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Abstract. Methods for enumerating cryptographic keys based on par-
tial information obtained on key bytes are important tools in crypt-
analysis. This paper discusses two contributions related to the practical
application and algorithmic improvement of such tools. On the one hand,
we observe that the evaluation of leaking devices is generally based on
distinguishers with very limited computational cost, such as Kocher’s
Differential Power Analysis. By contrast, classical cryptanalysis usually
considers large computational costs (e.g. beyond 280 for present ciphers).
Trying to bridge this gap, we show that allowing side-channel adversaries
some computing power has major consequences for the security of leak-
ing devices. For this purpose, we first propose a Bayesian extension of
non-profiled side-channel attacks that allows us to rate key candidates
according to their respective probabilities. Then we provide a new deter-
ministic algorithm that allows us to optimally enumerate key candidates
from any number of (possibly redundant) lists of any size, given that
the subkey information is provided as probabilities, at the cost of lim-
ited (practically tractable) memory requirements. Finally, we investigate
the impact of key enumeration taking advantage of this Bayesian for-
mulation, and quantify the resulting reduction in the data complexity of
various side-channel attacks.

1 Introduction

Side-channel attacks represent an important threat to the security of crypto-
graphic hardware products. As a consequence, evaluating the information leak-
age of microelectronic circuits has become an important part in the certification
of secure devices. Most of the tools/attacks that have been published in this
purpose are based on a so-called “divide-and-conquer” approach. That is, in a
first “divide” part, the evaluator/adversary recovers information about different
parts of the master key, usually denoted as subkeys (as a typical example, the
target can be the 16 AES key bytes). Next, a “conquer” part aims to combine the
information gathered in an efficient way, in order to recover the full master key.

Research over the last ten years has been intensive in the optimization of the
divide part of attacks. Kocher et al.’s Differential Power Analysis (DPA) [14]
and Brier et al.’s Correlation Power Analysis (CPA) [6] are notorious examples.
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One limitation of such approaches is their somewhat heuristic nature, as they
essentially rank the subkeys according to scores that do not have a probabilistic
meaning. As demonstrated by Junod in the context of linear cryptanalysis, such
heuristic key ranking procedures may be suboptimal compared to Bayesian key
recoveries [12]. The template attacks introduced by Chari et al. in 2002 typically
aim to get rid of this limitation [7]. By carefully profiling a probabilistic model for
the physical leakages, such attacks offer a direct path towards Bayesian subkey
testing procedures. Template attacks are optimal from an information theoretic
point of view, which makes them a prime tool for the worst-case security evalua-
tion of leaking devices [32]. However, they also correspond to strong adversarial
assumptions that may not be met in practice. Namely, actual adversaries are not
always able to profile an accurate enleakage model, either because of a lack of
knowledge of the target devices or because of physical variability [26]. As a con-
sequence, attacks profiling an “on-the-fly” leakage model such as the stochastic
approach, introduced by Schindler et al. [27] and discussed by Doget et pal. [9],
are an important complement to a worst-case security analysis.

By contrast, only little attention has been paid to the conquer part in side-
channel analysis. That is, in most cases the attacks are considered successful if
all the subkeys are recovered with high confidence, which generally implies an
extremely small time complexity for the offline computations. This situation is
typically exemplified by initiatives such as the DPA contest [22], where the suc-
cess rate in recovering a master key is directly obtained as the success rates for
the concatenated 16 subkeys ranked first. In fact, the most noticeable exceptions
attempting to better exploit computational power in physical attacks are based
on advanced techniques, e.g. exploiting the detection of collisions [4,15,28,29], or
taking advantage of algebraic cryptanalysis [5,20,24,25], of which the practical
relevance remains an open question (because of stronger assumptions). But as
again suggested by previous works in statistical cryptanalysis, optimal key rank-
ing procedures would be a more direct approach in order to better trade data
and time complexities in “standard” side-channel attacks.

In this paper, we improve the divide and the conquer parts of side-channel
attacks, with two main contributions. Regarding the divide part, we start with
the observation that non-profiled side-channel attacks are usually limited by
their heuristic use of scores when ranking subkey candidates. As a consequence,
we propose a method for non-profiled attacks that allows deriving probability
mass functions for the subkey hypotheses. This tool can be viewed as a natural
extension of the stochastic approach, but is also applicable to DPA and CPA.
More generally, expressing the information obtained through non-profiled side-
channel attacks with probabilities allows us to connect them better with template
attacks, where the scores are already expressed as subkey probabilities.

