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An Optimal Lognormal Approximation
to Lognormal Sum Distributions
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Abstract—Sums of lognormal random variables occur in many
problems in wireless communications because signal shadowing is
well modeled by the lognormal distribution. The lognormal sum
distribution is not known in the closed form and is difficult to com-
pute numerically. Several approximations to the distribution have
been proposed and employed in applications. Some widely used ap-
proximations are based on the assumption that a lognormal sum
is well approximated by a lognormal random variable. Here, a
new paradigm for approximating lognormal sum distributions is
presented. A linearizing transform is used with a linear minimax
approximation to determine an optimal lognormal approximation
to a lognormal sum distribution. The accuracies of the new method
are quantitatively compared to the accuracies of some well-known
approximations. In some practical cases, the optimal lognormal
approximation is several orders of magnitude more accurate than
previous approximations. Efficient numerical computation of the
lognormal characteristic function is also considered.

Index Terms—Approximation methods, cochannel interfer-
ence, distribution functions, Fourier transforms, lognormal
distributions.

I. INTRODUCTION

ASUM of lognormal random variables (RVs) occurs in
many important communications problems. Two ex-

amples are the analysis of cochannel interference in cellular
mobile systems and the computation of outage probabilities.
The lognormal distribution is used to model the attenuation
caused by signal shadowing in both of these cases. Determining
the probability distribution of a sum of lognormal RVs is a
longstanding problem in wireless communications [1]–[12].
Several approximate solutions to the probability distribution
of a sum of independent lognormal RVs have been reported,
including Wilkinson’s [1], Schwartz-Yeh’s [1], and Farley’s
[1] methods. Some past works have focused on comparing the
strengths and weaknesses of these methods [1]–[5]. However,
none are clearly better than the others and well accepted. The
asymptotic character of lognormal sum distributions was given
in [6] and further clarified in [3]. Recently, upper and lower
bounds to the sum distributions were provided in [7].

The well-known approach for obtaining the probability dis-
tribution of a sum of independent RVs uses the characteristic
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function (CF). This approach is totally general because the prob-
ability density function (pdf) of a sum of independent RVs has a
CF equal to the product of the CFs of the summands [13]. How-
ever, the CF of a lognormal RV is not known. Moreover, numer-
ical integration is difficult due to the oscillatory integrand and
the slow decay rate of the tail of the lognormal density function
[3], [14].

In this paper, a new paradigm for constructing approximations
to lognormal sum distributions is presented. We find an optimal
lognormal approximation to a lognormal sum distribution by
using a transformation that linearizes a lognormal distribution
and then deriving the minimax linear approximation in the
transformed domain. Applying the minimax error criterion
in the transformed domain effectively weights the relative
error of the approximation in the tails of the distribution. This
minimax approximation is, thus, optimal in this sense, although
other measures of optimality are possible. In the course of
developing the optimal minimax approximation, we examine the
goodness of the assumption that a lognormal sum distribution
can be approximated by a lognormal distribution. In support of
these investigations, we examine some numerical integration
methods to select a method for computing the lognormal CF
numerically. The accuracies of some well-known lognormal
sum distribution approximations are tested over a wide useful
range of probabilities, wider than those undertaken in previous
comparisons.

II. SUMS OF LOGNORMAL RVS

A lognormal RV has the property that its logarithm has a
normal (Gaussian) distribution. Let . If the RV
is normally distributed and its pdf is given by

(1)

with mean and standard deviation , the RV is said to
be lognormally distributed and the pdf of is given by

(2)

In wireless engineering applications, it is more convenient to ex-
press the signal power in decibel units. Define the Gaussian RV

with mean and standard deviation , both
of which are in decibel units. In a mobile radio environment, the
parameter is sometimes called the dB spread, having typical
values between 6 and 12 dB for practical channels depending on
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the severity of shadowing [2], [8]. The RVs and are related
as

(3a)

(3b)

(3c)

where . Thus, the pdf of the RV
can equivalently be represented by

(4)

Observe that a lognormal RV is specified by two parameters,
and . If using decibel units, and refer to and ,

respectively; otherwise, and refer to and , respec-
tively.

