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This article presents a technique for the efficient compiler management of software-exposed het-
erogeneous memory. In many lower-end embedded chips, often used in microcontrollers and DSP
processors, heterogeneous memory units such as scratch-pad SRAM, internal DRAM, external
DRAM, and ROM are visible directly to the software, without automatic management by a hard-
ware caching mechanism. Instead, the memory units are mapped to different portions of the address
space. Caches are avoided due to their cost and power consumption, and because they make it diffi-
cult to guarantee real-time performance. For this important class of embedded chips, the allocation
of data to different memory units to maximize performance is the responsibility of the software.

Current practice typically leaves it to the programmer to partition the data among different
memory units. We present a compiler strategy that automatically partitions the data among the
memory units. We show that this strategy is optimal, relative to the profile run, among all static
partitions for global and stack data. For the first time, our allocation scheme for stacks distributes
the stack among multiple memory units. For global and stack data, the scheme is provably equal
to or better than any other compiler scheme or set of programmer annotations. Results from our
benchmarks show a 44.2% reduction in runtime from using our distributed stack strategy vs. using
a unified stack, and a further 11.8% reduction in runtime from using a linear optimization strategy
for allocation vs. a simpler greedy strategy; both in the case of the SRAM size being 20% of the
total data size. For some programs, less than 5% of data in SRAM achieves a similar speedup.

Categories and Subject Descriptors: Computing Systems [Embedded Systems]: Memory
Management

General Terms: Design, Measurement, Performance
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1. INTRODUCTION

This article presents an automatic compiler method for allocating program data
among different heterogeneous memory units in embedded systems. The kind
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of embedded chips targeted are those without caches, and with at least two
kinds of writable memory—only in such systems is intelligent memory alloca-
tion useful. Such embedded chips without caches and with multiple memory
units are an important class of embedded chips, common in many lower-end
embedded devices such as microcontrollers and some DSP chips. The writable
memory units typically found in such systems include any two or more of in-
ternal SRAM, external SRAM, integrated DRAM, external DRAM, and even
EEPROM that are writable, but with very high latency. In such chips, each of
the memory units may have differing latencies and sizes, therefore the choice
of memory allocation affects the overall performance.

The allocation strategy presented in this article models the problem using
a 0/1 integer linear program, and solves it using commercially available soft-
ware [Matlab 2001]. The formulation is provably optimal, relative to the profile
run, for global and stack data. It is easily adapted to both nonpreemptive and
preemptive (context-switching) scenarios. For the first time ever, the solution
automatically distributes the program stack among multiple memory banks,
effectively growing the stack simultaneously in several places. Stack distri-
bution is unusual—presently programmer annotations and compiler methods
place the entire stack in one memory unit. The resulting flexibility allows a
more custom allocation for better performance. Finally, the optimality guar-
antee ensures that the solution is equal to or better than any programmer-
specified allocation using annotations, or any existing or future compiler
methods.

The method presented is motivated by a need to improve the quality of au-
tomatically compiled code. Compilers today, while better than before, still suf-
fer from a large performance penalty compared to programs directly written
in assembly language [Bhattacharyya et al. 2000; Paulin et al. 1997]. This
forces many performance-critical kernels to be written directly in assembly.
Assembly programming has well-known disadvantages: more tedious, expen-
sive, and error-prone code development, difficulty in porting between different
platforms, and a longer time-to-market between successive implementations
[Bhattacharyya et al. 2000; Paulin et al. 1997]. Further, optimizations that
benefit from whole-program analysis, such as memory allocation, cannot be
captured by rewriting certain kernels.

One of the major remaining impediments to efficient compilation is the pres-
ence of multiple, possibly heterogeneous, memory units mapped to different por-
tions of the address space. Many low-end embedded processors [Motorola MCore
1998; Texas Instruments TMS370Cx 1997; Motorola 68HC12 2000] have such
memory units as on-chip scratch-pad SRAM, on-chip DRAM, off-chip DRAM,
and ROM that are not members of a unified memory hierarchy. Caches are
not used for reasons of real-time constraints, cost, and power dissipation. In
contrast, the memory units in desktop processors are unified through caches.
Directly addressed memory units in embedded processors require the software
to allocate the data to different memories, a complex task for which good strate-
gies are not available.

This work proposes a method for automatically allocating program data
among the heterogeneous memory units in embedded processors without
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Fig. 1. Flow diagram for heterogeneous memory management on embedded systems. The thick
arrows denote the primary flow of compilation and synthesis, while the thin arrows provide sup-
porting data.

caches. The standard practice today is that the allocation is left to the program-
mer. An automated solution for a different kind of embedded processor has been
proposed [Panda et al. 2000], namely, that for which the external memory has
an internal hardware cache. We show, however, that the optimality criteria are
very different without caches. Other related works are discussed later in the
related work section.

In typical embedded processors without caches, a small, fast SRAM memory
called scratch pad replaces the cache, but its allocation is under software con-
trol. An important recent article [Banakar et al. 2002] studied the trade-offs
of a cache vs. scratch pad. Their results were startling: a scratch-pad memory
has 34% smaller area and 40% lower power consumption than a cache memory
of the same capacity. Even more surprising, the runtime measured in cycles
was 18% better with a scratch pad when using a simple knapsack-based allo-
cation algorithm [Banakar et al. 2002]. With the superior allocation schemes
proposed here, the runtime improvement will be even larger. Thus, defying con-
ventional wisdom, they found absolutely no advantage in using a cache, even in
high-end systems in which performance is important. In conclusion, given the
power, cost, performance, and real-time advantages of scratch pad, we expect
that systems without caches will continue to dominate embedded systems in
the future.

