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Introduction

Since the first publications (Krasovskii, 1959),a{fan and
Beltram, 1960) and (Letov, 1961), in the early 1960e Lyapunov
function techniques have been used in studyingnmaticontrol
problems.

It is well known that the nonlinear optimal contpooblem can
be reduced to the Hamilton-Jacobi-Bellman partidffeckntial
equation (Bryson and Ho, 1975). There are manycdiffes in its
solution, in general case. There are, in curreerdture (see, for
example, Bardi and Capuzzo-Dolcetta, 1997), severthods that
may be used in obtaining a numerical solution af tamilton-
Jacobi-Bellman partial differential equation. Inrtaular case, the
quadratic Lyapunov function is a solution of thentiléon-Jacobi-
Bellman equation for the linear system with thedgatic functional.
In recent years, the idea that a Lyapunov functanthe nonlinear
system can be an analytical solution of the Hamiltacobi-Bellman
equation has become popular.

In Bernstein (1993) a unified framework for contiug-time
nonlinear-nonquadratic problems was presented instoactive
manner. The results of Bernstein (1993) are basethe fact that
steady-state solution of the Hamilton-Jacobi-Belinegjuation is a
Lyapunov function for the nonlinear system thusrgngeeing both
stability and optimality.

In Haddad et al. (1998) the framework developedannstein
(1993) was extended to the problem of optimal m@mar robust
control. There are no systematic techniques foraiobtg the
Lyapunov functions for general nonlinear systemshis case, but
this approach can be applied to systems for whieh Ltyapunov
functions can be found.

In Rafikov and Balthazar (2004) the nonquadraticlimear
Lyapunov function was proposed to resolve the ogitinonlinear
control design problem for the Rossler system.

This paper studies the linear feedback controltesjias for
nonlinear systems.
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simulations the Duffing oscillator and the nonlinear automotive active suspension system
are provided to show the effectiveness of this method.
Keywords. optimal control, nonlinear system, duffing oscillator, active suspension system,

Asymptotic stability of the closed-loop nonlineaystem is
guaranteed by means of a Lyapunov function, whif dearly be
seen to be the analytical solution of the Hamilfacobi-Bellman
equation thus guaranteeing both stability and oglitpn The
formulated Theorem expresses explicitly the form naihimized
functional and gives the sufficient conditions tleiow using the
linear feedback control for nonlinear system.

Nomenclature

A = bounded matrix (nxn)

B = constant matrix (nxm)

bs = damping force, N/mVs

b'S = damping force linear, N/m/s

bQ' = damping force nonlinear, N/nvs

by = damping force symmetric, N/m/s

g = vector (nx1)

G = matrix (nxn)

ks = suspension stiffness, N/'m

k'S = suspension stiffness linear, N/m

kQ' = suspension stiffness nonlinear, N/m
ki = tyrestiffness, N/m

mg = sprung mass, kg

m, = unsprung mass, kg

P = Riccati equation (nxn)

Q = matrix (nxn)

V = Lyapunov function

t =time, s

X = displacement of the flexible beam, m
X = velocity of the flexible beam, m/s

% = acceleration of the flexible beam, m/s®
y = state vector

z. = vertical displacement of the sprung mass, m
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z. = vertical velocity of the sprung mass, nvs

7. = vertical acceleration of the sprung mass, m's’
z,, = vertical displacement of the unsprung mass, m
2, = vertical velocity of the unsprung mass, nvs

%, = vertical acceleration of the unsprung mass, m's’
z, = disturbance caused by road irregularities, m
Greek Symbols

a  =dtiffness parameter, N/m

{  =viscous damping coefficient, N/m/s
y  =amplitude external input, m

« =angular frequency, rad/s
I =neighborhood
Subscripts

S sprung

u  unsprung

t  tyre

Superscripts

I linear

nl nonlinear

y symmetric

Linear Design for Nonlinear System

We consider the nonlinear controlled system

y=At)y+g(y)+Bu,y0) =y, oy

nxn
O

where yOO" is a state vectorA(t) 0 is a bounded matrix,

™M is a constant matrix,

which elements are time dependeBt]1[]
udO™ is a control vector, andg(y)dO" is a vector, which

elements are continuous nonlinear functiog€)) = 0.