Second, we provide the first comprehensive investigation of the conquer part
of side-channel attacks. For this purpose, we start from the motivation that
testing several billions of key candidates on a modern computer is not far-fetched:
being able to recover a master key after such a computation is indeed a security
breach. Next, we observe that two main solutions for testing key candidates
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from partial information on the subkeys exist in the literature. On the one hand,
Meier and Staffelbach proposed a sampling algorithm in 1991. However, it turns
out that in our side-channel attack context, such a probabilistic search leads to
significant overheads in terms of number of keys to test. On the other hand,
Pan, van Woudenberg, den Hartog and Witteman described a deterministic key
enumeration algorithm at SAC 2010. But large memory requirements prevent
the application of this second solution when the number of keys to enumerate
increases. For example in [21], the authors were limited to the enumeration of
216 candidates. As none of these tools is perfectly suited to our side-channel
attack context, we propose a new deterministic algorithm for key enumeration,
that is time and memory efficient, and allows the optimal enumeration of full
keys by decreasing order of probabilities. It takes advantage of the probability
mass functions of subkeys made available through our first contribution. The
new algorithm can be viewed as an improvement of the SAC 2010 one, in which
we reduce the memory complexity of the enumeration thanks to a recursive
decomposition of the problem. Interestingly, and as previously observed in other
cryptanalysis settings, this improvement of the key ranking strategy also has a
significant impact on the data complexity of side-channel key recoveries.

Summarizing, this work brings an interesting complement to the evaluation
framework in [32]. It allows stating standard side-channel attacks as a data com-
plexity vs. time complexity tradeoff. On the theoretical side, the proposed key
enumeration algorithm leads to a proper estimation of security metrics such as
high-order success rates or guessing entropy, for block cipher master keys (this
estimation was previously limited to subkeys or small orders). In practice, ex-
perimental results also exhibit that considering adversaries with a reasonable
computing power leads to significant improvements of standard side-channel at-
tacks. These gains are particularly interesting if we compare them with the ones
obtained by only working on the statistics in the divide part of side-channel
attacks [31]. Hence, we believe that the tools introduced in this paper have an
important impact for the security evaluations of leaking devices, e.g. for certi-
fication laboratories. In this respect, it is worth noticing the gap between the
computational complexities usually considered in the evaluation of side-channel
attacks and the ones considered for evaluating security against mathematical at-
tacks [16,23]. We also note that the tools introduced in this paper are generic and
have potential impact in other cryptanalytic settings (e.g. based on faults [3],
or statistical [2,18]), although standard side-channel attacks are a very natural
environment for using them. Finally, in order to stimulate authors to consider
the computational aspect of side-channel attacks, we provide an optimized im-
plementation of the enumeration algorithm available in [1].

2 Background

The “standard” side-channel attacks considered in this work use a divide-and-
conquer approach in which the side-channel subkey recovery phase focuses on
one specific operation at a time [17]. In block ciphers like the AES, this operation
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is usually one 8-bit S-box in the first encryption round. We denote with p and
k the byte of the plaintext and the byte of the key (i.e. the subkey) that are
used in the attack, with x = p ⊕ k the input value of the S-box, and with
y = S(x) the corresponding output value. The goal of a side-channel subkey
recovery phase is to identify the best (and hopefully correct) subkey candidate

k̂ from the set of all possible key hypotheses K, using q measured encryptions.
For each target S-box the adversary collects a data set of pairs {(pi, li)}1≤i≤q

1,
with pi the ith plaintext byte involved in the target S-box computation, and li
the corresponding leakage value. For simplicity, and because it has little impact
on our following discussions, we assume unidimensional leakages. In addition, we
assume leakage samples composed of a deterministic and a random part, with
the deterministic part depending only on the S-box output (i.e. we use the EIS
assumption introduced in [27]). The leakage samples can consequently be written
as li = L(yi) = f(yi) + n, with n a Gaussian distributed noise. In general, side-
channel attacks can be classified as profiled and non-profiled attacks, depending
on whether the adversary can perform a training phase or not.

