
February 1988 LIDS-P-1751

An Optimal Multigrid Algorithm for Continuous State Discrete
Time Stochastic Control'

Chee-Seng Chow2

John N. Tsitsiklis2

1Research supported by an NSF PYI award, with matching funds from Bellcore Inc., and by the ARO
under grant DAAL03-86-K-0171

2 Dept. of Electrical Engineering and Computer Science, Massachussets Institute of Technology, Cam-
bridge, MA 02139.

Abstract

This paper studies the application of multigrid methods to a class of discrete time,
continuous state, discounted, infinite horizon dynamic programming problems. We
analyze the computational complexity of computing the optimal cost function to within
a desired accuracy of e, as a function of E and of the discount factor a. Using an advesary
argument, we obtain lower bound results on the computational complexity for this
class of problems. We also provide a multigrid version of the successive approximation
algorithm whose computational requirements are (as a function of a and E) within a
constant factor from the lower bounds when a certain mixing condition is satisfied (hence
the algorithm is optimal).

1 Introduction

In this paper, we analyze how the computational effort in computing an approximation
to the optimal cost function of a discounted dynamic programming problem depends on
the discount factor and the accuracy of the approximation, and how multigrid ideas can
be used to improve the running time of a successive approximation algorithm in dynamic
programming.

To illustrate the issues, consider a system with state space S = [0, 1]. At the beginning of
each time period, the state of the system is measured exactly. Based on the observed state,
a decision, out of N possible choices, is made. Then, within the time period a (bounded)
cost, is incurred and the system probabilistically changes state. The cost and the one-step
transition probabilities are functions of only the current state and the current decision.
This process is repeated in each subsequent time period. Future costs are discounted by
a discount factor a E (0, 1). The goal is to find the minimum long term (infinite horizon)
total cost as a function of the initial state, and when the best decision is made at every
stage. This cost function is called the optimal cost function.

The above problem is a discrete time, infinite horizon, perfectly observable, Markov
Decision Problem (MDP), with discounted cost (e.g. see [Hartl 80]). It can be shown under
certain assumptions that the optimal cost function exists and is unique ([Denar 67]). More-
over if the cost and the transition probability density functions are Lipschitz continuous,
then for any e > 0, one can obtain a (piecewise constant) function which is within e of the
optimal cost function, viz. an E-optimal cost function. This is done by discretizing the con-
tinuous problem to get another discounted cost problem with finite state space and solving
for the optimal cost function of this discretized problem. There are explicit bounds on how
fine the discretization should be in order to achieve the desired accuracy ([Whitt 78] and
[Whitt 791).

For the discretized discounted cost problem, there are many iterative algorithms for
computing the optimal cost functon, e.g. successive approximation, policy iteration, and

linear programming. For any e > 0, one can compute an e-optimal cost function for the
discounted cost problem using a finite number of arithmetic operations. Intuitively, it is
clear that as e decreases to 0 (the more accurate we want the answer), the finer we have to
discretize the continuous problem, so more computation is needed. Similarly, as the discount
factor tends to 1, the discretization error gets amplified more, and a finer discretization is
needed. We want to know how the computational effort depends on the accuracy desired
and the discount factor.

Multigrid algorithms use two or more grid levels (see [Hackb 811, (Hackb 85],[Brand 861),
with different iterations taking place on different grids. For many practical problems, the
multigrid version, if properly implemented, converges significantly faster. In some cases,
by using an appropriate model of computation the resultant algorithm can be shown to be
optimal, i.e. the running time of the algorithm is at worst within a constant factor of the
fastest algorithm possible.

The model of computation we use is a real number computer: a machine that operates
on real numbers with the four basic arithmetic operations and the three comparison tests.
Manipulating the individual digits of a number is disallowed. This model of computation
has been used by other researchers (e.g. see [Traub 80] and [Traub 83]). The complexity
(total work) of a computation is the sum of the work in reading the input (e.g. a unit work
per input) and the work in computing the output (e.g. a unit work per operation). Using
an adversary argument, lower bounds on the complexity of a problem can be proved with
this model.

