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Abstract

This paper considers an important class of convex programming problems whose objective
function Ψ is given by the summation of a smooth and non-smooth component. Further, it is
assumed that the only information available for the numerical scheme to solve these problems
is the subgradient of Ψ contaminated by stochastic noise. Our contribution mainly consists
of the following aspects. Firstly, with a novel analysis, it is demonstrated that the simple
robust mirror-descent stochastic approximation method applied to the aforementioned problems
exhibits the best known so far rate of convergence guaranteed by a more involved stochastic
mirror-prox algorithm. Moreover, by incorporating some ideas of the optimal method for smooth
minimization, we propose an accelerated scheme, which can achieve, uniformly in dimension,
the theoretically optimal rate of convergence for solving this class of problems. Finally, the
significant advantages of the accelerated scheme over the existing algorithms are illustrated in
the context of solving a class of stochastic programming problems whose feasible region is a
simple compact convex set intersected with an affine manifold.

Keywords: stochastic approximation, convex optimization, stochastic programming, complex-
ity, optimal method, quadratic penalty method, large deviation
AMS 2000 subject classification: Primary: 62L20, 90C25, 90C15, 68Q25; Secondary:49M37,
60F10
OR/MS subject classification: Primary: programming, nondifferentible, stochastic; Sec-
ondary: statistic, sampling

1 Introduction

The basic problem of interest in this paper is

Ψ∗ := min
x∈X
{Ψ(x) := f(x) + h(x)}, (1)

where X is a convex compact set in Euclidean space E with inner product 〈·, ·〉, f : X → ℜ is a
convex function with Lipschitz continuous gradient, that is,

‖∇f(x)−∇f(x′)‖∗ ≤ L‖x− x′‖, ∀x, x′ ∈ X, (2)
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(‖ · ‖ is a given norm in E , ‖ · ‖∗ denotes its conjugate norm, i.e., ‖y‖∗ := max‖z‖≤1〈y, z〉), and
h : X → ℜ is a convex Lipschitz continuous function such that

|h(x)− h(x′)| ≤M‖x− x′‖, ∀x, x′ ∈ X. (3)

We are interested in the situation where problem (1) is solved by an iterative algorithm which
acquires the subgradients of Ψ via subsequent calls to a stochastic oracle (SO). Specifically, at
iteration t of the algorithm, xt ∈ X being the input, the SO outputs a vector G(xt, ξt), where
{ξt}t≥1 is a sequence of i.i.d. random variables which are also independent of the search point xt.
The following assumptions are made for the Borel functions G(x, ξt).

Assumption I: For any x ∈ X, we have

a) E[G(x, ξt)] ≡ g(x) ∈ ∂Ψ(x) (4)

b) E
[

‖G(x, ξt)− g(x)‖2∗
]

≤ Q2, (5)

where ∂Ψ(x) denotes the subdifferential of Ψ at x (see Subsection 1.1).

Let us consider the normalized problem of (1) where X is the unit Euclidean ball in E = ℜn.
According to the classical complexity theorem for convex programming by Nemirovski and Yudin [7],
if the dimension n is sufficiently large, the rate of convergence for any iterative algorithms for solving
(1) can not be better than

O(1)

[

L

N2
+

M + Q√
N

]

, (6)

where N is the number of iterations performed by the algorithm. This means that, for any algo-
rithms solving problem (1), one can always point out a “bad” problem instance satisfying (2), (3),
(4), and (5), such that the expected error of the solution generated at the N -step of the algorithm
will be, up to a constant factor, greater than the lower bound stated above. Moreover, to the best
of our knowledge, none of the existing algorithms, uniformly in the dimension, achieved this lower
bound. Somewhat surprisingly, this optimal rate of convergence has not been attained even for the
deterministic case where Q = 0. The best known result so far is given by Juditsky et al. [3] with
the rate of convergence

O(1)

[

L

N
+

M + Q√
N

]

(7)

by applying an extra-gradient-type algorithm to a variational inequality (v.i.) reformulation of (1).
In this paper, we focus on the subgradient-type methods applied directly to the original problem

(1). We show that, with a novel analysis, the simple robust stochastic approximation method
(RM-SA) developed in Juditsky et al. [2] also exhibits the guaranteed rate of convergence in (7).
Moreover, by incorporating some ideas of the optimal method for smooth minimization (Nesterov [8,
9], Lan et al. [6]), we present an accelerated stochastic approximation (AC-SA) algorithm, which
can achieve, uniformly in dimension, the optimal rate of convergence given by (6). We investigate
this accelerated scheme in more details, for example, derive the exponential bounds for the large
deviations of the resulting solution inaccuracy from the expected one, provided the noise from the
SO is “light-tailed”. The significant advantages of the AC-SA method over the existing algorithms
are illustrated in the context of solving a class of stochastic programming problems whose feasible
region is a simple compact convex set intersected with an affine manifold.

The paper is organized as follows. In Section 2, we give a brief introduction to the RM-
SA algorithm applied to (1) and present the new convergence result. Section 3 discusses the
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accelerated stochastic approximation method. More specifically, we present the AC-SA algorithm
and its convergence properties in Subsection 3.1, and outline an application to demonstrate the
advantages of this algorithm in Subsection 3.2. Section 4 is devoted to proving the main results of
this paper. Finally, some concluding remarks are made in Section 5.

1.1 Notation and terminology

• For a convex lower semicontinuous function φ : X → ℜ, its subdifferential ∂φ(·) is defined
as follows: at a point x from the relative interior of X, ∂φ is comprised of all subgradients
g of φ at x which are in the linear span of X −X. For a point x ∈ X\rintX, the set ∂φ(x)
consists of all vectors g, if any, such that there exists xi ∈ rintX and gi ∈ ∂φ(xi), i = 1, 2, · · · ,
with x = lim

i→∞
xi, g = lim

i→∞
gi. Finally, ∂φ(x) = ∅ for x /∈ X. Note that with this definition

(see, for example, Ben-Tal and Nemirovski [1]), if a convex function φ : X → ℜ is Lipschitz
continuous, with constant M , with respect to a norm ‖ · ‖, then the set ∂φ(x) is nonempty
for any x ∈ X and

g ∈ ∂φ(x)⇒ |〈g, d〉| ≤M‖d‖, ∀ d ∈ lin (X −X). (8)

• For the random process ξ1, ξ2, ..., we set ξ[t] := (ξ1, ..., ξt), and denote by E|ξ[t] the conditional,
ξ[t] being given, expectation.

2 Robust mirror-descent stochastic approximation

In this section, we give a brief introduction to the robust mirror-descent stochastic approximation
method and present a new rate of convergence for this algorithm applied to (1).

