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Abstract

Interval routing is a space-efficient (compact) routing method for point-to-
point communication networks. The method is based on proper labeling of
edges of the graph with intervals. An optimal labeling would result in routing
of messages through the shortest paths. Optimal labelings exist for regular as
well as some of the common topologies, but not for arbitrary graphs. It has
been shown that it is impossible to find optimal labelings for arbitrary graphs
[4]. In this paper, we prove the lower bound of 2D — 3 on the longest routing
path for arbitrary graphs, where D = O(/n) is the graph’s diameter and n is
the number of nodes, as well as a lower bound of 2D — o(D) for D = O(n).
Our results are very close to the best known upper bound which is 2D.

Keywords : interval routing, longest path, disjoint interval, cyclic order, chains.

1 Introduction

Interval routing was first proposed by Santoro and Khatib [6], and subsequently
refined by van Leeuwen and Tan [11]. The idea is to label the nodes by integers
(called node numbers) from a cyclicly ordered set, say, {0,1,...,n — 1}, wheren
is the number of nodes; and the edges by intervals of the form (p, ¢), where p, ¢
are node numbers. (p,q) istheset {p,p+ 1,...,q} ifp < g, or {p,p+1,...,n—
1,0,...,q} if p > ¢. (p) is the short form for (p, p), i.e., the set {p}. During routing,
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a message is routed along an edge whose interval label contains the destination
node number, until the message reaches the destination. An example of interval
routing is shown in Figure 1. The figure shows the routing path of a message that
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] amessage destined for Node 0

Figure 1. An example of interval routing

travels from Node 2 to Node 0. The message first takes the edge to Node 3 because
0 is contained in the interval (3,0), and then takes the edge to Node 4 because 0 is
contained in (4, 0), and so on. Clearly, with interval routing, at most O(d) space is
needed at a node, where d is the node’s degree. In general, d is smaller than n, the
size of the network, and we say that the routing information stored at a node as
required by interval routing is “compact”. See the survey by Tan and van Leeuwen
[7] for an overview of the field of compact routing.

One of the main questions in interval routing research is that given G, how to
label its nodes and edges so that all the routing paths are shortest paths, where G
represents either a specific kind of graphs or arbitrary graphs (general networks). A
successful labeling satisfying the condition constitutes an optimum interval rout-
ing scheme (IRS). For a number of specific graphs, optimum IRSs are known to
exist [7]. What about arbitrary graphs? RuZicka answered this in the negative way
by constructing a graph that has no optimum IRS [4].

In practice, it might not always be necessary to insist on shortest-path routing,
as long as the paths are not too far from the optimal. Santoro and Khatib have
proposed an algorithm that can label any graph to yield paths whose lengths are
at most two times the graph’s diameter [6]. Instead of considering all the paths,
we could look at just the longest path which is commonly used as a performance
indicator in many analyses. In shortest-path routing, the longest path equals the
diameter of the network. In other cases, it is useful to establish a lower bound in
terms of the network’s diameter on the longest path. This bound can then be used



to determine the goodness of any routing scheme to be applied to the network. The
aim of this paper is to present a lower bound on the longest path in 1-label interval
routing.

Interestingly, only one upper bound exists, which is the 2D upper bound for 1-
IRS according to Santoro and Khatib [6]. In this paper, the lower bounds are 2D — 3
and 2D — o(D), improving the result ED — 1in [8]. Since there is no any better
algorithm yielding an upper bound less than 2D, and no any lower bound higher
than 2D — 3 there are still rooms for improvement on both sides.

2 Properties

The network in question is a connected graphs, G = (V, E). where V is the set
of nodes, and E the set of the edges. Every edge in E is bidirectional. There are
n nodes in V. To implement interval routing, each node is labeled with a unique
node number, from the set {0,...,n — 1}, and every edge in each direction by an
interval called the edge’s interval label. For u,v € V that are directly connected,
L(u,v) denotes the interval label for the edge that goes from u to v.

An interval (a,b) isthe set a,a + 1,...,b (mod n). We refer to such a set an
interval set. A set A is not an interval if and only if A is a proper subset of every
interval set containing it. If an interval B contains an interval B’, B’ is called a
subinterval of B.

We use the notation v < v < w, to denote the cyclic ordering of node numbers,
for u,v,w € {0,...,n —1}. Naturally, 0 <1 < ... <n—1 < 0. Asin [8], the
expression u < {v,w} < x means that v and w are contained in some interval and
that they are ordered after u and before z, but the order of v and w is not shown.

Property 1 (Completeness) The set of interval labels for edges directed from a node wu is
complete. Thatis, Vu € V, V — {u} C U )epL(u, ).

Property 2 (No ambiguity) The interval labels for edges directed from a node u are dis-
joint. That is, for u # v, v is contained in exactly one of these intervals.

Property 3 (No bouncing) For each (u,v) € E, there exists no node w # u, v, such that
w is contained in both £(u,v) and L(v, ).

Property 4 (Lossless) Given a chain of nodes wy, wa, ..., wx. Vi € [1,k — 1], if u #
w; Vi€ [i, k— 1] and u € £(wi,wi+1), we have u € E(wz',wi+1) Nn...N E(wk_l,wk).

Property 5 (Reachable) Given a chain of nodes wy, we, ..., wg. Vr,s,t € 2,k — 1], r <
s < t, ws is contained in £(wy, wy41) U L(weg1,wy).



Property 4 and 5 are referred to the interval labels of edges in a chain. For a chain
a,b,c,d, e, Property 4 guarantees that Vo € L(a,b), z isin L(b,c) if z # b; and z is
in L(c,d) if x # b, ¢, etc; otherwise, either the routing information about x is lost
or Property 3 is violated. For the same chain, Property 5 guarantees that ¢, say, is
included in L(a,b) or L(e, d); otherwise, ¢ is not reachable. It should be noted that
these 5 properties are necessary but not sufficient for a valid IRS for general graphs.
A valid IRS is one that can route a message from any node to any other node. If
Property 3 is changed to ”No cycle” instead of ”No bouncing”, these properties is
sufficient for a valid IRS. We need not impose the Property of No Cycle because we
will prove our bound by contradiction to our assumption that every routing path
is shorter than 2D — K, K > 3. By the structure of the graph used in our proof, it
is impossible to have any cycle in a routing path with length not greater than 2D.
Hence, under our assumption on the longest path, the properties are sufficient for
a valid IRS in the graph used below.

3 The Graph G r

We define a graph G ¢ r, as shown in Figure 2, based on which we prove our
lower bound. Define Gr.cr = (Vi,c,F, Er,c,r) Which is of diameter D = 2C + 2,

Figure 2: The skeleton of G, ¢ .

andsizen = LCF + L + F; Vi ¢ r and E, ¢ r are as follows.

Vier= {vefl <I<SL,1<c<C1<f<F}
U {ufl < f < F}
U {wll<I<L}
Ercr= {(efver,f) 1 <I<L1<c<C-1,1< f<F}
U {(upup )l SIS LIS fLSF}
U {(w,ucs)l <ISL1ILS fSF}



There are F flaps, whose roots are the nodes w1, us,...,ur, and within each
flap, C columns and L layers. We will prove the lower bound by contradiction.
The values of L, C and F will be defined later. We use the subscripts [, ¢, f to
denote the layer, the column, and the flap, respectively.

Definition 1 An [ f-chain (or simply chain) is the set {v 1 r,vi2,¢,- .-, v,c,f}-

Example of Definition 1: a 32-chain is the set {v312,v322,...,v3¢c2}, and a
(12)(91)-chain is the set {vi2,1,91,v12,2,91,---,v12,c,01}. The nodes of a chain may
fall into one or more disjoint intervals. Two chains are disjoint if their nodes fall
into two disjoint intervals, respectively. Similarly, two layers (or flaps) are disjoint
if the nodes of their chains fall into two disjoint intervals, respectively.

For the edge labels L(u s, v, 1,¢) and L(w;, vy ¢ f) at the end points of an [ f-chain,
we have two cases. The first case is that the union of the edge labels is an interval;
and the second case is just the opposite. We need to divide all the chains into two
cases because our proof is mainly based on the first case, and on the other hand, we
can prove the number of chains of the second case is bounded (Lemma 4.2). The
chains of the first case are called normal because the number of them is unbounded;
and the other chains are, therefore, called abnormal.

Definition 2 An [ f-chain is normal if £(us, vy 1,5) U L(wy, v,c,¢) is an interval. A chain
which is not normal is said to be abnormal.

Lemma 3.1 The union of two non-disjoint intervals is an interval. <

Figure 3: Idea of Lemma 3.1.

Lemma 3.2 Ifan{f-chain is abnormal, L(us, vy 1 ¢) N L(wy,vc 5) = 0.
Proof: Directly by Lemma 3.1.

Lemma 3.3 If an [f-chain is abnormal, 3a,b & L(uf,v;1,¢) U L(w;,v;,c,f) sSuch that
a < ,C(Uf,vuj) <b= E(wl,vhaf) < a.



Proof: Directly by Definition 2.

Hierachery of lemmas and theorems.

The main results are Theorem 7.1 and Theorem 7.2, which are direct consequence
from Theorem 6.1. We use counter proof technique and assume every path is no
longer than 2D — K. To prove Theorem 6.1, we need the lemmas. The main
Lemma—Lemma 5.1 proves that there is at least a path no shorter than %D -1
if we allow partial disjointness of two layers (labeled as “A” in Figure 4). However,

A : Partial digjointness between two layers B : Disjointness between two flaps
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Figure 4: Amatrix of v;; ¢, VI € [1,L], f € [1, F).

such a path of length %D — 1 will result a path no shorter than 2D — 1 (Theorem 6.1)
which violates our assumption on the longest path length. Hence, such partial
disjointness between layers (Lemma 5.1) cannot exist. However, the absence of this
partial disjointness between layers will lead to the presence of disjointness between
two flaps (labeled as “B” in Figure 4). Lastly, the presence of disjointness between
two flaps will lead to the violation of the assumption on longest path length (The-
orem 6.1).

Most of the dependencies of theorems and lemmas are shown in Figure 5 which
may increase the readability of this proof.
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Figure 5: Hierachery of theorems and lemmas.