Figure 1 outlines our method for heterogeneous memory management on em-
bedded systems. The application program on the left is fed to our compiler anal-
ysis that derives the optimal static allocation for the data given the inputted
profile data. The compiler analysis incorporates application-specific runtime
information through the use of profile data. The analysis is provided with the
sizes and latencies of the memory units available on the target chip, as shown.
The compiler analysis models the problem for global and stack data as a 0/1 inte-
ger linear programming problem and solves it using Matlab [Matlab 6.1 2001].
The solution is always provably optimal, relative to the profiled run of the pro-
gram, among static methods for handling global and stack data. As depicted,
the derived allocation specification is output to the linking stage of compilation.
The linker adds assembly directives to its output code to implement the desired
allocation. The resulting code not only improves performance, but is likely to
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reduce energy consumption—it is well-known that compiler optimizations that
reduce runtime usually reduce energy consumption as well [Lee et al. 1997].

This article is organized as follows. Section 2 motivates the problem and out-
lines our approach. Section 3 describes related work; Section 4 shows a simple
example to illustrate the trade-offs involved. Section 5 describes our method for
global variables. Section 6 shows how the formulation can be extended for stack
variables. Section 7 presents some preliminary results. Section 8 addresses cer-
tain real-world issues; while Section 9 concludes.

2. MOTIVATION AND APPROACH

Multiple heterogeneous memory units in many embedded systems are moti-
vated by the varying performance, cost, and writability characteristics of dif-
ferent memory technologies. Typically, such chips contain some or all of the fol-
lowing: a small amount of on-chip SRAM, a moderate amount of on-chip DRAM,
a moderate amount of off-chip SRAM, a large amount of off-chip DRAM, and
some ROM to store programs and data constants. Each kind has its advantages:
SRAM is fast but expensive; off-chip SRAM is somewhat slower; integrated on-
chip DRAM is slower than SRAM but faster than external DRAM; whereas
external DRAM is slow, but is the cheapest. ROM is cheap and nonvolatile, but
it cannot be written to. Certain kinds of ROM, such as EEPROM, are writable
with high latency.

The organization of the memories is different from that in desktop systems.
Although desktops also contain many of these memories, they automatically
manage them hierarchically using caches. Caches, however, consume area and
power, and make it difficult to provide real-time guarantees. Consequently,
many embedded chips, except for some at the high end, do not use caches. Ex-
amples include the Motorola 68HC12 [2000], Motorola MCore [1998] and Texas
Instruments TMS370Cx [1997]. The lack of caches has meant that the differ-
ent memories are mapped to different nonoverlapping portions of the address
space.

A result of the lack of caches is that the allocation of data to memories must
be software-managed—in most systems today, it is left to the programmer. This
work presents a compiler method to manage the data. Compiler methods are
preferable to programmer directives as they do not require programmer effort;
are portable across different systems; and are likely to make better decisions,
especially for large, complex programs. The dominance of chips without caches
in embedded systems implies that good compiler methods for data allocation
will have a large impact.

Our profile-guided compiler method is static: it fixes the allocation at compile-
time; data is not relocated to another location during runtime. Alternate strate-
gies could be dynamic—software-managed caches [Moritz et al. 2000; Hallnor
and Reinhardt 2000] are one class of dynamic algorithms. There are, how-
ever, no software caching strategies available today that are optimized for the
class of embedded processors we target. Dynamic strategies are not studied
in this work—future work might study such schemes. Significant challenges
will need to be overcome in designing a software-caching scheme for embedded
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chips, including providing real-time guarantees in the face of unpredictable
cache behavior; reducing software caching overhead; and restricting code size
increase from the overhead instructions. Fortunately, profile data allows our
static method to incorporate runtime information to some extent.

Even for static allocations, several factors make the problem a difficult one
to solve optimally. Let us consider global, stack, and heap variables. We present
a formulation that is optimal, relative to the profile run, for global variables
among static partitions. Stack variables, however, unlike global variables, have
limited lifetimes, allowing sharing of space between variables with disjoint
lifetimes. This complicates the analysis, but we present a method that is able
to retain the optimality guarantee for nonrecursive procedures. For heap data,
the situation is worse: no static method can be optimal for all heap data, as
the sizes and allocation frequencies are unknown for heap data. Allocation of
heap data is not considered any further in this work. In our scheme, all heap
data is allocated to external DRAM, which is the same as the default in today’s
compilers. Better schemes will be investigated in future work.

3. RELATED WORK

For embedded processors with heterogeneous memory units that are not cache-
managed, there has been little related work that automatically allocates data
to banks while increasing performance. The usual approach is to leave the task
to the programmer. Compiler methods are preferable to programmer directives
for three reasons: they do not require programmer effort; are portable across
different systems; and are likely to make better decisions, especially for large,
complex programs.

To our knowledge, Panda et al. [2000], Sjodin et al. [1998], and Sjodin and
von Platen [2001] are the only published methods that aim to allocate data
to on-chip and off-chip memories mapped to different portions of the address
space. However, the architecture class targeted by Panda et al. [2000] is dif-
ferent from ours, they target embedded processors that, in addition to having
scratch-pad SRAM, use hardware-managed caches on top of slower, external
memory.1 The presence of caches completely changes the goals of the allocation
strategy. Instead of aiming to reduce the number of accesses to data in exter-
nal memory, it becomes far more important to ensure that those accesses hit
in cache. Consequently, the goal of the method in Panda [2000] is to map the
variables that are likely to cause the most conflicts to scratch pad. It makes
no attempt to maximize the number of accesses to scratch pad, and thus is
unsuitable for our architectural model.