We will show how multigrid methods can be incorporated into a successive approxima-
tion algorithm in dynamic programming to obtain significant improvement in the running
time. When a certain mixing condition is satisfied, the running time of the multigrid ver-
sion is within a constant factor of the lower bound on complexity. Hence the algorithm is
optimal. (This is in contrast to the single grid successive approximation algorithm.)

The purpose of this paper is to illustrate the key issues involved and the central ideas.
To this effect, we restrict to the special case where the state space is one-dimensional and
the control space is finite. Results for more general cases are previewed in Section 5 and
will be reported in detail elsewhere.

2 Problem Formulation

2.1 Description of The Model

Consider the discounted dynamic programming problem introduced in Section I. It has state
space S = [0, 1], and control space C = {1, 2,..., N}, which represents all allowed actions.
A function #u : S '-. C is called a stationary policy and prescribes the action ,t(x) whenever

2

the system is in state x. Let II be the set of all stationary policies. 1

The dynamics of the system P are described by a non-negative function on S x S x C.
For each x E S, u E C, P(.Ix, u) is a probability density on S. Moreover, P(ylx , u)dy is the
probability that the next state lies between y - ? and y + d given that the current state is
x and control u is applied. We are also given a bounded continuous function, g: S x C - R,
called the cost per stage. In particular, g(x, u) is interpreted as the immediate cost if the
state of the system is x and action u is applied. Let a be a constant belonging to (0, 1)
called the discount factor. The cost incurred each time period later is discounted by a.

The cost J,: S '- R corresponding to a stationary policy p is defined by

J4.(xo) = E E[an(xi,.(xi))

where xo, x1, ... is the random trajectory generated when the initial state is x0 and policy
;A is used. The optimal cost function J, : S '-+ R is defined by

J,(xo) = inf Jo(zo), Vx0 E S.

The problem we consider is the following: Given an e > 0, we would like to find a J,.' such
that IIJ, - J'lloo < E, where j11 11x, is the supremum norm defined as follows:

IIJlloo = sup IJ(x)l.
zES

In addition to 11 . flo, we will also use the following quasi-norm:

I[Jl[Q = sup J(x) - inf J(x).
zES zES

The discounted MDP is specified by (a, e,S, C,g, P,).

2.2 Assumptions

To solve the discounted MDP, we need to make some Lipschitz continuity assumptions
about g and P, and, without loss of generality, with Lipschitz constant 1.

Assumption 2.1 For all x, x', y, y' E S, u, u' E C, the following hold

1. jg(x,) - g(x', u)l < Ix - x1

2. fyEs IP(ylx, u) - P(ylx', u)ldy < Ix - x'J

1 For the purposes of this paper, measurability issues are ignored. In fact, under the smoothness assump-
tions to be imposed in Section 2.2, measurability issues are easily handled.

3

S. IP(ylx, u) - P(y'lz, UJI < ly - Yl

The accessibility rate p of the problem is defined as follows:

P= zin P(ylx, u)dy > 0.

If p > 0, we say that the problem satisfies a 1-stage accessibility condition.

Assumption 2.2 There holds p > 0.

This is our mixing condition. Intuitively, it means the existence of a set of states such
that under all policies and from all states there is some minimum, non-zero, probability of
reaching those states. (This assumption is actually stronger than necessary for our results.)

2.3 Dynamic Programming Equation

Let B(S) denote the set of all bounded continuous functions on S. Under Assumption
2.1 the minimizing operator T, defined by

TJ(x) = min{g(x, u) + a f P(ylx, u)J(y)dy},

can be shown to map B (S) - B(S). Moreover, it is a contraction operator (1ITJ - TJ'Ioo <

aIIJ - J'loo). Since B(S) is complete, T has a unique fixed point in B(S) and the fixed
point of T is J,([Denar 67]). Hence, the optimal cost function J, exists and is the unique
solution to the dynamic programming equation

TJ = J.