4 Lemmas on Chains

The Lemmas from 4.1 to 4.11, hold under the assumption that there exists a label-
ing scheme such that every path is shorter than 2D — K, K > 3. The results of
these lemmas are that in any layer, there are at least F — | £] — 2 normal chains.
The main lemma—Lemma 5.1 will hold for sufficient number of normal chains
which can be obtained from a good choice of the value of F. The lemmas, from
Lemma 4.1 onwards, will be used in the proof of main Lemma 5.1, and in the proof

of Theorem 6.1.

Lemmad4.l VI € [1,L], f € [1, F], an [ f-chain can be partitioned into at most 4 inter-
val sets, Wip Xip Yip Zi g, such that a; < Wip<ax < X5 <a3 <Y <ag <
Zy5 < aiwherea; € Vo or — {vii 02,8, 00,010 8 € [1,4].

Proof: Assume there are at least 5 interval sets W; ¢, X; , Y r, Z; ¢, T,y which parti-
tion the [f-chain such thata; < Wiy <as < X; 5 < a3 <Yy <as < Z; 5 < a5 <
Ty 5 < ay where a; € VLo F — {vl717f,’l)l727f, e 7'Ul,C,f}’ i€l,5]

Wig, X5, Y g Z1p, T © Llug, v, 0)I(UZE ™ L v, gy v1er1,5))- Since Llug, v, 5)
and L(vy,1,f,v1,2,r) are not disjoint (because vy o y € L(uy,vy1,5) N L(vi1,7,v1,2,5) UN-
der the assumption on the longest path), the union of L(u s, v1, ) and L(vy 1,7, v1.2,f)
is an interval, by Lemma 3.1. Moreover, Ve € [1,C — 2], L(vic,f,V,c+1,¢) and
L(v)e11.f>Vicr2.r) are not disjoint, £(us, vy1 ;) U (V=S L (v f,v1011,7)) iS @n in-
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terval. Then4of ay, ..., as are contained in L(uys, vy 1 5)U (ugz?—lﬁ(vlvc,f, Ulet1,f))s
and by Property 4, these 4 elements are contained in L(v; ¢ ¢, w;). Then, by Prop-
erty 3, L(wi, vi,c,r) Will contain at most 2 of W, ¢, X; ¢, Y ¢, Z; £, T 5.

Similarly, L(us, v 1,¢) will also containat most2 of W, ¢, X; ¢,Y] ¢, Z; 7,1} ¢. Then,
at least one of W, ¢, X; ,Y) r, Z; ¢, T} ¢ is not a subset of L(uy,vy1,¢) U L(wy, vi,0,f).
Property 5 is violated. <

Lemma 4.2 In a layer, there are at most L%J + 2 abnormal chains.

Proof: Assume in the Ith layer, there are p chains in fith, foth,..., f,th flaps, such
that Vi € [1,p], L(uy,,vi1,5) U L(w,v,cp) is Not an interval. Forall i € [1,p], let
x; = max{clv e, € L(ug,v1,)} and y; = min{clv .5, € L(wi,v,c.5,)}

Foralli € [1,p], ify; > x; + 1, we have vy 5,415, & L(ug,vi1,p) U L(w,vep,);
contradicting Property 5. Hence, y; < x; + 1.

Vr,s € [1,C],0 < r — s < 2K — 1, we want to argue that there are at most 2
elements, say, 7,5 € [1,p], such that y;,y; € [s,r]. Assume the contrary, there are
3 elements, say, i, j,k € [1,p], such that y;,y;,yx € [s,r]. Consider z;,y;. v 4, 1, €
L(ug,v1,p) implies vy . r, € L(Vpc—1,f,Ve1), Ve < ;. By the assumption on the
path lengths, v, . , € L(Vic—1,f,Vic.:), Ve € [ys — K +1,y;). Since y; < x; + 1, there
existsac e [y; — K +1,y; — 1] such that vy o, 1, vy, 1, € L(Vi,c—1,f> Vie,f;). Similarly,
there exists a ¢’ € [z; + 1,2; + K — 1] such that vz, ¢, viy, 1, € LVLe41,8,, Ve f,)-
Obviously, ¢ < c. By Property 3 and 4, L(Ul,c—l,fiavl,c,fi) N E(Ul,c’-i—l,fiavl,c’,fi) will
contain elementsonly in {v; ¢ f, v c+1.¢,-- -, e, r - Hence, we have the cyclic struc-
ture in Figure 6 due to the presence of a, b (also in the figure) by Lemma 3.3, where

a,b & L(ug,vi,f)YL(w,vcf,)

‘n\ (us, ,V|y]_yfi)

L <\ ~ L
/=
(VI,C—l,fi, Vief, ) “
-|' (V|,C’+1,f‘ 1V| Cf )
(VVI ’V|,C,f| ) ‘r

"/

Figure 6: Cyclic structure of L(v;c—1,f,, Vic.f;) @Nd L(v1,er41, 4, Vel £, )-

Consider z;,y;. Like z; and y;, y; < x4 1. We now want to find the positions of
V1,5, @nd vy, ¢ inthe cyclic structure as in Figure 6. By Lemma 3.2, L(uy,, vy 1,7,)N
E(wl,vl@f].) = @ Therefore, Ul,a:j,f]- Q L(wl,vl@fj) and vl,yj,fj g L(ufj)vl71,fj)'
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If v, 1, € L(Ve—1,f:5 Vi e, p;), the routing path from v .1 ¢, to vy ., 5, Will passes
through vy .17, wi, up, wy, ugp,, vy 4 p;- Choosing ¢ = y; — K + 1, the routing path
lengthis (2 —(c—1))+2+L2+ L2 42, =2D—(c—1)+z; > 2D—(y;— K)+(y;—1) =
2D — (yi —y;) + K—-1>2D - (2K — 1)+ K — 1 = 2D — K. Contradiction to the
assumption on the path length. Hence, vy .. r, € L(vi,crq1,1,, Vi, 1,)-

If vy, r; € Lty vie,s), the routing path from vy ey g, t0 vy, r, Will
passes through vy o 11 1,, g, , wy, up, wy, vy, 5, Choosing ¢ = z;+K—1, therouting
path lengthis (¢ + 1)+ 2+ 24+ 24 (D —y) = 2D+ (¢ +1)—y; = 2D+ (2 +K) —y; >
2D+ (yi+ K —1)—y; = 2D—(y;—y;)) + K —1 > 2D—(2K —1)+ K —1 = 2D— K. Con-
tradiction to the assumption on the path length. Hence, v, 1. € L(vic1,1,, Vi, f,)-

Similarly, vy 4, 5, € L(Vicr41,5,5 Ve f) AN vy, g € L(V1c—1,fi5 Vie,f,), @S IN Fig-
ure 7(a).

contains
Vig f;

contains
Vi Yiof

contains
V| :
I,yj f i

Viy, fi

VI Wi £

Vl WYi Ar

@ ®) ©
Figure 7: Cyclic structure of vy 4, r,, Vi, 1 Vi fi> Vs fio Vg foo and vy, 1,

Since, f;th, f;th, fith flaps are symmetric, we have another two cases of cyclic
structures as in Figure 7(b)(c). Obviously, the three cases in Figure 7(a)(b)(c) will
contradict to one another.

Hence, Vr,s € [1,C],0 < r — s < 2K — 1, there are at most 2 elements, say,
i,j € [1,p], such that y;,y; € [s,r]. Therefore,p < 2[ & < [2] +2. &

Lemma4.3 Vi e [1,L], f € [1, F], ifan [ f-chain is partitioned into 4 interval sets, W ¢,
Xi.p Y pand Zp g, suchthatay < Wiy < as < Xj5 <az3 <Yy <as < 215 < ay
where a; € Vior — {vi1,f, 02,5, -, v,cp ) @ € [1,4], the [ f-chain is abnormal.

Proof: Fori € [1,L], f € [1, F], assume there are 4 interval sets W; ¢,X; ¢, Y} ¢, Z ¢
which partition the [ f-chain such that a; < Wy < a2 < X; 5 < a3 <Yy < ag <
Zy 5 < airwherea; € Vi or —{vi1,f,v2,f,---,v0,08) 0 € [1,4].

By using similar argument as in the proof of Lemma 4.1, at least 3 of aq, ..., a4
are contained in L(uyf, vy 1,7) U (Ugjlcflﬁ(vl,c,f,vlﬁl,f)), and by Property 4, these



3 elements are contained in L(v; ¢, w;). By Property 3, at most one element of
ai,...,ay is contained in £(wy, vy ¢ ). Hence, L(wy, vi,c,r) can only contain at most
208 Wi g, X5, Yi,p, Z1,go 58y, Wi pand Xy g (or { Xy 5, Y} or {Yi 5, Zy p} Or {Zy 5, Wi, }).
Similarly, £(ug,v;,1,5) can only contain at most 2 of W, ;, X; r, Y f, Z; f, to0. Hence,
L(ug,vp1,r) will only contain Y; ¢, Z; ¢, which are not contained by £(w;, v;,c ), by
Property 5.

Recall that both L(u¢,v; 1) and L(wy, vy ¢ ¢) contain at most one element from
ai,...,as, and according to the given cyclic structure, L(us,v; 1, ¢) contains a4 and
L(wy,vy,c,f) contains ay. The cyclic structure is

a; < L(wl,vhcyf) <az < L(Uf,thf) < aj.

Hence, L(w;,vc,r) U L(ug, vy 1, ¢) is not an interval, because it can contain neither
a1 nor ag. Then, the [ f-chain is abnormal. <

Hereafter, if a chain is said to have exactly k interval sets, there exist k intervals
which only contain all elements in the chain and any £ — 1 intervals contain all
elements in the chain will contain at least one element in other chain. Lemma 4.1
shows that £ < 4 for all chains. Lemma 4.2 shows that the abnormal chains are
the minority. Lemma 4.3 shows that £ < 3 for normal chains. So, we have 3 cases.
Lemma 4.4 is for the chains having exactly 1 interval set; Lemma 4.5 and 4.6 are for
the chains having exactly 2 interval sets; and Lemma 4.7, 4.8, 4.9 and 4.11 are for
the chains having 3 interval sets.

Lemma4.4 Givenan! € [1, L] and an interval A containing {v; ¢ ¢|f € [1, F’]}, where
3<F <F,andb<uvc1 <vc2 < - <vcr <b whereb ¢ A. If an [ f-chain,
f € [2, F’ — 1], has exactly one interval set X; ¢, and if all routing paths from w; through
v, p is shorter than 2D — 1, Vo, ¢y € A where ' € [1, F], we have either

=1 < H <vap <vop <ocpen <
or ---<vycsr-1=<v,cf <U1Ff~= H < VIL,C,f+1 = "

where the set H = £(wl, Ul707f) — Xl7f.