Marat Rafikov et al

is optimal, in order to transfer the non-linearteys (3) from an
initial to final state:

y(ts) =0 (6)
minimizing the functional:
t
3= [(y'Qy+u"Ru)dt 7)

0

where the symmetric matriR(t is evaluated through the solution of
the matrix Ricatti differential equation:

P+PA+ATP-PBRBTP+Q=0 ®)
satisfying the final condition:
P(ts)=0 ©)

In addition, with the feedback control (5), thergists a
neighborhoodriy O, 'O 0", of the origin such that ifyg Oy,
the solution y(t) =0, t >0, of the controlled system (3) is locally

asymptotically stable, and,;, = ycT, P(0) yo-

Finally, if T=0" then the solutiony(t)=0, t>0, of the
controlled system (3) is globally asymptoticallgisie.

Proof. Lets consider the linear feedback control (5) witdtrix P
determined by equation (8) which transfers the inear system (3)
from an initial to a final state (6), minimizing ehfunctional (7)

where the matrixcs need to be determined.

According to the Dynamic Programming rules one kadhat if
the minimum of functional (7) exists andufis a smooth function of
the initial conditions, then it satisfies the Hawmil-Jacobi-Bellman

We remark that the choice ok(t) is not unique, and this equation (Bryson and Ho, 1975):

influences the performance of the resultant coletrol
Assume that:

ag(y)=G(y)y 2

where G(y)JO™" is a bounded matrix, which elements depend on

y. If we assumed (2), the dynamic system (1) hasfatiowing
form:

y=Alt)y+G(y)y+Bu 3

Next, we present an important result, concerningpatrol law
that guarantees stability for a nonlinear systerd arminimizes a
nonquadratic performance funcional.

Theorem 1. If there exist matriceQ(t) andR(t), positive definite,
beingQ symmetric, such that the matrix:

Q1) =Q(t) -G (Y)P(t) - P(O)G(Y) (4)

is positive definite for the bounded matrixG , then
feedback control:

u=-RBTP(t)y %)

280/ Vol. XXX, No. 4, Ocotober-December 2008

min[ﬂ+ yT6y+uTRuj=O (10)
u | dt

Considering a function:

V=y'PO)y (11)

where P(t )is a symmetric matrix positive definite and it stéis the
differential Riccati equation (8).

Note that the derivative of the functiow, evaluated in the
optimal trajectory with control given by (5) is:

V=y PO y+y P)y+y Py =[yTAT®)+y'G' (y) -

-y'PM)B(R™MTBTIPM)y+ Yy Pt)y +

+y"P(O[A®L) y +G(y)y-BR'BTP(t) y]

Then, substitutingy in the Hamilton-Jacobi-Bellman equation

the linear (10) one obtains:

y'[P+ATP+PA-PBRBTP+G' (y)P +PG(y)+Q]y =0

ABCM
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Then:
Q=Q(t) -G (VP(t) - PMG(Y) -

Note, that for positive definite matriceé andR, the derivative
of the function (11) is given by =-y"Qy-u'Ru, and, it is negative
definite. Then, the function (11) is Lyapunov fuoat and the

controlled system (3) is locally asymptoticallyldta Integrating the
derivative of the Lyapunov function (11)

V=-y"Qy-u'Ru
Jmin = ng(O) Yo-

Finally, if T =0", global asymptotic stability follows as a direct

consequence of the radial unboundedness condarathé Lyapunov
function (11)V(y) - e as||y|| - «.

We remark that according to the optimal controbtlyeof linear
systems with quadratic functional (Anderson and Md®90) the
solution of the nonlinear differential Riccati etjoa (8) is positive
definite and symmetric matriP > @or all R>0 e Q=0 given,
one can conclude the Theorem proof.

If the time interval is infinite and, B, Q andR are matrix with
constant elements, the positive defined mariz the solution of the
nonlinear, matrix algebraic Riccati equation

PA+ATP-PBRB'P+Q=0. (12)

Linear Design for Duffing Oscilator

We will apply the proposed method to the Duffingitiator that
is one of the paradigms of nonlinear dynamics.
The Duffing oscillator with the control law (t

the following nonlinear differential equation:

s described by

X=—ax-X° —2¢ X+ ycoswt +U (t) (13)

where a is the stiffness parametef >0 is the viscous damping

coefficient, y and « are the amplitude and frequency of the &

external input, respectively.