Sums of lognormal RVs occur in a number of practical
problems [8]–[10]. For example, in wireless systems the total
cochannel interference signal in a shadowed propagation
environment is often modeled as a sum of lognormally
distributed signals. In general, the distribution of a sum of
lognormal RVs is difficult to determine, which has led to the
development of several approximation methods [1]–[9]. A
widely used assumption is that the sum distribution is well
approximated by another lognormal RV, i.e.,

(5)

where the RV possesses a normal distribution. Both
Wilkinson’s method and the method of Schwartz and Yeh are
based on this assumption [1]. Wilkinson’s method estimates
the mean and standard deviation of by matching the first and
second moments of both sides of (5). The method of Schwartz
and Yeh provides exact expressions for the first two moments of
a sum with two independent summands; a recursive procedure
is used to estimate the first two moments for sums with more
than two summands. Farley’s method [1] is also widely used
[3], [10], [12] to approximate lognormal sum distributions.
It is not based on the assumption that the sum distribution
is approximately lognormal. In [2], Farley’s approximation
was proved to be a strict lower bound to the complementary
cumulative distribution function (cdf ) of a lognormal sum
distribution.

III. CHARACTERISTIC FUNCTION AND

NUMERICAL EVALUATION

A standard method for computing the pdf of a sum of inde-
pendent RVs is to use CFs. The CF of an RV is defined as
[13]

(6)

TABLE I
NUMERICAL APPROACHES TO THE COMPUTATION OF LOGNORMAL CF

where denotes the expectation operation and .
The pdf is determined by the inverse transformation

(7)

and the cdf can be expressed as

(8)

(9)

where and denote the real and imaginary parts
of , respectively. Equation (8) uses the integration property
of Fourier transforms [15, 3.3.7] and (9) is obtained from (8)
by recognizing that the imaginary part of the integrand in (8)
must be integrated to zero because is real. Considering

for a lognormal RV, (9) is simplified to [16]

(10)

(11)

As is well known, the CF of a sum of independent RVs is the
product of the CFs of the summands [13]. Eqs. (7) and (9) then
represent, in principle, a way to determine the pdf and cdf, re-
spectively, of a sum of RVs. However, the CF of a lognormal RV
is not known in the closed form. Furthermore, numerical com-
putation of the CF is difficult because of the slow rate of decay
of the lognormal pdf; each of the real and imaginary parts of the
integrand is oscillatory and the slowly decaying envelope of the
integrand results in the addition of a large number of areas of
nearly equal magnitude and alternating sign. To the best of the
authors’ knowledge, the only graph of the CF of a lognormal RV
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Fig. 1. Real and imaginary parts of a lognormal CF with m = 0 and � = 0:25 (after [14, Fig. 1]).

in the literature was published in [14], in which a modified Her-
mite polynomial series was derived for the CF of a lognormal
RV. Using this series, the real and imaginary parts of the log-
normal CF were plotted for . Note that
or corresponds to 1.09-dB spread [see (3c) and
the related discussion]. Practical problems in wireless commu-
nications involve lognormal RVs with values of decibels spread
ranging from 6 to 12 dB. Our empirical tests indicate that the
modified Hermite polynomial series in [14] can only be used
for some small values of and small values of . For example,
for and , or for and , the series
did not converge. These tests were done using MATLAB on a
Linux system running on an IBM IntelliStation M Pro with Intel
Xeon processor.

In order to assess the accuracies of previous approximations
and our new minimax approximation over a wide range of
probabilities, we investigated the numerical computation of
the lognormal CF [17]. The goal was to find a numerical
integration method that gives reliable results over a wide
range of sum probabilities, a wider range than can be tested
using computer simulation. Table I summarizes the methods
and our empirical assessment of the suitability of each for
computing the CF for values of and of interest. In
our tests, the modified Clenshaw–Curtis method proved to
be the best algorithm to use. It gave accurate results and was
much more efficient than the well-known Trapezoidal and
Simpson’s rules. (Note that efficiency becomes increasingly
important as increases.) The fast Fourier transform (FFT)
is efficient; however, it is not possible to bound the aliasing
error, as the CF is not known a priori, complicating the
determination of an appropriate sampling frequency. Moreover,
we found empirically that the FFT method was impractical
for large values of dB spread because very
large sampling frequencies and correspondingly excessively
large memory storage in a computer system were needed to

