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An Optimal Linear Control Design for 
Nonlinear Systems 
This paper studies the linear feedback control strategies for nonlinear systems. Asymptotic 
stability of the closed-loop nonlinear system is guaranteed by means of a Lyapunov 
function, which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman 
equation thus guaranteeing both stability and optimality. The formulated Theorem 
expresses explicitly the form of minimized functional and gives the sufficient conditions 
that allow using the linear feedback control for nonlinear system. The numerical 
simulations the Duffing oscillator and the nonlinear automotive active suspension system 
are provided to show the effectiveness of this method. 
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Introduction 
1Since the first publications (Krasovskii, 1959), (Kalman and 

Beltram, 1960) and (Letov, 1961), in the early 1960s, the Lyapunov 
function techniques have been used in studying optimal control 
problems.  

It is well known that the nonlinear optimal control problem can 
be reduced to the Hamilton-Jacobi-Bellman partial differential 
equation (Bryson and Ho, 1975). There are many difficulties in its 
solution, in general case. There are, in current literature (see, for 
example, Bardi and Capuzzo-Dolcetta, 1997), several methods that 
may be used in obtaining a numerical solution of the Hamilton-
Jacobi-Bellman partial differential equation. In particular case, the 
quadratic Lyapunov function is a solution of the Hamilton-Jacobi-
Bellman equation for the linear system with the quadratic functional. 
In recent years, the idea that a Lyapunov function for the nonlinear 
system can be an analytical solution of the Hamilton-Jacobi-Bellman 
equation has become popular.  

In Bernstein (1993) a unified framework for continuous-time 
nonlinear-nonquadratic problems was presented in constructive 
manner. The results of Bernstein (1993) are based on the fact that 
steady-state solution of the Hamilton-Jacobi-Bellman equation is a 
Lyapunov function for the nonlinear system thus guaranteeing both 
stability and optimality.  

In Haddad et al. (1998) the framework developed in Bernstein 
(1993) was extended to the problem of optimal nonlinear robust 
control. There are no systematic techniques for obtaining the 
Lyapunov functions for general nonlinear systems in this case, but 
this approach can be applied to systems for which the Lyapunov 
functions can be found.  

In Rafikov and Balthazar (2004) the nonquadratic nonlinear 
Lyapunov function was proposed to resolve the optimal nonlinear 
control design problem for the Rössler system. 

This paper studies the linear feedback control strategies for 
nonlinear systems.  
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Asymptotic stability of the closed-loop nonlinear system is 
guaranteed by means of a Lyapunov function, which can clearly be 
seen to be the analytical solution of the Hamilton-Jacobi-Bellman 
equation thus guaranteeing both stability and optimality. The 
formulated Theorem expresses explicitly the form of minimized 
functional and gives the sufficient conditions that allow using the 
linear feedback control for nonlinear system.  

Nomenclature 

A = bounded matrix (nxn)  
B = constant matrix (nxm) 

sb  = damping force, N/m/s  

l
sb  = damping force linear, N/m/s  

nl
sb  = damping force nonlinear, N/m/s 

y
sb  = damping force symmetric, N/m/s  

g = vector (nx1)  
G = matrix (nxn) 

sk  = suspension stiffness, N/m 

l
sk  = suspension stiffness linear, N/m 

nl
sk  = suspension stiffness nonlinear, N/m 

tk  = tyre stiffness, N/m 

sm  = sprung mass, kg 

um  = unsprung mass, kg 

P = Riccati equation (nxn) 
Q = matrix (nxn) 
V = Lyapunov function 
t = time, s 
x  = displacement of the flexible beam, m 
x&  = velocity of the flexible beam, m/s 
x&&  = acceleration of the flexible beam, m/s2 

y = state vector  

cz  = vertical displacement of the sprung mass , m 
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cz&  = vertical velocity of the sprung mass , m/s 

cz&&  = vertical acceleration of the sprung mass , m/s2 

wz  = vertical displacement of the unsprung mass , m 

wz&  = vertical velocity of the unsprung mass , m/s 

wz&&  = vertical acceleration of the unsprung mass , m/s2 

rz  = disturbance caused by road irregularities, m 

Greek Symbols 

α  = stiffness parameter, N/m  
ζ  = viscous damping coefficient, N/m/s  

γ  = amplitude external input, m 

ω  = angular frequency, rad/s 
Γ  = neighborhood  

Subscripts 

s sprung  
u unsprung  
t tyre   

Superscripts 

l linear  
nl nonlinear  
y symmetric 

Linear Design for Nonlinear System  

We consider the nonlinear controlled system 
 

BuygytAy ++= )()(& , 0)0( yy =   (1) 
 

where ny ℜ∈  is a state vector, nntA ×ℜ∈)(  is a bounded matrix, 

which elements are time dependent, mnB ×ℜ∈  is a constant matrix, 
mu ℜ∈  is a control vector, and nyg ℜ∈)(  is a vector, which 

elements are continuous nonlinear functions, .0)0( =g  
We remark that the choice of A(t) is not unique, and this 

influences the performance of the resultant controller.  
Assume that: 
 

yyGyg )()( =   (2) 
 

where nnyG ×ℜ∈)(  is a bounded matrix, which elements depend on  
y .  If we assumed (2), the dynamic system (1) has the following 

form:  
 

BuyyGytAy ++= )()(&  (3) 
 
Next, we present an important result, concerning a control law 

that guarantees stability for a nonlinear system and minimizes a 
nonquadratic performance funcional.    