Profiled attacks, like template attacks [7], take advantage of their profiling
phase to characterize the leaking device with a probabilistic model. This allows
the adversary to rank the subkey hypotheses k according to their actual prob-
abilities: k̂ = argmaxk Pr[k|{(pi, li)}]. These probabilities can then directly be
used to build a Probability Mass Function (PMF): fK(k) = Pr[k|{(pi, li)}], with
K the discrete random variable corresponding to the unknown subkey byte. This
PMF will be needed to perform the key enumeration in Section 4. By contrast,
in the case of non-profiled attacks (e.g. DPA [14] or CPA [6]), the best subkey
hypothesis is not chosen based on probabilities, but on the value produced by
a statistical distinguisher (namely, a difference-of-means test for Kocher’s DPA
and Pearson correlation coefficient for CPA). For these non-profiled attacks,
there is thus no straightforward way to produce the PMF we need to enumer-
ate the master keys. That is, the distinguisher outputs a ranking of the subkey
candidates, which has no probabilistic meaning.

In order to apply our key enumeration algorithm, we need a way to extract
probabilities from a non-profiled attack. For this purpose, we will use a natu-
ral extension of the non-profiled version of Schindler’s stochastic approach [27].
Hence, we first recall how the non-profiled stochastic attack works [9]. A stochas-
tic model θ(y) is a leakage model used to approximate the leakage function:
L(y) � θ(y), where θ(y) is built from a linear basis g(y) = {g0(y), ..., gB−1(y)}
chosen by the adversary (usually gi(y) are polynomials in the bits of y). Eval-
uating θ(y) boils down to estimating the coefficients αi such that the vector
θ(y) =

∑
j αjgj(y) is a least-square approximation of the measured leakages

li. The idea of a non-profiled stochastic attack is to build |K| stochastic models
θk(y) by considering the data set {(pi, li)} under the assumption that the correct
key hypothesis is k. These stochastic models are then used as a distinguisher: for
a correct key hypothesis (and a relevant basis), the error between the predicted
values and the actual leakage values should have a smaller standard deviation

1 In order to lighten the notations, we omit the index 1 ≤ i ≤ q after the data sets.
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than for a wrong key hypothesis. The pseudo-code of the attack is given in Al-
gorithm 1. In general, an interesting feature of such attacks is that they allow
trading robustness for precision in the models, by adapting the basis g(y). That
is, a simpler model with less parameters is more robust, but a more complex
model can potentially more accurately approximate the real leakage function.

Algorithm 1. Non-profiled stochastic attack

1: Acquire {(pi, li)}1≤i≤q .
2: Choose a basis g(y).
3: for k ∈ K do
4: Compute the S-box output hypotheses yi,k = S(pi ⊕ k).
5: Use the basis g(y), the data set and the subkey hypothesis k

in order to build a stochastic model θk.
6: Compute the error vector ek: ei,k = li − θk(yi,k).
7: Evaluate the precision of the model: σk = standard deviation(ek).
8: end for
9: Choose k̂ = argmink σk.

3 Bayesian Extension of Non-profiled SCAs

As the straightforward application of a stochastic attack does not produce PMFs,
we propose in this section to perform an additional Bayesian step after building
the stochastic models. We show that this Bayesian model comparison produces
probabilities, and that the criterion of maximizing the likelihood of the subkey
is equivalent to minimizing the error vector standard deviation, meaning that
this extension indeed ranks the subkeys in the same order as the standard non-
profiled stochastic attack. As a bonus, we observe that this extension also gives
us a very natural way to combine independent leakage samples in an attack. In
the Bayesian version of the non-profiled stochastic attack, we perform a Bayesian
hypothesis test on subkey candidates (under the assumption that the basis used
for the stochastic attack is valid). It consists in estimating the probability of
the observed data set assuming that they are produced from the model θk (i.e.
Pr[{(pi, li)}|θk]). Then, we use Bayes’ theorem to deduce the likelihood of the
models (and thus the probabilities of the subkey hypotheses) given the data (i.e.
Pr[θk|{(pi, li)}]), as described by the pseudo-code of Algorithm 2. A detailled
derivation of relevant probabilities is given in Appendix A.