2.4 Error Bounds and Successive Approximation

From the contraction property of T, starting with any initial estimate J E B (S), one can
obtain an approximation to J, by successive application of the T operator on J. Moreover
the following inequalities between J, and TkJ (Tk is the k-times composition of T) are
known ([Berts 87]):

J < TkJ + a max{(TkJ -Tk-1J)(X)),

J, > TJ + a min{(TJ - Tk-'J)(z)}.
1- aC zES

After k iterations, if we let

Jk = TkJ + a min{(TkJ - Tk-lJ)(x)} + maxz{(TkJ - Tk-1J)(x)}
1-a 2

4

we obtain the following error bound between J, and Jk:

11J, - Jklo0 < (- [TkJ - Tk-lJIl. (1)

Under Assumption 2.2, it can be shown that we get a contraction factor independent of
ca when the quasi-norm is used:

IITk+lJ - TkJIIQ < (1l - p)lITkJ - Tk-1JllJ
< atk(1- p)kl TJ - Jllq
< (1 - p)kllTJ - JIIQ

Combining with (1), we obtain the following error bound equation (c.f. [Odoni 691):

IIlJ* - Jklloo < (1 ITJ - JIQ, (2)2(1 - ,i)
which is the basis of the successive approximation algorithms in Section 3.

2.5 Discrete Dynamic Programming Equation

The continuous state problem can be discretized to give a discrete state problem. The
discrete problem leads to discrete analogs to the T operator, the dynamic programming
equation, and the error bound equations. There are many ways of discretizing S. For
simplicity, but without loss of generality, we will use uniform discretizations. For any
positive integer k, let S6 k = {O, 1 ,. 2 1} and 6k = x . We call 5k the diameter of
discretization. Each k represents a different level of discretization. To de-emphasize the
dependence on a particular grid level, we use 6 and S 6 instead. For convenience, 6 will also
denote the discretization.

Given a discretization of the state space, the cost per stage and the dynamics can be
discretized. Let their discretizations be denoted by g, and P respectively. The cost function
is discretized by pointwise sampling of g and the dynamics are discretized by pointwise sam-
pling of P except that it has to be normalized to ensure that P(lxI, u) remains a probability
measure on S. The minimizing operator for the discrete problem, T 6 : B(S 6) '-, B(S6), is
defined below:

T'J 6() = min{j((, u) + E P(ilj, u)J 6(i)}, wE S6.

zES 6

Let J' denote the optimal cost function for the discrete problem. It can be shown [Berts 87]
that J6 exists and is the unique solution of the discrete dynamic programming equation:

T 6 J6 = J6 .

5

Since there are discrete analogs to all of the error bounds discussed earlier (the definitions
of norms and accessibility condition are easily adapted to the discrete case), one can find an
approximation to J.J by using the discrete successive approximation algorithm. It remains
to bound the discretization error between J,4 and J..

2.6 Discretization Error Bound

If the continuous problem has an accessibility rate 2p, then it can be shown that by choosing
a fine enough discretization the discrete problem also satifies an accessibility condition with
accessibility rate at least p. So we may as well assume that the continuous problem and its
discretized problems (for all discretizations 61,62, ...), have an accessibility rate at least p.
Let K, K ' , and K" be some constants independent of a and 6. It can be shown that for all
5,

I4611Q < K < K'-a(1- p) -
By an application of Theorem 6.1 of [Whitt 78] we can bound the difference between J,.
and J, by

IIJ*-e (J)4)l < 6 , (3)

where e(J,6) denotes the extrapolation of J,4 to a piecewise constant function on S (e.g.
e(Jk)(x) = j6k(2) if z E (2 i-1, 2 '], and e(JG.)(0)- J'6k(0)).

3 Multigrid Successive Approximation

In this section, we derive upper bounds on the complexity of computing an e-optimal cost
function. We are only interested in the dependence on a and e, for a bounded away from
O and in the limit e l 0. As we will see, the diameter of discretization 6 must also depend
on E, so we will keep track of 6 as well. We will use the order of magnitude notation
defined as follows: If f and g are non-negative functions of a and e (or 6), and there exists
some co > 0 and constant c > 0 such that f(a,e) < cg(a,e), for all e < Eo, we write
f = 0(g) or equivalenly, g = 2 (f). For example, from what we have shown, IIJ6ll[Q = 0(1)
and IIJ,- e(J,)Ioo = O(_-6). Throughout this section Assumptions 2.1 and 2.2 are in
effect.