2.1 Preliminaries: distance generating function and prox-mapping

We say that a function ω : X → R is a distance generating function modulus α > 0, with respect
to the norm ‖ · ‖, if ω is convex and continuous on X, the set

Xo :=
{

x ∈ X : there exists p ∈ R
n such that x ∈ arg minu∈X [pT u + ω(u)]

}

is convex, and ω(·) restricted to Xo is continuously differentiable and strongly convex with param-
eter α with respect to ‖ · ‖, i.e.,

〈∇ω(x)−∇ω(x′), x− x′〉 ≥ α‖x− x′‖2, ∀x, x′ ∈ Xo. (9)

Note that set Xo always contains the relative interior of set X.
The prox-function V : Xo × X → R+ and the prox-mapping Px : R

n → Xo associated with
ω(x) are defined as

V (x, z) := ω(z)− ω(x)− 〈∇ω(x), z − x〉, (10)

Px(y) := arg min
z∈X

{

yT (z − x) + V (x, z)
}

. (11)
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The distance generating function ω also gives rise to the following two characteristic entities
that will be used frequently in our convergence analysis:

Dω,X :=
√

max
x∈X

ω(x)−min
x∈X

ω(x), Ω = Ωω,X :=

√

2

α
Dω,X . (12)

Let x1 be the minimizer of ω over X. Observe that x1 ∈ Xo, whence ∇w(x1) is well defined and
satisfies 〈∇ω(x1), x−x1〉 ≥ 0 for all x ∈ X, which combined with the strong convexity of ω implies
that

α

2
‖x− x1‖2 ≤ V (x1, x) ≤ ω(x)− ω(x1) ≤ D2

ω,X , ∀x ∈ X, (13)

and hence

‖x− x1‖ ≤ Ω, ∀x ∈ X, and ‖x− x′‖ ≤ ‖x− x1‖+ ‖x′ − x1‖ ≤ 2Ω, ∀x, x′ ∈ X. (14)

2.2 Robust mirror-descent SA algorithm and its convergence properties

The RM-SA algorithm, as applied to (1), works with the stochastic oracle of Ψ that satisfies
Assumption I. In some cases, Assumption I is augmented by the following “light-tail” assumption.

Assumption II: For any x ∈ X, we have

E
[

exp{‖G(x, ξt)− g(x)‖2∗/Q2}
]

≤ exp{1}. (15)

It can be easily seen that Assumption II implies Assumption I.b), since by Jensen’s inequality,

exp
(

E[‖G(x, ξt)− g(x)‖2∗/Q2]
)

≤ E
[

exp{‖G(x, ξt)− g(x)‖2∗/Q2}
]

≤ exp{1}.

We are now ready to state the RM-SA algorithm applied to (1).

The RM-SA algorithm:

0) Let the initial point x1 and the step-sizes {γt}t≥1 be given. Set t = 1;

1) Call the SO for computing G(xt, ξt). Set

xt+1 := Pxt
(γtG(xt, ξt)) , (16)

xag
t+1 =

(

t
∑

τ=1

γτ

)−1 t
∑

τ=1

γτxτ+1. (17)

2) Set t← t + 1 and go to Step 1.

end

We now make a few comments about the above algorithm. Firstly, without loss of generality,
we will assume from now on that the initial point x1 is given by the minimizer of ω over X (see
Subsection 2.1). Secondly, observe that the above algorithm only slightly differs from the RM-SA
algorithm of Juditsky et al. [2] in the way the averaging step (17) is defined. More specifically, the
sequence {xag

t }t≥2 is obtained by averaging the iterates xt, t ≥ 2 with their corresponding weights
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γt−1, while the one in [2] is obtained by taking the average of the whole trajectory xt, t ≥ 1 with
weights γt. Note however, if the constant step-sizes are used, i.e., γt = γ,∀ t ≥ 1, then the RM-SA
algorithm stated above is exactly the same as the one stated in [2] up to shifting one iterate in the
averaging step. Thirdly, in view of Proposition 2.1 in [2], the rate of convergence of the RM-SA
algorithm, as applied to problem (1), is given by

O(1)

[

Ω(LDX + M + Q)√
N

]

, (18)

where N is the number of iterations performed by the algorithm, DX is the ‖ · ‖-diameter of X,
i.e., DX := maxx,x′∈X ‖x − x′‖, L, M , and Q are defined in (2), (3), and (5) respectively. The
goal of this section is to demonstrate that, with certain appropriately chosen step-sizes γt and
a different convergence analysis, a stronger rate of convergence can be derived for the RM-SA
algorithm applied to (1).

We start with stating a general convergence result of the above RM-SA algorithm without
specifying the step-sizes γt.

Theorem 1 Assume that the step-sizes γt satisfy 0 < γt ≤ α/(2L), ∀ t ≥ 1. Let {xag
t+1}t≥1 be the

sequence computed according to (17) by the RM-SA algorithm. Then we have

a) under Assumption I,
E
[

Ψ(xag
t+1)−Ψ∗

]

≤ K0(t), ∀ t ≥ 1, (19)

where

K0(t) :=

(

t
∑

τ=1

γτ

)−1 [

D2
ω,X +

2

α
(4M2 + Q2)

t
∑

τ=1

γ2
τ

]

,

M , Q, and Dω,X are given in (3), (5), and (12) respectively;

b) under Assumptions I and II,

Prob
{

Ψ(xag
t+1)−Ψ∗ > K0(t) + ΛK1(t)

}

≤ exp{−Λ2/3}+ exp{−Λ}, ∀Λ > 0, t ≥ 1, (20)

where

K1(t) :=

(

t
∑

τ=1

γτ

)−1


2ΩQ

√

√

√

√

t
∑

τ=1

γ2
τ +

2

α
Q2

t
∑

τ=1

γ2
τ



 ,

Q and Ω are given in (5) and (12) respectively.

For the sake of simplicity, let us suppose that the number of iterations for the above algorithm
is fixed in advance, say equal to N , and that a constant step-size strategy is applied, i.e., γt =
γ, t = 1, · · · , N , for some γ < α/(2L) (note that the assumption of constant step-sizes does
not hurt the efficiency estimate). We then conclude from Theorem 1 that the obtained solution
xag

N+1 = N−1
∑N

τ=1 xτ+1 satisfies

E
[

Ψ(xag
N+1)−Ψ∗

]

≤
D2

ω,X

Nγ
+

2γ

α

(

4M2 + Q2
)

.
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Minimizing the right-hand-side of the above inequality with respect to γ over the interval (0, α/(2L)],
we conclude that

E
[

Ψ(xag
N+1)−Ψ∗

]

≤ K∗
0 (N) :=

LΩ2

N
+

2Ω
√

4M2 + Q2

√
N

, (21)

by choosing γ as

γ = min







α

2L
,

√

αD2
ω,X

2N(4M2 + Q2)







.

Moreover, with this choice of γ, we have

K1(N) =
2ΩQ√

N
+

2γQ2

α
≤ 2ΩQ√

N
+

√

2

α
Dω,X

Q2

√

N(4M2 + Q2)

≤ 2ΩQ√
N

+

√

2

α
Dω,X

Q√
N

=
3ΩQ√

N
,

hence, bound (20) implies that

Prob
{

Ψ(xag
N+1)−Ψ∗ > K∗

0 (N) + ΛK∗
1 (N)

}

≤ exp{−Λ2/3}+ exp{−Λ}, ∀Λ > 0, (22)

where

K∗
1 (N) :=

3ΩQ√
N

.

It is interesting to compare bounds (21) and (18) derived for the RM-SA algorithm. Clearly,
if Dω,X ≤

√
αNDX (which is typically the case in applications, see [2] and [3]), the latter one is

always worse than the first one. Moreover, in the range

L ≤
√

N(4M2 + Q2)

Ω
, (23)

the first component in (21) (for abbreviation, the L-component) merely does not affect the error
estimate (21). Note that the range stated in (23) extends as N increases, meaning that, if N is large
and Q = O(1)M , the presence of the smooth component f in the objective function of (1) does not
affect the complexity of finding good approximate solutions. In contrast, this phenomenon does
not appear in the error estimate (18) derived for the RM-SA algorithm in [2] which employs certain
simple step-size strategies without taking into account the structure of the objective function Ψ.