The method proposed by Sjodin et al. [1998] also differs from ours in several
ways. Like our method, Sjodin et al. [1998] also utilize an allocation scheme that
tries to keep variables with the highest number of accesses per byte in on-chip
SRAM and allocate the less critical variables to slower, external RAM. However,
unlike our formulation they only address two memory levels (on-chip SRAM and
external RAM) and do not offer any methods for extending to allocate stack

1Our architectural model without caches is employed by a variety of embedded processors, as caches
consume area and power, and make it difficult to provide real-time guarantees.
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variables. Our formulation automatically handles N levels of memory with
varying latencies and sizes. Also, we have extended the formulation to account
for stack (local) variables. Another difference is that Sjodin et al. primarily
use a static profiling scheme, which can be inaccurate—especially for larger
programs. Our scheme always uses dynamic profiling which accounts for every
load and store throughout the program.

Recent work by Sjodin and von Platen [2001] uses a linear formulation such
as ours. The key differences of our method from theirs are as follows. First, they
do not incorporate a distributed stack—this accounts for 44% performance gain
in our results. Also, they have no optimized analysis of stack variables. The
goals of their work differ from ours in that they aim to optimize the use of
native pointer types to improve performance and reduce code size.

As described earlier, our method yields a static allocation; dynamic strate-
gies are possible. In a dynamic strategy, data may be moved from one loca-
tion to another during program execution. One class of dynamic strategies are
software-caching methods [Moritz et al. 2000; Hallnor and Reinhardt 2000]—
these emulate a cache in fast memory using software. The tag, data, and valid
bits are all managed by compiler-inserted software at each program data ac-
cess. Software overhead is incurred to manage these fields, although the [Moritz
et al. 2000] compiler optimizes away the overhead in some cases. Moritz et al.
[2000] target the primary cache, while Hallnor and Reinhardt [2000] intend to
manage the secondary cache and assume different costs—for this reason the
method proposed by Moritz et al. [2000] is more applicable for the problem we
consider.

Dynamic strategies are not studied in this work—future work might study
such schemes. Significant challenges will need to be overcome in designing
a software-caching scheme for embedded chips, including providing real-time
guarantees in the face of unpredictable cache behavior; reducing software
caching overhead; and restricting code size increase from the overhead instruc-
tions. Fortunately, profile data allows our static method to incorporate runtime
information to some extent.

4. EXAMPLE

Figure 2 shows a simple example that illustrates how a programmer or com-
piler might make decisions about data allocation. Figure 2(a) is the application
program for which we wish to allocate the data. Two byte arrays A[100] and
B[1000] are passed as arguments to procedure foo where they are accessed us-
ing formal arguments x[ ] and y[ ]. Assume that the program is compiled for
an embedded chip that has 1 KB of fast scratch-pad SRAM, no on-chip DRAM
and 8 KB of slower, external DRAM. The problem we are trying to solve is:
which program variables should be allocated to which memory bank? It is clear
that either array can individually fit in the 1 KB SRAM, but that both cannot
simultaneously fit. For simplicity of illustration, assume that no other accesses
to A and B occur, although there is no such requirement in our method.

For the code in Figure 2(a), the compiler needs to choose between the two
possible data allocations shown in Figures 2(b) and (c). In Figure 2(b) A[100]
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(a)
DRAM (8K)

SRAM (1K)

(c)
DRAM (8K)

SRAM (1K)

(b)

}
     }
          y[. . .] = . . .
     for (. . .) {
     }
          . . . = x[. . .]   . . .
     while (. . . ) {
{
void foo (char x[], char y[])
. . .
foo(A, B);
. . .
char A[100], B[1000];

B[]

A[]

A[]

B[]

Fig. 2. Example showing choices in heterogeneous memory allocation: (a) the source code of the
application; (b) A[ ] allocated to SRAM (allocated portions are shaded lighter); (c) B[ ] allocated to
SRAM.

is in SRAM; in Figure 2(c) B[1000] is in SRAM. The choice between the two
depends on access frequencies. Two cases illustrate the choice. In the first case,
suppose the while loop at runtime actually executes for more iterations than
the for loop, then the allocation in Figure 2(b) is preferred, as it makes more
accesses to faster SRAM. In the second case, suppose the for loop executes for
more iterations instead. In this case, the allocation in Figure 2(c) is superior,
as it makes more SRAM accesses. However, making estimates of relative ac-
cess frequencies is difficult, since many loops have bounds that are unknown at
compile; further, data-dependent control flow makes static prediction difficult.
Fortunately, profile data gives good estimates provided the data set used is rep-
resentative, and is far more accurate than static frequency prediction methods.
Our allocation method uses profile data to find access frequencies of memory
references.

The above example illustrates that for making good allocation decisions, the
compiler must integrate at least three technologies. First, the general problem
of optimal data allocation, which is NP-complete, must be solved either exactly
or approximately using heuristics. We propose a method that returns an opti-
mal static solution using an integer programming framework. There is some
evidence that 0/1 integer programming has fast solution times (under a minute
on modern computers) even for large programs with a few thousand variables
[Appel and George 2001; New York City, Office of Budget and Management
1999]. Fortunately, the number of variables in our formulation is proportionate
to the number of variables in the original program, which is usually no more
than a few thousand for even large programs. Quick solution times are borne out
by our results, where in all cases the solution was returned in under a minute.
Second, the compiler must collect accurate frequency estimates using profiling,
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and use them to guide allocation. Third, to collect frequency counts for vari-
ables, the profiler must correlate accesses with the variables they access. For
example, in Figure 2(a), it must be known that x[ ] is A[ ] and y[ ] is B[ ]. Know-
ing this statically requires computationally expensive interprocedural pointer
analysis. Moreover, pointer analysis may return ambiguous data if, for example,
there is more than one call to foo() with different array arguments each time.
For this reason, we avoid pointer analysis by taking a different approach—
runtime address checks during profiling. During the profile run, each accessed
address is checked against a table of address ranges for the different variables.
A match indicates that the variable accessed has been found. This profile-based
approach yields exact statistics, unlike the inexact information using pointer
analysis.