Proof: By the assumption on the length path, all paths will be shorter than 2D — K,
K > 3. Therefore, V" € 1, F], vy ¢ f» € L(wy,v,c 7). Then,

e v1f € L{w,vc,p).
Assume vy 1 ¢ & L(wg,vc,p), 3f" # fsuch that vy, € L(wy,v,cpm), Dy
Property 1 on w;. If v cp & A, L(wy,v,c ) Will contain at least v, ¢ or
v, Fr, because vy p € Xj g, ie. vyq,r Is @ non-marginal element in A, and
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hence, a contradiction to Property 2 on w;. Therefore, v; ¢y € A and the
routing path length from w; to v; 1 ; through v; ¢ s € A is longer than %D —1.
Contradiction.

® VCf-1 UL VLo R ULCf+1 = o -1 <= H <Svp <ve < oo fe

Assume Jh € H such that vicr 1 < vi,r < veys < h < vcre1. By
Property 4, L(v;,c—1,f,v,c—2,7) Will contain h and v ; y. By the longest path
assumption (ie. 2D — K), L(v,c—1,f,v,c,f) Will contain v, ¢ r—1, v,c ¢ and
vy,c,f+1- SO the underlined nodes of

ULCf—1 <UL < ue s < h < e

are belongedto L(v;,c—1,f,v1.c,¢), and h, v, 1y are belonged to L (v, c—1,, vi,0-2,¢)
Contradiction to Property 2 on v; c_1 ¢.

The other case— Ve, f—-1 2 ULCf = UL R ULCf+1 = ULef-1 R Uef R U <
h < v ¢, r+1 is just similar to the above case. Hence, result follows. <

Lemma4.5 Vi e [1,L], f € [1, F], assume an [ f-chain has exactly two interval sets X ;
and Y ;. Let A= E(wlvvl,C,f) - X =Yy and B = ﬁ(u}r,’l)l717f) - X =Y 5. We

have either
X =B=Y<A=<Xy

or Xl7f-<A'<YV17f-<B-<Xl7f

Proof: Since X; s UY] s isnotan interval, X; ; and Y] ; divide theset V; ¢ p — X; ; —
Y, ¢ into 2 intervals, say, P and Q. Without loss of generality, we have the cyclic
structure P < X; y < Q <Y s < P.

Using similar technique as the proof of Lemma 4.3, we can prove that at least
one of P and @ is contained in L(ug,v;1,f) U (Uii?ilﬁ(vhaf, Ul e+1,£)) Which is an
interval, by Lemma 3.1. Hence, at least one of P and Q is contained in L(v; ¢, ¢, wy),
by Property 4. By Property 3, at most one of P and @ will have intersection with
L(wy,v,c,¢). In other words, if £L(w;, v ¢ ¢) contains elements not in the [ f-chain,
these elements will be in either P or @, say P.

Assume L(uy,vy1,¢) contains elements which isalsoin P. Letp, € L(ug, v 1 £)N
P and p, € L(w;,v,cy) N P. So, by Property 4, we have p, € L(uf,v1,¢) N
(M= L(Vie  Vierr,y) @Nd py € L(wi,viey) N (NG L(vge,p,vie-1,f))- AN,
by Property 3, we have p, ¢ L(ug,vp1f) U (USS L(vie s, viernys)) and p, ¢
L(ws,vc,p) U (UZGL(vne,f, ie1,f))-

Since X; yUY) 5 = {v1, 025 - 0,0} 3¢ € X p,y € Y,y such that (z,y) is
an edge. Without loss of generality, let z = v; .y and y = v c41,7. Since z,y,p, €
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L(y.x)

Figure 8: Q C L(x,y) N L(y, ).

L(z,y)and p, & L(x,y), Q C L(x,y), as in Figure 8. On the other hand, z,y,p,, €
L(y,x)and p, &€ L(y,z), Q@ C L(y,z). Contradiction to Property 3.

Lemma4.6 Givenan! € [1, L] and an interval A containing {v; ¢ ¢|f € [1, F’]}, where
3<F <F,andb < v, < {vc2vcs .- v,cr-1} < v,cr < b whereb ¢ A
Assume the [ f-chains are normal, Vf € [1,F']. Let3 < T < F' — 2. If there are T
lf-chains, f € [2, F" — 1], having exactly two interval sets, we have at least 7' — 2 of these
chains which are contained in A. Further, if the routing paths from w; through v, ¢ ¢/ is
shorter than 2D — 1, Vv, ¢,y € A where f” € [1, F], then each of the above 7'— 2 [ f-chains
will be belonged to £(wy, vy ¢, f), respectively.

Proof: Assume there are T' [ f-chains, f € [2, F' — 1], and each has exactly two inter-
val sets. Without loss of generality, let these 7" chains be (2-chain, [3-chain,...,[(T +
1)-chain and let Y] ; be the interval set containing v; ¢ ¢, Vf € [2,T + 1]. Assume
Yl,2 < Yl,3 < - =< Yl,T—f—l < Yl72, then we have b < v,c1 = Yl,2 < Yl,3 < - <
Yiry1 <vcr < b

Let X; ; be another interval set of the [ f-chain, Vf € [2,T + 1]. We now going to
prove that there are at most 2 chains, say, [ f1-chain and [ fo-chain, f1, fo € [2,T + 1],
suchthatfori = 1,2, X; 5, < vc1 < Y2 < Y3 < < Yo <vcr < Xy
We will prove it by contradiction. Assume that there are at least 3 chains, say,
L fi-chain, [ fo-chain and I f3-chain, fi, fo, f3 € [2,T 4 1], such that X; 5, < X; s, <
Xl7f3 <v,01 < Yl,2 < Yl,3 <= Yl,T—f—l <v.cF < Xl,f1 as Figure 9.

Obviously, for i = 1,2,3, L(w;, v;,c,r) Will not contain any elements in X ¢,;
otherwise, L(w;,v;,c,f,) Will contain either vy ¢ 1 or v, ¢, contradicting to Prop-
erty 2 on w;. Hence, fori = 1,2,3, L(uy,,v1,f) Will contain X; ¢, by Property 5.
Since [ fo-chain (Figure 9) is normal, L(uy,,v;1.4,) U L(wy, v ¢ 1,) is an interval and
therefore, L(uy,,v;,1,,) Will contain either X; r, or X; s, say X; r, as Figure 9. So,
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L (w, ,V|,c,f2)—>

Figure 9: L(uy,,vi1,f,) U L(wy, vi,c,1,) is an interval.

the routing path from uy, to X; , will be ug,, wy, g, wy, uy, , X; 1, Where f' # 2, f;
and I’ # . The length of this routing path is longer than 2D and contradicts to the
assumption on the longest path.

Hence, there are at most 2 [ f-chains, say, [ f1-chain and [ fo-chain, f1, fo € [2, T+
1], such that for i = 1, 2, X, <vc1 <Y<Y 3=<- <Y r1 <vcr <Xy
In other words, in the /th layer, we have at least T — 2 [ f-chains in f3, f4,..., fr41
flaps suchthat b < vy c1 < X1 5, < vcr < b forj e 3,7 +1].

We are now going to prove the disjoint property of these T' — 2 chains. Using
the same argument in the first point of the proof of Lemma 4.4, L(w;, v;c,f) must
contain every elementin Y, ;, Vf € [2,T + 1]; otherwise, the assumption of path
length from w; (3D — 1) will be violated.

For f € [2,T + 1], if the cyclic order is b < v c1 < X f < vcopr < b
L(wy, v,c,r) Must contain X; ; (by the same argument in the first point of the proof
of Lemma 4.4); otherwise, the assumption of path length from w; (3D — 1) will be
violated. Hence, £(w;,v;,c,f) contains X; s UY; . &

Lemmad.7 Vi € [1,L], f € [1,F], if an [ f-chain has exactly 3 interval sets Xj ¢, Y ¢,
Zy,5, we have the following : (1) among X; ¢, Y; r, Z; ¢, one (say X; ¢) will be a subset of
L(ug,vpa,f) — L(wr,v,c,f), (2) another one (say Z; ¢) will be a subset of L(w;, vy ¢ f) —
E(Uf,vl71’f), and (3) ,C(Uf,vu’f) N ,C(wl,vl707f) - Yl’f.

Proof: Using similar technique as the proof of Lemma 4.3, we can prove that
both L(us,vi1,r) and L(wy,vi,c,¢) can contain elements from at most 2 of X; ¢,
Y, s and Z; y. (The detail is left to the reader.) By Property 5, at least one of
Xl7f, }/17]0 and Zl7f, say Xl7f, is a subset of ,C(Uf,ULl’f) — E(wl,vl@f). Similarly, at
least one of X; ¢, Y r and Z; 4, say Z; ¢, is a subset of L(wy,v,c5) — L(ugr,vp1,5).
Hence, L(wi,vi,c.r) N L(ug,vp1,r) Will not contain element in X; ; and Z; ;. If
E(wl, Ul707f) ﬂﬁ(u]c, 1)1717]0) #* 0. E(wl, Ul,C,f) ﬂ[,(ujr, Ul71’f) will only contain elements
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in {v; . flc € [1,C]}; otherwise, by Property 4, it is a contradiction to Property 3.
Hence, it will only contain elements in Y, ;. Therefore, L(w;, vi,c.f) N L(ug,vi1,f) C
Y.

By Lemma 4.7, if an [ f-chain has exactly 3 interval sets X; r, Y; y and Z; ¢, one
of them, say X y, will be a subset of L(uy,v;1,r) — L(w;,v,0,r), and another one of
them, say Z; ;, will be a subset of L(w;,v;c,r) — L(us,vi1,f), and the last one Y7 ¢
will contain the elements of L(uy, vy 1 5) N L(wy, v,c,f), if any. Hereafter, we use
X157, Y, 5 and Z;  for the above meaning.

