
An Optimal Lower Bound on the Number of

Variables for Graph Identification

Jin-yi Cai∗

Computer Science Dept.
Princeton University
Princeton, NJ 08540
jyc@princeton.edu

Martin Fürer†

Dept. of Computer Science
Penn State University

University Park, PA 16802
furer@cs.psu.edu

Neil Immerman‡

Computer Science Dept.
University. of Massachusetts

Amherst, MA 01003
immerman@cs.umass.edu

Combinatorica, (12:4) (1992), 389-410

Abstract

In this paper we show that Ω(n) variables are needed for first-order logic with count-
ing to identify graphs on n vertices. The k-variable language with counting is equivalent
to the (k − 1)-dimensional Weisfeiler-Lehman method. We thus settle a long-standing
open problem. Previously it was an open question whether or not 4 variables suffice.
Our lower bound remains true over a set of graphs of color class size 4. This contrasts
sharply with the fact that 3 variables suffice to identify all graphs of color class size 3,
and 2 variables suffice to identify almost all graphs. Our lower bound is optimal up to
multiplication by a constant because n variables obviously suffice to identify graphs on
n vertices.

1 Introduction

In this paper we show that Ω(n) variables are needed for first-order logic with counting to
distinguish a sequence of pairs of graphs Gn and Hn. These graphs have O(n) vertices each,
have color class size 4, and admit a linear time canonical labeling algorithm. This contrasts
sharply with results in [10, 27] where it is shown that two variables suffice to identify all
trees and almost all graphs, and that three variables suffice to identify all graphs of color
class size 3.

∗Research supported by NSF grant CCR-8709818.
†Research supported by NSF grant CCR-8805978 and Pennsylvania State University Research Initiation

grant 428-45.
‡Research supported by NSF grants DCR-8603346 and CCR-8806308.

1

Another way to interpret our results is with stable colorings of k-tuples of vertices. The
work of Weisfeiler and Lehman [40, 39] on combinatorial and group theoretic properties of
colored graphs, has inspired the idea of separating the orbits of the automorphism group
of a graph by coloring k-tuples of vertices. Sometimes, this approach is called, the k-
dimensional Weisfeiler-Lehman method (k-dim W-L). In the late seventies and early eighties,
this method was developed by many researchers, including Faradẑev, Zemlyachenko, Babai,
and Mathon. With k = 1, this method gives a linear-time graph isomorphism algorithm that
works for almost all graphs [10]. Furthermore, the fastest known general graph isomorphism
algorithms make use of this method with k = O(

√
n) [11]. It had been conjectured that

this method would provide a polynomial time graph isomorphism test at least for graphs of
bounded valence. (Valence is a synonym for degree.) Our result disposes of such conjectures.

Up until now, most lower bounds in this area were proved using random graphs. This
method does not work when counting is included in the language because as mentioned
above, almost all graphs can be identified using only two variables with counting. In our
construction we choose graphs Tn, (n = 1, 2, . . .) with O(n) vertices and separator size n
(Definition 6.3). Then we deterministically modify Tn producing a pair of non-isomorphic
graphs Gn,Hn, which agree on all properties expressible with n variables. Our lower bound
is linear in the separator size of the graphs Tn. This linear lower bound, combined with a
straightforward upper bound (Proposition 7.3) allows us to precisely determine how many
variables are needed to identify many classes of graphs in first-order logic, with or without
counting.

This paper is organized as follows: In Section 2 we recount some of the history of the
Weisfeiler-Lehman method. In Section 3 we give some background in descriptive complexity
and explain the significance of this problem from the logical point of view. In Section 4 we
introduce some combinatorial games and prove that they characterize logical equivalence
in the languages we are considering. In Section 5 we prove the equivalence of the (k −
1)-dimensional Weisfeiler-Lehman method and the k-variable language with counting. In
Section 6 we use the above combinatorial game to prove the linear lower bound. Section 7
describes some corollaries and extensions of this work.

2 History of the Weisfeiler-Lehman Method

An old basic idea in graph isomorphism testing and canonical labeling is the naive vertex
classification algorithm as described in Read and Corneil [37]. First, the vertices are labeled
or colored with their valences. During the iteration, all labels are extended by the multiset
(“set” with possibly multiple elements) of the labels of their neighbors. Between rounds, the
labels are replaced by their order numbers in the lexicographic order of all the occurring
labels. This always keeps the labels short. The algorithm stops when the set of labels
stabilizes, meaning that no new differences between vertices are discovered. A labeling
algorithm identifies a class of graphs, if all vertex properties which are invariant under
isomorphisms are discovered. In other words, the sets of vertices with the same labels are
the orbits of the automorphism group.

The naive vertex classification algorithm, which we want to call the one dimensional Weisfeiler-
Lehman method (1-dim W-L), does not solve the worst cases of the graph isomorphism
problem. Nevertheless, it is usually a good start, and in fact it succeeds most of the time.

2

Babai, Erdős and Selkow [8] have shown that the 1-dim W-L algorithm already produces
normal forms for all but an n−1/7 fraction of the n-vertex graphs. This has been improved to
a c−n log n/ log log n fraction [10] producing an average linear time canonical labeling algorithm
by handling the few exceptions with a slow algorithm.

Vertex classification is probably the basis of every practical implementation of a graph
isomorphism test. For example, this is the case for the “nauty” package [35], which is said
to be the fastest practical graph isomorphism package. It should be mentioned, however,
that in addition to vertex refinement, “nauty” makes extensive use of partial automorphism
information in its backtrack process; and it is not clear whether or not our examples may
lead to graphs on which “nauty” requires excessive time. In general, it is quite difficult to
construct “hard cases” for graph isomorphism.

There is a class of graphs for which the vertex classification algorithm alone is obviously
useless, because the algorithm cannot even get started. These are the regular graphs, which
have the same degree in each vertex. Here it seems quite natural to go beyond vertex
classification to the 2-dim W-L or edge classification algorithm. Initially every ordered pair
(u, v) is labeled or colored with one of three possible colors, depending on whether u = v
and whether there is an edge {u, v}. Then information about the multiset of pairs of colors
assigned to paths of length 2 from u to v is repeatedly added to the color of (u, v). The
algorithm stops when no color class is split any more. A modification of this algorithm has
been shown to produce normal forms for all regular graphs in linear average time [29].

The k-tuple coloring algorithm (named k-dim W-L by Babai [13]) classifies k-tuples of
vertices. It might color vertices and edges implicitly by using k-tuples with repetition of
components. It could start with some encoding of the graph into the labels assigned to the
k-tuples. For example, the initial label or color of every k-tuple could be the number of
its distinct components except when this number is two. Then two colors could be used
to encode the presence or absence of an edge between the two vertices. We prefer to get a
quicker start by initially coloring each k-tuple with its isomorphism type. Repeatedly, the
color of (u1, . . . , uk) is refined by the n element multiset (containing one element for each
vertex v) of k-tuples of colors previously assigned to

(v, u2, . . . , uk), (u1, v, u3, . . . , uk), . . . , (u1, . . . , uk−1, v)

We only need to consider k-tuples of distinct elements, if we finally color the vertices by the
multiset of colors of incident k-tuples. A more formal description of the k-dim W-L method
is given in Section 5.

Possibly weaker algorithms have been considered. We might call them special k-dim W-
L algorithms. In Weisfeiler’s book [39] only such a method is mentioned and called deep
stabilization. It consists of individualization followed by a low dimensional (k = 1 or 2) W-L
algorithm. For every distinguished (i.e., initially colored with unique colors) (k − 1)-tuple
or (k− 2)-tuple, a 1-dim W-L or a 2-dim W-L respectively is performed to detect invariant
properties of vertices or edges. These methods seem to be weaker than the standard k-dim
W-L method.