 
Theorem 1. If there exist matrices Q(t) and R(t), positive definite, 

being Q symmetric, such that the matrix: 
 

)()()()()(),(
~

yGtPtPyGtQtyQ T −−=   (4) 
 

is positive definite for the bounded matrix  G , then  the linear 
feedback control: 

 

ytPBRu T )(1−−=  (5) 
 

is optimal, in order to transfer the non-linear system (3) from an 
initial to final state:  

 
0)( =fty  (6) 

 
minimizing the functional: 

 

dtuRuyQyJ TT
t f

)
~

(
0

+= ∫  (7) 

 
where the symmetric matrix )(tP  is evaluated through the solution of 
the matrix Ricatti differential equation: 

 

01 =+−++ − QPBPBRPAPAP TT&  (8) 
 

satisfying the final condition: 
 

0)( =ftP  (9) 

 
In addition, with the feedback control (5), there exists a 

neighborhood Γ⊂Γ0 , nℜ⊂Γ , of the origin such that if 00 Γ∈y , 

the solution ,0,0)( >= tty  of the controlled system (3) is locally 

asymptotically stable, and .)0( 00min yPyJ T=  

Finally, if nℜ=Γ  then the solution ,0,0)( >= tty  of the 

controlled system (3) is globally asymptotically stable. 
 
Proof. Lets consider the linear feedback control (5) with matrix P 

determined by equation (8) which transfers the nonlinear system (3) 
from an initial to a final state (6), minimizing the functional (7) 

where the matrix  Q
~

  need to be determined.  
According to the Dynamic Programming rules one knows that if 

the minimum of functional (7) exists and if V is a smooth function of 
the initial conditions, then it satisfies the Hamilton-Jacobi-Bellman 
equation (Bryson and Ho, 1975): 

 

0
~

min =






 ++ uRuyQy
dt

dV TT

u
 (10) 

 
Considering a function: 
 

ytPyV T )(=  (11) 
 

where )(tP is a symmetric matrix positive definite and it satisfies the 
differential Riccati equation (8). 

Note that the derivative of the function V, evaluated in the 
optimal trajectory with control given by (5) is: 

 

yPyytPyytPyV TTT
&&&& ++= )()( −+= )()([ yGytAy TTTT  

++− − ytPyytPBRBtPy TTTT )()(])()( 1 &  

])()()([)( 1 ytPBRByyGytAtPy TT −−++  
 

Then, substituting V&  in the Hamilton-Jacobi-Bellman equation 
(10) one obtains: 

 

PyGPBPBRPAPAPy TTTT )([ 1 +−++ −& 0]
~

)( =++ yQyPG  
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Then: 
 

)()()()()(
~

yGtPtPyGtQQ T −−= . 
 

Note, that for positive definite matrices Q
~

 and R, the derivative 

of the function (11) is given by uRuyQ
~

yV TT −−=& , and, it is negative 
definite. Then, the function (11) is Lyapunov function, and the 
controlled system (3) is locally asymptotically stable. Integrating the 
derivative of the Lyapunov function (11) given by 

uRuyQyV TT −−=
~

&  along the optimal trajectory, we obtain 

.)0( 00min yPyJ T=  

Finally, if nℜ=Γ , global asymptotic stability follows as a direct 
consequence of the radial unboundedness condition for the Lyapunov 
function (11) ∞→)(yV  as ∞→y . 

We remark that according to the optimal control theory of linear 
systems with quadratic functional (Anderson and Moor, 1990) the 
solution of the nonlinear differential Riccati equation (8) is positive 
definite and symmetric matrix 0>P  for all 0>R  e 0≥Q  given, 
one can conclude the Theorem proof. 

If the time interval is infinite and A, B, Q and R are matrix with 
constant elements, the positive defined matrix P is the solution of the 
nonlinear, matrix algebraic Riccati equation 

 

01 =+−+ − QPBPBRPAPA TT . (12) 

Linear Design for Duffing Oscilator 

We will apply the proposed method to the Duffing oscillator that 
is one of the paradigms of nonlinear dynamics. 

