped cavity containing carbon nanotubes (CNTs) incorporated in
water [25]. A tiny intense (heated) rod is located in the interior of the cavity to generate a
heat transfer source or a resistance. The right wall of the horizontal tip is tested for three
dissimilar temperatures (adiabatic, cold and heated). Experimental validation of the study
was made and results are explained physically using graphs. It is found that the velocity
components are maximum and minimum at the vertical and horizontal corners, respectively.
The local Nusselt numbers are improved by incorporating both radiations impacts and
solid volume fraction of CNTs, whereas, peak of the Nusselt number is noted at the corners.
Khan et al. examined the properties of water-based single-walled carbon nanotubes on
free-convection in a partially heated right trapezoidal cavity where the lower boundary
is heated while the side and top walls are kept cold and adiabatic, respectively [26]. The
proposed dimensionless partial differential equations are explained with designated di-
mensionless boundary conditions via a finite element scheme and outcomes are illustrated
graphically. The readers can see the references to understand the study of nanofluids inside
the complex enclosures [27–37].

The motivation of current research work is to examine the heat and flow move-
ment among two stretching rotating disks inside the water-based carbon nanotubes. The
idea of thermal boundary conditions and heat convection is used and the system is ex-
pressed in partial differential equations. The considered model has significance in real life,
such as the governing model used in ground water flows, geothermal extraction, storage
of nuclear waste material, oil recovery processes, impurity dispersion in aquifers, etc.
A comprehensive assessment of outcomes gained by collocation and RK-4 methods is
made to display the competence of recommended procedures. The physical aspects of the
proposed model were studied in detail and asserted via graphical diagrams by variation
in different parameters. It is found that the multiple-wall carbon nanotubes intensify the
system quickly and improve the rate of heat transmission. It is also noted that the proposed
method is in excellent agreement with already published studies and homotopic solutions
and can be extended for other physical problems [38].



Mathematics 2022, 10, 1542 3 of 15

2. Mathematical Formulation

Assuming the flow of nanofluid among double nonequivalent immeasurable disks that
are axisymmetric and incompressible, both plates disconnected by h (constant distance),
one is at a point z = 0 and z = h is the location of the other. Assuming the disks are
revolving with the angular velocities towards the axial direction, for the first one it is Ω1
and the velocity of second is Ω2. Figure 1 is shown to understand the geometrical aspect
of the problem. It can be seen that stretching rates of the disks are, respectively, a1 and
a2 in the radial direction. Two sorts of carbon nanotubes (single and multi-wall) were
employed as nanoparticles inside water-based fluid. In addition, the surface validates the
convective type boundary conditions. Moreover, it is further assumed that that temperature
of the upper and lower disks is T1 and T0. Taking all assumptions into consideration, the
governing equations of the mechanism in cylindrical coordinates are [20]:

Mathematics 2022, 10, x FOR PEER REVIEW 4 of 16 
 

 

𝑣 = 𝑟𝛺ଵ𝑔ሺ𝜂ሻ, 𝑢 = 𝑟𝛺ଵ𝑓ᇱሺ𝜂ሻ, 𝑤 = −2ℎ𝛺ଵ𝑓ሺ𝜂ሻ, 𝑇 − 𝑇ଵ𝑇଴ − 𝑇ଵ = 𝜃ሺ𝜂ሻ, 𝑧ℎ = 𝜂, 𝜌௙𝛺ଵ𝜈௙ ൭12 𝑟ଶℎଶ 𝜖 + 𝑃ሺ𝜂ሻ൱ = 𝑝. (9)

z

r

u

h
w

v

1rΩ

2rΩ

1ra

2ra

2 1( )nf
Tk h T T
z

∂ = − −
∂

1 0( )nf
Tk h T T
z

∂ = − −
∂

Fluid

 

Figure 1. Systematic diagram of the problem [44,45]. 
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associated with the following boundary conditions

z→ 0 then v = r1Ω1, kn f
∂T
∂z

= (T0 − T)(−h1), u = r1a1 w = 0, (6)

z→ h then v = r1Ω2, u = r1a2, kn f
∂T
∂z

= (T − T1)(−h2), w = 0, (7)

where some parameters are indicated, such as mean absorption coefficient (k∗), fluid
temperature (T), pressure (p) and Stefan Boltzmann constant (r1). The h2 and h1 are,
respectively, represented as convective heat transfer coefficients of upper and at lower walls.
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µn f =
µ f

(1−φ)2.5 , ρn f = ρCNT(φ) + ρ f (1− φ),
(
ρcp
)

n f =
(
ρcp
)