Two of the current authors have independently reinvented the k-dim W-L algorithm in the
early eighties and conjectured its capability of identifying the graphs of bounded valence
(with k being a suitable function of the valence). Later, we have learned that such con-
jectures have been around before in the Soviet Union, where the k-dim W-L algorithm (or

3

maybe sometimes a special k-dim W-L algorithm) has been investigated for two decades.
Significant results have been obtained by Faradẑev’s group, which contributed many papers
to Weisfeiler’s book [39]. The Russians have built a huge algebraic theory with extensive
applications around the notion of stable colorings of pairs. The key notion is that of a cellu-
lar algebra (see [39, 30]), which has been discovered in another context and called coherent
configuration by Higman [21].

Weisfeiler and Lehman have asked whether the special k-dim W-L method with a slowly
growing value of k would be sufficient to solve the graph isomorphism problem. There was
actually good reason to conjecture k = O(log n) or even O(1) to be sufficient.

The second hope was partly based on the following result of Cameron [14], obtained in-
dependently by Gol’fand (cf. [19, 31]). Let us call a graph k-regular, if the number of
common neighbors of a k element subset of vertices only depends on the isomorphism type
of the subgraph induced by the k vertices. (1-regular and 2-regular graphs are well known
as regular and strongly regular graphs respectively.) Cameron and Gol’fand have shown
that apart from the pentagon and the line graph of K(3,3), only the trivial examples of
5-regular graphs exist, namely the disjoint unions of complete graphs of equal size, and
their complements (complete multipartite graphs). These graphs are homogeneous, i.e., all
isomorphisms of their subgraphs extend to automorphisms. Therefore, they are immune to
k-dim W-L refinements for any k: No refinement beyond the isomorphism type of k-tuples
will follow. However, for any other graph, the Cameron-Gol’fand result assures us that the
5-dim W-L method will give at least some nontrivial partitioning of the 5-tuples.

Lipton [32] has proved that a special k-dim W-L method with a fixed k is sufficient for
canonical labeling of trivalent (degree 3) graphs with arc-transitive automorphism groups.
(An arc is an ordered pair of adjacent vertices.)

Support for the k = O(log n) conjecture has been provided by Gary Miller [36]. He has
shown that for certain classes of strongly regular graphs and other combinatorial objects
such as Latin squares k = log n is sufficient. Previously, such graphs have been considered
to be difficult examples for isomorphism testing, because of their high degree of regularity
and symmetry. The importance of symmetries for graph isomorphism testing has been
pointed out by Babai and by Mathon [34] who showed that the graph isomorphism problem
is equivalent to computing the order of automorphism groups of graphs.

Individualization followed by a low (1 or 2) dimensional refinement (i.e., the special W-L
method) has produced pioneer results in the areas of bounded valence as well as general
graph isomorphism and canonical labeling. Babai’s technical report [3] started to use group
theoretical algorithms to obtain provable upper bounds for isomorphism problems. Not
only did he get his well known probabilistic polynomial time isomorphism test for graphs of
bounded color class size, he also started the work on bounded valence graphs. Individual-
ization of k =

√
n(log n)c vertices splits a bounded valence graph into color classes of size at

most
√
n resulting in an exp(

√
n(log n)c) isomorphism test. Subsequently Luks [33] proved,

using group theory to greater depth, that isomorphism for graphs of bounded valence is in
polynomial time. Finally the canonical labeling problem for graphs of bounded valence has
been solved in polynomial time by [11] and [18] independently.

Individualization followed by naive refinement has also been the tool used by Babai to
handle strongly regular graphs [4] and primitive coherent configurations [6]. He used in-
dividualization of k = 2

√
n log n vertices. Strongly regular graphs and more generally,

4

coherent configurations are stable under 2-dim W-L. While strongly regular graphs are just
undirected graphs, coherent configurations are edge-colored complete directed graphs. A
coherent configuration is primitive if the diagonal has one color and all other colors define
connected graphs. If a transitive automorphism group is primitive, then 2-dim W-L pro-
duces necessarily a primitive coherent configuration. For tournaments, the isomorphism
problems of primitive and arbitrary coherent configurations are polynomial time equivalent
[11].

The general graph isomorphism problem has been attacked by Zemlyachenko. The method
is described in [5] and [41]. By individualization of O(

√
n) vertices and canonical edge-

switching, he has been able to reduce the valence to O(
√
n). Combining this with the

method of Luks [33], Zemlyachenko obtained the first interesting upper bound for general
graph isomorphism [41] (cf. [5]). His bound is exp(n1−c) for some positive constant c. This
has subsequently been improved by Babai and Luks [11] to exp(n1/2+o(1)).

Instead of measuring the reduction in the valence, one could ask about the effect of these
methods on the color class size. Babai [7] has investigated this splitting power of Zemly-
achenko’s method combined with 2-dim W-L. The result is that individualizing k = O(n2/3 log n)
vertices, and applying Zemlyachenko’s method and the 2-dim W-L method, he obtains color
classes which have ≤ k vertices in each connected component of the resulting graph.

3 Logical Background

In [23, 24, 25] one of us has pursued an alternate view of complexity theory in which
the complexity of a problem is characterized in terms of the complexity of the simplest
first-order sentences expressing the problem. For example, it is shown in [23] that the
polynomial-time properties are exactly the properties expressible by first-order sentences
iterated1 polynomially many times:

Fact 3.1 ([23])

P =
∞⋃

k=1

FO(≤)[nk]

The notation FO(≤)[nk] denotes the set of properties describable by a very uniform sequence
of sentences {ϕn} such that each sentence ϕn has length O(nk) and has a bounded number
of variables independent of n.2 The symbol ≤ is included to emphasize the presence of a
total ordering on the universe of the input structures. In [24] and in [38] it is also shown
that this uniform sequence of formulas can be represented by a least fixed point operator
(LFP) applied to a single formula. Thus,

P = FO(≤) + LFP =
∞⋃

k=1

FO(≤)[nk] .

1More precisely, the sentence expressing the property for structures of size n consists of a fixed block of
restricted quantifiers written p(n) times, followed by a fixed formula.

2In [23] the notation Var&Sz[O(1), nk] instead of FO[nk] was used.

5

Fact 3.1 gives a natural language expressing exactly the polynomial-time properties of or-
dered graphs. Let a graph property be an order independent property of ordered graphs.
One can ask the question,

Question 3.2 Is there a natural language for the polynomial-time graph properties?

Since the notion of “natural” is not well defined, some readers may prefer the more precise
question:

Question 3.3 Is there a recursively enumerable listing of a set of Turing machines that
accept exactly all the polynomial-time graph properties?

These questions were first asked with respect to database query languages [15]. See [28] for
a discussion of the role of ordering in the database context.

We remark that should it be the case that graph canonization (i.e. given a graph return
a canonical form such that two graphs are isomorphic iff their canonical forms are equal)
is in polynomial time, then the answer to Question 3.3 is, “Yes.” Thus a negative answer
would imply that P is not equal to NP.

Previous to this paper, the only polynomial-time graph properties known not to be express-
ible in FO + LFP (without ordering) were “counting problems”. For example, that a graph
has an even number of edges is not expressible in FO + LFP. In [24] a language which we
now call “FO+LFP+COUNT” was proposed as an answer to Question 3.2. This language
describes two sorted structures consisting of an unordered domain of vertices together with
an edge predicate, plus an ordered domain of numbers. The domains are defined via count-
ing quantifiers as in Section 3.2. We show in Corollary 7.1 that this language fails badly on
certain linear time properties of graphs.