The Duffing oscillator with the control law )(tU  is described by 
the following nonlinear differential equation: 

 

)(cos23 tUtxxxx ++−−−= ωγζα &&&  (13) 
 

where α  is the stiffness parameter, 0>ζ  is the viscous damping 

coefficient, γ  and ω  are the amplitude and frequency of the 

external input, respectively. 
 For 0<α , the Duffing oscillator without control can be 

interpreted as a model of a periodically forced steel beam which is 
deflected toward the two magnets, as shown in Fig. 1.  

 
 

 
Figure 1. Mechanical interpretation of Duffing oscillator. 

 
 

Let the desired trajectory be a function )(~ tx . Then the desired 
regimen is described by the following equation: 

 

utxxxx ~cos~2~~~ 3 ++−−−= ωγζα &&&  (14) 

where u~  is a control function which maintains the Duffing oscillator 
in the desired trajectory. If the function )(~ tx  is a solution of equation 

(13) without the control term then 0~ =u . 
Subtracting (14) from (13) and defining:   
 










−
−

=
xx

xx
y

&&
~

~
 (15) 

 
we will obtain the following system: 

 

uxxyyyy

yy

+++−−−=

=
33

1212

21

~)~(2ζα&

&

 (16) 

 
where uUu ~−=  is feedback control. 

So the equation (3) in this case has the following form:  
 

u
y

y

xxxyxy

y

y

y

y









+
















−+−+−
+

+
















−−
=









1

0

0

0
~~)~()~(

0

2

10

2

1
2

1
2

1

2

1

2

1

ζα&

&

 (17) 

 
Let the desired trajectory be a periodic orbit: 

 
ttx sincos2~ +=  (18) 

 
and the parameters 1,125.0,1 ==−= γζα  and 1=ω .  

These are exactly the same desired trajectory and parameters as 
reported by Sinha et al. (2000). For these parameters, the system (14) 
without control possesses a chaotic attractor, shown in Fig. 2. 

 
 

 
Figure 2. Phase portrait of uncontrolled Duffing oscillator. 

 
 

Choosing 







=

10

01
Q  and [ ]1=R , then one obtains 









=

1771.24142.2

4142.26825.3
P  by solving the Riccati equation (12) using the 

LQR function in MATLAB®.  By evaluating the  Q
~

 , one has: 
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=−−= )()(
~

yPGPyGQQ T −














 −
−

2212

12111

00

)~,(0

pp

ppxy
Q

ϕ
 













−







−

0)~,(

00

12212

1211

xypp

pp

ϕ 







+=

0

2
)~,(

22

2212
1 p

pp
xyQ ϕ  

 

where 2
1

2
11

~~)~()~()~,( xxxyxyxy ++++=ϕ . 

Note that the function )~,( 1 xyϕ  has its minimum value 

2
min

~
4

3
x=ϕ  in xy ~

2

3
1 −=  because 11

~32 xy +=′ϕ  02 >=′′ϕ , then 

2
1

~
4

3
)~,( xxy ≥ϕ  and, admitting 1~3 ≥≥ x , one can evaluate Q

~
 as:   

 

=







+≥








+≥

0

2

4

3
0

2~
4

3~

22

2212

22

22122

p

pp
Q

p

pp
xQQ   










1632825.1

632825.16213.4
 positive definite. 

 
Finally, we can conclude that the optimal function u has the 

following form: 
 

21 1771.24142.2 yyu −−= . (19) 
 
The phase portrait behavior of the controlled Duffing oscillator is 

presented in Fig. 3. 
 
 

 
Figure 3. Phase portrait of controlled Duffing oscillator. 

 

Linear Design for Nonlinear Automotive Active 
Suspension System  

Consider a quarter vehicle model that captures the fundamental 
features of the suspension design of the vehicle. A typical quarter-car 
suspension system is shown in Fig. 4. 

 

 
Figure 4. Typical quarter-car suspension system. 

 
 
In this figure, sm  represents the sprung mass, which corresponds 

to 1/4 of the body mass, and the unsprung mass um  represents the 

wheel at one corner. The parameters tk ; sk ; sb  are the tyre stiffness, 

the suspension stiffness, and the damping rate of the suspension, 
respectively. The control signal u is generated by the actuator, cz  

and wz  denote the vertical displacement of the sprung mass and the 

unsprung mass, respectively. The disturbance w is caused by road 
irregularities. 

Several methods to solve the active suspension problem have 
been proposed. The most part of these research contributions are 
based on linear time-invariant suspension models for control design. 

 Thompson (1976) was the first to explore the use of optimal 
control techniques to design an active law.  

Active suspension design, using linear parameter varying control, 
was considered by Gaspar et al. (2003).  

The real physical systems always include nonlinear components 
which must be taken into consideration. The suspension force 
generated by the hydraulic actuator is inherently nonlinear; the 
dynamic characteristics of suspension components, i.e., dampings 
and springs, have nonlinear properties.  