CNT(φ)

+
(
ρcp
)

f (1− φ),
kn f
k f

=
(−φ+1)+2φlnln

kCNT+k f
2k f

kCNT
kCNT−k f

(−φ+1)+2φlnln
kCNT+k f

2k f

k f
kCNT−k f

.
(8)

In the equation above the parameters ρ, µ, k and cp are density, nanofluid effective
dynamic viscosity, thermal conductivity and heat capacitance. Moreover, the solid volume
fraction of nanoparticles, thermo-based physical possessions of base fluid, nanofluid and
carbon nanotubes are correspondingly designated as φ, f , n f and CNT. To change the
directly-above structure of the partial differential equations (PDEs) to a nonlinear ordinary
differential equations set we have considered the subsequent alteration schemes:

v = rΩ1g(η), u = rΩ1 f ′(η), w = −2hΩ1 f (η),
T−T1
T0−T1

= θ(η), z
h = η, ρ f Ω1ν f

(
1
2

r2

h2 ε + P(η)
)
= p.

(9)

Assisted by the similarity viable equations in (9), we have gained (1)–(7):

1

(1− φ)2.5
(

1− φ + ρCNT
ρ f

φ
) f ′′′ + Re

(
2 f f ′′ − f ′2 + g2

)
− ε

1− φ + ρs
ρ f

φ
= 0, (10)
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φ
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1(
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φ
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1
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(
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(
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(
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)

CNT(
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)

f
φ

)
f θ′ = 0. (13)

The boundary conditions obtained as:

f (η) = 0, P(η) = 0, g(η) = 1, f ′(η) = A1, θ′(η) = − k f
kn f

γ1[1− θ(η)], η → 0,

θ′(η) = − k f
kn f

γ2θ(η), f ′(η) = A2, f (η) = 0, g(η) = Ω, η → 0,
(14)

In the above-described reduced system, involved parameters are, Reynold number
(Re), Prandtl number (Pr), scaled stretching (A1and A2), Biot (Bi), rotation parameter (Ω)
and radiation parameter (Rd).(

ρcp
)

f ν f

k f
= Pr,

Ω1h2

ν f
= Re,

a1

Ω1
= A1,

a2

Ω1
= A2,

16σ∗T3
1

3k f k∗
= Rd,

Ω2

Ω1
= Ω,

hh1

k f
= γ1,

hh2

k f
= γ2.

Now taking the derivative of the expression, (10) with respect to η and then eliminating
ε, we found the simple model as follows:

1

(1− φ)2.5
(

1− φ + ρCNT
ρ f

φ
) f iv + 2Re

(
f f ′′′ + gg′

)
= 0, (15)

and ε can be obtained by considering the subsequent expression as

ε =
1

(1− φ)2.5 f ′′′ (0)− Re

(
1− φ +

ρCNT
ρ f

φ

)( f ′(0)
)2 − (g(0)) +

M(
1− φ + ρCNT

ρ f
φ
) σn f

σ
f ′(0)

,
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Now, integration of Equation (12) will give us the solution for the involved pressure
as given below:

− 2

Re
(

f 2
)
+
(

f ′ − f ′(0)
) 1

(1− φ)2.5
(

1− φ + ρCNT
ρ f

φ
)
 =

1(
1− φ + ρCNT

ρ f
φ
)P.

The entire shear-stress at the bottom disk can be calculated using the expression:

τw =
√

τ2
zr + τ2

zθ ,

where τzr and τzθ indicate the radial and tangential directions of shear stress and are
defined as:

τzr = µn f
∂u
∂z
|z=0 =

µ f rΩ1 f ′′ (0)

(1− φ)2.5h
, τzθ = µn f

∂v
∂z
|z=0 =

µ f rΩ1g′(0)

(1− φ)2.5h
.

At lower and upper disks the skin friction coefficients C1 and C2 are given as:

1

Rer(1− φ)2.5

[(
g′(0)

)2
+ ( f ′′ (0))2

] 1
2
=

τw|z=0

ρ f (rΩ1)
2 = C1,

1

Rer(1− φ)2.5

[(
g′(1)

)2
+ ( f ′′ (1))2

] 1
2
=

τw|z=h

ρ f (rΩ2)
2 = C2.