5. FORMULATION FOR GLOBAL VARIABLES

Here we present the formulation for global variables; it is extended to handle
stack variables later. The following symbols are used:2

U = Number of heterogeneous memory units;
Tr j = Time (latency) to read memory unit j ∈ [1, U ] in cycles;
Twj = Time (latency) to write memory unit j ∈ [1, U ] in cycles;
M j = Size of memory unit j ∈ [1, U ] in bytes;

G = Number of global variables in application;
vi = ith global variable, i ∈ [1, G];

Nr (vi) = Number of times vi is read (from profiling);
Nw(vi) = Number of times vi is written (from profiling);

S(vi) = Size of variable vi in bytes.

The optimization problem is formulated as a 0/1 integer linear program. The
following set of 0/1 integer variables (∀ j ∈ [1, U ], ∀i ∈ [1, G]) is defined:

I j (vi) =
{

1 if variable vi is allocated on memory unit j
0 otherwise.

The objective function to be minimized is the total access time of all the
memory accesses in the application. For architectures allowing at most one
memory access per cycle, the total time is

U∑
j=1

G∑
i=1

I j (vi)[Tr j Nr (vi)+ Twj Nw(vi)]. (1)

It is easy to see how the above is the total time for all memory accesses.
The term Tr j Nr (vi) is the time for all the read accesses to variable vi, if it were
allocated to memory unit j . A similar term is added for all the write accesses.
When multiplied by the 0/1 variable I j (vi) the result contributes the memory

2The Tr j ,Twj values used for DRAMs are averages. Some modern DRAMs have slightly lower
latencies for sequential accesses compared to nonsequential accesses, by about 20%. The difference
is not modeled.
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access time if vi were indeed allocated to unit j ; zero otherwise. Summing this
term over all variables (the inner sigma) yields the total access time for a given
memory unit. The outer sigma yields the total across all memory units.

For machines that allow at most one memory access per cycle, the formula
in (1) is accurate. Most low-end embedded processors we target allow only one
memory access per cycle, including some Very Long Instruction Word (VLIW)
architectures,3 and hence the formula in (1) is accurate for most targeted chips.
For higher-end VLIWs that allow more than one memory access per cycle, how-
ever, (1) does not take into account the overlap of memory latencies. To do so
requires the formula to include the maximum of latencies of different memory
accesses in the same cycle; unfortunately, the objective function does not re-
main linear, since the maximum function is not linear. Thus, heuristics instead
of optimal 0/1 integer linear solvers must be used; these are not evaluated in
this work.

As in any linear optimization problem, a set of constraints is also defined.
The first is an exclusion constraint that enforces that, for every application
variable vi, it is allocated on only one memory unit:

U∑
j=1

I j (vi) = 1 (∀i ∈ [1, G]). (2)

Another constraint is that the sum of the sizes of all variables allocated to a
particular memory unit must not exceed the size of that memory unit:

G∑
i=1

I j (vi) ∗ S(vi) ≤ M j (∀ j ∈ [1, U ]). (3)

The objective function (1) combined with the constraints (2) and (3) define
the optimization problem. The function and constraints are then solved with
an available mathematical solver; we use Matlab [2001]. The resulting values
of I j (vi) are the optimal static allocation.

6. EXTENSION TO STACK VARIABLES

For good performance, stack variables—procedure parameters, local variables,
and return variables—must be distributed among the different heterogeneous
memory units to achieve a more custom allocation. Stack distribution, however,
is a complex objective, since the stack is normally a sequentially allocated ab-
straction. Normally, the stack grows in units of stack frames, one per procedure,
where a stack frame is a block of contiguous memory locations containing all
the variables and parameters of the procedure. The stack grows and shrinks
sequentially in units of frames for every nested procedure call with a proce-
dure. Consequent to this sequential abstraction, the entire stack is placed in
one memory unit in all programmer-annotated strategies and automatic alloca-
tion methods existing today of which we are aware. Custom strategies in which

3VLIWs are architectures that allow the compiler to schedule multiple instructions per cycle,
though usually not all of them may be memory instructions.
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}

   float b;
   int a;
{
foo ( )

   . . .

b

a

Fig. 3. Example of stack split into two separate memory units. Variables a and b are placed on
SRAM and DRAM, respectively. A call to foo() requires the stack pointers in both memories to be
incremented.

frequently used stack variables are allocated to fast memory, and others to slow
memory, have not been investigated.

This article presents a strategy for distributed stacks applied to heteroge-
neous memory allocation. Distributed stacks were proposed for the first time
in an earlier work by one of the authors of Barua et al. [2001] for a different
purpose for homogeneous memory units. For the first time, this article adapts
distributed stacks for heterogeneous memory units. Our approach is best ex-
plained through an example. On its left, Figure 3 shows an example code frag-
ment containing a procedure foo() with two local variables a and b. On the
right is shown how the stack is distributed into two memory units: variable
a is allocated to SRAM, and b to DRAM. This results in two stack pointers,
SP1 and SP2, in SRAM and DRAM, respectively. Both stack pointers must be
incremented upon procedure entry and decremented upon exit, instead of one.
For ease of use, the implementation of distributed stacks is done automatically
by the compiler; the sequential view of an undivided stack is retained for the
programmer.