To resolve the active suspension problem for nonlinear system in 
this work we will apply the linear feedback control design above 
considered. 

The equations of motion of the vehicle active suspension system 
are (Gaspar et al., 2003): 

 

( )
( )

uzzk

zzbzzbzzkzzkzm

uzzbzzbzzkzzkzm

rwt

cw
y
scw

l
scw

nl
scw

l
swu

cw
y
scw

l
scw

nl
scw

l
scs

+−−

−−+−−−−−−=

−−−−+−+−=

)(

)()(

)()(

3

3

&&&&&&

&&&&&&

 (20) 

 

Here, parts of the nonlinear suspension damping sb  are l
sb , nl

sb  

and y
sb .  

The l
sb  coefficient affects the damping force linearly, and y

sb  

describes the symmetric behavior of the characteristics. Parts of the 

nonlinear suspension stiffness sk  are a linear coefficient lsk  and a 

nonlinear one nl
sk . 

Considering that the disturbance w, which is caused by road 
irregularities, have a constant value, the desired trajectory is: 
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0~,~,0~,~ ==== wwcc zwzzwz &&  (21) 
 
Noting that the desired trajectory is a solution of the system (20) 

without control and defining: 
 

[ ]Twwcc zwzzwzy && −−=  (22) 
 

we will obtain the following equation in form of (1): 
 

BuygyAy ++= )(&  (23) 
 

where: 
 






















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−+−

−−
=

u

l
s

u

t
l
s

u

l
s

u

l
s

s

l
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s

l
s

s
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s
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b

m
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m

b

m

k

m

b

m

k

m

b

m

k

A

)(
1000

0010

,




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

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

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



−
=

u

s

m

m
B

1
0

1
0

    



























−+−−

−−−
=

24
3

13

24
3

13

)(

0

)(

0

)(

yy
m

b
yy

m

k

yy
m

b
yy

m

k

yg

u

y
s

u

nl
s

s

y
s

s

nl
s

. (24) 

 
Considering: 
 

y

gggg

gggg
yyGyg



















==

44434241

24232221

0000

0000

)()(  

 
where: 

 

);,(

;)(

4244422422

2
1343412321

yy
m

b
gggg

yy
m

k
gggg

s

y
s

s

nl
s

δ==−=−=

−−==−=−=
 





≠−−
=−

=
0if)(

0if0
),(

2424

24
42 yyyysign

yy
yyδ  

 
we present the equation (23) in form (3). 

The proposed linear feedback design procedure has been applied 
to the quarter car suspension with the following values of the 
parameters (Gaspar et al., 2003): kgms 290= , kgmu 40= , 

mNk l
s /23500= , mNknl

s /2350000= , mNkt /190000= , 

smNbl
s //700= e smNb y

s //400= . 
 
For these parameters the matrix A has the following form: 
 





















−−

−−
=

5.175.53375.175.587

1000

414.2034.81414.2035.81

0010

A . 

 

Choosing 





















=

100000

010000

001000

000100

Q , ]00001.0[=R , then one 

obtains:  
 





















−
−−−

−
−

=

0187.15918.22583.05828.1

5918.21816.64111348.1102601.584

2583.01348.1102626.100896.12

5828.12601.5840896.124481.687

P   

by solving the Riccati Eq. (12). 
Finally, we can conclude that the optimal function u has the 

following form: 
 

4321 7889.24577352.314947037.28925054.211 yyyyu −−+=  (25) 
 
For numerical simulations the disturbances of the initial 

conditions my 05.01 −=  and my 05.03 −=  were considered. Fig. 5 

and 6 show 1y  and 3y  variations without and with control (25), 

respectively. 
 
 

 
Figure 5. Comparison of the time traces of the variable of the controlled 
system (23) and the same system without control. 

 
 

 
Figure 6. Comparison of the time traces of the variable of the controlled 
system (23) and the same system without control. 
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It is difficult to analyze the matrix Q
~

 analytically in this case. 

Fig. 7 shows the positive function yQytL T ~
)( = , calculated in 

optimal trajectory. 
 
 

 
Figure 7. Time trace of the positive function. 

Conclusions 

The optimal linear feedback control strategies for nonlinear 
systems were proposed. Asymptotic stability of the closed-loop 
nonlinear system is guaranteed by means of a Lyapunov function 
which can clearly be seen to be the solution of the Hamilton-Jacobi-
Bellman equation thus guaranteeing both stability and optimality.  

The formulated Theorem expresses explicitly the form of 
minimized functional and gives the sufficient conditions that allow 
using the linear feedback control for nonlinear system.  

The numerical simulations for the Duffing oscillator and the 
nonlinear automotive active suspension system are provided to show 
the effectiveness of this method. 

Finally we note that the proposed method can be applied to a 
large class of nonlinear and chaotic systems. 
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