Local Reynolds numbers are calculated as rΩ1h
ν f

= Rer. The upper disk and lower disk
have heat transmission as follows:

hqr

k f (T0 − T1)
|z=h = Nux2,

hqw

k f (T0 − T1)
|z=0 = Nux1

Here qr and qw are the radiative and wall heat flux specified under:

qw|z=h = qr|z=h − kn f
∂T
∂z
|z=h, qw|z=0 = qr|z=0 − kn f

∂T
∂z
|z=0,

16σ∗T3
1

3k∗
∂T
∂z
|z=0,= qr|z=0,

16σ∗T3
1

3k∗
∂T
∂z
|z=h = qr|z=h.

The Nusselt numbers at lower and upper disks in dimensionless form are given as:

Nu2 = −θ′(1)

(
kn f

k f
+ Rd

)
,−
(

Rd +
kn f

k f

)
θ′(0) = Nu1.

3. Methodology and Solution Procedure

Numerical analysis of the considered convective fluid flow suspended by the carbon
nanotubes by means of the well-known and efficient collocation approach; this scheme is
very simple to apply and has the following procedure for the obtained set of dimension-
less equations:

Step 1. Let start with considering the following dimensionless form

f iv(η) + 2Re(1− φ)2.5

(
1− φ +

ρCNT
ρ f

φ

)(
f (η) f ′′′ (η) + g(η)g′(η)

)
= 0, (16)

g′′ (η) + 2Re(1− φ)2.5

(
1− φ +

ρCNT
ρ f

φ

)(
f (η)g′(η)− f ′(η)g(η)

)
= 0, (17)
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1
Pr

(
kn f

k f
+ Rd

)
θ′′ (η) + 2Re

(
1− φ +

(
ρcp
)

CNT(
ρcp
)

f
φ

)
f (η)θ′(η) = 0. (18)

Step 2. This scheme allows us to write the following approximate solutions to find the
solutions of the problems defined in step 1 as below:

f̃ = a0 + a1η + a2η2 + . . . + aMηM =
M

∑
k=0

akηk, (19)

g̃ = b1 + b2η + b3η2 + . . . + bMηM =
M

∑
k=0

bkηk, (20)

θ̃ = c1 + c2η + c3η2 + . . . + cMηM =
M

∑
k=0

ckηk. (21)

Here the parameter M denotes the order of approximation via collocation method,
and it is well known that as we enhance the value of M, the accuracy improves gradually.
After imposing the obtained dimensionless boundary conditions on the above trial solution,
it converts to the following modified form and we call it modified trial solutions:

f̃ = A1η − (A2 + 2A1)η
2 + (A2 + A1)η

3 +
M

∑
k=1

ak

(
k− (k + 1)η + ηk+1

)
η2, (22)

g̃ = 1− (1−Ω)η −
M

∑
k=1

bk

(
1− ηk

)
η, (23)

θ̃ = γ1
R

(
kn f + γ2k f

)
− k f γ2γ1

R η

+
M
∑

k=1
ck

(
ηk+1 − 1

R

(
γ1η +

kn f
k f

)(
(k + 1 )kn f + γ2k f

))
.

(24)

where R = (γ1 + γ2)kn f + γ1γ2k f .
Step 3. We can generate the residual functions R f , Rg and Rθ by incorporating the

modified trial solutions into the problem give in step 1, obtaining the following form as:

R f = f iv(η) + 2Re(1− φ)2.5

(
1− φ +

ρCNT
ρ f

φ

)(
f (η) f ′′′ (η) + g(η)g′(η)

)
6= 0, (25)

Rg = g′′ (η) + 2Re(1− φ)2.5

(
1− φ +

ρCNT
ρ f

φ

)(
f (η)g′(η)− f ′(η)g(η)

)
6= 0, (26)

Rθ =
1

Pr

(
kn f

k f
+ Rd

)
θ′′ (η) + 2Re

(
1− φ +

(
ρcp
)

CNT(
ρcp
)

f
φ

)
f (η)θ′(η) 6= 0. (27)

Step 4. In order to investigate the unknowns present in the set of residual functions
given above, it is necessary to generate the set of algebraic equations which are equal in
the number the unknowns present in R f , Rg and Rθ , therefore we use the following equal
spaced collocation points:

ηl = a +
1
M

l, l = 0, 1, 2, 3, . . . , M.

Step 5. After solving the system of algebraic equations obtained in step 4, we achieved
the values of unknowns, and inserting these constants into the above modified trial solution
yields the numerical solution of nondimensional form of the governing model.
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In order to see the impact of numerous parameters on the velocities and temperature
profiles, we simulate the collocation method Maple code against M = 7 and φ = 0.2,
Re = 0.9, γ1 = 0.4, γ2 = 0.5, A1 = 0.7, Pr = 1, Ω = A2 = 0.8.