For a< 0, the Duffing oscillator without control can be

interpreted as a model of a periodically forcecelsteeam which is
deflected toward the two magnets, as shown inFig.
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Figure 1. Mechanical interpretation of Duffing oscillator.
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given by
along the optimal trajectory, we obtain {x_g}
y= <
X—X

Copyright O 2008 by ABCM

Let the desired trajectory be a functiof{t . Then the desired
regimen is described by the following equation:

X=-aX-X3-20 X+ ycoswt +U (14)

where U is a control function which maintains the Duffingcillator
in the desired trajectory. If the functio(t i3 a solution of equation

(13) without the control term them= .0
Subtracting (14) from (13) and defining:

(15)

we will obtain the following system:

)

: s (16)
Yo=-ayi=20 Yo~ (y1 +X)°+ X +u

whereu=U -u is feedback control.
So the equation (3) in this case has the follovidmm:

GHE A

Yo -a -2{|| Y

+ 0 0l v + 0u
—(n+X)2-(n+X)X-%X20]y, | |1

Let the desired trajectory be a periodic orbit:

17

X = 2cost +sint (18)
and the parametergs = -1, { =0.125 y=1 and w= 1

These are exactly the same desired trajectory anameters as
reported by Sinha et al. (2000). For these parasietee system (14)
without control possesses a chaotic attractor, shavrig. 2.

3.0

Figure 2. Phase portrait of uncontrolled Duffing oscillator.

10
Choosing Q:{O J andRz[l], then one obtains

3.6825 24142 . S . .
by solving the Riccati equation (12) using the
24142 21771

LQR function in MATLAB®. By evaluating the(S , one has:

October-December 2008, Vol. XXX, No. 4/ 281



~ 0 -4(y.X) | Pu1 P2
=Q-G'(y)P-PG(y)= Q- -

Q=Q-G(y) y=Q {0 o }[ . pzj

| P P2 0 0| _ < 2P12 P22
L’lz pzjlz_‘b(yl'; ) 0} "0 ){ P22 O }

where g(y;, X ) = (yy + %)%+ (y, + )X +X 2.

Note that the function@(y;,X )has its minimum value

Brnin :giz in ylz—gi becausep’ =2y, +3% ¢"=2>0, then

Py, X ) 2%? 2 and, admitting3|X| =1, one can evaluat® as:
9> Q+§;2{2912 pzz} S Q+§{2912 pzz} _
4 [P O 4 p2 O
46213 1.63282 . -
positive definite.
1632825 1

Finally, we can conclude that the optimal functiorhas the
following form:

u=-24142y, - 21771y, (19)

The phase portrait behavior of the controlled Dhgfoscillator is
presented in Fig. 3.
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Figure 3. Phase portrait of controlled Duffing oscillator.

Linear Design for Nonlinear Automotive Active
Suspension System

Consider a quarter vehicle model that capturesfuhdamental
features of the suspension design of the vehicligpieal quarter-car
suspension system is shown in Fig. 4.
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Figure 4. Typical quarter-car suspension system.

In this figure, mg represents the sprung mass, which corresponds

to 1/4 of the body mass, and the unsprung nmgsrepresents the
wheel at one corner. The parametiys kg ; b are the tyre stiffness,

the suspension stiffness, and the damping ratéh@fsuspension,
respectively. The control signal is generated by the actuataz,

and z,, denote the vertical displacement of the sprungsmaasl the

unsprung mass, respectively. The disturbanwcis caused by road
irregularities.

Several methods to solve the active suspensionlgolave
been proposed. The most part of these researchitngidns are
based on linear time-invariant suspension modelsdatrol design.

Thompson (1976) was the first to explore the usepiimal
control techniques to design an active law.

Active suspension design, using linear parametgfing control,
was considered by Gaspar et al. (2003).

The real physical systems always include nonlireenponents
which must be taken into consideration. The suspangorce
generated by the hydraulic actuator is inherentbnlinear; the
dynamic characteristics of suspension componergs, dampings
and springs, have nonlinear properties.

To resolve the active suspension problem for nealirsystem in
this work we will apply the linear feedback contmésign above
considered.

The equations of motion of the vehicle active sasmm system
are (Gaspar et al., 2003):

Mz, = k(2 = 20 )+ k0 (2 = 20)° +0 (2 = 20) 0] 2 ~ 2] ~u
M2y = k(2 = 20) =8 (20~ 20)° bl (B = 2) #0224~ 2] -
~k(zy-z)+u

(20)

Here, parts of the nonlinear suspension damingre b'S bQ'
andb? .