Distributed stacks as in Figure 3 incur some software overhead: multiple
stack pointers must be updated upon procedure entry and exit, instead of one.
Two solutions to overcome the overhead are presented below in Alternatives 1
and 2. Alternative 1 is to eliminate the overhead by forcing all the variables
within one procedure to be allocated to the same memory level—this way
only one stack pointer needs to be updated per procedure. The stack is still
divided, however, as different stack frames can still be allocated to different
memory units, and multiple stack pointers exist. However, eliminating the
overhead that has a price, grouping together variables, results in loss of
allocation flexibility. A second solution, presented in Alternative 2 below, is
to tolerate the overhead, and distribute each individual variable within a
stack frame to potentially different banks, as in Figure 3. The best solution
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is to use a hybrid of Alternatives 1 and 2: selectively tolerate the overhead
for long-running procedures. For long-running procedures, identified by
profiling, the impact of a few overhead instructions will be insignificant, so
for such procedures the overhead is tolerated. For short-running procedures,
each stack frame is allocated to one memory unit, and the overhead is
eliminated.

Modification of global formulation. To see how to modify the global vari-
able formulation for stack variables, consider that the fundamental difference
between the two is the limited lifetimes of stack variables. Although stack vari-
ables for nonrecursive procedures can be treated just as global variables by
allocating them for all time, the resulting allocation would not be optimal for
stack variables. The reason is that performance with stack variables can be fur-
ther improved by taking advantage of their limited lifetimes. Stack variables
are allocated upon procedure entry and freed upon exit. Thus, constraint (3) is
no longer valid: the total size of variables allocated to a bank may exceed its
size provided not all of them are live at the same time. Variables with nonover-
lapping lifetimes may share the same space in memory.

One way to incorporate stack variables into our formulation is to treat each
stack variable just as a global variable, with the modification that the maximum
size constraint (3) is relaxed somewhat. Instead of requiring that all variables
fit simultaneously in memory, the call graph of the program is analyzed to
construct a new set of constraints that require that only variables that can
be live simultaneously fit in memory. The intuition is that one new constraint
is introduced for each unique path in the call graph from main() to each leaf
node in the call graph.4 The details follow directly from the intuition and are
presented below for the two alternative methods 1 and 2, both with their merits.

6.1 Alternative 1: Distribution Granularity = Stack Frames

In this first alternative, the stack for each procedure is combined into a single
aggregate variable in the formulation. This ensures that the full stack frame
for a procedure is allocated to a single memory unit, leading to simplicity in for-
mulation and implementation, and no software overhead for updating multiple
stack pointers. The stack is still distributed, since different frames could be
allocated to different memory units. To describe this formulation, the following
symbols are introduced in addition to the ones before for globals:

F = Number of aggregate stack variables in the application program
(Number of functions);

fi = ith function, i ∈ [1, F ];
NP ( fi) = Total number of unique paths to the function fi in the call graph;
Pj ( fi) = The j th unique path in the call graph to fi, j ∈ [1, NP ( fi)];

L = The set of all leaf nodes in the call graph.

4Cycles in the call graph (recursion) cannot be handled this way. Instead they are collapsed to a
single aggregate variable in the formulation before this step, and assigned a maximum allowable
size based on recursive depth.
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In addition, Nr ( fi), Nw( fi), S( fi), I j ( fi) are defined as the number of reads
to, number of writes to, size, and 0/1 variable for the stack frame for fi, in
an analogous manner to Nr (vi), Nw(vi), S(vi), I j (vi). The solution for the I j ( fi)
values yields the desired allocation.

Similar to the formulation for global variables only, the objective function is
the total time for all memory accesses (in this case global and stack variables).
The objective function for the stack extended formulation is

U∑
j=1

G∑
i=1

I j (vi)[Tr j Nr (vi)+ Twj Nw(vi)]

+
U∑

j=1

F∑
i=1

I j ( fi)[Tr j Nr ( fi)+ Twj Nw( fi)]. (4)

The first term in the above is the original objective function (1) for the global
variables, which represents the total time needed to access the global variables.
The second term is the total time needed to access the stack variables.

Regarding constraints, the exclusion constraint for global variables pre-
sented earlier in (2) is still needed unchanged. A similar constraint is added for
stack variables:

U∑
j=1

I j ( fi) = 1 (∀i ∈ [1, F ]). (5)

As previously mentioned, changes are needed to account for the fact that
stack variables can have disjoint lifetimes. Substantial changes are made to
the memory size constraint (3) to accommodate the limited lifetimes of stack
variables. The new memory size constraint is

∀ j ∈ [1, U ] , ∀ fl ∈ L, ∀t ∈ [1, NP ( fl )], :
G∑

i=1

I j (vi)S(vi)+
∑

∀ f p∈Pt ( fl )

I j ( f p)S( f p) ≤ M j . (6)

The first line of the above states that the second line (the constraint) is repli-
cated for all combinations of memory banks ( j ), leaf nodes ( fl ) in the call graph,
and paths to that leaf node (t). The constraint in the second line states that the
global variables plus all the stack variables in the given path to the given leaf
node must fit into memory. The first term represents the global variable size;
the second term represents the size of the stack variables for every call-graph
path to a leaf function. The stack is of a maximal size when a call-graph leaf
is reached; consequently, ensuring that all paths to leaf nodes fit in memory
ensures that the program allocation will fit in memory at all times.