4. Results and Discussion

The model is numerically examined using the efficient collocation method and the
behavior of the profiles including velocity (tangential and axial) and temperature and
is shown graphically against the variation of various prominent parameters including
the dimensionless form [41–45]. The numerical simulations are made for M = 7 and
φ = 0.2, Re = 0.9, γ1 = 0.4, γ2 = 0.5, A1 = 0.7, Pr = 1, Ω = A2 = 0.8. Figure 2
illustrates the velocities attitude against Re parameters. Figure 2a,c has been respectively
asserted to show the behavior of axial f (η) and tangential velocities g(η) with SWCNTs
while the axial f (η) and tangential velocities behavior in the presence of MWCNTs is
displayed in Figure 2b,d, respectively. The temperature profile is analyzed and plots for
SWCNTs and MWCNTs are displayed in Figure 2b and Figure 3a, respectively. The impact
of nanoparticles volume friction φ on the velocities is illustrated in Figure 4a for the axial
case and Figure 4c for the tangential case in the presence of SWCNTs while Figure 4b,d
respectively display the behavior for axial and tangential velocities with the incorporation of
MWCNTs. Figure 5a,b is plotted to seek the temperature analysis against the nanoparticles
volume friction φ. It can be seen that the φ impact with SWCNTs is depicted in Figure 5a,
while the φ impact with SWCNTs is presented in Figure 5b. Consequences of parameter A1
on radial velocity are offered in Figure 6a,b for SWCNTs and MWCNTs, correspondingly.
We detected that the dual influence of parameter A1 on f ′(η). The radial velocity shape
surges upwards as parameter A1 is improved while 0 ≤ η < 3.35, when 3.35 ≤ η ≤ 1 the
radial velocity profile drops when parameter A1 increases. Analogous profile of f ′(η) is
attained for SWCNTs and MWCNTs. Figure 7a,b is plotted to depict the effect of parameter
A2 of f (η) for the SWCNTs and MWCNTs, separately. As parameter A2 is boosted the axial
velocity drops near the surface of the lower disk. A similar profile for f ′(η) is achieved
for SWCNTs and MWCNTs. Figure 8a,b demonstrate that the tangential velocity profile
is a growing function of parameter A2 for SWCNTs and MWCNTs, correspondingly. The
magnitude of g(η) has greater values of SWCNTs compared to MWCNTs.
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Table 1 is construct to show the thermo-physical properties. Comparative study is
made for various values of involved parameters with other methods and existing physical
outcomes while a detailed sketch is available in Table 2. The table is particularly made
for φ = A1 = A2 = 0, Re = 1 and for different values of Ω. It is very clear from the
tabular comparison given in Table 2 that the collocation scheme is in good agreement with
already published studies and homotopic solutions. In Table 3, by taking various values
for M, when φ = 0.2, A1 = 0.7, γ2 = 0.5, γ1 = 0.4, Ω = A2 = 0.8, Rd = 0.3 and
Re = 0.9. an extensive study related to error investigation for axil and tangential velocities,
and temperature profile with SWCNTs, was made. It can be seen in Table 3 that higher
values of M allow for a better analysis of the problem and accuracy level is improved at
tangible level. Table 4 is given to display the convergence analysis of the proposed scheme
when φ = 0.2, Re = 0.9, γ1 = 0.4, γ2 = 0.5, A1 = 0.7, Ω = A2 = 0.8, Pr = 6.2 and
Rd = 0.3. Table 5 is constructed to show the effectiveness of the proposed method. In this
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table, residual error of velocity, temperature and concentration profile is shown against the
variation of M. It is important to note that as the value of M is enhanced the residual error
decreases gradually, this shows the convergence of the proposed method.
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Table 1. Thermo-physical properties of water and carbon nanotube.

Thermophysical
Properties k (W/mK) ρ (kg/m3) cp(J/kgK)

Water 0.613 997.1 4179
SWCNTs 6600 2600 425
MWCNTs 3000 1600 796

Table 2. Assessment of the projected outcomes for f ′′ (0) and g′(0) with existing results [39] and
homotopic analysis method (HAM) [40] for φ = A1 = A2 = 0, Re = 1 and for different values of Ω.