3.1 Complexity of Single-Grid Successive Approximation

To compute an e-optimal cost function, we need to pick a proper grid size so that

IIJ, - e(J6)11 < c/2,

6

and on that grid we use successive approximation for k iterations to find Jk where

l|Jfb-Jk II| < c/2.

Then it follows from the Triangle inequality that

IlJ - e(Jk)llo < IIJ* - e(J6)llm + lle(J) - e(Jk)llm
= Ili* - e(Jf6)l1o + IIJ*6 - Jk4l
< E,

and e(J) is an c-optimal cost function.
From the discretization error bound (3), it is necessary and sufficient to have 1- = ke,

for some constant k. Hence, A = QO().
With this discretization, the number of grid points, IS61 is a. So, for each fixed x E S6,

in order to compute the expression

mrin (i:,u) + a EP(.Ii, u)J6(Z)}, (4)UEC
zES6

the number of arithmetic operations required is O(J). Here the computation of the sum-
mation term dominates the total operation count.

To perform one iteration of the successive approximation algorithm, we need to compute
(4) for IS61 points. So, the number of arithmetic operations per iteration is O((')2) =

o((I=&)2)
If we do k iterations of the successive approximation algorithm, then using the error

bound (2), in order to have lIJ6 - J6 0 < 2, it suffices to choose

k = O(log(1iU)6)/I log(1 - P)l).

Since p is a constant, the total number of iterations needed is O(log(r 1-)). Hence in order
to compute an c-optimal cost function using the usual single-grid successive approximation,
the total number of arithmetic operations is O((log T-- I)(r-T)2). We will show below
that by using a multigrid method, the total number of arithmetic operations can be reduced
to ((I)2)

3.2 Complexity of Multigrid Successive Approximation

To use the multigrid method, a series of successively finer grids S 6 1, S 6 2, ..., S is used,
where S k is the first grid level which satisfies IIJ - e(J.6k) ll< 2. The multigrid successive
approximation algorithm is described below:

7

1. Start at 61, and obtain some J 61. The work done on this grid level is assumed
negligible.

2. Having computed J6i, if i = k then stop. Else extrapolate J6i to the next finer
grid S 6i+l and perform O(log(1-) iterations of the successive approximationI log(- a)pl
algorithm.

It remains to verify that by doing O(l-a)pg iterations on each grid level, theI lo~l - apl
function J6k produced by the algorithm satisfies IlJ - e(J6k)II, < c. (Recall that p is a
constant, so we are saying that it suffices to do a constant number of iterations on each grid
level.) But here is an informal argument: Observe that the discretization error (between
J, and J,6) depends linearly on 6 (see (2)). So by going from Si to bi+l the discretization
error is reduced by half. But, by iterating O(log0.5/1 log(a(1 - p))) times we also reduce
the error IIJ6'+1 - J 6 i+ Ioo by half. (Because of extrapolation errors, a few more iterations
may be needed.) So we go to the next grid level when it is no longer effective to iterate on
the same grid, and we do that after some constant number of iterations.

To analyze the complexity of the multigrid algorithm, recall from earlier analysis that
the total number of arithmetic operations on grid level r6 is O((;)2). Hence

Total number of arithmetic operations = o([()2 + (1)2 +

0((0)2[1 + (k)2 + (r)2 ...

= o(()2[1 + (2)2 + (I)2 + (1)2 ...

= o((1)2)

) 2)

4 Lower Bound Results

In this section we show that no algorithm exists which produces an E-optimal function J
with fewer than O(()j) 2) operations.

For a fixed S and C, an instance of the discounted MDP is a tuple (a, e, g, P) where g
and P satisfy Assumptions 2.1 and 2.2. The problem is given any instance compute a J
such that IIJ - J,Iloo -< . The model of computation is the real number computer discussed
earlier. The computer is given the values of a and e, but has to sample (determine) the
values of g and P by asking an oracle. For example, when given the tuple (x, u), the oracle
will return to the computer the value g(x, u), and when given (y, x, u) the oracle will return
P(ylz, u).