The set of constraints in (6) is large, as it is replicated across all j , fl , and t.
Fortunately, however, this is not expected to adversely impact the runtime of the
0/1 solver by much, as the runtime for such solvers depends more on the number
of 0/1 variables and less on the number of constraints. Indeed, more constraints
may decrease the runtime by decreasing the space of feasible solutions.
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Table I. Information About the Benchmark Programs

Benchmark Source Total Data Size Runtime (cycles) Description
BMM Trimaran 120204 bytes 4.29 MB Block matrix multiplication
BTOA Rutter et al. 475 bytes 62 KB Changes 8 bit byte streams

into ASCII
CRC32 MiBench 1.0 2478 bytes 64 KB 32 BIT ANSI X3.66 CRC

checksum files
DIJKSTRA MiBench 1.0 1908 bytes 1.04 MB Finds shortest paths using

Dijkstra’s alg
FFT UTDSP 4196 bytes 471 KB 256-point complex FFT
FIR Trimaran 1088 bytes 262 KB Finite impulse response

algorithm
IIR UTDSP 1140 bytes 102 KB 4-cascaded IIR biquad

filter (64 pts)
LATNRM UTDSP 1116 bytes 432 KB 32nd-order Norm Lattice

filter (64 pts)

6.2 Alternative 2: Distribution Granularity = Stack Variables

In this alternative, stack variables from the same procedure are allowed to be
allocated to different memory units. The formulation is modified as follows. The
stack variables are treated just as global variables in the formulation, leading to
an objective function similar to (1). The exclusion constraint is similar to (2). The
memory size constraint is similar to (6) with the second

∑
function converted

to a
∑∑

, the outer summation remaining the same as the second summation
in (6), and the inner summation summing across all the individual variables in
the procedure f p.

7. RESULTS

7.1 Global and Stack Variables

7.1.1 Benchmark and Simulation Environment. Our formulation for
global and stack variables has been implemented in the public-domain GCC
cross-compiler set to target the Motorola M-Core [1998] embedded processor.
A collection of small programs, BMM, BTOA, CRC32, DIJKSTRA, FFT, FIR,
IIR, and LATNRM have been compiled and evaluated. Their characteristics
are shown in Table I. The benchmarks FIR and BMM were obtained from
the trimaran [Consortium 1999] benchmark suit; BTOA was obtained from
Rutter et al.; CRC32 and DIJKSTRA were obtained from Guthaus et al. [2001];
and FFT, IIR, and LATNRM were obtained from [UTDSP 1992]. These eight
benchmarks represent code that would be used in typical applications. The first
benchmark, BMM, which has 7 functions and 6 global variables, creates and
multiplies two matrices and sums up all the elements of the resulting matrices.
The second benchmark, BTOA, which has 4 functions and 7 global variables,
is a stream filter to change 8 bit bytes into printable ASCII characters. The
third benchmark, CRC32, which has 2 functions and 3 global variables, creates
the ANSI standard cyclic redundancy check checksum for a data set. The fourth
benchmark, DIJKSTRA, which has 5 functions and 11 global variables, finds the
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Fig. 4. Normalized simulated runtimes for all benchmarks with varying memory configurations.
Each group of bars displays the cases, for all benchmarks, when the SRAM size is equal to the
program data size, 20% of the program data size (for all three allocation schemes), and the case
when all program data is placed in DRAM.

shortest path between two elements in a matrix using Dijkstra’s algorithm. The
fifth benchmark, FFT, which has 2 functions and 5 global variables, performs
a fast Fourier transform on a 256 point data set. The sixth benchmark, FIR,
which has 2 functions and 4 global variables, is an implementation of the finite
impulse filter algorithm. The seventh benchmark, IIR, which has 2 functions
and 5 global variables, is an implementation of an infinite impulse response
filter algorithm. The eighth benchmark, LATNRM, which has 2 functions and
5 global variables, is a 32nd-order normalized lattice filter that processes a 64
point data set.

Runtimes of the benchmarks are obtained using the M-Core simulator avail-
able from Motorola. The M-Core chip simulated has three levels of memory:
a 256 KB EEPROM with 1-cycle read and 500-cycle write latency; a 256 KB
external DRAM with 10-cycle read/write latency; and an internal SRAM with
1-cycle read/write latency. In the experiments below we analyze the effect of
varying the SRAM size while providing ample DRAM and EEPROM memory.
In these experiments only stack data (local variables) and global data were
accounted for. The Alternative 1 strategy from Section 6.1 is used for stack
variables. The benchmarks selected did not use the heap; our current scheme
does not optimize for heaps. Relatively small benchmarks, which do not make
calls to C standard libraries, were selected to avoid the complexity of compil-
ing/optimizing many additional libraries. The runtime of the 0/1 optimizer was
never a problem: it rarely took more than a few seconds to run.

7.1.2 Comparison with Other Methods. The first experiment performed is
to compare the runtimes of the benchmarks for five significant cases. The re-
sults of this experiment can be seen in Figure 4. First, ALL SRAM simulates
the runtimes for all the benchmarks for the case when all the program data
is allocated to internal SRAM—the baseline case (normalized runtime = 1.0).
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Second, Linear Form+Dist Stack simulates the runtimes for the case when
the linear formulation is used for allocation, along with distributed stacks,
with an SRAM size that is 20% of the total program data obtained. Third,
Greedy+Dist Stack is the case when a greedy allocation with a distributed
stack is used, when the SRAM size is 20% of the total program data size.
Fourth, Greedy+Unified Stack is the case when a greedy allocation, with a
stack allocated entirely to external DRAM, is used when the SRAM size is 20%
of the total program data size. Fifth, ALL DRAM simulates the runtimes of the
benchmarks when all the program data is allocated to external DRAM.