Ω [40] [39] CM [40] [39] CM

− 0.06666 0.06666 0.06666314 2.00095 2.00095 2.00095204
−0.8 0.08394 0.08394 0.08394207 1.80259 1.80259 1.80258842
−0.3 0.10395 0.10395 0.10395088 1.30442 1.30442 1.30442358

0 0.09997 0.09997 0.09997221 1.00428 1.00428 1.00427759
0.5 0.06663 0.06663 0.06663420 0.50261 0.50261 0.50261352

Table 3. Error investigation of axil and tangential velocities, and temperature profiles for SWCNTs
for dissimilar values of when φ = 0.2, A1 = 0.7 γ2 = 0.5, γ1 = 0.4, Ω = A2 = 0.8, Rd = 0.3, and
Re = 0.9.

k M Errorf Errorg Errorθ

1

08 1.71536 × 10−10 6.93642 × 10−11 3.84831 × 10−26

13 5.81908 × 10−14 1.09435 × 10−16 9.29935 × 10−31

18 4.23987 × 10−19 4.41625 × 10−22 1.38211 × 10−36

22 2.13039 × 10−24 1.28969 × 10−27 1.93124 × 10−42

26 1.26154 × 10−31 1.66696 × 10−35 2.17492 × 10−50

30 2.26778 × 10−35 4.89294 × 10−39 3.27934 × 10−53
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Table 4. Convergence of the proposed method when φ = 0.2,Re = 0.9, γ1 = 0.4, γ2 = 0.5,
A1 = 0.7,Ω = A2 = 0.8,Pr = 6.2 and Rd = 0.3.

SWCNTs MWCNTs

M −f”(0) −g
′
(0) −θ

′
(0) −f”(0) −g

′
(0) −θ

′
(0)

1 4.4213991 0.6357312 0.0000206393047 4.4130586 0.5695951 0.0000454053457
4 4.3936648 0.1928291 0.0000206392404 4.3942372 0.1945842 0.0000454050291
7 4.3937727 0.1938640 0.0000206392413 4.3943129 0.1953145 0.0000454050328

10 4.3938406 0.1938180 0.0000206392413 4.3943621 0.1952809 0.0000454050330
15 4.3938407 0.1938198 0.0000206392413 4.3943621 0.1952819 0.0000454050330
21 4.3938407 0.1938198 0.0000206392413 4.3943621 0.1952819 0.0000454050330
23 4.3938407 0.1938198 0.0000206392413 4.3943621 0.1952819 0.0000454050330
28 4.3938407 0.1938198 0.0000206392413 4.3943621 0.1952819 0.0000454050330
31 4.3938407 0.1938198 0.0000206392413 4.3943621 0.1952819 0.0000454050330

Table 5. Error analysis of axil velocity, tangential velocity and temperature for SWCNTs for different
values of M.

k M εf εg εθ

1

10 2.10474 × 10−10 6.10471 × 10−11 7.36521 × 10−26

15 1.50471 × 10−14 3.66540 × 10−16 1.54891 × 10−31

19 5.00474 × 10−19 4.45874 × 10−22 1.05478 × 10−36

23 1.33691 × 10−24 1.75325 × 10−27 2.69801 × 10−42

28 1.00081 × 10−31 9.35682 × 10−35 2.45701 × 10−50

31 2.12453 × 10−35 4.00147 × 10−39 3.00689 × 10−53

5. Concluding Remarks

This study is carried out to examine the heat and flow measure among two stretching
rotating disks containing the water-based carbon nanotubes. The concept of thermal
boundary conditions and heat convection is utilized and the system is expressed in partial
differential equations. By means of the similarity methods, the model is fruitfully changed
to a nonlinear ordinary differential equation. A familiar collocation method is used to
simulate the outcomes of the governed system while the method is validated through a set
of tables and assessment with existing literature.

Hence, significant observations are given below:

• When the values of Re parameter are increased, a drop is noted in the magnitude of
radial velocity near the faces of the disks.

• It is very clear from the tabular comparison given in Table 2 that the collocation scheme
is in good agreement with already published studies and homotopic solutions.

• It is found that the multiple-wall carbon nanotubes intensify the system quickly and
improve the rate of heat transmission.

• It is also noted that the proposed method is in excellent agreement with already
published studies and homotopic solutions and can be extended for other physical
problems.
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Nomenclature

h Distance between the plates
Ω1 and Ω2 Angular velocities of the plates
a1 and a2 Stretching rates in radial direction
T1 and T0 Temperature of upper and lower disks
k∗ Mean absorption coefficient
T Fluid temperature
p Pressure
r1 Stefan Boltzmann constant
h2 and h1 Convective heat transfer coefficients at upper and at lower walls
ρ Density
CNT Carbon nanotubes
Re Reynold number
Pr Prandtl number
Bi Biot number
Rd Thermal radiation parameter
Ω Rotation parameter
SWCNTs Single wall carbon nanotubes
MWCNTs Multi wall carbon nanotubes
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