Algorithm 2. Bayesian non-profiled stochastic attack

1 to 8: Same as Algorithm 1.
9: Perform a Bayesian model comparison: evaluate for each subkey hypothesis the
likelihood Pr[θk|{(pi, li)}] using Bayes’ theorem.
10: Choose k̂ = argmaxk Pr[θk|{(pi, li)}].
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4 A New Algorithm for Combining Subkeys

Following the evaluation framework in [32], different metrics can be used to
analyze the security of an implementation against side-channel attacks. Of par-
ticular interest in this work are the so-called “security metrics” (namely, the
success rate and guessing entropy), of which the goal is to estimate the efficiency
of a given distinguisher in exploiting the leakage to recover keys. Intuitively, a
success rate of order o corresponds to the probability that the correct key is
rated among the o first candidates provided by the distinguisher. The guessing
entropy corresponds to the average number of keys to test before reaching the
correct one. As suggested in [21], one can also consider a guessing entropy of
order o, in order to capture the fact that in practice, only a maximum number
of o keys can be tested by the evaluators. Empirical comparisons of distinguish-
ers using such metrics have been performed in [31], but were limited to subkey
recoveries (i.e. key bytes, typically). In the following, we consequently tackle the
(most practically relevant) problem of how to efficiently estimate these metrics
for master keys. In the extreme case (i.e. success rate of order 1), the solution
is straightforward, as e.g. illustrated by the DPA contest [22]. We consider the
general case of large lists and large orders, to carefully address the problem of
the “conquer” part in a side-channel attack. The problem of extracting the rank
of a correct key is equivalent to the problem of enumerating keys stated below.

Key-Enumeration Problem. The attacker obtains PMFs corresponding to
d independent subkeys, each PMF taking n different values. The problem is to
enumerate complete keys from the most probable to the least probable one.

In the following, we qualify an enumeration algorithm as optimal if it outputs
key candidates in nonincreasing order of posterior probability. The term optimal
refers to the fact that this order minimizes the expected number of key trials.
Any non-optimal algorithm incurs an overhead in terms of trials during the key
recovery phase. Besides, the more subjective term efficient relates to the com-
putational and memory-related costs of the algorithm. For example, the naive
algorithm for solving the enumeration problem generates the list of all possible
key candidates, computes the corresponding likelihood values (by multiplying
subkey probabilities) and sorts them accordingly. While optimal in the previ-
ously described sense, it can only be used with key candidates lists of limited
size, and is therefore very inefficient. In the remainder of this section, we propose
an algorithm that optimally solves the enumeration problem, and allows time
and memory efficient key-enumeration, even when the number and size of subkey
lists makes the naive approach untractable.

4.1 An Optimal and Efficient Key-Enumeration Algorithm

The key enumeration problem can be more readily understood as a geometric
problem. We first consider the simpler bi-dimensional case (i.e. 2 subkeys). The
key space can be identified with a compartimentalized square of length 1. The
enumeration process is illustrated in Figure 1. The 4 columns (resp. rows) cor-
respond to the four possible values of the first (resp. second) subkey, sorted by
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nonincreasing order of probability. Width and height correspond to the proba-

bility of the corresponding subkey. Let us denote by k
(j)
i the jth likeliest value

for the ith subkey. Then, the intersection of row j1 and column j2 is a rectangle

corresponding to the key (k
(j1)
1 , k

(j2)
2 ) with probability equal to the area of the

rectangle. Using this geometric view, an optimal key enumeration algorithm out-
puts compartments by nonincreasing order of area. A solution to this problem
is given in Algorithm 3 and corresponds to the following steps:

0

1

1

k
(j)
1

k
(j)
2

1

Step 1

1

2

Step 2

1

2

3

4

5

. . .

Fig. 1. Geometric representation of the proposed algorithm

Step 1. The most likely key is (k
(1)
1 , k

(1)
2 ). Hence, we output this one first (rep-

resented in dark gray). At this point, the only possible next key candidates are

the successors (k
(2)
1 , k

(1)
2 ) and (k

(1)
1 , k

(2)
2 ), shown in light gray. We denote by F

this set of potential next candidates (where F is standing for frontier).

Step 2. Any new candidate has to belong to the frontier set. We extract the most
likely candidate from this set and output it. It corresponds to rectangle 2 in our
example. F is updated by inserting the potential successors of this candidate.

Next steps. Step 2 is repeated until the correct key is output, or if the size of
the frontier set F exceeds the available memory space.

Note that in step 2, (k
(2)
1 , k

(1)
2 ) is a more likely candidate than (k

(2)
1 , k

(2)
2 ) by

construction. Hence, (k
(2)
1 , k

(2)
2 ) should not be inserted into F (this is represented

on the figure by red crosses). There is a simple rule for handling such cases, which
allows minimizing the memory requirements of our algorithm:

Rule 1. The set F may contain at most one element in each column and row.