achieve reasonable accuracies in the desired CFs. The modified
Clenshaw–Curtis method, based on the algorithm in [18], is
the most efficient among these methods for computing the
CF. While Table I summarizes the usefulness of the different
methods for computing a lognormal CF, more needs to be said.
Once having computed the CF, we must form a product of
appropriate CFs to obtain the CF of a lognormal sum and then
numerically integrate the sum CF to obtain the pdf or cdf. This
corresponds to executing a double numerical integration, which
requires the square of the numerical cost of just computing
the CF. At this point, the efficiencies of the methods becomes
pivotal. As a test of both the efficiency and the accuracy of a
method, we executed this procedure for a single lognormal RV.
That is, we compute the CF numerically and then invert this
CF numerically to obtain the original pdf or cdf. We were not
able to do this using either the Trapezoidal or Simpson’s rule
due to the excessive computation times needed. The modified
Clenshaw–Curtis method functioned well, requiring seconds to
perform this double transform and return to the original function.
In the remainder of this paper, the modified Clenshaw–Curtis
method is used for the numerical computation of lognormal
CFs and lognormal sum cdfs.

Fig. 1 shows the real and imaginary components of the CF
of a lognormal RV with and corresponding to
1.09-dB spread. This figure replicates [14, Fig. 1] and the results
are numerically in agreement. As stated previously, practical
values of dB spread for wireless systems range from 6 to 12 dB.
Figs. 2 and 3 show the real and imaginary parts of the lognormal
CF for and , respectively, both with .
The curves are similar in shape for and ,
but do not resemble the curves for the small value of illustrated
in Fig. 1.

In all our examples, we set : There is no loss in gen-
erality in doing so. Consider for . One has

and we see that a lognormal RV
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Fig. 2. Real and imaginary parts of a lognormal CF with m = 0 and � = 6 dB.

Fig. 3. Real and imaginary parts of a lognormal CF with m = 0 and � = 12 dB.

with is identical to a lognormal RV with scaled
by . Similarly,

and the CF of a lognormal RV with is obtained by scaling
the frequencies of the CF of the corresponding lognormal RV
having by . Further, note that while is equivalently
a scale factor, the parameter defines different distributions.
Thus, the lognormal distribution with parameters and is
essentially a family of distributions characterized by a single

parameter . Each value of represents a different distribution,
but a different value of represents a scaling of any other dis-
tribution having the same value of . This is in contrast to the
corresponding Gaussian distributions with parameters and .
The parameter translates the Gaussian distribution while the
parameter corresponds to a scaling. Hence, the Gaussian dis-
tributions with parameters and are not a family of different
distributions in this sense. This fact is relevant to the problem
of approximating the “lognormal distribution.” If an approxi-
mation is to be accurate for arbitrary values of , one is actually
approximating an infinite number of distributions that all belong
to the “lognormal distribution family.”
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Fig. 4. Minimax approximation to a lognormal sum plotted on lognormal probability paper.

Fig. 5. The cdf of a sum of N i.i.d. lognormal RVs with m = 0 dB and � = 6 dB.

Having the CF of a lognormal RV at hand, by computing (6),
the cdf of a sum of independent lognormal RVs is computed by
numerically integrating (10) or (11) with

The modified Clenshaw–Curtis method [18] is again used. Note
that

higher order terms in

where denotes the numerical approximation to ,
denotes the error in , and denotes the error in .
One has

and

higher order terms in (12)
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Fig. 6. The cdf of a sum of N i.i.d. lognormal RVs with m = 0 dB and � = 12 dB.

Fig. 7. The cdf of a sum of two i.i.d. lognormal RVs with m = 0 dB and � = 6 dB.

Using the triangle inequality gives

higher order terms in (13)

Now, for any CF [13]. Thus, , if
accurately computed, will be less than 1, or very nearly so. Then,
under the assumption that all the numerical approximations are
computed to a good level of accuracy, one has

higher -order terms in (14)

Equation (14) indicates that decreasing the error tolerance in the
numerical computation of each summand CF in proportion to
the number of summands should ensure that a given desired
error tolerance in is achieved, when the error tolerances
are small.