In [27] and [26] the exact number of variables needed to identify various classes of trees with
and without counting, respectively, is determined. (Without counting this number increases
linearly with the arity of the trees; with counting two variables suffice.) The question of
how many variables are needed to identify various classes of graphs is interesting in its own
right, and also has applications to temporal logic [26].

In the remainder of this section we explain the logical background we need. Some of this
material is described in more detail in [27].

3.1 First-Order Logic

For our purposes, a graph will be defined as a finite first-order structure, G = 〈VG, EG〉. VG

is the universe, (the vertices). EG is a binary relation on VG, (the edges).

As an example, the undirected graph, G1 = 〈V1, E1〉, pictured in Figure 1 has vertex set
V1 = {0, 1, 2, 3, 4}, and edge relation

E1 = {〈0, 3〉, 〈0, 4〉, 〈1, 2〉, 〈1, 3〉, . . . , 〈4, 0〉, 〈4, 3〉}

consisting of 12 pairs corresponding to the six undirected edges. By convention, we will
assume that all structures referred to in this paper have universe {0, 1, . . . , n− 1} for some
natural number n.

6

�
�

�

@
@

@

@
@

@

�
�

�•4

•1

•3

•

2•

0

Figure 1: An Undirected Graph

The first-order language of graph theory is built up in the usual way from the variables
x1, x2, . . ., the relations symbols E and =, the logical connectives ∧,∨,¬,→, and the quan-
tifiers ∀ and ∃. The quantifiers range over the vertices of the graph in question. For example
consider the following first-order sentence:

ϕ ≡ ∀x∀y[E(x, y) → E(y, x) ∧ x 6= y]

ϕ says that G is undirected and loop free. We will only consider graphs that satisfy ϕ, in
symbols: G |= ϕ.

It is useful to consider a slightly more general set of structures. The first-order language of
colored graphs results from the addition of a countable set of unary relations {C1, C2, . . .}
to the first-order language of graphs.3 Define a colored graph to be a graph that interprets
these new unary relations so that all but finitely many of the predicates are false at each
vertex. These unary relations may be thought of as colorings of the vertices.

Definition 3.4 For a given language L we say that the graphs G and H are L-equivalent
(G ≡L H) iff for all sentences ϕ ∈ L,

G |= ϕ ⇔ H |= ϕ .

We say that L identifies the graph G iff for all graphs H, if G ≡L H then G and H are
isomorphic. L identifies a set of graphs S if it identifies every element of S.

Note: For the languages Lk, Ck which we consider in this paper, and any graph G, the
set of sentences in the language that are true about G has a polynomial size description
which may be computed in polynomial-time [27]. Thus any set of graphs identified by Lk

or Ck has a polynomial-time canonization algorithm.

Of course the First-Order Language of Colored Graphs identifies all colored graphs. From
a computational viewpoint it is interesting to consider weaker languages admitting much
faster equivalence testing algorithms.

3.2 The Languages Lk and Ck

Define Lk to be the set of first-order formulas ϕ, such that the variables in ϕ are a subset
of x1, x2, . . . , xk. Note that variables in first-order formulas are similar to variables in
programs: they can be reused (i.e. requantified).

3Coloring relations are a clean tool for restricting the automorphisms of graphs. However, all the coloring
relations in this paper could be replaced by simple gadgets in the graphs, without changing any of the results.

7

For example, consider the following sentence in L2.

ψ ≡ ∀x1∃x2

(
E(x1, x2) ∧ ∃x1[¬E(x1, x2)]

)
The sentence, ψ, says that every vertex is adjacent to some vertex which is itself not
adjacent to every vertex. As an example, the graph from Figure 1 satisfies ψ. Note that
the outermost quantifier, ∀x1, refers only to the free occurrence of x1 within its scope.

Define a color class to be the set of vertices which satisfy a particular set of color relations.
The color class size of a graph is the cardinality of its largest color class. In [27] it is shown
that L3 identifies the set of graphs of color class size 3.

As noted above, the languages Lk are too weak to count, or even to express the parity of
the number of edges. It is thus natural to strengthen these languages by adding counting
quantifiers to the languages Lk, thus obtaining the new languages Ck. For each positive
integer i, we include the quantifier, (∃i x). The meaning of “(∃17x1)ϕ(x1)”, for example,
is that there exist at least 17 vertices such that ϕ. It is sometimes convenient to use the
following abbreviation (∃!i x), meaning that there exists exactly i x’s:

(∃!i x)ϕ(x) ≡ (∃i x)ϕ(x) ∧ ¬(∃i+ 1x)ϕ(x)

As an example, the following sentence in C2 says that there exist exactly 17 vertices of
degree 5,

(∃!17x1)(∃!5x2)E(x1, x2)

As an even worse example, the following sentence in C2 identifies the graph in Figure 1. It
says that the whole graph contains exactly 5 vertices and that one vertex is adjacent to four
vertices each of which has degree 2.

[(∃!5x1)(x1 = x1)] ∧ [(∃!1x1)(∃4x2)(E(x1, x2) ∧ (∃!2x1)E(x2, x1))]

Note that every sentence in Ck is equivalent to an ordinary first-order sentence with perhaps
many more variables and quantifiers. In Section 5 it is shown that testing Ck equivalence
corresponds to the (k− 1)-dimensional Weisfeiler-Lehman Method. It thus follows that the
language C2 identifies all trees and almost all graphs. In [27], TIME(nk log n) algorithms
for testing Lk or Ck equivalence of graphs on n vertices are presented.

4 Pebbling Games

We next describe two pebbling games that are equivalent to testing Lk and Ck equivalence,
respectively. These games are variants of the games of Ehrenfeucht and Fräıssé, [16, 17].
The results in this section concerning the Lk game and the Ck game originally appeared in
[23] and [27], respectively.

Let G and H be two graphs, and let m and k be natural numbers. Define the m-move Lk

game on G and H as follows. There are two players, and for each variable xi, i = 1, . . . , k
there is a pair of xi pebbles.

8

On each move, Player I picks up the pair of xi pebbles, for some i ∈ {1, . . . , k}, and he
places one of them on a vertex in one of the graphs.4 Player II must then place the other
xi pebble on a vertex of the other graph.

Define a k-configuration on a pair of graphs G,H to be a pair (u, v) of partial functions,

u : {x1, . . . , xk} → VG; v : {x1, . . . , xk} → VH

such that the domains of u and v are equal. We will use the notation Du to denote the
domain of the partial function u. Thus a k-configuration on G,H is a valid position of the
Lk game on G,H. Here u(xi) = g means that an xi pebble is on g ∈ VG. If xi 6∈ Du = Dv

this means that the xi pebbles are not currently placed on the board.

Let (ur, vr) be the configuration of the game after move number r. Then we say Player
I wins the game after move r if the map that takes ur(xi) to vr(xi), i ∈ Dur , is not an
isomorphism of the subgraphs induced by these vertices. (Note that if the graphs are
colored then an isomorphism must preserve colors as well as edges.) We say that Player I
wins the m-move game if for some r ∈ {0, 1, 2, . . . ,m}, Player I wins the game after move
r. Player II wins iff Player I does not win. Finally, we say that Player II has a winning
strategy for the Lk game on G and H, iff for all m, Player II has a winning strategy for the
m-move game on G and H.