The b'S coefficient affects the damping force linearlydaby
describes the symmetric behavior of the charatiesisParts of the
nonlinear suspension stiffnedg are a linear coefficienk'S and a

nonlinear oné' .

Considering that the disturbanee which is caused by road
irregularities, have a constant value, the dediagdctory is:

ABCM
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0 1 0 0
Z=W, % =0, Z,=w, Z,=0 (21) | 81035 -2414 81034 2414
1o 0 0 1|

Noting that the desired trajectory is a solutiorthad system (20)

without control and defining: 5875 175 -53375 -175

_ . . 100 0 0 O
Y= —W Zz Zy=W 7z, (22) 0 100 0 0©
. ) ) o Choosing Q= , R=[0.00003], then one
we will obtain the following equation in form of 1 0O O 100 O
y =Ay+ +B (23) 0 0 0 100
= u
y=Ay*e®) obtains:
where: 6874481 120896 -5842601 15828
0 1 0 0 | 120896 102626 -1101348 0.2583
ke B ke bt 1 | -5842601 -1101348 64111816 - 25918
A L mg mg m | go| M 15828 0.2583 -25918 10187
0| 9 |0 1| ’ g by solving the Riccati Eq. (12).
ks b (ks+k) _bg = Finally, we can conclude that the optimal functiorhas the
m,  m, m, m, m, following form:
0 ol y u=2115054y; +28927037y, —314947352; — 2457788%, (25)
k b,
i()’3‘)’1)3‘*5‘)’4‘)’2‘ ) ) ) . .
o =| ™ ms (24) For numerical simulations the disturbances of thmtiai
0 conditions y; =—-005 m and y; =—005m were considered. Fig. 5
_Q(ys_yl)3+g‘y4_y2‘ and 6 showy, and y; variations without and with control (25),
L My my i respectively.
Considering:
Displacement sprung mass
0.04
0 0 O 0 — — —without contral
th cantrol
g21 g22 g23 g24 -
=G = —
IM=C6MY=1"" 5 o oY - e
O 92 Ysz Gus E S
where: s
g —q - K 2.
0,10 =703="0s1 = 9ss =~ (Y= Y1) 005 . .
m 0 05 1 15
by time [s]
0, =70, =704 =04 = —Sd(yz, y4); Figure 5. Comparison of the time traces of the variable of the controlled
X system (23) and the same system without control.
0 if yy—y>,=0
5()/2,)’4):{ . i 472 0
Sgn(y4 - y2) T Ya=Y> # Displacement unsprung mass
005~ ‘ : -
we present the equation (23) in form (3). i ot contel
The proposed linear feedback design procedure éas applied H
to the quarter car suspension with the followinduea of the = ln
parameters (Gaspar et al., 2003Jng=290kg, m,=40kg, = | “1
z 1 —
K.=23500N/m, k' =2350000N/m,  k =19000N/m, g ! T =
bl =700N/m/se by =400N/m/s. s v
For these parameters the matkikas the following form:
008y 5 1 15

time [s]

Figure 6. Comparison of the time traces of the variable of the controlled
system (23) and the same system without control.
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It is difficult to analyze the matrixs analytically in this case.

Fig. 7 shows the positive functiorL(t):yTéy, calculated in
optimal trajectory.

500 T T T T T T T T

400 B

300 B

L)

200 B

0 0.1 02 03 04 05 06 07 08 09 1
t[e]

100

Figure 7. Time trace of the positive function.

Conclusions

The optimal linear feedback control strategies famlinear
systems were proposed. Asymptotic stability of tlesed-loop
nonlinear system is guaranteed by means of a Lyaptdunction
which can clearly be seen to be the solution ofHhaeilton-Jacobi-
Bellman equation thus guaranteeing both stabihty aptimality.

The formulated Theorem expresses explicitly themfoof
minimized functional and gives the sufficient cdiatis that allow
using the linear feedback control for nonlineateys

The numerical simulations for the Duffing oscillatand the
nonlinear automotive active suspension system iaréded to show
the effectiveness of this method.
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Finally we note that the proposed method can bdieappo a
large class of nonlinear and chaotic systems.
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