In this paper, all approximations are tested for values of
the cdf in the range of probabilities from to .
Note that accuracy in both tails of the cdf are of interest;
small outage probabilities correspond to small values of the
cdf while small values of the complementary cdf ( )
are of interest in cochannel interference problems. This range
is greater than the ranges examined in past work [1], [3], [7].
Our range is intended to represent probabilities of interest in
practical system design for present wireless systems and for
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Fig. 8. The cdf of a sum of six i.i.d. lognormal RVs with m = 0 dB and � = 6 dB.

future wireless systems in which performance demands are
becoming increasingly stringent. As a device to readily see how
much an approximation deviates from a lognormal distribution,
we use “lognormal probability scales” for our graphs. Recall
that a Gaussian cdf plots as a straight line on “probability paper”
[19]. Using “probability paper” but transforming the abscissa
into log(abscissa) yields graph scales on which a lognormal
cdf plots as a straight line. Deviations from “lognormality”
then are easily seen and appreciated. An explanation of how
to design lognormal probability paper follows.

On lognormal probability paper, the cdf of a distribution
is transformed according to

(15)

where is the inverse function of the standard normal
cdf having zero mean and unit variance. Note that if

is the zero mean, unit variance normal cdf, then
. Also, if is a normal cdf with mean and variance
, then and, in this case,

. Similarly, if is a lognormal cdf with the
parameters and , then and, in
this case

(16)

in which is a linear function of . The cdf of a log-
normal sum (determined numerically) is also transformed using
(15), but is no longer a linear function of . We plot
the data pairs on a two-dimensional (2-D) coordi-
nate system and label the corresponding probability values on
the vertical axis using the one-to-one transformation

. Such a lognormal probability plot is demonstrated
in Fig. 4 for a sum of six independent identically distributed
(i.i.d.) lognormal RVs with and . Note that
the horizontal axis is a log-scale and that the right vertical axis
is uniformly spaced in terms of values of the inverse standard

normal cdf. The left vertical axis is graduated according to the
corresponding probabilities.

Figs. 5 and 6 show the cdfs of lognormal sums for
and , respectively, both with . It is seen
that straight lines (lognormal approximations) can only be ac-
curate for a limited subset of the range of probabilities consid-
ered, even for . Furthermore, as expected, the lognormal
approximation (5) becomes increasingly poor as the number of
summands increases both for and . Since
the lognormal approximation is a simple and useful way to ap-
proximate the lognormal sum distribution, it is clearly of interest
to optimize, in some way, the lognormal approximation to min-
imize, in some way, the error of the approximation.

IV. MINIMAX APPROXIMATION

When considering a lognormal approximation to a lognormal
sum distribution on the lognormal probability paper, we need
to find a linear function (i.e., a straight line) to best fit the cdf
curve of the sum. The minimax approximation is the best in the
sense that it minimizes the maximum absolute distance between
the approximate function and the true function over a specified
interval. Let a true function be continuous on and let

be any polynomial of degree . The minimax polynomial
approximation of degree to is determined by minimizing

(17)

The existence and uniqueness of such a best (minimax) approxi-
mate function is proved in [20] for any continuous function
defined on a finite interval . In addition, the alternation the-
orem [21] provides a rigorous necessary and sufficient condition
for determining the minimax approximation. Consider the func-
tion (then is the algebraic error of
the approximation at the argument ) and let denote the
maximum value of on . A necessary and sufficient
condition that a polynomial of degree , , is the unique
minimax approximation to is that there are at least
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Fig. 9. The cdf of a sum of six i.i.d. lognormal RVs with m = 0 dB and � = 12 dB.

points on where achieves with alternating signs.
Further details and proof of this useful theorem are given in [21].
Returning to the problem of determining a lognormal approxi-
mation to a lognormal sum distribution, we conclude that there
are at least three maximum deviations with alternating signs be-
tween the optimal lognormal approximation curve (the straight
line) and the sum-distribution curve.

Now, let and . A linear function on the
lognormal probability paper is to be found with
constants and , determined according to

(18)

where and . Inspection of the
cdf curves in Figs. 5 and 6, as well as other examples in [17], im-
plies an assumption1 that the cdf of a lognormal sum distribution
is a concave function with on lognormal probability
paper. Therefore, is a monotonically decreasing function.
Since , is also a
monotonically decreasing function that indicates that is a
concave function. Considering that there exist at least three dis-
tinct points that have the maximum error
with alternating signs, the maximum error magnitude must
occur at the end points of the interval . Hence, and

. The third point of the maximum error magnitude is
determined by setting , giving

(19)

Equation (19) shows that a line tangent to the lognormal cdf at
the point is parallel to the minimax approximation. Further,
this line is also parallel to the line through the end points ( ,

), and ( , ); this property follows from the con-
vexity of and the fact that . Thus,

(20)

1It is difficult to theoretically prove the concavity of the cdf of a lognormal
sum distribution in the transformed domain since the knowledge of the cdf and
the pdf of a lognormal sum is lacking.