Operations on the frontier set can be performed efficiently if candidate keys
are stored in an ordered structure. Indeed, these operations simply consist in
inserting new elements or finding the most likely element in the set and removing
it. Using heaps, these manipulations are logarithmic in the size of the set. The
test of Rule 1 can be implemented using arrays of Boolean values.
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Algorithm 3. Optimal key-enumeration.

F ←− {(k(1)
1 , k

(1)
2 )};

while F �= ∅ do
(k

(i)
1 , k

(j)
2 )←− most likely candidate in F ;

Output (k
(i)
1 , k

(j)
2 );

F ←− F \ {(k(i)
1 , k

(j)
2 )};

if i+ 1 ≤ #k1 and no candidate in row i+ 1 then
F ←− F ∪ {(k(i+1)

1 , k
(j)
2 )};

end if
if j + 1 ≤ #k2 and no candidate in column j + 1 then
F ←− F ∪ {(k(i)

1 , k
(j+1)
2 )};

end if
end while

Generalization to Multiple Lists. In practice, one often has to merge to-
gether more than two lists of subkeys. Straightforward extensions of our algo-
rithm to higher dimensions lead to either suboptimal or slow rules for frontier
set reduction. On the one hand, the direct transposition of Rule 1 will minimize
memory, but implies adjacency tests in multiple dimensions, leading to unac-
ceptable reductions of the enumeration speed. On the other hand, simplifying
the rule in order to maintain a good enumeration speed implies the storage of
many non-necessary candidates in the frontier set, which rapidly leads to unsus-
tainable memory requirements. As a result, and in order to obtain good results
for more than two lists, we apply a recursive decomposition of the problem.

For this purpose, we only use the algorithm for merging two lists, and its
outputs are combined to form larger subkey lists which are in turn merged
together. This way, merging n lists is done by merging two lists n−1 times. The
order of merging is such that lists merged together are of similar sizes. Taking
the example of the aes, we notice that enumerating 128-bit keys is done by
merging two lists of size 264. Such lists cannot be generated or stored efficiently.
Fortunately, we can instead generate these lists only as far as required by the key
enumeration. Whenever a new subkey is inserted in the candidate set, we get it
from the enumeration algorithm applied to the lower level (e.g. 64-bit subkeys
are obtained by merging two 232 element lists), and so on. This ensures that
the storage and enumeration effort are minimized. The process is illustrated in
Figure 2. Enumerating 16-byte keys consists in enumerating subkeys taken from

the two 264-element lists k
(j)
0,...,7 and k

(j)
8,...,15, which in turn are built using four

232-element lists k
(j)
0,...,3, k

(j)
4,...,7, etc. This process is repeated until we reach the

original 28-element subkey distributions. The recursive decomposition combined
with our lazy evaluation technique keep computations and memory requirements
to a minimum and allow us to enumerate a large number of key candidates.

The investigations in this paper have connections with previous works in sta-
tistical cryptanalysis. We provide a detailled review in Appendix B.
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Fig. 2. Recursive enumeration from multiple lists of key candidates

5 Experiments

In order to validate our approach, we led several experiments. The cipher under
investigation was the AES, with key size of 128 bits. Our side-channel attacks
targeted the output of the S-boxes in the first round, resulting in 16 indepen-
dent subkey probability mass functions. We used the same assumptions as in
Section 2 and considered simulated leakages, following a Hamming weight leak-
age model on the S-box output, with an independent additive Gaussian noise,
i.e. f(y) = HW(y) +N (0, 42). Note that the type of experiments performed (i.e.
analyzing the impact of key enumeration) is essentially independent of both the
cipher and experimental setup. We carried out both template attacks with per-
fect profiling (since the leakage function is known) and non-profiled Bayesian
stochastic attacks assuming a linear basis made of the S-box output bits. The
enumeration was performed using our open-source optimized implementation [1].

5.1 Comparing Optimal and Probabilistic Key-Enumerations

Table 1 gives some performance results for key enumeration obtained on our
setup (Intel core i7 920 running a 64-bit Ubuntu 11.04 distribution). These com-
parative results show that both the sampling algorithm and ours can output key
candidates at essentially the same speed. The results for the enumeration algo-
rithm described in [21] are also given. As expected, they exhibit larger memory
requirements, which bounds the number of key candidates that can be enumer-
ated and increases time. In practice, this method is limited to 220 candidates.
By contrast, our algorithm allows enumerating 232 keys using less than 1gb.