Lemma4.8 VI € [1,L], f € [1, F], assume an [ f-chain has exactly 3 interval sets. Let
A = Lw,veoyp) = Xip =Yy — Zigand B = Lup,vp) = Xop = Yig — Zip I
X5 =Y 5 < Z; 5 < Xy, 5, We have either

Xif=<=B=RY<A<Z;<Xr
or Xjy<B=Y <Z;<A<X;
or Xj; =Y f<A<Z;<B=<Xy

If Zp <Y1 5 < X1y < 25, We have either

Zjf = A=Y ; =B<X ;<25
or Zjy =AY <Xy <B=<Zy
or Z1; =Yy =<B=<X;<A<Z;

Proof: We will give the outline proof of the case X;; < V;; < 7,y < X;y, and
leave the other case to the reader.

Since none of (X; ; UY; ), (YiyU Z; ) and (X; ;U Z; ¢) is an interval, these 3
interval sets X; ¢, Y} rand Z; ; divide the set Vi, ¢, p— X; s —Y] s — Z; ; into 3 intervals,
say, P, Q and R. Without loss of generality, we have the cyclic structure P < X; 5 <
Q=Y y<R<Zjy=<P.

Using the same technique as the proof of Lemma 4.5, we can prove that only
one of P,  and R can contain A and another one can contain B. The one containing
A should be next to Z; ; and the one containing B should be next to X; ;. Hence,
the result follows. <

Lemma4.9 Givenan!l € [1, L] and an interval A containing {v; ¢ ¢|f € [1, F']}, where
3<F <F,andb < vl < {01,072,?}1,073, .. 7Ul,C,F’71} < v,cp < b whereb ¢ A
Assume the routing paths from w; through v, ¢, s is shorter than 2D — 1, Vo, o pr € A
where f’ € [1, F], and assume the [ f-chains are normal, Vf € [1, F’]. Then, we have at
most 2 [ f-chains, f € [2, F’ — 1], each of which has exactly 3 interval sets.
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Proof: Assume there are at least 3 [ f-chains, and each has exactly 3 interval sets.
Without loss of generality, choose the first three, and let these 3 chains be [2-chain,
[3-chain and l4-chain. Recall that for f = 2,3,4, X; s C L(uy,vi1,f) — L(wi, v c,f)
and Zl7f C L(wl,vhcyf) — E(Uf,w’l’f).

For f = 2,3,4, since L(wy,v,c,f) cannot contain X; ;, if the cyclic order is b; <
v,o1 = Xip < u,oF < by < by, the assumption of path length from w; (%D—l) will
be violated, by using the same argument in the first point of the proof of Lemma 4.4.
Hence, for f = 2,3,4, X; r < v 01 < {UZ,C,% .. ,1)1707}7/_1} < v < X p. With-
out loss of generality, assume X;, < X;3 < X;4 < vi01 < {v,c2,---,v,cm-1} <
v,c,Fr < Xi2, as Figure 9 in the proof of Lemma 4.6, where f; in Figure 9 is consid-
eredtobei+1,fori=1,2,3.

Since [3-chain is normal, £(us,v;13) U L(w;,v;,¢,3) is an interval and therefore,
L(ug,vy,1,3) will contain either X;, or X4, say X;» as X; s in Figure 9. So, the
routing path from us to X; o will be ug, wy, up, wy, ug, X; 2, Where f’ # 2,3 and
" # 1. The length of this routing path is longer than 2D and contradicts to the
assumption on the longest path. $

Lemma 4.10 Givenan! € [1, L] and an interval A containing {v; c ¢|f € [1, F']}, where
3<F <F,andb < v, < {UZ,CQ’UZ,C,B’ .. 7vl,C,F/*1} < v,cp < b whereb ¢ A
Assume the [ f-chains are normal, Vf € [1,F']. Let3 < T < F' — 2. If there are T
lf-chains, f € [2, F' — 1], having exactly three interval sets, we have at least 7" — 2 of these
chains which are contained in A.

Proof: Using the similar argument in the first part of the proof of Lemma 4.6. <>

Lemma4.11 Givenan f € [1,F] and an interval A containing {v; ¢|l € [1, L]}, and
b < wviif < {va1fv31,8---,00-1,1,} < vr1,f < b where b ¢ A. Assume the [ f-
chains are normal, VI € [1, L]. Let 3 < T < L — 2. If there are T' [ f-chains, [ € [2, L — 1],
having exactly two or exactly three interval sets, we have at least 7' — 2 of these chains
which are contained in A.

Proof: Using the similar argument in the first part of the proof of Lemma 4.6. <>

5 The Main Lemma

Lemma 5.1 Assume there exists a labeling scheme such that every path is shorter than
2D — K, K > 3. Given that there are 2 disjoint intervals A, B such that A contains
{vcslf € [1,(2(L = 2)(20B| R ] +15) +4) +3)(L — 1) + 2]} U {v, 1 1 f € [1, (2(L —
2)(20(3| 2] +15)+4)+3)(L—1)+2]}, B contains {v;, 14| f € [1, (2(L—2)(20(3| 2| +
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15)+4)+3)(L—1)+2]},and v, 1.5 € L(wy, v, ), Where Vf € [1, (2(L—2)(20(3| £ |+
15) +4)+3)(L—1)+2]. Then, 3f € {w € [1,F] | vjc.» € A} such that a routing path
from w; passing through the edge (w;, v;,c,r) No shorter than %D -1

Intuitively, the purpose of this lemma is to show that if we allow some disjointness
of layers, say I, I,th layers, we can find a path from a w; of length %D — 1. Such a
path will not contradict our longest path assumption. However, after some argu-
ment in the proof of Theorem 6.1, we will find out that such a path of length %D -1
will come up with a path from a u of length 2D — 1. In the lemma statement, there
are 3 layers—I, [, and [yth layers concerned. The reader will then find 5 layers—
I, la, lp, I/, I"th layers in the proof. Among these 5 layers, [, I, [yth layers are the
platforms on which [, I’ and I”th layers will play an important role in the proof.

Proof of the Main Lemma 5.1
Since this proof of main lemma is complicated, we use 14 Claims to make it sim-
pler. A reader may also get enough details about this proof without looking into
the Reasons of each claims.

Assume there exist a labeling scheme such that every path is shorter than 2D —
K, K > 3. And Vv, ¢ ; € A, assume that all routing paths from w; passing through
v, f is shorter than 2D — 1. It is also important to point out the initial condition of
this lemma as (1).

Y € (1, (2L ~ (0L ) +15) 4+ )+ 3L~ 1)+, wap € Lo ucy). D)

Since every interval has 2 margins, there are 2 elements a1,a2 € {v, 1¢[f €
[1,(2(L —2)(20(3| 2] + 15) +4) + 3)(L — 1) + 2]} such that 3 an interval, which is
not a subinterval of A, containing a;, ay but not containing {v;, 1,¢|f € [1,(2(L —
2)(20(3[ £ | +15) +4) +3)(L — 1) + 2]} — {a1, a2 }. Without loss of generality, for i =
1,2, weassume a; to be vy, 1.1, and f; = (2(L —2)(20(3[ 2 | +15) +4) +3)(L — 1) +.
Therefore, we have the cyclic structure a; < {vy, 1.¢|f € [1,(2(L — 2)(20(3[ 2] +
15) +4) +3)(L — 1)]} < ag < B < ay. (Figure 10)

Claim 1 The routing path from w; to any element in (aq, as) — {a1, as} should be shorter
than 2D — 1.

Reason: Va € (ai,as) — {a1, a2}, assume the routing from w; to « will start with
edge (w;, vi,c,r). We have two cases.

® v o€ A
By the assumption on the routing path from w;, this routing path should be
shorter than 3D — 1.
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Figure 10: Cyclic structure of A and B (Not to scale).

® Vi ¢ A.
x € L(w,v,c,f) = a; € L(wy,vc,f), ¢ = 1o0r2, Itisacontradiction to (1), or
a contradiction to Property 2, because for i = 1 or 2, a; € L(w;, v;c,f,) Where
vL,C.f; € A.

)

Claim 2 The routing from uy, Vf € [1, F], to any elements in {v;, 1 ¢|f € [1,(2(L —
2)(20(3| 2 ] + 15) +4) + 3)(L — 1)]} cannot pass through w;.

Reason: Assume the contrary and the routing from uy, f € [1, F], to an element
o1, f1 € [1,(2(L—2)(20(3[ £ |+15)+4)+3)(L—1)], passes through w;. If f = f, it
is a contradiction because L(uy,vy,,1,r) Must contain vy, ; y/; otherwise, the longest
path assumption (2D — K) is violated. If f # f/, L(w;,v;,c,p) must contain vy, 1 f/;
otherwise, the routing path from w s to vy, 1 g Will be wg, wy, wpr,wy,, vy, 1,5, Where
" # f,f', and of length 2D — 1. Hence, L(w;,v;c,p) contains vy, 1., and also
contains vy, 1,4, according to (1). However, v;, 1y and v;, 1  are in two disjoint
intervals—A and B, respectively, and therefore, £(w;, v ¢ ¢) will contain one of
the marginal elements of A, say a;. Contradiction of (1) or Property 2 on w;. &

By Claim 2, the routing from ug, Vf ¢ [1, (2(L—2)(20(3| 2 | +15)+4)+3)(L—1)],
to {vy, 1,¢f € [1, (2(L—2)(20(3| £ | +15) +4) + 3)(L — 1)]} will not pass through w;.
Then, without w;, there are still L — 1 choices. By the Pigeon Hole Principle, there
are 2(L —2)(20(3| 2] +15) +4) + 3 elements in {v;, 1.¢|f € [1, (2(L —2)(20(3| 2 | +
15)44)+3)(L—1)]} to which the routing path from u; will pass through wy, I" # 1.
Without loss of generality, we assume these 2(L—2)(20(3| £ | +15)+4)+3 elements

17



are belonged to the first 2(L — 2)(20(3| £ | + 15) + 4) + 3 flaps. Therefore,

VP € [L2AL ~ (0B ) +15) +4) +3, g€ Lwn ey @)

By the same argument in the second paragraph in page 16, there are 2 elements
by, bo such that by < {vy, 14|f € [1,2(L —2)(20(3[ 2] +15) +4) + 1]} <bs < A < by
(Figure 10), where for j = 1,2, bj is vy, 1,4, f; = 2(L — 2)(20(3[ 2 | +15) +4) + 1+

Let A’ be an interval containing {v, ¢ ¢|f € [1,2(L — 2)(20(3| 2] + 15) + 4) +
1} U{v10lf € [1,2(L — 2)(20(3[ 2] + 15) 4+ 4) + 1]} and B’ contains {v, 1 ¢|f €
[1,2(L — 2)(20(3| 2 | + 15) + 4) + 1]}. Obviously, A’ ¢ A, B' C B. Letp = 2(L —
2)(20(3[ £ | + 15) + 4) + 1. Without loss of generality, assume the cyclic order in A
is

as < B <a1 <{v,11,--- ’”la,l,(L—2)(20(3L%J+15)+4)} = Ul 1p <
{”za,1,(L72)(20(3L%J+15)+4)+1’ e ’Uza,1,2(L72)(20(3L%J+15)+4)} = a2
Note that v;, 1 ,, is the “middle” element in A" if we only consider the [,th layer in
A’. Also, note that there may be some vy, ; ¢’s not belonged to {v;, 1 ¢|f € [1,2(L —
2)(20(3[ 2| + 15) +4) + 1]} butin A4".