These relationships are illustrated in Fig. 4. The constant can
be determined using the fact that the point ( ,

) is on the minimax line. One has

(21)

where is given by (19). Consequently, the mean and the
standard deviation of the optimal lognormal approximation
are given by (16)

(22)

(23)

An optimal lognormal approximation to a lognormal sum
distribution was presented in this section. The approximation
is optimal in the sense that it minimizes the maximum abso-
lute error in the transformed domain. Minimizing the maximum
error in the transformed domain gives significant weighting to
the relative error of the approximation in the tails. Note that even
large relative errors in the tails are negligible as compared with
small or moderate relative errors near the mode of the distribu-
tion in the original (untransformed) domain, although it is the
tails of the distribution that are of interest in outage and inter-
ference problems. In the proposed method, the approximation
preserves the lognormal form. This is highly desirable due to
its simplicity and analytical tractability. This approach is very
simple and novel. Furthermore, the paradigm proposed in this
section can be used to construct lognormal approximations that
are accurate in any desired region using the minimax criterion.
More generally, the paradigm can be generalized to use other
criteria.

V. EXAMPLES AND COMPARISONS

In the following, several examples of sums of independent
lognormal RVs are considered. Sums with i.i.d. summands
and sums with summands that are not i.i.d. are examined for
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different numbers of summands. The accuracy of the min-
imax approximation is compared to the accuracies of previous
approximations.

A. Sums of i.i.d. Lognormal RVs

Figs. 7–9 show the cdfs of sums of i.i.d. lognormal RVs and
their approximations derived from Wilkinson’s, Schwartz and
Yeh’s, and Farley’s methods, as well as the new minimax ap-
proximation. One can see in Fig. 7 that all of the methods give
relatively good approximations when because the sum
distribution of two variates is very close to a lognormal dis-
tribution. One can see in all of Figs. 7–9 that Schwartz and
Yeh’s method gives excellent approximations for sum distribu-
tions in the range [0.1, 0.9], but has significant error in the tail
values of the complementary cdf. In Fig. 8 when
and , the maximum discrepancy between Schwartz and
Yeh’s approximation and the distribution is almost five orders
of magnitude. In general, Schwartz and Yeh’s approximation se-
verely underestimates the values of the tails of complementary
cdfs [17]. Its accuracy for values of cdf tails is better than that
for values of complementary cdf tails. In contrast, the simple
Wilkinson’s method provides better approximation to values of
the complementary cdf tail than Schwartz and Yeh’s method. Its
accuracy improves as the value of the dB spread increases. For
12-dB spread, the complementary cdf tail values approximated
by Wilkinson’s method are very accurate. On the other hand,
Wilkinson’s estimates of the tail values of the cdfs are worse
than those of Schwartz and Yeh’s. The maximum deviation ex-
ceeds four orders of magnitude for the case of 12-dB spread and

illustrated in Fig. 9. As stated in [4], Farley’s approach
is an upper bound to the cdf and a strict lower bound to the com-
plementary cdf tails, but the discrepancy becomes worse as the
dB spread becomes smaller or as the number of summands
becomes greater. In Fig. 8 when and , the
maximum deviation is about three orders of magnitude. On the
other hand, Farley’s approximation follows the shape of the true
distribution curve for large values of and is quite accurate in
this region. The simple lognormal form, however, is lost.

If a lognormal approximation to a lognormal sum distribu-
tion is employed, it is equivalent to a straight line on the log-
normal probability paper; many lines could be drawn, tangent
to or intersecting different points of the lognormal sum-distribu-
tion curve. Neither Schwartz and Yeh’s nor Wilkinson’s approx-
imations are good for the range of probabilities in Figs. 7–9. The
minimax approximation provides good balance over the whole
range, giving more accurate approximations than Schwartz and
Yeh’s and Wilkinson’s methods. The maximum error of the
former is two to three orders of magnitude less than the max-
imum error of the latter two in some cases in our examples.

Table II gives the mean and dB spread of the min-
imax approximations to lognormal sum distributions for values
of and and for dB spreads of 6–12 dB, which will
be useful for reference.