We now explain the three nontrivial allocation schemes above—
Linear Form+ Dist Stack, Greedy+Dist Stack, and Greedy+Unified Stack.
To achieve performance improvement, Linear Form+Dist Stack, our best
method, uses profile data to place frequently accessed data words in fast mem-
ory, and other data in slower memory. In most benchmarks, a large share of the
memory accesses goes to a small fraction of the data [Hennessy and Patterson
1996]. These accesses can then be placed in fast memory. For all programs
the Linear Form+Dist Stack is optimal among all possible static methods for
globals and stacks—poor results only stem from program characteristics, not
any deficiencies in the formulation. The Greedy+Dist Stack optimization or-
ders all the global and stack variables by size and then tries to allocate the
smallest variables to the the fastest memory. This method does not use pro-
filing and represents a strategy that would typically be used in the absence
of sophisticated methods. By allocating the smallest variables to the fastest
memory banks, scalars and other small variables are placed in fast memory.
This generally increases the probability that fast memory will be used. In the
Greedy+Unified Stack optimization the greedy method described above is only
applied to global variables and the entire stack is placed in external DRAM.
This method represents a situation when a unified stack is used, as is typically
the case.

There are three salient conclusions that can be derived from Figure 4.
First, a distributed stack is significantly better than a single unified
stack. This can be seen by comparing the bars for Greedy+Dist Stack and
Greedy+Unified Stack. By comparing these bars we see that for every bench-
mark there is a distinct performance improvement when distributing the
stack. On average there is a 44.2% reduction in normalized runtime with
the distributed stack. In some cases the normalized runtime is more than
halved! Second, the linear formulation is better than the greedy alloca-
tion. This is seen by comparing the bars for Linear Form+Dist Stack and
Greedy+Dist Stack. When comparing these cases we see that for many of
the benchmarks there is a significant improvement when using the linear
formulation. On average the Linear Form+Dist Stack produced a 11.8% im-
provement in the normalized runtime over the Greedy+Dist Stack. Third,
when keeping just 20% of the data in SRAM, the optimizations are able to
deliver performance that is closer to that of the ALL SRAM case than the
ALL DRAM case. This demonstrates the overall success of the method in reduc-
ing the SRAM size required for good performance to well below the ALL SRAM
case.
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7.1.3 Variance with SRAM Size. The second experiment performed is to
plot the runtimes of the benchmarks when the SRAM size is varied while
the EEPROM and DRAM sizes are fixed to an ample size. The results of
this experiment can be seen in Figure 5. The three curves in each graph are
Linear Form+Dist Stack, Greedy+Dist Stack, and Greedy+Unified Stack
as described above. All the runtimes in Figure 5 are normalized to the 100%
SRAM case. The SRAM size is varied from 0% to 100% of the total data size of
the program. The data sizes of the BMM, BTOA, CRC32, DIJKSTRA, FFT, FIR,
IIR, and LATNRM benchmarks are 120204, 475, 2478, 1908, 4196, 1088, 1140,
and 1116 bytes, respectively. The CRC32, DIJKSTRA, FIR, IIR, and LATNRM
benchmarks are composed of a roughly equal number of scalars and arrays; in
the BMM and FFT benchmarks much of the memory is used by a few large
arrays; the BTOA benchmark is mostly scalars with one array.

In the plots of Figure 5 we see that the runtimes increase as the size of the
SRAM decreases, as one would expect. The effectiveness of the Linear Form+
Dist Stack can clearly be seen by the large jumps in runtime that occur as
the SRAM size gets close to 0%. These jumps happen when the most-often-
used variables, that are kept in SRAM as much as possible, are forced into
slower memory banks. In Figure 5 we see that Linear Form+Dist Stack
curve is always below the other curves. The Linear Form+Dist Stack
guarantees that the runtimes are statically optimal for each memory size.
Figure 5 also demonstrates the drastic improvements achieved by distributing
the stack. For every benchmark we see that the performance is remark-
ably worse for Greedy+Unified Stack than Linear Form+Dist Stack, and
Greedy+Dist Stack. The most noticeable difference is the starting point of
the Greedy+Unified Stack curve. Because the entire stack is placed in slow
memory, even when there is ample SRAM, all the stack data accesses are slow.

Closer examination of Figure 5 reveals some more detailed observations.
Three significant trends can be seen—the BMM numbers are used as an ex-
ample. First, utilizing SRAM can lead to a large gain compared to using only
DRAM (runtime 1 vs. 2.41), showing the importance of carefully allocating data
to SRAM. Second, the formulation is able to get a fairly good runtime (1.36) for
even a very small memory size of 32 bytes, compared to the 0 byte case (2.33),
showing that the profile-guided optimization is successfully able to put heav-
ily accessed data in SRAM. In the 32 byte case, just 0.03% of the total data
is allocated to SRAM, yet it is able to achieve a 41.6% improvement (2.33 vs.
1.36) in runtime! Third, the formulation is successfully able to utilize EEPROM
even for data that is written, when SRAM is not available. This is seen for the
SRAM = 0 case—the runtime reduces to 2.33 (DRAM + EEPROM) compared
to 2.41 (only DRAM). This 3.32% benefit is because the high cost of EEPROM
writes may be recovered by frequent reads for data with infrequent writes—in
the CRC32 benchmark there is a 41.3% improvement between the SRAM = 0
and ALL DRAM case (2.37 vs. 1.39).

Several benchmark-specific characteristics can also be seen in Figure 5. In
the BMM, FFT, LATNRM, and IIR curves the first jumps in runtime occur in
large SRAM intervals because these programs have many large arrays. The
points in these plots indicate where each of the large arrays get pushed out of
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Fig. 5. Normalized runtimes for benchmarks with varying SRAM size. DRAM and EEPROM
sizes are fixed. X-axis = SRAM size, as a percentage of the total data size for that program.
Y-axis = runtime, normalized to 1.0 for SRAM size = 100% of data size. Note the steep jump in
runtime as the SRAM size approaches zero.
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Fig. 6. Normalized runtimes of Alternative 1 and Alternative 2 stack formulations for the BMM
benchmark with varying SRAM size.