Next, as mentioned in Section 4, Algorithm 3 performs key trials in the best
possible order, therefore minimizing the enumeration effort at the cost of a grow-
ing amount of memory space. By contrast, the probability-driven algorithm may
miss some key candidates and output some more than once. In order to illustrate
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Table 1. Practical comparison of key-enumeration algorithms (time, min-max mem-
ory)

#trials 216 220 224 228 232 233 235 237

Sampling 0.04s 0.31s 10.1s 160s 2560s X X X

[21] 0.96s 18.1s
X X X X X X

118mb 7.7gb

Ours 0.01s 0.25s 5s 100s 1700s 4058s 5.4h 28.2h
100kb 2mb 3.9mb 30mb 140mb 190mb 560mb 0.9gb+1.7hdd
500kb 3mb 12mb 80mb 530mb 540mb 1.1gb+2.3hdd 1.1gb +6.1hdd

1

22

24

26

28

210

212

100kb

1mb

10mb

100mb

1gb

10gb

20 28 216 224 232 key rank

Overhead Memory

Fig. 3. Overhead of the probability-driven method in function of the key rank (green),
and memory requirements of the deterministic enumeration (light blue)

these differences we led the following experiment. A large number of side-channel
attacks followed by a key recovery were performed, and we measured the key
rank (which is also the number of trials for the optimal algorithm), the ex-
pected number of trials for the probability-driven algorithm and the memory
used during optimal enumeration. Figure 3 illustrates the expected overhead of
the probability-driven method over the deterministic one in terms of key tri-
als (green dots, left scale) and the memory cost of the enumeration algorithm
(blue dots, right scale). We observe that the probability-driven algorithm re-
quires more key trials on average to complete an attack. The overhead increases
consistently, and the median of the expected ratio value (green curve) appears
to tend towards a linear relation on the log-log scale. An approximated power
law gives 16 for 216, 21 for 232, an extrapolated 36 for 240. In some cases, we
also observe overheads very far from the median value (well over 1000), even
when the correct key is ranked among the 4 first ones. On top of this expected
number of trials, we have to consider that, since the probabilistic method follows
a geometric law, the number of key trials will have a very large variance (ap-
proximately the square of expected value). This makes the probabilistic method
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both more costly and less reliable than our deterministic algorithm. Besides, the
memory space requirement of the enumeration method also appears to follow a
power law. Enumerating up to 232 requires only 1gb of memory. Extrapolations
predict a cost of 70gb for 240 keys.

5.2 Application of Key-Enumeration to Side-Channel Attacks

Figure 4 illustrates the success rate of different orders for a template attack, in
function of the number of traces measured. The alternated light and gray zones
correspond to the evolution of the success rate each time the number of tested
keys is multiplied by 16. The rightmost dark gray curve is obtained by only
testing the first key candidate, the first light gray curve by testing 24 keys, then
28, . . . We again considered the optimal and the probabilistic algorithms, for
different number of enumerated key candidates. The optimal enumeration was
led up to 232 candidates, and the probabilistic one up to 228.

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250

success

Optimal enumeration

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250
messages

success

Random sampling

Fig. 4. Success rate of template attacks. Left: enumeration, right: sampling.

As expected, allowing more key candidates to be tested can dramatically
increase the efficiency of a key recovery. For 120 messages measured, the best
key candidate is the correct one about 2% of the time, while there is a 91% chance
for the correct key to be found among the first 224 candidates with the optimal
enumeration algorithm (or an 84% chance with the probability driven method).
In other words, increasing the number of key trials significantly improves the
success rate, thereby providing a tradeoff between the data and time complexities
of the attacks. As in the previous subsection, we also observe that the optimal
enumeration algorithm leads to higher success rates compared to the random
sampling for a given number of key trials, at the cost of additional memory
requirements.

Figure 5 provides an orthogonal view of the problem: for a given number of
traces, one can increase the key success rate by enumerating more key candidates.
The figure shows the cumulative probability function (cdf) of key recoveries for
an attack with a fixed number of traces, in function of the number of key trials.
The pmfs used for this experiment are output by two template attacks. The
first attack (left) targets only 2 key bytes, the second (right) targets all 16 key
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Fig. 5. Enumeration success rates. Left: 2 S-boxes, right: 16 S-boxes.

bytes. As expected, the cumulative probability starts from 0 and reaches 1 once
a sufficient number of keys have been tested. Also, the brute force testing is only
possible in the left case (i.e. when we can enumerate the full list).