Thus Player II has a winning strategy for the Lk game just if she can always find matching
vertices to preserve the isomorphism.5 Player I is trying to point out a difference between
the two graphs and Player II is trying to keep them looking the same.

The number of moves in the Lk game corresponds to the depth of nesting of quantifiers of
the sentences in Lk needed to distinguish the graphs G and H. Define the language Lk,m

to be the restriction of Lk to formulas of quantifier depth m. The relationship between the
Lk game and the language Lk is given in Theorem 4.2. Before we state it, we need the
following definition.

Definition 4.1 Let G,H be a pair of graphs and let (u, v) be a k-configuration on G,H.
We will say that G is Lk,m-equivalent to H, in symbols, G ≡Lk,m

H iff for all formulas
ϕ ∈ Lk,m whose free variables are a subset of Du,

G, u |= ϕ ⇔ H, v |= ϕ

Similarly we will say that G is Lk-equivalent to H, in symbols, G ≡Lk
H iff for all m,

G ≡Lk,m
H.

Theorem 4.2 ([23]) Player II has a winning strategy for the m-move Lk game on G,H
if and only if G ≡Lk,m

H. Thus, Player II has a winning strategy for the Lk game on G,H
iff G ≡Lk

H.

Before we prove Theorem 4.2, we will give a few examples of the game.
4To make the play of the games easier to follow we will use masculine pronouns for Player I and feminine

pronouns for Player II.
5By definition, the strategy can depend on the given number m of moves, but as G and H are finite,

there is actually one strategy winning for all m.

9

G H

•b

•r

•y

�
��

@
@@

•b

•r

•y

�
��

@
@@

•y

•b�
�

�
•
r@

@
@•y

•b
�

�
�•r@

@
@

Figure 2: The L2 Game

Example 4.3 Consider the L2 game on the graphs G and H shown in Figure 2.

Suppose that Player I’s first move is to place an x1 pebble on a red vertex in G. Player II
may answer by putting the other x1 pebble on either of the red vertices in H. Now suppose
Player I puts x2 on an adjacent yellow vertex in H. Player II has a response because in
G, every red vertex has an adjacent yellow vertex. The reader should convince himself or
herself that in fact Player II has a winning strategy for the L2 game on the given G and H.
It follows from Theorem 4.2 that G and H agree on all sentences from L2.

On the other hand, clearly Player I has a win in the 3-move, L3 game on G and H. He can
simply put his pebbles on three points in one of the triangles in G. Since H has no triangle,
Player II will lose. Notice that in this case Player I is playing the following sentence from
L3,3 which is true of G and false of H:

(∃x1)(∃x2)(∃x3)[E(x1, x2) ∧ E(x2, x3) ∧ E(x3, x1)]

Finally, a more interesting example of an L3 game would be with H ′ consisting of a hexagon
like H, but without the colors and G′ consisting of a disjoint union of two copies of the
hexagon H ′. Here Player II has a winning strategy for the 3-move L3 game, but Player
I has a winning strategy for the 4-move L3 game.6 His strategy is to play the following
sentence true of H ′ but not of G′ saying that every pair of vertices is joined by a path of
length at most three:

(∀x)(∀y)(∃z)[(E(x, z) ∨ x = z) ∧ (∃x)(E(z, x) ∧ E(x, y))]

In order to prove Theorem 4.2 we need the following

Lemma 4.4 For any relational language with finitely many relation symbols, and any k
and m there are only finitely many formulas up to equivalence in Lk,m. Furthermore if we
include a finite set of additional quantifiers, e.g. counting quantifiers, then the expanded
language still only has finitely many formulas up to equivalence.

6The reason we removed the colors is that with the colors there is a sentence from L3,3 distinguishing the
two graphs, namely in H every pair of vertices of different color is joined by a path of length at most two.

10

Proof This is easy to see by induction on m. When m = 0, there are only finitely many
variables and only finitely many relation symbols, so only finitely many sets of possible
facts about these variables. Assume that there are a total of f different kinds of quantifiers.
Inductively, assume there are sm inequivalent formulas of quantifier depth m. Then there
are no more than 22fksm inequivalent formulas of quantifier depth m+ 1.

Proof of Theorem 4.2: We prove by induction on m, that for all k-configurations (u, v)
on G,H the following statements are equivalent:

1. Player II has a winning strategy for the m-move Lk game on G,H starting from the
initial configuration (u, v).

2. G, u ≡Lk,m
H, v

The base of the induction is immediate because the map from u(Du) to v(Du) is an isomor-
phism of the induced subgraphs iff G, u and H, v agree on all quantifier-free formulas.7

Assume the equivalence of (1) and (2) for all m-move games, and let (u, v) be the initial
configuration of an (m+1)-move game. Assume condition (2) is false and let ϕ ∈ Lk,m+1 be
a formula on which G, u and H, v disagree. If ϕ is a disjunction, conjunction, or negation of
smaller formulas then G, u and H, v must disagree on one of these smaller formulas, so we
may assume that ϕ begins with a quantifier. We may assume by symmetry that ϕ = (∃xi)ψ
and G, u |= ϕ, but H, v |= ¬ϕ. Player I should then place one of the xi pebbles on a vertex g
such that ψ holds in G, u(xi/g). No matter what vertex h Player II answers with, we know
that ¬ψ will hold in H, v(xi/h). Letting (u1, v1) = (u(xi/g), v(xi/h)) be the configuration
after this move we have that G, u1 6≡k,m H, v1. Thus by induction Player I has a winning
strategy for the remaining m-move game and thus for the original m+ 1-move game.

Conversely, assume that condition (2) is true and let Player I’s first move be to place one of
the xi pebbles on some vertex g from G. Let u1 = u(xi/g) be the result of this move. Note
that there are only finitely many color predicates that any vertex in G or H satisfies. Thus,
Lemma 4.4 applies and there is only a finite set Fk,m of inequivalent formulas of interest in
Lk,m. Define S to be the set of formulas in Fk,m that are satisfied by G, u1 and let σ be the
conjunction of the finitely many formulas in S. Thus we have that

G, u |= (∃xi)σ

It follows that H, v |= (∃xi)σ. Let Player II place the other xi pebble on a witness, h, for σ
in H, and let v1 = v(xi/h) be the result of this move. By the definition of σ it follows that

G, u1 ≡Lk,m
H, v1

Thus it follows by induction that Player II has a winning strategy for the remaining m-move
game and thus also for the original m+ 1-move game.

7We are presenting the proof here for the language with no constant or function symbols. The proof goes
through when function symbols are present, under the additional assumption that the cardinality of any
finitely generated set is finite [26].

11

4.1 The Ck Game

A modification of the Lk game provides a combinatorial tool for analyzing the expressive
power of Ck. Given a pair of graphs define the Ck game on G and H as follows: Just as in
the Lk game, we have two players and k pairs of pebbles. The difference is that each move
now has two parts.

1. Player I picks up the xi pebble pair for some i. He then chooses a set A of vertices
from one of the graphs. Now Player II answers with a set B of vertices from the other
graph. B must have the same cardinality as A.

2. Player I places one of the xi pebbles on some vertex b ∈ B. Player II answers by
placing the other xi pebble on some a ∈ A.

The definition for winning is as before. What is going on in the two part move is that Player
I asserts that there exist |A| vertices in G with a certain property. Player II answers with
the same number of such vertices in H. Player I challenges one of the vertices in B and
Player II replies with an equivalent vertex from A. This game captures expressibility in Ck:

Theorem 4.5 ([27]) Player II has a winning strategy for the Ck game on G,H if and only
if G ≡Ck

H.