8

Using an adversary type argument ([Taub 80] and [Traub 83]), we find a lower bound
complexity on the discounted MDP by lower-bounding the number of questions the com-
puter must ask the oracle. In particular, we will show that no matter what algorithm is
used, the computer must sample 2((j-) 2) points of P. The proof is based on the "ad-
versary" technique. Here is an outline of the proof: Consider an instance of the problem
(a, e, g, P). Let X be the set of points of P sampled by the computer. We will show that
unless IXI = Q((--) 2), an adversary can construct another instance (a,e,g,P') (as a
function of X) for which P' agrees on X with P but such that the optimal cost functions
of the two problems differ by more than 2e at some point x E S. Based on the points
sampled, the computer cannot possibly differentiate the two problems and so whatever J
the computer computes, the adversary can pick the instance for which J is not its E-optimal
cost function.

The computer may sample g and P adaptively or non-adaptively. In the former, the
choice of the current point sampled may depend on the past values of previous samples, in
the latter, the choice of the current point sampled doesn't depend on the values obtained
earlier. The lower bound results below apply to an adaptive computer (and, in particular
a non-adaptive computer as well).

Notice that our multigrid algorithm is non-adaptive because the points at which g and P
are sampled are predetermined. Thus our results establish that, for the problem considered,
adaptation does not help.

4.1 Lower Bound Example

Let S = [0, 1] and C = {1) (so the control can be ignored). Consider the following problem
instance (a,e,g,P), where for all x,y E S, g(y) = y and P(yjx) = 1. Let its optimal cost
function be denoted by J.. (Note that Assumptions 2.1 and 2.2 are trivially satisfied.)
At the onset, we let the computer know g for free (e.g. it can sample g without penalty)
and whenever the computer samples P it obtains the value 1.

Let X be the set of points at which P is sampled by the computer while it solves the
above described instance. We will show unless IXI = l((-1)2), we can construct another

instance (a, e,g, P') with optimal cost function J.', such that I J*' - J* Iloo > 2E, and such
that P(ylx) = P'(yx), V(x, y) E X.

Let P'(yjx) = P(ylx) + E(x, y), where E(x, y) is the "perturbative" term that depends
on X. One may view P, P', and E as real-valued functions on the unit square {(x, y) : 0 <

x, y < 1} and X is a set of points on this square. For reference, let the horizontal axis be
the x-axis and the vertical axis be the y-axis. We now construct E(x, y).

Let 5 E (0, 1) be a small constant to be determined later. Without loss of generality,
assume that 5 is an integer. Partition the square into (1)2 cells of dimensions 6 x 6. If a
cell contains one or more points of X, it is said to be sampled, otherwise it is unsampled.

9

On the sampled cells, E takes the value 0, whereas on the unsampled cells the value of E
is assigned as follows:

Consider a column of cells, i.e. those with the same x coordinates. (We will refer to cells
by the coordinates of their centers.) We shall focus on the unsampled cells in this column.
Divide the unsampled cells into two equal portions according to their y coordinates (ignoring
any leftover cell). The first portion consists of those with y coordinates smaller than the y
coordinates of those in the second portion. To each cell in the first portion attach a pyramid
of height 6 with base 6 x 6 fitted exactly onto the cell. For the second portion attach similar
pyramids but of height - , i.e. an inverted pyramid. We do the same for every column.
On an unsampled cell, the value of E at the point (x, y) is given by the height of the face
of the pyramid at point (x, y), where E(x, y) takes on a positive (or negative value) if the
corresponding pyramind is upright (or inverted).

It is clear that with this construction of E, P' satisfies Assumption 2.2, because
P'(ylx) is bounded below by a positive constant. To verify that P' satisfies Assumption
2.1 it is sufficient to show that E satisfies that assumption. It is clear that for all x,
IE(x, y) - E(x, y')I < Iy - y'l. This is because by construction, for any fixed x, the slope of
E(x, y) as a function of y is one of -1, 0, or 1. (Observe that each face of a pyramid makes
a 45 degree angle with the base plane.) And, it is clear that for all y, IE(x, y) - E(x', y)I <
Ix - x'[. So fo1 IE(x, y) - E(x', y)ldy < Ix - z'l. It now remains to show that IIJ. - J.'[Io
is sufficiently large.