3 The accelerated stochastic approximation method

Motivated by Nesterov’s optimal method ([8, 9]) and its variants ([6]) for smooth minimization,
we present in this section an accelerated stochastic approximation method, which achieves the
theoretically optimal rate of convergence for solving (1). Specifically, we state the algorithm and
its convergence results in Subsection 3.1 and outline an application to illustrate its advantages over
the RM-SA algorithm in Subsection 3.2.
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3.1 The algorithm and its main convergence properties

The AC-SA algorithm for solving problem (1) is comprised of the updating of three sequences:
{xt}t≥1, {xag

t }t≥1, and {xmd
t }t≥1. Here, we use the superscript “ag” (which stands for “aggre-

gated”) in the sequence obtained by taking a convex combination of all the previous iterates xt,
and the superscript “md” (which stands for “middle”) in the sequence obtained by taking a convex
combination of the current iterate xt with the current aggregated iterate xag

t . The algorithm is
stated as follows.

The AC-SA algorithm:

0) Let the initial points xag
1 = x1, and the step-sizes {βt}t≥1 and {γt}t≥1 be given. Set t = 1.

1) Set xmd
t = β−1

t xt + (1− β−1
t )xag

t ,

2) Call the SO for computing G(xmd
t , ξt). Set

xt+1 = Pxt
(γtG(xmd

t , ξt)), (24)

xag
t+1 = β−1

t xt+1 + (1− β−1
t )xag

t , (25)

3) Set t← t + 1 and go to step 1.

end

We now make a few comments regarding the AC-SA algorithm described above. Firstly, similar
to the RM-SA algorithm, we assume that the initial point x1 is the minimizer of ω over X (see
Subsection 2.1). Secondly, it is worth noting that the major computation cost in each iteration of
the AC-SA algorithm is exactly the same as the one of the RM-SA algorithm, that is, each iteration
of the above algorithm requires only one call to the SO and one solution of the subproblem (24).
Thirdly, observe that the AC-SA algorithm reduces to a variant of Nesterov’s optimal method
([8, 9]) if the non-smooth component h(·) in the objective function Ψ(·) does not appear and that
there is no noise in the computed gradient, i.e., Q = 0 in (5).

The following theorem states the main convergence results of the AC-SA algorithm described
above.

Theorem 2 Assume that the step-sizes βt ∈ [1,∞) and γt ∈ ℜ+ are chosen such that β1 = 1 and
the following conditions hold

0 < (βt+1 − 1)γt+1 ≤ βtγt and 2Lγt ≤ αβt ∀t ≥ 1. (26)

Let {xag
t+1}t≥1 be the sequence computed according to (25) by the AC-SA algorithm. Then we have

a) under Assumption I,
E[Ψ(xag

t+1)−Ψ∗] ≤ K̂0(t), ∀ t ≥ 1, (27)

where

K̂0(t) :=
1

(βt+1 − 1)γt+1

[

D2
ω,X +

2

α
(4M2 + Q2)

t
∑

τ=1

γ2
τ

]

,

M , Q, and Dω,X are given in (3), (5), and (12) respectively;
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b) under Assumptions I and II,

Prob
{

Ψ(xag
t+1)−Ψ∗ > K̂0(t) + ΛK̂1(t)

}

≤ exp{−Λ2/3}+ exp{−Λ}, ∀Λ > 0, t ≥ 1, (28)

where

K̂1(t) :=
1

(βt+1 − 1)γt+1



2ΩQ

√

√

√

√

t
∑

τ=1

γ2
τ +

2

α
Q2

t
∑

τ=1

γ2
τ



 ,

Q and Ω are given in (5) and (12) respectively.

We now discuss the determination of the step-sizes βt and γt in the accelerated scheme so as to
achieve the optimal rate of convergence for solving (1). Observing that a pair of sequences {βt}t≥1

and {γt}t≥1 satisfying condition (26) is given by:

βt =
t + 1

2
and γt =

t + 1

2
γ (29)

for any 0 < γ ≤ α/(2L), we obtain the following corollary of Theorem 2 by appropriately choosing
this parameter γ, .

Corollary 3 Suppose that the step-sizes βt and γt in the AC-SA algorithm are set to

βt =
t + 1

2
, γt =

t + 1

2
min

{

α

2L
,

√
6αDω,X

(N + 2)
3
2 (4M2 + Q2)

1
2

}

, ∀t ≥ 1, (30)

where N is a fixed in advance number of iterations. Then, we have under Assumption I,

E[Ψ(xag
N+1)−Ψ∗] ≤ K̂∗

0 (N) :=
4LΩ2

N(N + 2)
+

4Ω
√

4M2 + Q2

√
N

, (31)

if in addition, Assumption II holds, then

Prob
{

Ψ(xag
N+1)−Ψ∗ > K̂∗

0 (N) + ΛK̂∗
1 (N)

}

≤ exp{−Λ2/3}+ exp{−Λ}, ∀Λ > 0, (32)

where

K̂∗
1 (N) :=

10ΩQ√
N

.

Proof. Clearly, the step-sizes {βt}t≥1 and {γt}t≥1 stated in (30) satisfy the conditions β1 = 1,
βt > 1,∀t ≥ 2, and (26). Denoting

γ∗ := min

{

α

2L
,

√
6αDω,X

(N + 2)
3
2 (4M2 + Q2)

1
2

}

,

we then conclude from Theorem 2 that, under Assumption I,

E[Ψ(xag
N+1)−Ψ∗] ≤ T0 :=

4D2
ω,X

N(N + 2)γ∗
+

8γ∗(4M2 + Q2)

αN(N + 2)

N
∑

τ=1

(

τ + 1

2

)2

, (33)
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and that, under Assumptions I and II,

Prob
{

Ψ(xag
N+1)−Ψ∗ > T0 + ΛT1)

}

≤ exp{−Λ2/3}+ exp{−Λ}, ∀Λ > 0, (34)

where

T1 :=
8ΩQ

N(N + 2)

√

√

√

√

N
∑

τ=1

(

τ + 1

2

)2

+
8γ∗Q2

N(N + 2)α

N
∑

τ=1

(

τ + 1

2

)2

.

Moreover, using the simple observations
∑N

τ=1(τ +1)2 ≤
∫ N+1
1 (u+1)2du ≤ (N +2)3/3, N +2 ≤ 3N

due to N ≥ 1, and the definition of γ∗, we obtain

T0 ≤
4D2

ω,X

N(N + 2)γ∗
+

2γ∗(4M2 + Q2)(N + 2)2

3αN
≤

8LD2
ω,X

N(N + 2)α
+

8Dω,X(4M2 + Q2)
1
2 (N + 2)

1
2√

6αN

≤
8LD2

ω,X

N(N + 2)α
+

8Dω,X(4M2 + Q2)
1
2√

2αN
=

4LΩ2

N(N + 2)
+

4Ω
√

4M2 + Q2

√
N

= K̂∗
0 (N),

and

T1 ≤ 8ΩQ√
3N

(N + 2)
1
2 +

2γ∗Q2

3Nα
(N + 2)2 ≤ 8ΩQ√

N
+

2Q2(N + 2)
1
2

3N
√

α

√
6Dω,X

√

4M2 + Q2

≤ 8ΩQ√
N

+
2
√

2Dω,XQ√
αN

=
10ΩQ√

N
= K̂∗

1 (N).

Our claim immediately follows by substituting the above bounds of T0 and T1 into (33) and (34).