Theorem 4.5 follows from Theorem 5.2, which we prove in the next section.

5 Ck-Equivalence Equals (k − 1)-dim W-L

In this section we describe the k-dimensional Weisfeiler-Lehman method (k-dim W-L). We
then prove that a pair of k-tuples of vertices from a graph agree on all formulas in Ck+1 iff
they are in the same equivalence class arising from the k-dim W-L.

The 1-dim W-L is also called vertex refinement. Let G = 〈V,E,C1, . . . , Cr〉 be a colored
graph in which every vertex satisfies exactly one color relation. Let W 0 : V → {1 . . . n} be
given by W 0(v) = i iff v ∈ Ci. We then define W r+1, the refinement of W r as follows: The
new color of each vertex g is defined to be the following tuple:

〈W r(g), y1, n1, . . . , yr, nr〉

where yi is the number of vertices of color i that g is adjacent to, and ni is the number of
vertices of color i that g is not adjacent to. In practice, we sort these new colors lexico-
graphically and assign W r+1(g) to be the number of the new color class that g inhabits.
However, we retain a table decoding the “meaning” of each of the colors. Thus two vertices
are in the same new color class precisely if they were in the same old color class, and they
were adjacent to the same number of vertices of each color. We keep refining the coloring
until at some level W r = W r+1. We let W = W r and call W the stable refinement of W 0.

We will see in Theorem 5.2 that stable coloring provides exactly the same information as
C2 equivalence.

12

Next define the k-dim W-L for k > 1 as follows. Let G be a colored graph and let u be
a (total) map from {x1, . . . , xk} to VG. Define the initial color W 0(u) according to the
isomorphism type of u. That is, W 0(u) = W 0(v) iff the map from (u(x1), . . . , u(xk)) to
(v(x1), . . . , v(xk)) is an isomorphism.

For each g ∈ VG, define the operation

sift(f, u, g) = 〈f(u(x1/g)), f(u(x2/g)), . . . , f(u(xk/g))〉

Thus sift(W r, u, g) is the k-tuple of W r-colors arising from substituting g in turn for each
of the k positions in u.

We define the r+ 1st color of u from the rth color by considering the rth color of u together
with the number of vertices g such that sift(W r, u, g) = t̄ for each possible k-tuple of colors
t̄. More explicitly, form the new color of u as the tuple:

〈W r(u),SORT{sift(W r, u, g) | g ∈ G}〉

As in the one dimensional case, we sort these new colors lexicographically, and assign
W r+1 according to the ordering that ensues. However, we do retain a table decoding
the meaning of each color. Thus for a pair of configurations u, v from different graphs,
W r+1(u) = W r+1(v) iff the numbers of the colors assigned are the same, and the decoding
tables for the two graphs are identical. Thus W r+1(u) = W r+1(v) just if W r(u) = W r(v)
and for each k-tuple of colors t̄,

|{g | sift(W r, u, g) = t̄}| = |{g | sift(W r, v, g) = t̄}| (5.1)

(Note that the difference between the case k = 1 and the case k > 1 is that in the former
case we have to explicitly consider which of the g’s are adjacent to u(x1) in the above
definition of new color; whereas, for k > 1, this adjacency is part of the information in the
initial color of the tuples u(xj/g) for j 6= 1.)

Let W (u) denote the stable color of u. Note that there can be at most nk color classes for
a graph with n vertices and thus the algorithm stops after at most nk iterations.

Theorem 5.2 Let G,H be a pair of colored graphs and let (u, v) be a k-configuration on
G,H, where k ≥ 1. Then the following are equivalent:

1. W (u) = W (v)

2. G, u ≡Ck+1
H, v

3. Player II has a winning strategy for the Ck+1 game on (G,H), whose initial configu-
ration is (u, v).

Proof By induction on r we show that the following are equivalent:

1. W r(u) = W r(v)

2. G, u ≡Ck+1,r
H, v

13

3. Player II has a winning strategy for the r-move Ck+1 game on (G,H) whose initial
configuration is (u, v).

The base case is by definition. W 0(u) = W 0(v) iff the map from u(x1), . . . , u(xk) to
v(x1), . . . , v(xk) is an isomorphism. This is true iff G, u and H, v satisfy all the same
quantifier-free formulas; and it is also the definition of Player II winning the zero move
game.

Assume that the equivalence holds for all (u, v) and for all r < m.

(¬1 ⇒ ¬2) : Suppose that Wm(u) 6= Wm(v). There are two cases. If Wm−1(u) 6= Wm−1(v)
then by the inductive assumption there is a formula ϕ ∈ Ck+1,m−1 on which G, u and H, v
differ. Otherwise it must be that for some k-tuple of colors, t̄ = (t1, . . . , tk), Equation 5.1
fails. Let N be the cardinality of the larger set in Equation 5.1.

By induction, two k-tuples of vertices are in the same f (m−1) color class iff they agree on all
formulas from Ck+1,m−1. By Lemma 4.4 there are only finitely many inequivalent Ck+1,m−1

formulas, when we restrict our attention to graphs with the same finite number of vertices as
G. (If G and H have different numbers of vertices, then for r ≥ 1, all the above conditions
are false.) Let ψi be the conjunction of the finitely many Ck+1,m−1 formulas characterizing
the m− 1 color class i. Thus, for w a k-configuration on F ∈ {G,H}

Wm−1(w) = i ⇔ F,w |= (ψi)

It follows that G, u and H, v differ on the following formula from Ck+1,m.8

(∃Nxk+1)(ψt1(x1/xk+1) ∧ · · · ∧ ψtk(xk/xk+1))

(¬2 ⇒ ¬3) : Suppose that G, u |= ϕ but H, v |= ¬ϕ, for some ϕ ∈ Ck+1,m. If ϕ is a
conjunction then G, u and H, v must differ on at least one of the conjuncts, so we may
assume that ϕ is of the form (∃Nxi)ψ. We may assume that xi is the currently unassigned
variable xk+1. On the first move of the game Player I picks up the pair of xk+1 pebbles
and chooses a set of N vertices g, such that G, u(xk+1/g) |= ψ. Whatever Player II chooses
as B there will be at least one vertex h ∈ B such that H, v(xk+1/h) |= ¬ψ. Player I puts
his pebble number on this h. Player II must respond with some g ∈ A. Now G, u(xk+1/g)
and H, v(xk+1/h) differ on ψ ∈ Ck+1,m−1. Thus by induction Player II loses the remaining
m− 1 move game.

(1 ⇒ 3) : Suppose that Wm(u) = Wm(v). It follows that Equation 5.1 holds for each
k-tuple of colors t̄. Clearly Player I’s strongest move involves the presently unused pair of
xk+1 pebbles. Suppose he picks them up and chooses a set A of N vertices from G. For
each t̄, let Nt̄ be the number of vertices g ∈ A such that t̄ = sift(Wm−1, u, g). It follows
from Equation 5.1 that Player II can put Nt̄ vertices h into B such t̄ = sift(Wm−1, v, h).9

In the second part of the move Player I will put xk+1 on some h ∈ B. Player II should then
answer with a g ∈ A such that

sift(Wm−1, u, g) = sift(Wm−1, v, h) = t̄

8For the case k = 1 we must explicitly consider adjacency and so the formula is (∃N x2)(E(x1, x2) ∧
ψt1(x1/x2)).

9In the case k = 1, Player II must choose h’s that are adjacent to v(x1) iff the corresponding g’s are
adjacent to u(x1).