SRAM—and allocated to slower DRAM. The final runtime jumps then occur at
very small SRAM sizes—almost 0% SRAM—as the heavily used scalar vari-
ables are pushed out of SRAM. This effect can also be seen to a lesser degree
in the FIR and CRC32 plots. The DIJKSTRA and BTOA benchmarks contain
mostly scalar and small array variables with only a few infrequently accessed
large arrays. As a result, there is not a substantial increase in runtime until the
SRAM size gets close to 0%. As the SRAM size is reduced, the lesser-used vari-
ables are first allocated to slower memory banks, while the often-used variables
are kept in fast memory as long as possible.

7.2 Comparison of Alternatives 1 and 2

To see the impact of using Alternative 1 vs. Alternative 2 we measured the
runtime of the BMM benchmark, using both alternatives, when the SRAM
size is varied while the EEPROM and DRAM sizes are fixed to an ample size.
The data for Alternative 1 was generated using the formulation described
in Section 6.1. The data for Alternative 2 was simulated by changing all
stack variables to global variables. The side effect of using this approach is
that the overhead incurred by the additional stack manipulation is not ac-
counted for.

Figure 6 summarizes the results of the above experiment. The BMM bench-
mark was chosen because it contains numerous functions along with several
global variables. From the figure we see that Alternative 1 performed slightly
worse than Alternative 2, which was expected. However, the figure indicates
that Alternative 1 may be a feasible strategy. For the larger SRAM sizes the
runtimes are virtually the same while for smaller sizes the performance sep-
aration becomes more apparent. The average performance difference between
the two alternatives, for SRAM sizes greater than 1% of the program data size,
is 2.5%. In theory, Alternative 2 will always perform better than Alternative 1
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because it provides a finer granularity in the data objects. The finer granu-
larity creates more flexibility for the allocation algorithm, which increases its
effectiveness.

8. REAL-WORLD ISSUES

8.1 Application to Synthesis

Our compiler method can be used as a synthesis tool to determine the minimum
SRAM size needed by the chip during its assembly by a particular user. Using
a smaller SRAM can result in significant cost savings. To obtain the smallest
SRAM size that still meets users’ performance requirements, the application
domain is recompiled for ever-larger SRAM sizes, and the simulated runtime
vs. SRAM size is plotted, as in Figure 5. The smallest size that delivers the
performance needed is chosen.

8.2 Adaption to Preemptive (Context Switching) Environments

The formulation for automatic data allocation is easily extended to preemp-
tive systems that context-switch between multiple programs in a given work-
load. In context-switching, data from all the programs must be simultaneously
present somewhere in memory. If only one program uses all of SRAM, how-
ever, the performance of the other programs will suffer. The only way to get
better performance is to partition the SRAM among the different programs.5

In context-switching environments, our framework can partition among differ-
ent programs in an elegant manner by combining their variables and solving
together, after weighing (multiplying) the frequencies Nr (vi) and Nw(vi) of each
variable by the relative frequency of that context. The solution is statically op-
timal, relative to the profile run, for the group of programs when run together.

8.3 Initial Values and Volatile Variables

For most embedded systems, globals and static local variables with initial val-
ues must be specially handled in the formulation. When a global or static local
variable has an initial value, and in addition, is possibly written to in the pro-
gram for some input data, then it must be allocated to RAM, but its initial value
is stored in ROM. Therefore memory must be allocated in both RAM and ROM
for such a variable. This is easily handled in the formulation by preallocating
the variables in ROM and running the rest of the formulation unchanged with
a reduced (remaining) size of ROM.

Another special consideration must be made for variables declared as
volatile. Such variables may be changed by entities outside of the program,
such as I/O devices or another processor. Under normal conditions, the formu-
lation presented in this article can occasionally make use of ROM for variables
that are seldom, or never, written to. If a variable is volatile, the variable might

5The alternative solution is to allocate the SRAM to one program only at a time, and save the entire
SRAM contents to DRAM on a context-switch just as register files. This is infeasible as SRAMs are
usually much larger than register files, making the context-switch overhead unacceptable.
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actually be written to often by some outside source. Hence, volatile variables
must never be placed in ROM. This is handled in the formulation by presetting
the 0/1 variable corresponding to the volatile variable being allocated to ROM,
to zero.

9. CONCLUSION

This article presents a compiler method to distribute program data among
the different memory units of embedded processors without caching hardware.
Without caching, the task of allocating data to the different banks falls to the
software. The compiler method derives a static partition, that is, one in which
the allocation of data to memory units is fixed and unchanging throughout pro-
gram execution. Among static methods, the method presented is optimal, rela-
tive to the profile run, for global and stack data. For the first time, our method
distributes stacks among various heterogeneous memory units, resulting in a
more custom allocation. The optimality guarantee ensures that the method pre-
sented will be as good or better than any programmer-derived annotations or
competing static compiler technique. The method models the problem as a 0/1
integer linear programming problem and solves it using available commercial
packages.

We are encouraged by the results obtained. They show the benefits of optimal
allocation: with just 20% of the data in SRAM, our method is able to decrease
the runtime by 56% on average for our benchmarks vs. allocating all data to
slow memory, without any programmer involvement. For some programs, less
than 5% of data in SRAM achieves a similar speedup. Further, results from
our benchmarks show a 44.2% reduction in runtime from using our distributed
stack strategy vs. using a unified stack, and an additional 11.8% reduction in
runtime from using a linear optimization strategy for allocation vs. a simpler
greedy strategy; both in the case of the SRAM size being 20% of the total data
size. The variance in results is due to application characteristics. Applications
that access some data more frequently than other data see large decreases in
runtime when those data are allocated to fast memory—the amount of runtime
reduction depends on the relative frequencies of access.
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