Consider v;2,. L(v2,,v11,) should contain v, ; , and vy, 1 ,; otherwise the
routing path from v; 5, to v, 1, Or to vy, 15, is 2D — 3. Hence, L(v;25, v1,1,5) Should
contain some elements of A and b;, where i = 1 or 2 (interval H in figure 11).
Without loss of generality, assume that v, 1 1,v;, 1,2, - - - UL, 1,(L—2)(20(3| 2 | +15) +4) €

L(v1,2,p: V1,1,p)-

Figure 11: The structure of A’, B’ and H.

Claim 3 The routing from v 5 ,, toany elementin {v;, 1 1,0, 1,2, - - - ’vla,l,(L—2)(20(3L%J+15)+4)}
cannot pass through vy 1 .
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Reason: Assume a routing path from v; 5, to v;, 1; passing through vy 1, i €
[1,(L—2)(20(3[ 2] +15) +4)]. Then, L(wy, vy ¢ ;) will contain vy, 1 ;; otherwise, the
path from v; 5, to vy, 1 ; Will have length 2D + 1. Recall that £(wy, vy ¢;) contains
vy, 1,4 Then, L(wy, vy ¢ ;) contains vy, 1 ; and vy, 1 ;, implying that £(wy, vy ¢;) will
either contain b, or by, say by (Figure 11). Recall that by = vy, 1.5 € L(wy, vy c ),
where f = 2(L —2)(20(3| £ ] + 15) 4+ 4) + 2. Hence, Property 2 on wy is violated. #

By Claim 3, the routing from v; 5 , to any elementin {v;, 1 ¢|f € [1, (L—2)(20(3| 2 |+
15) + 4)]} should pass through other layers. Other than ith and I’th layers, we
have L — 2 remaining layers. By the Pigeon hole Principle, 3 a layer, say I”th layer,
through which the routing from v;, to at least 20(3| 2| + 15) + 4 elements in
{vi 1,7 f € [1,(L—2)(20(3| 2] + 15) +4)]} will pass. Without loss of generality, we
assume that the routing from v; 2, to {v;, 1,¢|f € [1,20(3| 2 ] + 15) + 4]} will pass
through the ["th layer. Assume a; < Ulo 1203 2 | 415) 44 = Ul 1 = V12 =0 S

vla71720(3L%J+15)+2 < vla71720(3L%J+15)+3 =< as =< B < ai. Hence, we have

VE, U, 10031 2 415)44 =T XUy, 19032 | 415)43 = T € L(up, v 1p)- ©)

Obviously, under the assumption of longest path (2D — K),
D
Vfe [1720(3LfJ +15) +2], v, 1,5 € L(wpr, v o f); 4)

otherwise, the routing path from u, to v, 1 ¢, f € [1,20(3| 2 | + 15) + 8], will be
longer than 2D — 3. By Property 2 on wy», we have

a1 <V, 903 2 j15) 44 = LW v on) < L(wpr v op) <0 < (5)
‘C(wl”7vl”,C,20(3l_%J+15)+2) < vla71720(3\_%J+15)+3 < as < B < ai.
Hence, Vf € [1,20(3[ £ | +15)+2], L(wy, v c,f) C L(up, v 1). Therefore, all rout-
ing paths from w;» pass through v;» ¢ ¢, which is belonged to (v c.1, vy 20(3L2J+15)+2>’
’ k) K

are shorter than %D — 1, otherwise at least one routing path from v, through

wy» Will be longer than 2D — 3. Also, since L(wy, vy ¢ ¢) contains vy ¢ r, Vf €
[1,20(3[ £ | + 15) + 2], by (5), we have

a1 = Uy, 1,203 2 | +15)+4 (oo v, 10F < {vm oo, v 108 <00 < (6)

{Ul//,c,20(3L%J+15)+27”la,1,20(3L§J+15)+2} = Y1,,1,203| 2| +15)43 = @2 = B < a.
Claim 4 The routing path from w;» to any element in (v ¢ 1,
be shorter than 3D — 1.

vl”70720(3l_%J+15)+2> ShOU|d

Reason: Similar technique as the reason of Claim 1. &
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Now we are going to focus on the [,th, Ith, I’th and the /”th layer in A. (Note that
we allow A to contain some flaps of the I’th layer. Of course, some are in B).

Ignore the 1st and the 20(3[ £ ] + 15) + 2th flaps, (as ignored by Lemma 4.6
and 4.9), we have 20(3| £ | + 15) flaps left. By Lemma 4.2, the ith, I’th and the I"th
layers totally have at most 3| £ | + 6 abnormal chains. Among those normal chains,
by Lemma 4.6, there are at most 4 chains, 2 from the /th and 2 from the [” layer, hav-
ing exactly 2 interval sets, which is not totally included in (v ¢ 1, ”l//,c,20(3L%J+15)+2>'
the routing from w; or w;» to these chains will need at least %D — 1. Also, among
those normal chains, by Lemma 4.9, there are at most 4 chains, 2 from the ith and 2
from the I” layer, having exactly 3 interval sets.

Summing up, there are 3[% + 14 chains which are not of our interest. By
the Pigeon Hole Principle, we can find an interval A”, which is a subinterval of
(v 15 ”l”70720(3L%J+15)+2>’ containing no elements v, ¢ ¢, vy ¢ ¢, v, § from abnor-
mal chains from the Ith, I'th, ["th layers, respectively; no elements v, ¢ ¢, v ¢
of normal chains from the /th and [”th layer, respectively, having exactly 3 inter-
val sets; no elements v; ¢ r, v ¢ ¢ Of normal chains from the ith and !”th layer,
respectively, having exactly 2 interval sets with some elements in the chains not in
<Ul“,C,17szf,c,20(3L§J+15)+2>’ fel,Fl.

The interval A” contains elements of the ith, I’th and the [”th layers from 19
flaps out of the said 20(3[% + 15) flaps. Let these 19 flaps be the f;th flaps (Here,
we redefine f;), ¢ = 1,...,19. Without loss of generality, we assume

a1 <V, 1,5 < Vg, fo <" < Ul 1,f1e < a2 < B < ay.
By (1) and Property 2 on w;, we have
a1 < L(wp,vcp) < Llw,ve,p,) < - < L(w,vcp,) <a2 < B <ai.  (7)
Combining (7) with (5) and (6), we have

ay < E(wl,vlc,fl) N E(wl//,vl//@fl) < E(wl,vl,qh) N ﬁ(wl//vvl//,c,fg)

(8)
<< E(wl,vl707f19) N L(wl”’vl“,C,flg) <as < B <a.
Claim5 Fori = 1, ey 19, {ULLfi,’l)l//?Lfi} C E(’wl’ Ul,C,fi) N £(wl”7 Ul”,C,fi)-
Reason: From our choice of these 19 flaps, v; 1, 7,, v 1,1, € (V.01 v 020(3@“15”2%
b K K

Vi € [1,19]. By Claim 1 and 4, the routing path from any one of w;, w;» to any one
of v.1,f,, v 1,7, should be shorter than 2D — 1. Hence, the Claim statement should
hold, otherwise, the routing path should be at least %D +1. &

By Claim 5 and (8),

a1 < {1115 Ve 1,15 V1,1 b = <UL frgs Vla 1 fros V7 1 1o < @2 < B <ap (9)
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On the other hand, the cyclic structure inside B is
b1 <100 < <UL 00 < D2

where o105 ... 019 IS acertain permutation of f1 f5 ... fi9. Without loss of generality,
we assume {f1,..., fir} N {01,019} = (. (Otherwise, instead of using f;’s, we can
use another subscript g;’s such that {g1,...,g17} N {01,019} = 0).

Claim 6 The routing from wy to any element of {vyr 1 7, v 1 fs,-- -, U171, f15 ), CANNOL
pass through any edges among (wy, vy ¢ f, ), (Wi, V1 .C fo)r + -+ (W1 V1 € f17 )
Reason: Fori =1,...,17, if E(’wl/,’ulgc,fi) contains vy 1 f,, L(wy, ’Ul/,C,fi) will con-

tain at least one of vy, 1 5,0y, 1.0,9, Where f; # o1,019 (Figure 12). By (2), for

Figure 12: At least one of vy, 1 5., V1, 1,01, 1S 1N L(wy, vy ¢ 1,)-

J =119, v,14, € L(wy,vyce,). Inother words, 3i € {1,...,17},j € {1,19},
L(wy,vp o,f,) N L(wr, v c0;) # 0, where f; # o;. Contradiction to Property 2 on
wy. W

Claim 7 The routing from wy to any 5 elements of {vy 1 ¢,..., v 1 .}, CanNNot pass
through only an edge (wy, vy c.a), @ # fi,-.., fi7.

Reason: Assume L(wy,vy c,o) contains 5 elements of {vyr 1 f,...,vm 1,5, }, say
VP11 VI 1 fas - - - U1 1, £5- SINCE, DY Property 2 on wy, L(wy, vy ¢,) Cannot contain
any elementin {v, 1.5, V1, 1,010 }» LWy, vy co) CONTAINS (vpr 1 4,017 1 ¢5)- BY (8), we
have

/Ul//717f1 —< Ul“vc7f2 —< Ul//7c>f3 -< /Ul//,c,f4 —< /Ul//717f5
and
V1 f S VL0 fo R ULC,f3 = ULCf4 = VI fs

Then, at least one of the following is true.
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o v f, < A{vr ot o st < vt
® v < Vet et < ULC fas

where i = 2 or 4.