We now make a few observations regarding the results obtained in Theorem 2 and Corollary 3.
Firstly, it is interesting to compare bounds (31) and (21) obtained for the AC-SA algorithm and
the RM-SA algorithm respectively. Clearly, the first one is always better than the latter one up
to a constant factor provided that L > 0. Moreover, the AC-SA algorithm substantially enlarges
the range of L in which the L-component (the first component in (31)) does not affect the error
estimate. Specifically, in the range

L ≤
√

4M2 + Q2N
3
2

Ω
, (35)

which extends much faster than (23) as N increases, the L-component does not change the order
of magnitude for the rate of convergence associated with the AC-SA algorithm.

Secondly, observe that the results obtained in Theorem 2 and Corollary 3 still hold when the
Lipschitz constant L = 0. More specifically, we consider the case where f(·) ≡ 0. In this case, the
step-sizes {βt}t≥1 and {γt}t≥1 in (30) become

βt =
t + 1

2
, γt =

√
6αDω,X(t + 1)

2(N + 2)
3
2 (4M2 + Q2)

1
2

, 1 ≤ t ≤ N + 1,

and the error estimate (31) reduces to

E[h(xag
N+1)− h∗] ≤ 4Ω

√

4M2 + Q2

√
N

,
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where h∗ := minx∈X h(x). Note also that one alternative characterization of xag
N+1 is given by

xag
N+1 =

2

N + 1
xN+1 +

N − 1

N + 1
xag

N =
2

N + 1
xN+1 +

2(N − 1)

N(N + 1)
xN +

(N − 2)(N − 1)

N(N + 1)
xag

N−1

=
2

N + 1
xN+1 +

2(N − 1)

N(N + 1)
xN +

2(N − 2)

N(N + 1)
xN−1 + · · ·+ 2

N(N + 1)
x2

=

∑N
t=1(txt+1)
∑N

t=1 t
.

Hence, in contrast to the usual constant step-size or decreasing step-size strategy (see [2]), the
step-sizes γt in step (24) and the weights for taking the average in step (25) are increasing with
the increment of t. To the best of our knowledge, this is the first time that an increasing step-size

strategy is introduced in the literature of stochastic approximation or subgradient methods.
Finally, note that if there is no stochastic error for the computed subgradient of Ψ, i.e., Q = 0,

then bound (31) reads

Ψ(xag
N+1)−Ψ∗ ≤ 4LΩ2

N(N + 2)
+

8ΩM√
N

,

which basically says that the impact of the smooth component on the efficiency estimate vanishes
very quickly as N grows. This result also seems to be new in the area of deterministic convex
optimization.

3.2 An illustrative application

The goal of this subsection is to demonstrate the significant advantages of the AC-SA algorithm
over the existing algorithms, for example, the RM-SA algorithm, when applied for solving certain
class of stochastic programming problems.

Consider the problem of

h̃∗ := min
x

{

h̃(x) := E[H̃(x, ξ)]
}

s.t. Ax− b = 0, x ∈ X,
(36)

where X ⊂ R
n is a nonempty compact convex set, A : ℜn → ℜm is a linear operator, b ∈ ℜm

is given, ξ is a random vector whose probability distribution P is supported on set Ξ ⊆ R
d and

H̃ : X × Ξ → R. We assume that for every ξ ∈ Ξ the function H̃(·, ξ) is convex on X, and that
the expectation

E[H̃(x, ξ)] =
∫

Ξ H̃(x, ξ)dP (ξ) (37)

is well defined and finite valued for every x ∈ X. It follows that function h̃(·) is convex and finite
valued on X. Moreover, we assume that h̃(·) is continuous on X. Of course, continuity of h̃(·) follows
from convexity if h̃(·) is finite valued and convex on a neighborhood of X. With these assumptions,
(36) becomes a convex programming problem. We also make the following assumptions:

Assumption III:

a) It is possible to generate an iid sample ξ1, ξ2, ..., of realizations of random vector ξ.

10



b) We have access to a “black box” subroutine (a stochastic oracle). At i-th call, x ∈ X being
the input, the oracle returns a stochastic subgradient – a vector H̃(x, ξi) such that for every
x ∈ X, the vector E[H̃(x, ξ)] is well defined and is a subgradient of h̃(·) at x.

c) There is a constant M > 0 such that

∀x ∈ X : E

[

exp{‖H̃(x, ξ)‖2∗/M2}
]

≤ exp{1}. (38)

For the case where the feasible region consists only of the simple convex set X, or equivalently
A ≡ 0, Juditsky et. al. demonstrated in [2] that the RM-SA algorithm can substantially outper-
form the sampling averaging approximation (Shapiro [10]), a widely used approach for stochastic
programming in practice. When A is not identically 0, the RM-SA algorithm can still be applied
directly to problem (36) but this approach would require the computation of the prox-mapping
onto the feasible region X ∩ {x : Ax − b = 0}, which can be very expensive for many practical
problems.

One alternative approach to alleviate this difficulty is to apply the quadratic penalty approach:
instead of solving (36), we solve certain penalization problem of (36) obtained by penalizing the
violation of the constraint Ax− b = 0. In particular, given a penalty parameter ρ > 0, we solve

Ψ̃∗ = Ψ̃∗
ρ := inf

x∈X

{

Ψ̃ρ(x) := f̃ρ(x) + h̃(x)
}

, (39)

where f̃ρ(x) := ρ‖Ax − b‖2/2 and ‖ · ‖ denotes the norm induced by the inner product 〈·, ·〉
in ℜm. Define the operator norm ‖A‖ := max{‖Ax‖∗ : ‖x‖ ≤ 1}. It can be easily seen that
∇f̃ρ(x) = ρA∗(Ax− b) and hence that

‖∇f̃ρ(x)−∇f̃ρ(x
′)‖∗ = ρ‖A∗A(x−x′)‖∗ ≤ ρ‖A∗‖‖A‖‖x−x′‖ = ρ‖A‖2‖x−x′‖, ∀x, x′ ∈ X, (40)

where the last equality follows from the fact that ‖A‖ = ‖A∗‖. Moreover, in view of Assumption
III and Jensen’s inequality, for any x ∈ X, there exists h̃′(x) := E[H̃(x, ξt)] ∈ ∂h̃(x) such that
E[‖H̃(x, ξt)‖2∗] ≤ M2 and hence that ‖h̃′(x)‖∗ = ‖E[H̃(x, ξt)]‖∗ ≤ M , which together with the fact
h̃(x)− h̃(x′) ≤ 〈h̃′(x), x− x′〉,∀x, x′ ∈ X due to the convexity of h̃, clearly imply that

‖h̃(x)− h̃(x′)‖ ≤M‖x− x′‖, ∀x, x′ ∈ X. (41)

Therefore, the penalization problem (39) is given in the form of (1), and can be approximately
solved by either the RM-SA or the AC-SA algorithm developed in this paper.

It is well-known that the near-optimal solutions of the penalization problem (39) also yield
near-optimal solutions of (36) if the penalty parameter ρ is sufficiently large. In this paper, we are
interested in obtaining one particular type of near-optimal solutions of (36) defined in the following
way. First note that x∗ is an optimal solution of (36) if, and only if, x∗ ∈ X, Ax∗ − b = 0 and
h̃(x∗) ≤ h̃∗. This observation leads us to our definition of a near optimal solution x̃ ∈ X of (36),
which essentially requires the primal infeasibility measure ‖Ax̃− b‖2 and the primal optimality gap
[h̃(x̃)− h̃∗]+ to be both small (Lan and Monteiro [4]).