In general, the side-channel information allows obtaining high success rates
with a limited number of key trials (here, up to 230). More importantly, the figure
again confirms the interest of the deterministic algorithm in terms of “number
of keys to test”. Reaching a similar success rate with the probabilistic algorithm
requires between 22 and 24 more tests, depending on the success rates.

6 Conclusion

This paper complements standard side-channel cryptanalysis by investigating
the improvements obtained by adversaries with non-negligible computational
power. We first proposed an extension of non-profiled stochastic attacks that
outputs probability mass functions, providing us with the likelihood values of
subkey candidates. Next, we proposed a new and deterministic key enumeration
algorithm, in order to take advantage of these likelihood values. Experiments
show that this order-optimal enumeration algorithm is more efficient than a
sampling-based algorithm from Eurocrypt 1991. In particular, the probabilistic
algorithm suffers from its underlying geometric law, that implies an increasingly
large overhead over the deterministic method (in terms of key trials), as the num-
ber of keys to enumerate increases. The deterministic method additionally allows
removing the possibility of worst cases, which makes it a particularly suitable
solution for side-channel security evaluations. Finally, our proposal significantly
reduces the memory requirements of a deterministic algorithm from SAC 2010,
making it the best practical solution for enumeration of up to 240 keys.

As a result, the solutions in this paper allow us to properly trade side-channel
measurements for offline computations. They create a bridge between classical
DPA and brute-force key recovery, where information extracted through side-
channels is used to improve an exhaustive search. Hence, an interesting research
problem is to compare computationally-enhanced DPA attacks with other types
of more computational side-channel attacks, e.g. based on the detection of col-
lisions. The application of enumeration in statistical cryptanalysis is another
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possible direction for further investigations. Note finally that the complete key
recoveries we considered in this work can possibly be performed in a ciphertext-
only context. That is, the adversary can evaluate a key candidate by partially
decrypting the ciphertext and computing the probability of previous-round leak-
ages, which will only be non-negligible when decrypting with the correct key.
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A Bayesian Extension of Non-profiled SCAs

We now show how to compute these probabilities, starting with the probability
of observing the data set {(pi, li)} assuming it is produced by the model θk,
using the subkey hypothesis k. This probability is computed by multiplying the
probabilities of each individual event (pi, li) of the data set:

Pr[{(pi, li)}|θk] = Pr[{(pi, li)}|θk,K = k],

=

q∏

i=1

N (li, θk(S(pi ⊕ k)), σk),

where N (x, μ, σ) is the value of the normal distribution of mean μ and standard
deviation σ evaluated at point x. If we denote the S-box output hypotheses as
yi,k = S(pi ⊕ k), the previous equation can be rewritten as:

Pr[{(pi, li)}|θk] =
q∏

i=1

1√
2π σk

exp
− 1

2σ2
k

(li−θk(yi,k))
2

.

Since σ2
k =

∑i=q
i=1(li−θk(yi,k))

2/q (see Algorithm 1), if we use all q measurements,
we can simplify the exponent and move all constants coefficients that do not
depend on k in a normalization term Z, that is:

Pr[{(pi, li)}|θk] = Zσ−q
k . (1)

Then, using Bayes’ theorem, we deduce the probabilities of the subkeys from the
respective likelihood values of the models θk given the data (in other words, we
perform a Bayesian model comparison):

Pr[k|{(pi, li)}] = Pr[θk|{(pi, li)}],

=
Pr[{(pi, li)}|θk].Pr[θk]

Pr[{(pi, li)}] , (Bayes’ theorem)

=
Pr[{(pi, li)}|θk].Pr[θk]∑

k′∈K Pr[{(pi, li)}|θk′ ].Pr[θk′ ]
.

Assuming a uniform prior Pr[θk]=Pr[k]= 1
|K| and using Equation 1, we get:

Pr[k|{pi, li}] = σ−q
k∑

k′ σ
−q
k′

.