Without loss of generality, we assume the first case. Consider the routing from
wy 10 v ¢ fyy VIO f and v Gy The routing path will be Wty Uy, WY V1 O s
i = 2,3,4. Then, (v c v .0,0) C L(Ua,vim1,q); Otherwise, B C L(uq, vy 1,q)
(Figure 13), which implies a routing path—u.,, wyr, U4, , wy, , vy, 1,0, Of length 2D —1

L(U a IVI”,:L,a )

\
\/
\
\

v
'
l
1
! B
'
'
'
'

Figure 13: The case <’Ul//707f2,vl//707f4> ¢ E(ua, Ul”,l,oc)-

from u,, to Uiy 1,01 (¢ B)because ,C(wl//, Ul//70701)ﬂB = (). However, <Ul//707f2, Ul//707f4> C
L(ua,vpr 1) implies vy c g, € L(ua, v 1.4), % € {2,4}. The routing path from wy to
vy,c,; Will be wy, uq, wyr, v o p,, Which length is not less than 2D — 1. Contradiction
to our assumption on longest path. &

Claim 8 The routing from wy to any 5 elements of {v; 1 f,,...,v,1,5,}, CaNNot pass
through only an edge (wy, vy cq) ONly, o # f1,..., fi7.

Reason: Similar to the proof of Claim 7. &

From Claim 6 and 7, the routing from wy to {vyr 1 4,,..., v 1,1, Will pass at
least 5 (at most 17) edges of w; which are not any of (wy, vy 14 ),. .., (Wi, vy 1,44).
Some cases using 5 edges of w; are shown in figure 14. No mather how many
edges of wy used for these routing, the routing from wy to vy 1 g, vir 1, f5, Vi 1, g
v 1, 1,5 and vy o Will use different edges of wy:. Let the routing from wy to vy ;1 g,
pass through the edge (wy, vy cq), hence, by Property 2 on wy, L(wy, vy cq) iS
“bounded” by wy’s 2 interval labels containing vy 1 ¢, and vy 1 ¢, respectively. In
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Figure 14: Some cases of using 5 edges of wy.

Figure 15: E(wl/, Ul’,C,a) is bounded by V1 1, fs and VI 1,13
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other words, L(wy, vy c.o) is “bounded” by vy 1 ¢, and vy ;1 ¢, (Figure 15). Since
V' .Coa € £(wl/, Ul’,C',Oé)' U, is bounded by V1L fs and V1 1,13 We are now Iooking
for a position for vy ; 4.

Recall that if v, ¢ f, v o r and vy ¢ r are in A”, the [ f-, I’ f- and " f-chains here
are normal, respectively, where f € [1, F]. Hence, ’a-chain is normal. If vy, , ¢
(Vi 1, fs, 0 1, 115) (Figure 16), L(ua, vy 1,o) Will contain either vy 1 g, or v g ,,, say

L(UaaVI’,l,u)

Vir1a

Vi 1,

L(VV|’ 1V|' ,C,G)
Ve 11,

Figure 16: L(wy, vy c,a) U L(Ua, Vi 1,4) 1S @n interval.

v 1,f,, @s Figure 16. So, the routing path from u, to vy 1 ., is no shorter than
2D — 1 since VI 1, f13 Q E(wl/,vl/,qu) by Claim 6. Hence, V1, € <Ul//’17f5,vl//’17f13>,
ie. “bounded” by v; 1 r; and vy 1 f,,. SO, there are 2 choices for the position of v 1 4.
One s (vyr 1,15, v 1, f,) @nd the other is (vyr 1 7y, vi7 1, 1,5). Without loss of generality,
we assume the former—*“bounded” by v; 1 ¢, and v; 1, z,. Now we will consider the
routing from w;, wy» to vy 1 4.

Since a1 < w1 < ag < B < ay, by Claim 1, vy 1, € L(w;,v,00). Since
V1,0 € <vl”vcvl’Ul”,C,20(3L%J+15)+2>’ by Claim 4, V1,0 € E(wl//,vl//@a). Hence,
v, € L(wr, v,ca) N L(wpr, v o). Also, by Property 2 on w; and w;», we have

v 1,5 < L(wy, vpca) N L(wpr, v ca) < g, (10)

because vl € L(wl, 01707f5)ﬂ£(wl//, Ul”,C,f5) and (NS L(wl, Ul,C,fg)m»C(wl”a Ul”,C,fg)'
By Lemma 4.6, v, and vy 1, are in A”. By Claim 1 and Claim 4, v, €

L(wy,v,00) and vy 1o € L(wp,vp o). Again, by Claim 1 and Claim 4, v 1, €

[,(wl//,vl//,c’a) and Vprl,a € E(wl,vl707a), because a; < {Ul,l,aavl”,l,a} <as < B<a

and {1217170,1)1//71@} C <Ul”7071’Ul",c,20(3L%J+15)+2>- Therefore,

{U1,0, 00 1,0,V 1,0} C L(wr,vi,0.0) N L(wpr, v 00)

(11)
O 1, s = Va0 V1 100 Vi 10 = UL f
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Claim 9 The cyclic structure in (11) is either
VL fs S ULLe XUV La R UL S ULfy OF Ut s U e R U e = ULLa = UL fo-
Reason: Assume the contrary, then we have 2 cases.

1oy < {10010l <0016 < V1 fo-
Again, we have 2 further symmetric cases.

L1 v gs 2 Oa =00 e 20010 <UL S
Here, we have 2 different cases.

1.1.1 !”"a-chain has exactly one interval set.
Consider the [”"a-chain. Then, we have either vy 1 5, < v 10 <
VI Ca = V"1 = U/1la < V11 1, fo or V1L fs < Vla < Ula <
U Ca = U 10 = U 1L f,- By Lemmad.4, in the former case, L(wyr, vy ¢ a)
will contain vy 1 o, but not v, 1 4, in the latter case, £(wy», v ¢ o) Will
contain vy 1 4, but not vy 1 . Contradiction to (11).

1.1.2 !"a-chain has exactly two interval sets—X» o, Yj» 4.
Consider the I”"a-chain. Assume vy 1, € Xy o, We have vy 1 g <
Ve < Xira =< Uia < Ui Then, by Lemma 4.5, we have
VL fs = Ulla = Xl//7aU}/2//,a <V 1,0 <X V1L fos because ,C(wl//, 1)11170704)
cannot contain both v; ; , and vy 1 o if Y» o is in another place in the
cyclic structure.
However, if L(w;», vy ¢ o) CcONtaiNs vy 1 o and vy 1 o and vy o (Fig-
ure 17), it will contain vy~ 1 ¢, Which is belonged to L(w, vy ¢ 4, ).

Vo1,
VI',lp(
YI”,a / ‘gr\nerval of
LW,V c.a)
Xl”’a “\
- Vi af,
Vl,l,a

Figure 17: False example of cyclic structure.

Contradiction to Property 2 on wy.

L2 v g <016 < Ve <0 La <ULy
This case is symmetric to the case 1.1.
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2 v s <V e <V La Vi 1a ) <V g
The case is symmetric to the case 1.

)

By Claim 9, without loss of generality, we assume

VAL s = Ule = U 1a < U 1a <UL (12)
and consider the routing from wy to v 1 4.
Claim 10 The routing from wy t0 v 1 o cannot pass through (wy, vy c,q)-

Reason: We have three cases as follows.

e !’a~chain has exactly one interval set.
Consider the position of vy ¢ . Since vy 1 4, € L(wy, vy c,o), Dy Lemma 4.4,
we have the cyclic structure vy 1 ¢ < Vi1 < VrCa < VWia < Vria <
V1 g = UL 1. AQAIN, by Lemma 4.4, L(wy, vy ¢ ) CANNOt contain vy 1 4.

e l'a-chain has exactly two interval sets—Xy ,, Yy 4.
Assume vy 1, € Xp,o. Consider the position of Yy .. Since L(wy, vy c)
contains vy 1 g, but not vyr 4 r., vy 1,5, We have the cyclic structure vy 1 g, <
Ul,a =< Xl’,a < Urla <ULy < Y}/@ = V" 1,f13 by Lemma 4.5. Again, by
Lemma 4.5, L(wy, vy c,) CANNOt cONtain v 4.

¢ !'a-chain has exactly 3 interval sets—Xy o, Yy o, Zi o
Assume v; 1 o € L(wy, vy co). Recall that L(wy, vy o) cONtAINS vy 1 4, VP 1.0,
VP 1 V1 1, s AN 0y 1 o € L(Ua, vy 1,4), and that the meaning of X; 1, Y] ¢, Z; ¢
stated in Page 14. Then, we have vy 1, € Yy . Since vy g, v 15, &
L(wy, vy c,a), inotherwords, 3z, xo € L(wy, vy cq) and 3y1,yo & L(wy, vy cq)
such that y; < 1 < Yy o < 22 < y2, Which is a contradiction to Lemma 4.8,
no matter where the position of X , and Z; , are.

Consider the routing from wy to v;; . By Claim 10, the routing cannot start
with the edge (wy, vy ). Also, it cannot start with the edges (wy, vy c,f,), Vi €
[1,17], because of the similar reason in Claim 6. Let the routing starts with the edge
(wy,vp ¢ 3) Where B # «, fi,..., fir. i.e. v 1.4 € L(wy, vy cp). We are going to find
out the possible position of vy ; g.

Claim 11 vy 1.5 € (V1 p1, V0 1,5 )-
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Reason: Assume V1,8 Q <Ul”,1,f1)vl”,1,f9>' Recall Ul,a € E(wl/,vl/,cﬁ) and V1,8 €
L(ug, vy 1 3). Since this I’ 5-chain is normal, £(wy, vy ¢,8) U L(ug,vr 1 5) is an inter-
val. Then, vy.1,8 Q <Ul“,1,f1avl“,1,fg> lmplles that E(wl/, Ul/,C,ﬁ)U[f(uﬂa Ul/717ﬁ) contains

Either position
for the Union of

L(ugVyr1p)

Figure 18: Two cases of L(wy, vy c5) U L(ug, vy 1,8)-
either {Ul//717f1,vl//717f5} or vy 1 f, (Figure 18)

o {vm1 v gt C Lwy,vrop)UL(ug, vy 1,p)-
v s, ps & L(ug, vy 1,8); otherwise, the routing path from ug to vyr 1 g
(to vy 1,4, t00) will be no shorter than 2D — 1. Hence, vy 1 ¢, v 1.5 €
L(wy,vp,cp). However, it is a contradiction to Claim 7 since £(wy, vy c3)
will include VI 1, fry s VI fse

® U1 fy € E(’wl/,’ulgc,ﬁ) U E(’LLg,Ul/J,ﬁ).
v, € L(ug,vp 1), otherwise, the routing path from wug to vy 1 ¢, Will be
no shorter than 2D — 1. However, vy 1 4, & L(wy, vy c ), because vy ¢, €
L(wy, vy o) and by Property 2, L(wy, vy c,8) N L(wy, vy c,o) = 0. Contradic-
tion.