Definition: Let ǫp, ǫo > 0 be given, x̃ ∈ X is called an (ǫp, ǫo)-primal solution for (36) if

‖Ax̃− b‖ ≤ ǫp and h̃(x̃)− h̃∗ ≤ ǫ0. (42)

11



One drawback of the above notion of near optimality of x̃ is that it says nothing about the size
of [h̃(x̃)− h̃∗]−. Assume that the set of Lagrange multiplier for (36)

Y ∗ := {y ∈ ℜm : h̃∗ = inf{h̃(x) + 〈Ax− b, y〉 : x ∈ X}

is nonempty. It was observed in [4] that this quantity can be bounded as [h̃(x̃) − h̃∗]− ≤ ǫp‖y∗‖,
where y∗ ∈ Y ∗ is an arbitrary Lagrange multiplier for (36). It is worth noting that some other
types of near-optimal solutions of (36), for example, the primal-dual near-optimal solutions defined
in [4], can also be obtained by applying the quadratic penalty approach.

We are now ready to state the iteration-complexity bounds for the RM-SA and the AC-SA
algorithm, applied to the penalization problem (39), to compute an (ǫp, ǫo)-primal solution of (36).

Theorem 4 Let y∗ be an arbitrary Lagrange multiplier for (36). Also let the confidence level
η ∈ (0, 1) and the accuracy tolerance (ǫp, ǫo) ∈ ℜ++ ×ℜ++ be given. If

ρ = ρ(t) :=

(

√

ǫo + 4ǫp t +
√

ǫo√
2ǫp

)2

(43)

for some t ≥ ‖y∗‖, then, with probability greater than 1− η,

a) the RM-SA algorithm applied to (39) finds an (ǫp, ǫo)-primal solution of (36) in at most

Nrm(t) :=
⌈

max
{

2R(t)2, (4
√

5 + 6λ)2S
}⌉

(44)

iterations;

b) the AC-SA algorithm applied to (39) finds an (ǫp, ǫo)-primal solution of (36) in at most

Nac(t) :=
⌈

max
{√

2R(t), (8
√

5 + 20λ)2S
}⌉

(45)

iterations,

where λ satisfies exp(−λ2/3) + exp(−λ) ≤ η (clearly λ = O(1) log 1/η),

R(t) :=

√

ρ(t)‖A‖Ω√
ǫo

, S :=

(

ΩM

ǫo

)2

, (46)

Ω and M are given by (12) and (38) respectively.

We now make a few observations regarding Theorem 4. First, the choice of ρ given by (43)
requires that t ≥ ‖y∗‖ and that the iteration-complexity bounds Nrm(t) and Nac(t) obtained in
Theorem 4 are non-decreasing with respect to t. Second, since the quantity ‖y∗‖ is not known a
priori, it is necessary to guess the value of t. Note however that the influence of t, whence ‖y∗‖,
on the bound Nac(t) is much weaker than that on the bound Nrm(t). For example, assume that
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ǫp = ǫo = ǫ. By some straightforward computation, it can be easily seen that the value of Nac(t)
does not change when

‖y∗‖ ≤ t ≤ 1

4





(

(8
√

5 + 20λ)2ΩM2

‖A‖ǫ − 1

)2

− 1



 ,

while the range of t that does not affect Nrm(t) is given by

‖y∗‖ ≤ t ≤ 1

4





(

(4
√

5 + 6λ)M

‖A‖ − 1

)2

− 1



 .

In other words, the AC-SA algorithm allows a big range for t (or ‖y∗‖), as high as O(1/ǫ2), without
affecting the effort to find good approximate solutions of (36), while the corresponding one for the
RM-SA algorithm is much smaller, roughly in O(1). Moreover, even if t does affect the bounds
Nac(t) or Nrm(t) (i.e., t sits outside the ranges described above), the first bound is in O(R(t)) while
the latter one is in O(R(t)2).

4 Convergence analysis

The goal of this section is to prove the main results of this paper, namely, Theorems 1, 2, and 4.

4.1 Convergence analysis for RM-SA algorithm

This subsection is to devoted to the proof of Theorem 1. Before proving this result, we establish a
few technical results from which Theorem 1 immediately follows.

Let p(u) be a convex function over a convex set X ∈ E . Assume that û is an optimal solution
of the problem min{p(u) + ‖u− x̃‖2 : u ∈ X} for some x̃ ∈ X. Due to the well-known fact that the
sum of a convex and a strongly convex function is also strongly convex, one can easily see that

p(u) + ‖u− x̃‖2 ≥ min{p(u) + ‖u− x̃‖2 : u ∈ X}+ ‖u− û‖2.

The next lemma generalizes this result to the case where the function ‖u − x̃‖2 is replaced with
the prox-function V (x̃, u) associated with a convex function ω. It is worth noting that the result
described below does not assume the strong-convexity of the function ω.

Lemma 5 Let X be a convex set in E and p, ω : X → ℜ be differentiable convex functions. Assume
that û is an optimal solution of min{p(u) + V (x̃, u) : u ∈ X}. Then,

min{p(u) + V (x̃, u) : u ∈ X} ≤ p(u) + V (x̃, u)− V (û, u), ∀u ∈ X.

Proof. The definition of û and the fact that p(·) + V (x̃, ·) is a differentiable convex function
imply that

〈∇p(û) +∇V (x̃, û), u− û〉 ≥ 0, ∀u ∈ X,

where ∇V (x̃, û) denotes the gradient of V (x̃, ·) at û. Using the definition of the prox-function (10),
it is easy to verify that

V (x̃, u) = V (x̃, û) + 〈∇V (x̃, û), u− û〉+ V (û, u), ∀u ∈ X.
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Using the above two relations and the assumption that p is convex, we then conclude that

p(u) + V (x̃, u) = p(u) + V (x̃, û) + 〈∇V (x̃, û), u− û〉+ V (û, u)]

≥ p(û) + V (x̃, û) + 〈∇p(û) +∇V (x̃, û), u− û〉+ V (û, u)

≥ p(û) + V (x̃, û) + V (û, u),

and hence that the lemma holds.

The following lemma summarizes some properties of the objective function Ψ and f .

Lemma 6 Let the functions Ψ : X → ℜ and f : X → ℜ be defined in (1). We have

0 ≤ f(y)− f(x)− 〈∇f(x), y − x〉 ≤ L
2 ‖y − x‖2 (47)

0 ≤ Ψ(y)−Ψ(x)− 〈Ψ′(x), y − x〉 ≤ L
2 ‖y − x‖2 + 2M‖y − x‖ (48)

for any x, y ∈ X, where Ψ′(x) ∈ ∂Ψ(x).

Proof. The first inequalities in both relations (47) and (48) follow immediately from the con-
vexity of f and Ψ respectively. The second inequality in (47) is well-known (see Theorem 2.1.5
of [9] for a proof). This inequality, together with the fact h(y) − h(x) ≤ M‖y − x‖ due to the
Lipschitz-continuity of h and the identity Ψ′(x) = ∇f(x) + h′(x) for some h′(x) ∈ ∂h(x), then
imply that

Ψ(y) = f(y) + h(y) ≤ f(x) + 〈∇f(x), y − x〉+ L

2
‖y − x‖2 + h(x) + M‖y − x‖

= Ψ(x) + 〈∇f(x), y − x〉+ L

2
‖y − x‖2 + M‖y − x‖

= Ψ(x) + 〈Ψ′(x), y − x〉+ L

2
‖y − x‖2 + M‖y − x‖ − 〈h′(x), y − x〉

≤ Ψ(x) + 〈Ψ′(x), y − x〉+ L

2
‖y − x‖2 + 2M‖y − x‖,

where the last inequality follows from (8) with g = h′(x) and d = x− y.