14

Consider the remaining game on configuration (u(xk+1/g), v(xk+1/h)). Note that Player
II has not yet lost. At the beginning of the next move, Player I will choose some pair of
pebbles xi and pick them up. Now we know that the remaining configurations have the
same Wm−1 color. It follows by induction that Player II wins the remaining (m− 1)-move
game.

The following observation will be useful in the proof of our main theorem.

Observation 5.3 If Player I has a winning strategy for the m-move Ck game on G,H, then
he has a winning strategy in which throughout the game he only chooses monochromatic sets
A.

Proof We saw in the above proof that whenever Player I chooses a set A, this set
may be partitioned according to the k-tuple of color classes induced. Player II then answers
separately for each k-tuple of colors. If Player II does not have the right number of elements
in one of these classes then she will lose, and Player I need only have selected his elements
from that class. Each of these classes is monochromatic.

It is not hard to see using standard coloring algorithms, cf. [1, §4.13], that

Fact 5.4 ([27]) The stable colorings of k-tuples may be computed in O(k2nk+1 log n) steps
on a RAM.

It then follows from Theorem 5.2 that graphs that are identified by the language Ck+1 have
a canonization algorithm that runs in time O(k2nk+1 log n).

Remark 5.5 It is interesting to note that the language Lk+1 enjoys a relationship similar
to that of Theorem 5.2 with a variant of the k-dim W-L algorithm with the same time bound.
The only difference is that the computation of the new color treats the following as a set
instead of a multiset:

{sift(Wm−1, u, g) | g ∈ VG}

That is, after sorting the collection of k-tuples, we eliminate duplicates.

6 Construction

We construct our counterexample graphs by starting with low degree graphs having only
linear size separators. We replace each vertex v of degree k in such a graph by the graph
Xk, defined as follows: Xk = (Vk, Ek), where

Vk = Ak ∪Bk ∪Mk where Ak = {ai | 1 ≤ i ≤ k},
Bk = {bi | 1 ≤ i ≤ k}, and
Mk = {mS | S ⊆ {1, . . . , k}, |S| is even}

Ek = {(mS , ai) | i ∈ S} ∪ {(mS , bi) | i 6∈ S}

15

'
&

$
%

'
&

$
%

'
&

$
%

'
&

$
%

•
a1

•
b1

• • • •

•
a2

•
b2

•
a3

•
b3

�
�
�
�
�
�
�
�
�
�

A
A

A
A

A
A

A
A

A
A

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

A
A

A
A

A
A

A
A

A
A

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q

Figure 3: The Graph X3

Thus Xk consists of a set of 2k−1 vertices in the middle each connected to one vertex from
each of the pairs {ai, bi}, 1 ≤ i ≤ k. Furthermore, each of the middle vertices is connected
to an even number of ai’s. (We will assume that the middle vertices (Mk) of Xk have a
different color, say magenta, from the others (Ak ∪ Bk). Furthermore, the pairs ai and bi
should be able to recognize their mates. If necessary, add vertices ci colored chartreuse,
with edges to ai and bi.) See Figure 3 for a diagram of X3.

The following lemma describes the relevant property of the graph Xk. The proof is imme-
diate.

Lemma 6.1 Suppose that we color the vertices ai and bi of graph Xk with the color i.
(Thus all automorphisms of Xk must fix the sets {a1, b1}, . . ., {ak, bk}.) Then there are
exactly 2k−1 automorphisms of Xk. Each is determined by interchanging ai and bi for each
i in some subset S of {1, . . . , n} of even cardinality.

Let G be a finite, connected, undirected graph such that every vertex of G has degree at
least two. Define the graph X(G) (“X of G”) as follows. For each vertex v of G, we replace
v by a copy of Xk, call it X(v), where k is the degree of v. To each edge (v, w) of v we
associate one of the pairs {ai, bi} from X(v), call this pair a(v, w) and b(v, w). Finally, we
connect the a vertices and the b vertices at each end of each edge, that is we draw the edges
(a(u, v), a(v, u)) and (b(u, v), b(v, u)). If G is a colored graph, then each vertex in X(v)
should inherit the color of v. Next, define the graph X̃(G) (“X twist of G”) as follows:
In the above construction of X(G) arbitrarily choose one edge (v, w) and twist it, that is
reverse the connections, drawing edges (a(u, v), b(v, u)) and (b(u, v), a(v, u)). In the next
lemma we show some relevant properties of X(G) and X̃(G), including the fact that X̃(G)
is well defined.

16

Lemma 6.2 Let G be any finite, connected graph such that every vertex of G has degree at
least two. Let X(G) and X̃(G) be as above. Let X̂(G) be constructed like X(G), but with
exactly t of its edges twisted. Then X̂(G) is isomorphic to X(G) iff t is even, and X̂(G) is
isomorphic to X̃(G) iff t is odd.

Proof First observe the following fact about X̂(G). Let v be any vertex of G, and let
(x, v), (y, v) be any two edges incident at v. If in X̂(G) we twist both (x, v) and (y, v), then
the resulting graph is isomorphic to X̂(G). (This is immediate from Lemma 6.1.)

Now suppose that the number of twists in t is greater than or equal to two. The above
observation lets us move the twists towards each other until they overlap and cancel each
other out. Thus if t is even then X̂(G) is isomorphic to X(G), otherwise it is isomorphic
to X̃(G).

It remains to show that X(G) is not isomorphic to X̃(G). Assume for the sake of a contra-
diction that ϕ is an isomorphism from X(G) to X̃(G). Consider the action of ϕ on any pair
{a(v, w), b(v, w)} ⊂ X(v), for (v, w) an edge of G. Because of the colorings in the definition
of Xk, ϕ must map the pair {a(v, w), b(v, w)} to some {a(v′, w′), b(v′, w′)} in X̃(G), and
thus ϕ also maps {a(w, v), b(w, v)} to {a(w′, v′), b(w′, v′)}. Define ⊕ϕ to be the sum mod
2 over all such pairs in X(G) of the number of times ϕ maps an a to a b. Clearly if we
consider the two pairs corresponding to every edge (x, y) in G, the number of such switches
is either zero or two, except for the unique edge chosen in the construction of X̃(G), where
the number is one. Hence ⊕ϕ is one mod 2. Now let’s consider the mod 2 sum in another
way, namely in terms of each copy of Xk in X(G). By Lemma 6.1, it is immediate that ⊕ϕ
is zero mod 2. This contradiction proves the lemma.

Definition 6.3 A separator of a graph G = (V,E) is a subset S ⊂ V such that the induced
subgraph on V − S has no connected component with more than |V |/2 vertices.

We now prove our main theorem:

Theorem 6.4 Let T be a graph such that every separator of T has at least s+ 1 vertices.
Then

X(T) ≡Cs X̃(T) .

Proof By Theorem 5.2, it suffices to give a winning strategy for Player II in the Cs game
on X(T) and X̃(T). We will assume that the original graph T has color class size one. The
graphs X(T) and X̃(T) inherit these colors and so have color class size 2k−1, where k is the
maximum degree of any vertex in T . This only makes life more difficult for Player II.

We know by Lemma 6.2 that if we add a twist to any edge of X(T), then the resulting graph
is isomorphic to X̃(T). After the rth move of the game, let Qr be the largest connected
component in T −Pr where Pr is the set of vertices g ∈ T such that just after the rth move
there is a pebble on a vertex of X(g) in X(T). Since T has no s separator, we know that
Qr contains over half the vertices of T . Player II’s winning strategy will be to maintain the
following property:

17

(∗) For each vertex g ∈ Qr, let Xg(T) be X(T) with an edge adjacent to g twisted. Then
there exists an isomorphism αr,g from Xg(T) to X̃(T), such that for all i ≤ s, αr,g

maps the vertex under pebble xi in X(T) to the vertex under pebble xi in X̃(T).