B. Sums of Lognormal RVs With Different Power Means

Fig. 10 shows the cdf of a sum of six independent summands
with the same dB spread (12 dB), but different values of (dif-
ferent power means). The power means are equally distributed

TABLE II
MINIMAX APPROXIMATION OF THE SUMS OF i.i.d.

LOGNORMAL RVS (m = 0 dB)

in [ 25 , 25 ]. We observe that methods by Wilkinson,
Schwartz and Yeh, and Farley yield approximations with similar
qualities to those in the i.i.d. cases. Schwartz and Yeh’s method
again provides good approximations to the cdf in the range [0.1,
0.9], but it has great deviations in the two tails. Wilkinson’s
method is better than Schwartz and Yeh’s method for values
of the tail of the complementary cdf. Compared with the sum
distribution in Fig. 9, which has i.i.d. summands ( ,

), the sum distribution in Fig. 10 is closer to a
lognormal distribution. Thus, the approximations of previous
methods are better than those for sums with i.i.d. summands.
For example, the maximum deviation of Schwartz and Yeh’s
method decreases from four orders of magnitude in Fig. 9 to two
orders of magnitude in Fig. 10; this occurs because changing the
power mean of a lognormal RV is equivalent to scaling the RV.
When the power means (scalings) are substantially different, the
largest of the scaled RVs dominates the sum and the CF tends
toward the CF of the single, dominant RV, which is a lognormal
RV.

C. Sums of Lognormal RVs With Different dB Spreads

Fig. 11 shows the cdf of a sum that has summands with the
same power mean , but different dB spreads. The
summands have dB spreads spaced in the range [6 dB, 12 dB].
We plot the cdf of the summand with the greatest dB spread
as well. It is seen that, for large values of argument, the cdf of
the sum tends to the cdf of the summand with the greatest dB
spread. This example clearly demonstrates this asymptotic char-
acter of the sum distribution detailed in [3] and [6]. Comparing
the sum distribution with the sum distribution for the case of
i.i.d. summands, the sum distribution deviates from a lognormal
distribution more greatly. Thus, the approximations given by
Wilkinson’s and Schwartz and Yeh’s methods degrade. An ex-
ample is the following. In Fig. 8 for the sum of six i.i.d. sum-
mands with 6-dB spread, the maximum error given by Schwartz
and Yeh’s method is about five orders of magnitude, whereas
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Fig. 10. The cdf of a sum of six lognormal RVs with the same dB spreads (� = 12 dB) and different power means (m = �25 dB, m = �15 dB,
m = �5 dB, m = 5 dB, m = 15 dB, and m = 25 dB).

Fig. 11. CDF of a sum of six lognormal RVs with the samem values (m = 0 dB) and different dB spreads (� = 6 dB, � = 8 dB, � = 9 dB, � = 10 dB,
� = 11 dB, and � = 12 dB).

the maximum error in Fig. 11 for summands with different dB
spreads is over nine orders of magnitude. Similarly, Wilkinson’s
method is also poor. However, the maximum errors decrease
when the differences among the dB spreads of the summands
decrease, as expected.

VI. CONCLUSION

We have examined the goodness of the well-accepted
assumption that a sum of independent lognormal RVs is also
lognormally distributed. It was found that this assumption is
good for sums of i.i.d. summands, but is poor when the
number of summands increases or the difference among the dB

spreads of the summands increases. Three previous approxi-
mate approaches—methods by Schwartz and Yeh, Wilkinson,
and Farley—have been compared with the results obtained by
numerical computation. It was seen that none are valid over
a wide range of parameters. The approximations obtained by
Schwartz and Yeh’s method deviate significantly in the tails
of the complementary cdfs, whereas the approximations given
by Wilkinson’s method are not good in the tails of the cdfs,
especially for large dB spreads (12 dB). Farley’s approximation
is, generally, good for large values of argument, but worse than
other methods for small values of argument when the dB spread
is small or the number of summands is large.

A new paradigm for approximating the distributions of
lognormal sums was given in this paper; it is simple and,
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in some sense, optimal. This novel approach was developed
from the linearization of the lognormal cdf curve. Then, the
minimax approximation was developed to determine a best
lognormal approximation to a lognormal sum distribution in
the transformed distribution domain. This approach reduces
the relative error in the tails of the approximating distribution.
Our work shows that this approximation can be better than
other methods in some applications, sometimes reducing the
approximation error by several orders of magnitude.
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