The following lemma establishes an important recursion for the RM-SA algorithm. Before
stating this result, we mention the following simple inequality that will be used more than once in
this section:

bu− au2

2
≤ b2

2a
, ∀a > 0. (49)

Lemma 7 Assume that the step-sizes γτ satisfy Lγτ < α, τ ≥ 1. Let x1, · · · , xτ ∈ X be given and
(xτ+1, x

ag
τ+1) ∈ X×X be a pair computed according (16) and (17). Also let δτ := G(xτ , ξτ )−g(xτ ),

where g(xτ ) = E[G(xτ , ξτ )] ∈ ∂Ψ(xτ ). Then, we have

γτ [Ψ(xτ+1)−Ψ(x)] + V (xτ+1, x) ≤ V (xτ , x) + ∆τ (x), ∀x ∈ X, (50)

where

∆τ (x) := γτ 〈δτ , x− xτ 〉+
(2M + ‖δτ‖∗)2γ2

τ

2(α− L γτ )
. (51)

14



Proof. Denoting dτ := xτ+1 − xτ , due to the strong-convexity of ω, we have α‖dτ‖2/2 ≤
V (xτ , xτ+1), which together with (48), then imply that

γτΨ(xτ+1) ≤ γτ [Ψ(xτ ) + 〈g(xτ ), dτ 〉+
L

2
‖dτ‖2 + 2M‖dτ‖]

= γτ [Ψ(xτ ) + 〈g(xτ ), dτ 〉] +
α

2
‖dτ‖2 −

α− Lγτ

2
‖dτ‖2 + 2Mγτ‖dτ‖

≤ γτ [Ψ(xτ ) + 〈g(xτ ), dτ 〉] + V (xτ , xτ+1)−
α− Lγτ

2
‖dτ‖2 + 2Mγτ‖dτ‖

= γτ [Ψ(xτ ) + 〈G(xτ , ξτ ), dτ 〉]− γτ 〈δτ , dτ 〉+ V (xτ , xτ+1)−
α− Lγτ

2
‖dτ‖2 + 2Mγτ‖dτ‖

≤ γτ [Ψ(xτ ) + 〈G(xτ , ξτ ), dτ 〉] + V (xτ , xτ+1)−
α− Lγτ

2
‖dτ‖2 + (2M + ‖δτ‖∗)γτ‖dτ‖

≤ γτ [Ψ(xτ ) + 〈G(xτ , ξτ ), dτ 〉] + V (xτ , xτ+1) +
(2M + ‖δτ‖∗)2γ2

τ

2(α− Lγτ )
,

where the last inequality follows from (49) with u = ‖dτ‖, b = (2M + ‖δ‖∗)γτ , and a = α− Lγτ .
Moreover, it follows from the identity (16), (11), and Lemma 5 with x̃ = xτ , û = xτ+1, and

p(·) ≡ γτ 〈G(xτ , ξτ ), · − xτ 〉 that

γτΨ(xτ ) + [γτ 〈G(xτ , ξτ ), xτ+1 − xτ 〉+ V (xτ , xτ+1)]

≤ γτΨ(xτ ) + [γτ 〈G(xτ , ξτ ), x− xτ 〉+ V (xτ , x)− V (xτ+1, x)]

= γτ [Ψ(xτ ) + 〈g(xτ ), x− xτ 〉] + γτ 〈δτ , x− xτ 〉+ V (xτ , x)− V (xτ+1, x)

≤ γτΨ(x) + γτ 〈δτ , x− xτ 〉+ V (xτ , x)− V (xτ+1, x),

where the last inequality follows from the convexity of Ψ(·) and the fact g(xτ ) ∈ ∂Ψ(xτ ).
Combining the above two conclusions and rearranging the terms, we obtain (50).

Now let us state the following well-known large-deviation result for the martingale sequence
(see for example, Lemma 6 of [5], for a proof).

Lemma 8 Let ξ1, ξ2, ... be a sequence of iid random variables, and ζt = ζt(ξ[t]) be deterministic
Borel functions of ξ[t] such that E|ξ[t−1]

[ζt] = 0 a.s. and E|ξ[t−1]
[exp{ζ2

t /σ2
t }] ≤ exp{1} a.s., where

σt > 0 are deterministic. Then

∀Λ ≥ 0 : Prob







N
∑

t=1

ζt > Λ

√

√

√

√

N
∑

t=1

σ2
t







≤ exp{−Λ2/3}.

We are now ready to prove Theorem 1.

Proof of Theorem 1: Let x̄ be an optimal solution of (1). Summing up (50) from τ = 1 to t, we
have

t
∑

τ=1

[γτ (Ψ(xτ+1)−Ψ∗)] ≤ V (x1, x̄)− V (xt+1, x̄) +
t
∑

τ=1

∆τ (x̄)

≤ V (x1, x̄) +
t
∑

τ=1

∆τ (x̄) ≤ D2
ω,X +

t
∑

τ=1

∆τ (x̄),
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where the last inequality follows from (13), which, in view of the fact

Ψ(xag
t+1) ≤ (

t
∑

τ=1

γτ )
−1

t
∑

τ=1

γτΨ(xτ+1),

then implies that
(

t
∑

τ=1

γτ

)

[

Ψ(xag
t+1)−Ψ∗

]

≤ D2
ω,X +

t
∑

τ=1

∆τ (x̄). (52)

Denoting ζτ := γτ 〈δτ , x̄− xτ 〉 and observing that

∆τ (x̄) = ζτ +
(2M + ‖δτ‖∗)2γ2

τ

2(α− L γτ )
≤ ζτ +

γ2
τ

α− Lγτ

(

4M2 + ‖δτ‖2∗
)

,

we then conclude from (52) that

(

t
∑

τ=1

γτ

)

[

Ψ(xag
t+1)−Ψ∗

]

≤ D2
ω,X +

t
∑

τ=1

[

ζτ +
γ2

τ

α− Lγτ

(

4M2 + ‖δτ‖2∗
)

]

≤ D2
ω,X +

t
∑

τ=1

[

ζτ +
2γ2

τ

α

(

4M2 + ‖δτ‖2∗
)

]

, (53)

where the last inequality follows from the assumption that γt ≤ α/(2L).
Note that the pair (xt, x

ag
t ) is a function of the history ξ[t−1] := (ξ1, ..., ξt−1) of the generated

random process and hence is random. Taking expectations of both sides of (53) and noting that
under assumption I, E[‖δτ‖2∗] ≤ Q2, and

E|ξ[τ−1]
[ζτ ] = 0, (54)

we obtain
(

t
∑

τ=1

γτ

)

E
[

Ψ(xag
t+1)−Ψ∗

]

≤ D2
ω,X +

2

α
(4M2 + Q2)

t
∑

τ=1

γ2
τ ,

which clearly implies part a).