The difference between X(T) and X̃(T) is that the latter graph has one twisted edge. An
intuitive explanation of Player II’s winning strategy is that she keeps this twisted edge
inside of Qr. With only s pebbles, Player I cannot break apart Qr to expose the twist.

Clearly if Player II can maintain (∗), then the map from the pebbled points in X(T) to
the corresponding pebbled points in X̃(T) is an isomorphism, and she wins. We show by
induction on r, that Player II can maintain (∗). First let us make a remark about Player
I’s moves. By Observation 5.3, it always suffices for Player I to restrict himself to choosing
a set of monochromatic points at each move. Notice that, if Player I chooses a vertex in
M(h), the middle of an X(h), then all the other vertices in that X(h) are determined.
Furthermore, since one point in M(h) determines all of M(h), it suffices for Player I to
choose only a single point at a time. (Thus counting does not help at all in distinguishing
X(T) from X̃(T)!)

Player II’s inductive strategy can now be stated. Assume (∗) holds, and suppose that on
move r + 1 Player I picks up pebble xi and puts it down on a vertex in M(w). Note that
a new largest component Qr+1 is determined. Let g be a vertex in Qr ∩Qr+1. Player II’s
response is to answer Player I’s move according to the isomorphism αr,g. To maintain (∗),
let αr+1,g = αr,g. Since there is a pebble-free path from g to every other vertex in Qr+1, the
proof of Lemma 6.2 shows us how to define all the other isomorphisms, αr+1,h, h ∈ Qr+1.

Corollary 6.5 There exists a sequence of pairs of graphs {Gn,Hn}, n ∈ N admitting a
linear time canonical labeling algorithm and having the following additional properties:

1. Gn and Hn have O(n) vertices.

2. Gn and Hn have degree three and color class size four.

3. Gn ≡Cn Hn.

4. Gn is not isomorphic to Hn.

Proof This follows immediately from Theorem 6.4 when we let Gn = X(Tn) and Hn =
X̃(Tn) where the Tn’s are a sequence of degree three graphs of separator size n, with each
vertex of Tn colored a unique color. Such graphs are well known to exist, see for example
[2].

7 Corollaries

A long time ago, one of us showed that there is a polynomial-time property of graphs that
requires Ω(2

√
log n) quantifiers to be expressed in first-order logic without ordering. That

proof also used the graphs X(Dn) and X̃(Dn), for a certain sequence of degree three graphs

18

{Dn} [22, Theorem 7]. Now, Corollary 6.5 improves that lower bound to Ω(n) variables.10

It also shows graphically that if we exclude the ordering relation from inductive first-order
logic, then the addition of counting does not suffice to express all polynomial-time graph
properties. In particular, we have the following:

Corollary 7.1 Let Γ be the set of all graphs of the form X(G), or X̃(G), for all graphs G
of degree at most three and color class size one. Then the isomorphism problems for graphs
in Γ is expressible in first-order logic with ordering and sum mod 2, but it is not expressible
by any sequence of first-order sentences from Cr(n) (without ordering), where r(n) = o(n).

Remark 7.2 In particular, inductive logic with counting, but without ordering does not
contain all the polynomial-time computable graph properties. In fact, it does not even con-
tain all such properties computable by a uniform sequence of bounded-depth, polynomial-size
Boolean circuits that include parity gates, cf. [12].

Proof We have seen in Corollary 6.5 that the graphs X(Tn) and X̃(Tn) are indistinguish-
able in Cεn for some constant ε > 0. Suppose for the sake of a contradiction that there were
a sentence σ ∈ (FO + LFP + COUNT) that expresses the isomorphism property for graphs
from Γ. That is for graphs G,H ∈ Γ,

(G,H) |= σ ⇔ G ∼= H

Let k be the number of distinct variables occurring in σ. For graphs of size n, let σn

be the unwinding of σ as follows. Rewrite any least fixed points of arity a, (LFPϕ) as
ϕ(na)(∅). Next replace any quantified number variable ∃i (respectively, ∀i) by a disjunction
n−1∨
i=0

(respectively, by a conjunction
n−1∧
i=0

). Note that σn ∈ Ck and is equivalent to σ for

structures of size at most n.

Thus we have that σn distinguishes the pair P = (X(Tn), X̃(Tn)) from the pair Q =
(X(Tn), X(Tn)). It follows that Player I wins the Ck game on these two pairs. Note that
Player II can match any vertex in the first X(Tn) from P with the same vertex in the first
X(Tn) from Q. Thus, Player I must have a winning strategy for the Ck game on X(Tn) and
X̃(Tn). This contradiction shows that isomorphism for graphs from Γ is not expressible in
(FO + LFP + COUNT).

We next show that we can distinguish X(G) from X̃(G) in first-order logic with ordering
and sum mod 2. This is easy. The ordering gives us a way to mark each of the pairs a(g, h)
and b(g, h) in the graphs. Let a(g, h) be the first of the pair, and b(g, h) the second. (Note
that since the vertices in M(g) and M(h) inherit unique colors from g and h, we are given
as part of the input which pair of vertices is a(g, h), b(g, h).) Now, given this assignment
of a’s and b’s, a simple first-order sentence asserts that X(g) is straight (i.e. isomorphic to
X3) or twisted (i.e. each vertex in M(g) is adjacent to an odd number of a’s). Now, the
graph is isomorphic to X(G) iff the sum mod 2 of the number of twisted vertices and edges
is 0, and it’s isomorphic to X̃(G) iff the sum mod 2 is 1.

10This is a major improvement because n is much bigger than 2
√

log n, and because a sentence with
q quantifiers can make use of at most q variables, but a sentence with v variables can make use of 2nv

quantifiers.

19

Of course, if G 6= H, then since these graphs have color class size one, X(G) and X(H) can
be distinguished by a sentence in L2. Thus isomorphism for graphs from Γ is expressible in
AC0 plus parity gates, as claimed.

The next result proves a straightforward upper bound that nearly matches our lower bound
on the number of variables needed to identify a class ∆ of graphs as a function of the
separator size of members of ∆.

Proposition 7.3 Let ∆ be a set of graphs closed under induced subgraphs, such that every
graph G ∈ ∆ has a separator of size at most s(n), where n is the number of vertices of G.
Then ∆ is identified by CV (n) where

V (n) = 3 +
blog nc∑

i=0

s(bn2−ic) .

(In particular, V (n) ≤ s(n) log n, and if s(n) = nα, then V (n) = O(s(n)).)

Proof We use induction on n, the number of vertices of G. Given G, we can first say that
there exist vertices x1, . . . , xs(n) such that every connected component of G − {xi|1 ≤ i ≤
s(n)} has size at most bn/2c. This is expressible in s(n) + 3 variables. Next we assert how
many connected components of each isomorphism type there are. This requires V (bn/2c)
variables, in addition to the s(n) that we leave on x1, . . . , xs(n).

8 Conclusions and Open Questions

1. We redirect the reader’s attention to Questions 3.2 and 3.3. We have shown in Corol-
lary 6.5 that first-order logic plus counting and least fixed point, but without ordering,
fails badly. The question,“What besides counting must be added to FO + LFP to get
all polynomial-time graph problems?” is worthy of much study, cf. [27, 20].