'
Claim 12 vy 1.5 € (i 1,71, Vi1,0) U (017 1,00 Vi 1, o) -

Reason: vy 18 & (Vi1.a, V17 1,4); Otherwise vy 1 g € L(w;, v;,0,0), iIMmplying a routing
path from w; to vy 1 g no shorter than 2D — 1, contradicting Claim 1. Combining
with the Claim 11, result follows. &

Combining (12) with Claim 12, we have two cases:

1' /Ul//717f1 = ’Ul/71nﬁ = /Ulvlva = ’Ul/717a = ’Ul//717a = ’Ul//717f9’
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2. V1 R Ula < U La S U 1a X VP1,8 = UM fy

Considering the routing from w;, w;» to vy ; g, like (11), the above two cases become
Lo < {Ul,l,ﬁ,Uzl,1,ﬁ,vl//,1,ﬁ} <V l,a 2V 10 XU 1a < U1 fo
2. w1 < VLa RV La < U La < AVLLE VL8, Vi 18 = VL f

By similar technique using in Claim 9, the cyclic structure inside {v; 1 3, vy 1.8, vi7.1,8}
iseitherv; 1 3 < vy18 <vpr1800 Vw18 <vp18 <13

Claim 13 wy 1,8 € (1., V11,0)-

Reason: From Claim 12, we have either vy 1 g € (v 1,5, Vi,1,0) OFVp 1,8 € (V1 1,0, V17 1, f)-
Assume vy 1.3 € (U7 1,007 1,1,)- BY (12), we have

’Ul//vlmfs _< /Ulvlva _< ’Ul/717a _< Ul//717a _< /Ul/717ﬁ _< vl//717f9
and hence,
Vs = Ul R U La XU 1a RULLE XUV 13 XU 1R = U fos

where the position of v;; 3 and vy ; g3 can be exchanged; this case is left to the
reader.

Recall that v; 1 o € L(wy, vy o) and vy 1 g € L(ug, vy 1,5), and I’F-chain is nor-
mal. Then, vy 1 3 € L(ug, vy 1,3) U L(wy,vp ¢ g) (Figure 19).

Vi1

Union of

L(ug.vi1p)
and
L(We vV c.p)

Figure 19: v,1,8 € E(wl/, Ul’,C,ﬁ) U [,(UQ, Ul’,l,ﬁ)-

v € L(ug,vp1,8), since v g € L(ug,v1,8) by the longest path assumption
(2D-K). Hence, v,1 3 € L(wy,vp ¢ 3). However, the interval £(wy, vy ¢ ) contain-
ing v;,1,3 and vy 1 o Will contain vy 1 o Or vy 3 g, v 1, 4. Contradiction to Property 2
on wy for both cases. &
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By Claim 13,

UL S ULLE XU 1E XU 1B = Ulla XU Le UM La R UMLLf OF
Ul//717f1 _< ’Ul//71”6 _< /Ul/717ﬁ _< vl71718 _< /Ulvlva _< ’Ul/717a _< ’Ul//717a _< Ul//717f9

Without loss of generality, we assume the former case and we have

Ul RULB =01 U1 8 X Ula R U 1a SV La S UL fy
N—— N——

eL(w,vr,c,f,) eL(wr,vr,c,8) €L(wy,v1,0,0) €L(wr,v1,0,59)

Now we are going to find the position of L(w, vy ¢ ¢,).

Claim 14 vy 15 < Llwsvess) < vis < vras < vris < Ve < Wa <

1 XU fy
Reason: Assume the contrary,

Ul//717f1 = vl71718 = /Ul/717ﬁ = ’Ul//71”8 = £(wl7vl7cvf5) = ’Ul717a = /Ullvlva = /Ulllvlva = ’Ul//717f9'

€L(wy,vy,c,8) €L(wy,v1,0,0)

Recall that v, ¢ r, € E(w1,01707f5), 13 € [,(Ug,vl/’lﬂ) and vy, € E(wl/,vl/,cﬁ).
Since I’ -chain is normal, L(wy,vy ¢ 3) U L(ug, vy 1,5) is an interval. Since, under
the assumption of longest path (2D —1), L(wy, vy ¢ g) and L(ug, vy 1 ) cannot both
contain v 1L f and V' 1, for L(wl/,vl/cﬁ) @) E(U@,Ul/Jﬂ) must contain <Ul’,1,ﬁavl,1,a>-
Then,

U1 f S ULLE XU, < U1 R ULOfs = UlLla < U 1a < U 1La < U fo-

Gl:(wl/,vl/,cﬂ)Uﬁ(ug,Ul/,lﬁ)

veps & Llug,vp ), otherwise, vy 3 € L(ug,vp13), which implies a routing
path from ug to vy~ 1 g no shorter than 2D — 1. Hence, v, ¢, € L(wy, vy .c,8)-
Consider the routing from wy to v; ¢ ;. In order to avoid a path longer than
2D — 1, the routing path must be wy, ug, wy, vy,c,r,. Hence, vy ¢ g € L(ug,vi,1,8)-
Obviously, v,1,8 € E(U@,ULL@). V1,8, V11,8 Q [’(uﬂ’vlJﬁ) and VI,1,8: VI,C,fs €
L(ug,v,1,8) imply that £(ug,v;1,5) will contain B. i.e.

a1 = U f SV S VL = U LE

€L(ug,v1,1,8) ZL(upvi,1,8)
ULC,fs = {Ul,l,owUl’,l,aavl”,l,oc} <wuprf <az < B <ar.

€L(ug,v1,1,8)

Pick a element in B, say v, 1,4,. In order to avoid a routing path longer than
2D — 1, the routing path must be ug, w;, uy,, vy, 1,15. This routing path implies that
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U, 1,5 € [,(wl707f5). But, v lfs € ,C(ZULC’]%). Therefore, either v, OF v 1 g
will be contained in L(w;c,r,). A contradiction to Property 2 on w; exists because
(IZEW S ‘C(wlavl,l,fl) and VI 1,fe € L(wl,vmfg) by Claim 5. &

Then, by Claim 14 and vy 1 ¢, € L(w;, v,c,f;), We have the cyclic structure

1 ps = Av1,8, 01,8, V1,81 = VL1, VP 1,00 VI 1 = U1 fo- (13)
Gth flap ath flap

For convenience, we use a short-hand notation S; for {v; 1, vy 14, v 1,:}. Like the
steps from (11) to (13), if we consider the routing from wy to v; ¢ g or to vy ¢
whichever nearer to v;» 1 ¢, we will have another ~ such that

UL fs =< EL =< ff/ < ;\Sg/ =< V1, fo -
vthflap Sthflap athflap

Inductively, we must have infinite many number of S, i € [1,F], F < F, such
that
Vs = < S>\2 < S)\l < S,y < S@ < Sq < VI 1, fo

However, we have only F flaps. It is a contradiction to the graph structure. Then,
the proof of Main Lemma 5.1 is completed.

6 The2D — K Lower Bound, K > 3

Theorem 6.1 VG ¢, where L > 15, C > 3and F > {[(2(L — 2)(20(3| 2] + 15) +
4)4+3)(L—-1)+1)(L-1)+ (L%J +2)L + 4} L, there is no labeling scheme in which the
longest path is shorter than 2D — K, K > 3.

Proof: Assume there exists a labeling scheme such that the longest path is shorter
than 2D — K.

By the definition of G ¢ r, we have L layers and F' flaps. There are LF ele-
ments in the set {v; 1 (|l € [1, L], f € [1, F]}, referred to as R. Consider the routing
from up. By Property 1, Ufifﬁ(uF,thp) will contain R. Since R is distributed in
the L edges’ interval labels from ur and |R| = LF, by the Pigeon Hole Principle,
there exists an edge, say (ur, v, 1,r), such that £(ur, v 1) will contain at least '
elements of R. Let ) be the set of these elements, and therefore (v p, vy, 1, ) contain
Q,Q C R. Then, [Q| > F > {[(2(L — 2)(20(3| 2] + 15) + 4) + 3)(L — 1) + 1](L —
1) + (|2 + 2)L + 4} L by the choice of F in the theorem statement.

Partition @ into Ry U Ry U...U Ry, where R; = {v;;,¢| for some f € [1,F]} C Q.
Again by the Pigeon Hole Principle, there exists an [, such that |R;,| > {[(2(L —
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2)(20(3[ 2 +15)+4)+3)(L—1)+1)(L—1)+(| 2] +2)L+4}. Let S;, = Ry, —{v, 1.7}
and certainly, £(up, vz 1,7) contains S;,. Letp = |S;, | > {[(2(L—2)(20(3| 2] +15)+
4) 4+ 3)(L — 1) + 1)(L — 1) + ([£2] + 2)L + 3}. Without loss of generality, assume
St = v 0lf € [Lpl} and vy, 1p < V10 < V12 < = U 1p—2 < Vi 1p—1-
Under the assumption on the longest path, the routing from « z to the elements of
S;, should pass through an Lth layer, where L can be, but not necessarily, equal to
lo. SO, we have vy, 1, € L(wr,vr,ci), Vi € [1,p]; otherwise, the routing path from
up towvy, 14 1 € [1,p], isno shorter than 2D — 1. Then, by Property 2 on wr,, we have

v, 1p < L(wr,vrp,c1) < L(wr,vp,c2) < -+ < L(wr, VLo p—2) < Vi 1p—1-

Hence, L(up,vr1r) contains L(wr,vrci),...,L(wr,vr,cp—2), and in other
words, L(up, v 1,F) CONtAINS vr, ¢ 1, ..., vL,cp—2. The length of routing paths from
wy, through v c ¢ € (0,1, V1,,1p—1) Must be less than 2D — 3, where f is not
necessarily in [1, p]; otherwise, the length of a routing path from u z through that
edge (wr,vr, c,r) Will be greater than 2D — 3.