We now show part b) holds. Clearly, by (54), {ζτ}t≥1 is a marting-gale sequences. Moreover, it
follows from (14) and (15) that

E|ξ[τ−1]

[

exp{ζ2
τ /(2γτΩQ)2}

]

≤ E|ξ[τ−1]

[

exp{(2γτΩ‖δτ‖∗)2/(2γτΩQ)2}
]

≤ 1,

The previous two observations, in view of Lemma 8, then imply that

∀Λ ≥ 0 : Prob







t
∑

τ=1

ζτ > 2ΛΩQ

√

√

√

√

t
∑

τ=1

γ2
τ







≤ exp{−Λ2/3}. (55)

Now observe that under Assumption II,

E|ξτ−1

[

exp{‖δτ‖2∗/Q2}
]

≤ exp{1}.
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Setting θτ = γ2
τ /
∑t

τ=1 γ2
τ , we have

exp

{

t
∑

τ=1

θt(‖δτ‖2∗/Q2)

}

≤
t
∑

τ=1

θτexp{‖δτ‖2∗/Q2},

whence, taking expectations,

E

[

exp

{

t
∑

τ=1

γ2
τ‖δτ‖2∗/

(

Q2
t
∑

τ=1

γ2
τ

)}]

≤ exp{1}.

It then follows from Markov’s inequality that

∀Λ ≥ 0 : Prob

{

t
∑

τ=1

γ2
τ‖δτ‖2∗ > (1 + Λ)Q2

t
∑

τ=1

γ2
τ

}

≤ exp{−Λ}. (56)

Combining (53), (55), and (56), and rearranging the terms, we obtain (28).

4.2 Convergence analysis for the AC-SA algorithm

The goal of this subsection is to prove Theorem 2.
In the sequel, with a little abuse of the notation, we use the following entity to denote the error

for the computed subgradient at each iteration t of the AC-SA algorithm:

δt := G(xmd
t , ξt)− g(xmd

t ),

where g′(xmd
t ) = E[G(xmd

t , ξt)] ∈ ∂Ψ(xmd
t ) under Assumption I.

The following lemma establishes an important recursion for the AC-SA algorithm.

Lemma 9 Assume that the step-sizes βτ and γτ satisfy βτ ≥ 1 and Lγτ < αβτ for all τ ≥ 1. Let
(xτ , x

ag
τ ) ∈ X ×X be given and set xmd

τ ≡ β−1
τ xτ + (1− β−1

τ )xag
τ . Also let (xτ+1, x

ag
τ+1) ∈ X ×X be

a pair computed according to (24) and (25). Then, for every x ∈ X, we have

βτγτ [Ψ(xag
τ+1)−Ψ(x)] + V (xτ+1, x) ≤ (βτ − 1)γτ [Ψ(xag

τ )−Ψ(x)] + V (xτ , x) + ∆̂τ ,

where

∆̂τ = ∆̂τ (x) := γτ 〈δτ , x− xτ 〉+
(2M + ‖δ‖∗)2βτγ

2
τ

2(αβτ − Lγτ )
. (57)

Proof. Denoting dτ := xτ+1 − xτ , it can be easily seen that

xag
τ+1 − xmd

τ = β−1
τ xτ+1 + (1− β−1

τ )xag
τ − xmd

τ = β−1
τ (xτ+1 − xτ ) = β−1

τ dτ .

The above observation together with (48) and the relation α‖dτ‖2/2 ≤ V (xτ , xτ+1) then imply that

βτγτΨ(xag
τ+1) ≤ βτγτ [Ψ(xmd

τ ) + 〈g(xmd
τ ), xag

τ+1 − xmd
τ 〉+ L

2 ‖x
ag
τ+1 − xmd

τ ‖2 + 2M‖xag
τ+1 − xmd

τ ‖]
= βτγτ [Ψ(xmd

τ ) + 〈g(xmd
τ ), xag

τ+1 − xmd
τ 〉] + Lγτ

2βτ
‖dτ‖2 + 2Mγτ‖dτ‖

≤ βτγτ [Ψ(xmd
τ ) + 〈g(xmd

τ ), xag
τ+1 − xmd

τ 〉] + V (xτ , xτ+1)− αβτ−Lγτ

2βτ
‖dτ‖2 + 2Mγτ‖dτ‖.
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Noting that

βτγτ [Ψ(xmd
τ ) + 〈g(xmd

τ ), xag
τ+1 − xmd

τ 〉] = βτγτ [Ψ(xmd
τ ) + 〈g(xmd

τ ), (1− β−1
τ )xag

τ + β−1
τ xτ+1 − xmd

τ 〉]
= (βτ − 1)γτ [Ψ(xmd

τ ) + 〈g(xmd
τ ), xag

τ − xmd
τ 〉] + γτ [Ψ(xmd

τ ) + 〈g(xmd
τ ), xτ+1 − xmd

τ 〉]
≤ (βτ − 1)γτΨ(xag

τ ) + γτ [Ψ(xmd
τ ) + 〈g(xmd

τ ), xτ+1 − xmd
τ 〉]

= (βτ − 1)γτΨ(xag
τ ) + γτ [Ψ(xmd

τ ) + 〈G(xmd
τ , ξτ ), xτ+1 − xmd

τ 〉 − 〈δτ , xτ+1 − xmd
τ 〉]

= (βτ − 1)γτΨ(xag
τ ) + γτ [Ψ(xmd

τ ) + 〈G(xmd
τ , ξτ ), xτ+1 − xmd

τ 〉 − 〈δτ , xτ − xmd
τ 〉 − 〈δτ , dτ 〉]

≤ (βτ − 1)γτΨ(xag
τ ) + γτ [Ψ(xmd

τ ) + 〈G(xmd
τ , ξτ ), xτ+1 − xmd

τ 〉 − 〈δτ , xτ − xmd
τ 〉+ ‖δτ‖∗‖dτ‖],

we conclude from the previous conclusion that

βτγτΨ(xag
τ+1) ≤ (βτ − 1)γτΨ(xag

τ ) + γτ [Ψ(xmd
τ ) + 〈G(xmd

τ , ξτ ), xτ+1 − xmd
τ 〉] + V (xτ , xτ+1)

−γτ 〈δτ , xτ − xmd
τ 〉 − αβτ−Lγτ

2βτ
‖dτ‖2 + (2M + ‖δ‖∗)γτ‖dτ‖

≤ (βτ − 1)γτΨ(xag
τ ) + γτ [Ψ(xmd

τ ) + 〈G(xmd
τ , ξτ ), xτ+1 − xmd

τ 〉] + V (xτ , xτ+1)

−γτ 〈δτ , xτ − xmd
τ 〉+ (2M+‖δ‖∗)2βτ γ2

τ

2(αβτ−Lγτ ) ,

where the last inequality follows from (49) with u = ‖dτ‖, b = (2M + ‖δ‖∗)γτ , and a = (αβτ −
Lγτ )/βτ .

Moreover, it follows from the identity (24), (11), and Lemma 5 with x̃ = xτ , û = xτ+1, and
p(·) ≡ γτ 〈G(xmd

τ , ξτ ), · − xmd
τ 〉 that

γτΨ(xmd
τ ) + [γτ 〈G(xmd

τ , ξτ ), xτ+1 − xmd
τ 〉+ V (xτ , xτ+1)]

≤ γτΨ(xmd
τ ) + [γτ 〈G(xmd

τ , ξτ ), x− xmd
τ 〉+ V (xτ , x)− V (xτ+1, x)]

= γτ [Ψ(xmd
τ ) + 〈g(xmd

τ ), x− xmd
τ 〉] + γτ 〈δτ , x− xmd

τ 〉+ V (xτ , x)− V (xτ+1, x)

≤ γτΨ(x) + γτ 〈δτ , x− xmd
τ 〉+ V (xτ , x)− V (xτ+1, x),

where the last inequality follows from the convexity of Ψ(·) and the fact g(xmd
τ ) ∈ ∂Ψ(xmd

τ ).
Combining the previous two conclusions, we obtain

βτγτΨ(xag
τ+1) ≤ (βτ − 1)γτΨ(xag

τ ) + γτΨ(x) + V (xτ , x)− V (xτ+1, x) + γτ 〈δτ , x− xτ 〉+ (2M+‖δ‖∗)2βτ γ2
τ

2(αβτ−Lγτ )

Our claim immediately follows from the above inequality by subtracting βτγτΨ(x) from both sides
and rearranging the terms.