2. Planar graphs have separators of size O(
√
n), and thus by Proposition 7.3 they can

be identified in C√n. However, Theorem 6.4 does not give a matching lower bound
because even if G is planar, the graph X(G) need not be. We would like to know if
Ω(
√
n) variables are necessary to identify planar graphs.

Acknowledgements: Thanks to Sandeep Bhatt who improved our results by pointing
out that the essential property of the counterexample graphs we were using was that their
separators are large. Thanks to Laci Babai for informing us about the status of the research
on the W-L method in the Soviet Union.

References

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley (1974).

20

[2] M. Ajtai, “Recursive Construction for 3-Regular Expanders,” 28th IEEE Symp. on
Foundations of Computer Science (1987), 295-304.

[3] László Babai, “Monte Carlo Algorithms in Graph Isomorphism Testing,” Tech. Rep.
DMS 79-10, Université de Montréal, 1979.

[4] László Babai, “On the Complexity of Canonical Labeling of Strongly Regular Graphs,”
SIAM J. Computing 9 (1980), 212-216.

[5] László Babai, “Moderately Exponential Bound for Graph Isomorphism,” Proc. Conf.
on Fundamentals of Computation Theory, Lecture Notes in Computer Science,
Springer, 1981, 34-50.

[6] László Babai, “On the Order of Uniprimitive Permutation Groups,” Annals of Math.
113 (1981), 553-568.

[7] László Babai, “Permutation Groups, Coherent Configurations, and Graph Isomor-
phism,” D.Sc. Thesis, Hungarian Acad. Sci., 1984 (in Hungarian).

[8] László Babai, Paul Erdős, and Stanley M. Selkow, “Random Graph Isomorphism,”
SIAM J. on Comput. 9 (1980), 628-635.

[9] L. Babai, W.M. Kantor, and E.M. Luks, “Computational Complexity and the Clas-
sification of Finite Simple Groups,” 24th IEEE Symp. on Foundations of Computer
Science (1983), 162-171.

[10] László Babai and Luděk Kučera, “Canonical Labelling of Graphs in Linear Average
Time,” 20th IEEE Symp. on Foundations of Computer Science (1979), 39-46.

[11] László Babai and Eugene M. Luks, “Canonical Labeling of Graphs,” 15th ACM Sym-
posium on Theory of Computing (1983), 171-183.

[12] David Mix Barrington, Neil Immerman, and Howard Straubing, “On Uniformity
Within NC1,” J. Comput. System Sci. 41, No. 3 (1990), 274-306.

[13] László Babai and Rudi Mathon, Talk at the South-East Conference on Combinatorics
and Graph Theory, 1980.

[14] P.J. Cameron, “6-Transitive Graphs,” J. Combinat. Theory B 28, (1980), 168-179.
[15] Ashok Chandra and David Harel, “Structure and Complexity of Relational Queries,”

J. Comput. System Sci. 25 (1982), 99-128.
[16] A. Ehrenfeucht, “An Application of Games to the Completeness Problem for Formal-

ized Theories,” Fund. Math. 49 (1961), 129-141.
[17] R. Fräıssé, “Sur quelques classifications des systèms de relations,” Publ. Sci. Univ.

Alger 1 (1954), 35-182.
[18] Martin Fürer, Walter Schnyder, and Ernst Specker, “Normal Forms for Trivalent

Graphs and Graphs of Bounded Valence,” 15th ACM Symposium on Theory of Com-
puting (1983), 161-170.

[19] Ya. Yu. Gol’fand and M.H. Klin, “On k-Regular Graphs,” in Algorithmic Research in
Combinatorics, Nauka Publ., Moscow, 1978, 76-85.

[20] Yuri Gurevich, “Logic and the Challenge of Computer Science,” in Current Trends in
Theoretical Computer Science, ed. Egon Börger, Computer Science Press, 1988, 1-57.

[21] D.G. Higman, “Coherent Configurations I.: Ordinary Representation Theory,” Geome-
triae Dedicata 4 (1975), 1-32.

[22] Neil Immerman, “Number of Quantifiers is Better than Number of Tape Cells,” J.
Comput. System Sci. 22, No. 3 (1981), 384-406.

[23] Neil Immerman, “Upper and Lower Bounds for First Order Expressibility,” J. Comput.
System Sci. 25, No. 1 (1982), 76-98.

21

[24] Neil Immerman, “Relational Queries Computable in Polynomial Time,” Information
and Control 68 (1986), 86-104.

[25] Neil Immerman, “Languages That Capture Complexity Classes,” SIAM J. Computing
16, No. 4 (1987), 760-778.

[26] Neil Immerman and Dexter Kozen, “Definability with Bounded Number of Bound
Variables,” Information and Computation 83 (1989), 121-139.

[27] Neil Immerman and Eric S. Lander, “Describing Graphs: A First-Order Approach to
Graph Canonization,” in Complexity Theory Retrospective, Alan Selman, ed., Springer-
Verlag, 1990, 59-81.

[28] N. Immerman, S. Patnaik, and D. Stemple, “The Expressiveness of a Family of Finite
Set Languages,” Tenth ACM Symposium on Principles of Database Systems (1991),
37-52.

[29] Luděk Kučera, “Canonical Labeling of Regular Graphs in Linear Average Time,” 28th
IEEE Symp. on Foundations of Computer Science (1987), 271-279.

[30] M.H. Klin, M.E. Muzichuk, and I.A. Faradẑev, “Cellular Rings and Groups of Auto-
morphisms of Graphs,” Introductory Article to a Book to be Published by D. Reidel
Publ. Co.

[31] M.Ch. Klin, R. Pöschel, and K. Rosenbaum, “Angewandte Algebra,” Vieweg & Sohn
Publ., Braunschweig 1988.

[32] R. Lipton, “The Beacon Set Approach to Graph Isomorphism,” Yale Dept. Comp. Sci.
preprint No. 135, 1978.

[33] Eugene M. Luks, “Isomorphism of Graphs of Bounded Valence Can be Tested in Poly-
nomial Time,” J. Comput. System Sci. 25 (1982), 42-65.

[34] R. Mathon, “A Note On the Graph Isomorphism Counting Problem,” Inform. Proc.
Let. 8 (1979), 131-132.

[35] B.D. McKay, “Nauty User’s Guide (Version 1.2),” Tech. Rep. TR-CS-87-03, Dept.
Computer Science, Austral. National Univ., Melbourne, 1987.

[36] G.L. Miller, “On the nlog n Isomorphism Technique,” 10th ACM Symposium on Theory
of Computing (1978), 51-58.

[37] R.C. Read and D.G. Corneil, “The Graph Isomorphism Disease,” J. Graph Theory 1
(1977), 339-363.

[38] M. Vardi, “Complexity of Relational Query Languages,” 14th ACM Symposium on
Theory of Computing (1982), 137-146.

[39] Boris Weisfeiler, ed., On Construction and Identification of Graphs, Lecture Notes in
Mathematics 558, Springer, 1976.

[40] B. Weisfeiler and A.A. Lehman, “A Reduction of a Graph to a Canonical Form and
an Algebra Arising during this Reduction,” (in Russian), Nauchno-Technicheskaya
Informatsia, Seriya 2, 9 (1968), 12-16.

[41] V.N. Zemlyachenko, N. Kornienko, and R.I. Tyshkevich, “Graph Isomorphism Prob-
lem,” (in Russian), The Theory fo Computation I, Notes Sci. Sem. LOMI 118, 1982.

22