From these probabilities, we can directly build the PMF required for key enu-
meration. Note that these likelihood values are not exactly the same as the ones
we used in template attacks. In the last case, the characterization of a device al-
lows exploiting a precise estimation of the leakage distributions. By contrast, in
a Bayesian non-profiled stochastic attack, they depend on the basis g(y) chosen
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by the adversary. Finally, the subkey hypotheses can be ranked according to the
likelihood values of the corresponding model given the data, that is:

k̂ = argmax
k

σ−q
k ,

= argmin
k

σk,

i.e. providing the same ranking as for the original non-profiled stochastic attack.
Besides their use for key enumeration in the next section, an appealing property
of using probabilities instead of other criteria (e.g. like a correlation coefficient)
is that combining independent measurement points becomes very natural. Let
us suppose that our implementation leaks information at two different times:
Lt0 = ft0(x)+nt0 and Lt1 = ft1(y)+nt1 (with nti a Gaussian noise). The Bayesian
writing makes it straightforward to combine their corresponding probabilities,
by multiplication and normalization. Note also that the proposed attack can
additionally be seen as a generalization of DPA or CPA, by simply replacing the
leakage basis by a single-bit or Hamming weight model (as observed in [17]).

B Comparison with Previous Works

The investigations in this paper have strong connections with previous works
in the area of statistical cryptanalysis. In particular, the problem of merging
two lists of subkey candidates was encountered by Junod and Vaudenay [13].
The small cardinality of the lists (213) was such that the simple approach that
consists in merging and sorting the lists of subkeys was tractable. Dichtl con-
sidered a similar problem of enumerating key candidates by decreasing order of
probabilities, thanks to partial information obtained for each key bit individu-
ally [8]. We tackle the more general and challenging problem of exploiting any
partial information on subkeys. A frequent reference for solving this problem,
i.e. enumerating many keys from lists that cannot be merged, is the probabilistic
algorithm that was proposed in [19]. In this work, the attacker had no access to
the subkey distributions but was able to generate subkeys according to them.
Hence, the solution proposed was to enumerate keys by randomly drawing sub-
keys according to these distributions. Implementing this algorithm is equivalent
to uniformly picking up a point in the square of Figure 1 and testing the cor-
responding key. This does not require any memory but the most probable keys
may be drawn many times, leading to useless repetitions. Indeed given a correct
key with probability p the number of keys to try before it is found follows a ge-
ometric distribution with parameter p and thus has an expected value equal to
1/p with a variance of 1−p

p2 . By contrast, for Algorithm 3, this number of keys to

test is at most �1/p� (usually much less). Actually, our algorithm will output ex-
actly n keys before the correct one if it is ranked in the n-th position, removing
the variance issues of the probabilistic test. Also in practice, the probability-
driven approach tends to lead to much more tests than optimal deterministic
enumeration, as will be illustrated experimentally in the next section.
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Next, and in terms of complexities, it is easy to see that the probability-driven
algorithm can output new keys in constant time and has a very small memory
requirement. The case of our deterministic enumeration algorithm is more dif-
ficult. The use of heaps for the frontier set and the recursive decomposition of
the problem point towards a logarithmic time complexity. However, it appears
from the experiments in the next section that the algorithm enumerates keys in
amortized time close to constant. Summarizing, both methods lead to a linear
time complexity in the total number of key candidates that are output, with the
enumeration algorithm also requiring a sub-linear amount of memory.

As previously mentioned, an enumeration algorithm similar to ours was pro-
posed in a paper by Pan, van Woudenberg, den Hartog and Witteman [21]. It
also enumerates key candidates in optimal order, but the reduction rule 1 is not
used, nor the recursive decomposition that allows us to efficiently apply rule 1
with more than two lists. Therefore, the frontier set of their algorithm is not
reduced, and the memory requirements are much larger. In practice, since the
main limitation for optimal key enumeration appears to be memory, this non-
minimal version of enumeration does not allow an adversary to output a large
number of key candidates. Moreover, handling a larger frontier set implies time
complexity penalties, which makes our new algorithm faster than this previous
one. Implementation results confirming these claims are given in the next section.

Finally, we note that another related problem is list decoding of convolutional
codes through the Viterbi algorithm (see, e.g. [30]). However, and as previously
mentioned, enumeration and decoding are not the same problems and the lat-
ter one only makes sense in the presence of redundancy, which does not exist
when subkeys are independent of one another. An attempt at using such an al-
gorithm would either lead to combinatorial explosion (i.e. 2128 possible states)
for a deterministic version, or require very large amounts of memory when using
approximate solutions such as beam search. Moreover, list-decoding algorithms
are generally designed to output a small number of most likely candidates de-
termined a priori, whereas we typically target the enumeration of 232 or more
master key candidates, continuing enumeration until the correct key is found.
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