We are now ready to prove Theorem 2.

Proof of Theorem 2: Let x̄ be an optimal solution of (1). It follows from the fact that Ψ(x) ≥
Ψ(x̄) = Ψ∗, ∀x ∈ X, the fact βτ ≥ 1, (26), and Lemma 9 with x = x̄ that, for any t ≥ 1,

(βt+1 − 1)γt+1[Ψ(xag
t+1)−Ψ∗] ≤ βtγt[Ψ(xag

t+1)−Ψ∗]

≤ (βt − 1)γt[Ψ(xag
t )−Ψ∗] + V (xt, x̄)− V (xt+1, x̄) + ∆̂t(x̄),

from which it follows inductively that

(βt+1 − 1)γt+1[Ψ(xag
t+1)−Ψ∗] ≤ (β1 − 1)γ1[Ψ(xag

1 )−Ψ∗] + V (x1, x̄)− V (xt+1, x̄) +
t
∑

τ=1

∆̂τ (x̄)

= V (x1, x̄)− V (xt+1, x̄) +
t
∑

τ=1

∆̂τ (x̄) ≤ D2
ω,X +

t
∑

τ=1

∆̂τ (x̄),
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where the first equality follows from the assumption β1 = 1 and the last inequality follows from
(13) and the fact V (xt+1, x̄) ≥ 0.

Denoting ζτ := γτ 〈δτ , x̄− xτ 〉 and observing that

∆̂τ (x̄) = ζτ +
(2M + ‖δ‖∗)2βτγ

2
τ

2(αβτ − Lγτ )
≤ ζτ +

βτγ
2
τ

αβτ − Lγτ
(4M2 + ‖δτ‖2∗)

≤ ζτ +
2

α
(4M2 + ‖δτ‖2∗)γ2

τ ,

where the last inequality follows from (26), we then conclude from the previous observation that

(βt+1 − 1)γt+1[Ψ(xag
t+1)−Ψ(x̄)] ≤ D2

ω,X +
t
∑

τ=1

[

ζτ +
2

α
(4M2 + ‖δτ‖2∗)γ2

τ

]

. (58)

Note that the triple (xt, x
ag
t , xmd

t ) is a function of the history ξ[t−1] := (ξ1, ..., ξt−1) of the
generated random process and hence is random. Taking expectations of both sides of (58) and
noting that under assumption I, E[‖δτ‖2∗] ≤ Q2 and E|ξ[τ−1]

[ζτ ] = 0, we obtain

(βt+1 − 1)γt+1E[Ψ(xag
t+1)−Ψ∗] ≤ D2

ω,X +
2

α
(4M2 + Q2)

t
∑

τ=1

γ2
τ ,

which clearly implies part a).
The proof of part b) is similar to the one of Theorem 1.b), and hence the details are skipped.

4.3 Convergence analysis for quadratic penalty method

The goal of this subsection is to prove Theorem 4.

Lemma 10 If x̃ ∈ X is an approximate solution of (39) satisfying

Ψ̃ρ(x̃)− Ψ̃∗ ≤ δ, (59)

then

‖Ax̃− b‖ ≤ 2

ρ
‖y∗‖+

√

2δ

ρ
(60)

h̃(x̃)− h̃∗ ≤ δ, (61)

where y∗ is an arbitrary Lagrange multiplier associated with (36).

Proof. Denote v(u) := inf{h̃(x) : Ax − b = u, x ∈ X}. It is well-known that our assumptions
imply that v is a convex function such that −y∗ ∈ ∂v(0). Hence,

v(u)− v(0) ≥ (−y∗)T u, ∀u ∈ ℜm.
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Letting u := Ax̃ − b, we conclude from the above observation, the facts that v(u) ≤ h̃(x̃) and
v(0) ≥ Ψ̃∗, and assumption (59), that

−‖y∗‖‖u‖+ ρ‖u‖2/2 ≤ (−y∗)T u + ρ‖u‖2/2

≤ v(u)− v(0) + ρ‖u‖2/2 ≤ h̃(x̃) + ρ‖u‖2/2− v(0)

≤ h̃(x̃) + ρ‖u‖2/2− φ∗ = Ψ̃ρ(x̃)− Φ̃∗ ≤ δ,

which clearly implies (60). Moreover, the fact that h̃∗ = v(0) ≥ Φ̃∗ implies that

h̃(x̃)− h̃∗ ≤ h̃(x̃) + ρ‖u‖2/2− Φ∗ = Ψ̃ρ(x̃)− Φ̃∗ ≤ δ.

We are now ready to prove Theorem 4.

Proof of Theorem 4: Let x̃ ∈ X satisfies (59) with δ = ǫo. Let ρ∗ := ρ(‖y∗‖) and observe
that ρ∗ ≤ ρ(t) for every t ≥ ‖y∗‖. It follows from the previous observation and Lemma 10 that
h̃(x̃)− h̃∗ ≤ ǫo and

‖Ax̃− b‖ ≤ 2

ρ(t)
‖y∗‖+

√

2ǫo

ρ(t)
≤ 2

ρ∗
‖y∗‖+

√

2ǫo

ρ∗
=

1√
ρ∗

(

2
√

2ǫp ‖y∗‖
√

ǫo + 4ǫp‖y∗‖+
√

ǫo

+
√

2ǫo

)

=
1√
ρ∗

(

√

ǫo + 4ǫp‖y∗‖ −
√

ǫo√
2

+
√

2ǫo

)

=

√
ǫo +

√

ǫo + 4ǫp‖y∗‖√
2ρ∗

= ǫp,

and hence that x̃ is an (ǫp, ǫo)-primal solution of (36).
Using Assumption III.c), (40), and (41), we have L = ρ‖A‖2 and Q = M , which together with

(21) and (22) then imply that

K∗
0 (Nrm) + λK∗

1 (Nrm) =
ρ‖A‖2Ω2

Nrm
+

2
√

5 + 3λ√
Nrm

ΩM ≤ ǫo

2
+

ǫo

2
≤ ǫo.

The previous conclusion, in view of the definition of λ and (22), clearly imply the claim in part a).
Part b) follows similarly from (32) and the definition of λ, by noting that

K̂∗
0 (Nac) + λK̂∗

1 (Nac) =
4ρ‖A‖2Ω2

Nac(Nac + 2)
+

4
√

5 + 10λ√
Nac

ΩM ≤ 4ρ‖A‖2Ω2

N2
ac

+
4
√

5 + 10λ√
Nac

ΩM

≤ ǫo

2
+

ǫo

2
≤ ǫo.

5 Concluding remarks

In this paper, two subgradient-type methods for solving the stochastic composite problem (1),
namely: the RM-SA and AC-SA algorithm, are analyzed and compared. From the theoretical view
of perspective, our contribution is to close the gap between the lower and upper bounds on the
rate of convergence for solving this class of problems. As shown in the illustrative example, we
believe that the AC-SA algorithm developed herein possesses significant potential of application, for
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example, in stochastic programming, large-scale convex programming, as well as in those traditional
areas for stochastic approximation, e.g., statistics, digital signal processing.
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