Consider the main Lemma 5.1. Define interval

A = (U, 1.9, V1, 1,p—1) — {01015 Viu 1, p—1}

which is a subinterval of L(up, v 1, r). Foreach i, € [1,L], I, # L, I, # lg, if
there are (2(L — 2)(20(3[ 2] + 15) + 4) + 3)(L — 1) + 2 elements out of the set
{v,1,¢1f € [1,p—2]} which is notin A, then we can make B the interval containing
the (2(L—2)(20(3| £ ] +15)+4)+3)(L—1)+2 elements of the set {v;, 1 f| f € [1,p—2]}
and by Lemma 5.1, 3 a routing path from (wr,vr.c¢), vr,c.y € A, which is no
shorter than 2D — 1.

Therefore, there are at most (2(L —2)(20(3| £ | +15)+4) +3)(L — 1)+ 1 elements
of the set {v;, 1.¢|f € [1,p — 2]} which are not in A. Hence, there are at most [(2(L —
2)(20(3[ £ | +15)+4)+3)(L—1)+1](L—1) elements in the set {v;, 1 ¢|l € [1, L], 1, #
L,y # lu,f € [1,p — 2]} which are not in A. These elements belong to at most
[(2(L —2)(20(3| 2 | + 15) +4) + 3)(L — 1) + 1](L — 1) flaps. In other words, there
are ([2] +2)L+1flaps, say, 1st, ..., (| 2] +2)L + 1th flaps, such that the elements
in {v1, ¢l € [1,L], f € [1,(|2] +2)L + 1]} belong to A and belong to L(up, vy, 1,F).

Among the chains in the first (| £ ] + 2)L + 1 flaps, by Lemma 4.2, there are at
most | £ | +2 abnormal chains in a layer. There are L layers and at most (| 2] +2)L
flaps containing these abnormal chains. Hence, we have one flap, say the 1st flap,
whose elements, (ie. v;;1|l € [1,L]) belong to A, such that VI € [1, L], [1-chain is
normal.

Consider the 1st flap. Referring to the routing from uy to any element in
{v1all € [L, L1} {vaa)l € [1, L]} € L(wr,vr,c,1); otherwise, one of the routing
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paths from ur will be no shorter than 2D — 1.

If no interval containing {v; 11|l € [1, L]} is disjoint with {v;; ¢|l € [1,L], f €
2, F]} —{vr1,r}, thensay L(wr,vr,c,1) contains a vy 1 ¢, f # 1. The routing path
from up to vy 1 ¢ IS up, wr, ur, wy, vy 1.5, 1" # L, which is no shorter than 2D — 1.
Hence, there exists an interval 7" containing {v; 11|l € [1, L]}, but not any elements
in{v1 4/l € 1,L], f € [2,F]} = {vpa,rtand T C L(wr,vr,c,1). We call this as
disjoint property of T

Consider T. There are two marginal elements, say ¢,ty in {v; 11|l € [1,L]}.
Without loss of generality, assume that no marginal elements of 7" are in the first
L — 2 flaps and assume

t1 <A{vall € [1, L = 2]} <ta < ty.

Moreover, by Lemma 4.11, there are at most two elements in {v; ¢1|l € [1, L—2]}
which are not in (¢1,%2). Without loss of generality, assume that these two ele-
ments are in the L — 3th and L — 2th flaps. So, our scope is restricted on the set
{vir1,vcall € [1,L — 4]} C (t1,t2). Let us look into the interval (¢;,t2). Without
loss of generality, assume

thy <wvi11 <w21,1 <o <vp411 <t (14)
By Property 2 on uy, and recall ¢1,t2 € {vr—1,1,1,vr,1,1}, We have
t1 < L(ur,vi,1,1) < L(u1,v2,1,1) < -+ < L(ur,vp—41,1) < to. (15)

Forl e [1,L — 4], V1,01 S <t1,t2> cTC E(wL,vL,ql) C E(’LLF,ULJ,F). If vL,C,1 Q
L(u1,v,1,1), the routing path from ur to v; 1 Will be up, wr, w1, wy, ug, wy, v o1,
which is no shorter than 2D — 1. Therefore, v; c1 € L(u1,v;,1,1). By (15),

t1 < {v1,1,1,v1,c,1} = {02,1,1,?12,0,1} <= {UL—4,1,17'UL—4,C,1} < ta. (16)

Fori e [1,L —4],ifv,c s € (t1,t2), f # 1, then v o s € L(u1,v;,1,1); Otherwise,
by similar argument as above, the routing path from ur to v; ¢, ; is no shorter than
2D — 1.

If Vi € [2,F], ve,0,f € (t1,t2), then Vf € [1, F], v, 0 f € L(u1,v6,1,1). By
Lemma 4.2, thereare F' — [ 2] — 2 vg ¢ #’s belonging to £(u1,ve1,1), and each vg ¢ ¢
belongs to a normal chain. By Lemma 4.6 and 4.10, there are F' — L%j — 6 pairs of
ve,1,f,V6,C.f € L(u1,v6,1,1) C T, contradicting the disjoint property of T'. Therefore,
there exists at least one f' € 2, F] such that vs ¢ p» & (t1,2).

Consider the routing from vg c—1,1. £(vs,c—1,1,v6,c,1) Will contain vg ¢ ¢, Vf €
[1, F]; otherwise, the routing path from vg c_1,1 t0 ve ¢ f, for some f € [1, F], will
be no shorter than 2D — 3.
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L(Vec11 Vecai)

Figure 20: Two choices for £(ve c—1.1,v6,0,1)-

Asshownin Figure 20, L(U&Cfl,la UG,C,I) will contain V1,C,1, V2,C,1, U3,C,1, V4,C,1, U5,C,1

or v7,c1,V8,C,15---,VL—4,c,1. SiNCe L > 15, each choice (Figure 20) has at least five
elements.
We assume that £(ve,c—1,1,v6,c,1) CONtaiNs vy c1,v2,c.1, - - -, vs5,c,1 and the other

case is just similar. The routing path from vg c_1,1 to vs 1 Should be vg 1.1, ws, uy,
ws, 50,1, (f # 1), otherwise, the path will be no shorter than 2D. Hence, £(ws, ve,c,f)
and L(uys,vs1,¢) contain vs ¢ 1. Consider the routing from v ¢_1,1 t0 v3 1. Then,
3f" # 1 such that L(ws, ve ¢, ) and L(u g, v ¢#) contain vs ¢ 1.

We have two cases.

o f=f".

That means vs c.1, vs,c,1 € L(we, V6,C,f)-
If V4,01 ¢ ﬁ(wg,v6707f), V4,C1 c E(’U)G,U&C,fo), fo 75 f Then, by (16),

t1<  wvsc1 < vaca < w1 <A{vei1,veca} < to.
S~ S~ S~
€L(we,v6,0,f)  €L(we,v6,0,50)  EL(we,v6,0,5)

Then,

t1 < wv3c1 <A{uci,vec ol < vsco1 < {vei1,1,v6c1) < to.
S~ —
€L(u1,v3,1,1) €L(u1,v5,1,1) €L(u1,v6,1,1)
Contradiction to the fact vg o o € (t1,t2) = vec o € L(u1,v6,1,1). Hence,
va,c1 € L(we, v, p), iIMmplying vy o1 € L(uyr,va,r). Then, we have

1< v3c1 < wmen1 < vsc1 0 <te.
S~—— S~—— SN—~—
€L(ugv31,5) €L(up,vq,1,1) €L(ug,vs1,1)

In other words,

t1 < v3,c1 < {va,01,v41, ¢} < U501 < ta.
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Therefore, vy 1 ¢ € (t1,t2) C T, contradicting to the disjoint property of 7'.

« f#£ [

We have two subcases. Firstly, vs ¢ ¢# € (t1,t2), which implies that vg ¢ ¢ is
“around” vg c,1 because vg ¢, 7, v6,c1 € L(u1,ve,1,1). We show the possible in-
terval for L(wg, ve ¢ ¢~) in Figure 21(a). Second, vg ¢ s & (t1,t2), the possible

L(Ws Vecs)

Figure 21: Two possible cases for £(ws, ve,c, 7).

interval for £(ws,ve ¢ ¢~) is as shown in Figure 21(b).

Referring to Figure 21, the choice is limited because the existence of £(ws, ve,c,f)
which is disjoint with £(wg, ve,c, 7). In both cases,

V1,0,1,V2,C,1,V3,C,1 € E(U)Gv'UG,C,f”)a
implying that v1,01 € L(uf”,vl,l,f”)y v2.01 € [,(Uf//,vgJ’f//) and v3,c1 €
ﬁ(u]t'//’?}3’17f//). Then,

th < wver < vac1 < wv3o1 <l
SN—~— S~—— S~——
Eﬁ(uf“vvl,l,f“) El:(uf//,UQ,l’f//) Eﬁ(uf“vvs,l,f“)

implying
ty <wvi,c1 < {vo,c1,v21, 07} < V3,01 < to.
Therefore, vy 1 ¢v € (t1,t2) C T, contradicting the disjoint property of T'.

Both cases are not valid, and this completes the proof of Theorem 6.1. <

7 Main Results

Theorem 7.1 There exists a graph such that no labeling scheme can have the longest path
shorter than 2D — o(D), where D = O(n).
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Proof: By Theorem 6.1, 2D — K is the lower bound. If 2D — Q(D) is an upper bound
on the longest path for G, ¢ r, by the definition of 2, 36 > 0 such that (2 — §)D is
the upper bound. However, by substituting X = $D into Theorem 6.1, (2 — 3)D is
a lower bound. Contradiction follows. <>

Theorem 7.2 There exists a graph such that no labeling scheme can have the longest path
shorter than 2D — 3 where D = O(y/n).

Proof: By substituting K = 3 into Theorem 6.1, the result follows. {

8 Open Problems

e Is there a better lower bound for 1-label interval routing?
e Are there algorithms for an upper bound of smaller than 2D?
e Are there any other types of graphs yielding a lower bound of 2D — O(1)?

e The lower bound 2D -3 is deduced from a graph with n not less than 1,491, 345, 315.
Are there any graphs with a smaller order yielding a lower bound of 2D —
0(1)?
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