Let 13 e (0, 2), and suppose that IXI </ (1)2. Then there must exist at least 1 columns
with no more than 2 sampled cells in each column. This means that there are at least 1

columns each with at least (12) unsampled cells . Let Z be the set of all x coordinates of
these columns. Let

g9(z) = f E(x, y)g(y)dy./:
It is clear that gl(x) < 0, for all x. Moreover, gl(x) < -k'S, for all x E Z, where k' is some
positive constant.

Writing out J. and J.' explicitly,

1 21
J,(x) = g()+a +a2 +'"2 2

J*'(x) = g(x) +g()+ a 2{ + + { + P(zlx)g(z)dz + *.

And using the property of gl noted earlier, it can be shown that

P'(zlx)gl(z)dz = P(zx)gl(z)dz + 0(62)

< -k" + o(62),

10

for some positive constant k". Doing a term by term comparison between J. and JT', for
all x, we obtain

J(X) - J,'(z) > rg1 (I) + c({k"6 - 0(62)} + C3 (k"6 - 0(62)} +..

Ignoring 0(62) terms, we have

IIJ, - J*'ll -> ak'S + a 2k"6 + a3 k"6 + - -

> ki"
1-a

_> k1 -,

where k is a positive constant. By choosing 6 = 21 , we note that if JIX is not more
than /(F) 2 = Q((AU)2), then IIJ* - J,'Ik_ > 2c. Hence the lower bound is established
and we conclude that the multigrid algorithm is optimal.

5 Extensions and Summary

The above described results can be generalized in numerous directions. Here are some
extensions:

1. The state space S can be any bounded subset of R n, and the control space C any
bounded subset of Rm. Moreover, for each state there may be constraints on the
allowed actions, i.e. u E Cz c C.

2. The Lipschitz Continuity assumptions on P can be relaxed to handle piecewise con-
tinuous probability densities.

3. General discretization procedures (based on [Whitt 781) may be incorporated into the
multigrid algorithm, so grids may be non-uniform.

4. Similar results can be obtained for the case when accessibility condition is not as-
sumed.

The table below summarizes the complexity results for computing an C-optimal cost
function (under Lipschitz continuity assumptions of g and P in x, u, and y variables).
Complexity results for single-grid and multigrid successive approximations, with and with-
out accessibility condition are tabulated. Let d = 2n+m (where n and m are the dimensions
of S and C respectively).

G Vith Accessibility No Accessibility

Single Grid log(1d)(1;-)d a
9 -Ti (1 acd log at (TI aaCd

Multi Grid ()d I)

Lower Bound I d

For computing an E-optimal cost function, multigrid successive approximation is in gen-
eral nearly optimal (within a factor of I log cl-), so any other algorithms, e.g. policy
iteration, linear programming, etc. cannot have much better complexity.

Can we have faster algorithms if g and P are smooth (C" functions) so that algorithms
can use directional information from the derivatives? The answer is no. Eventhough the
lower bound results are constructed using functions with sharp edges and corners, these
singularities can be rounded to give smooth functions without significantly affecting the
lower bounds. However, faster algorithms may be possible, if there are smoothness bounds
on higher derivatives.

Other extensions we are considering are relaxing the accessibility condition to some form
of ergodicity condition (we have obtained similar results for a k-stage accessibility condition
instead of the 1-stage condition discussed), different formulations of the problem so that
deterministic dynamic programming programming problems can be included, and different
models of computation.

12

6 References

[Hartl 80] Hartley, R., L. C. Thomas, and D. J. White (eds.) 1980 Recent Developments
in Markov Decision Processes Academic Press.

[Denar 67] Denardo, E. V. 1967 Contraction Mappings in The Theory Underlying Dynamic
Programming SIAM Review vol 9, 165 - 177.

[Whitt 78] Whitt, W. 1978 Approximations of Dynamic Programs I Mathematics of Oper-
ations Research vol. 3, 231 -243.

[Whitt 79] Whitt, W. 1979 Approximations of Dynamic Programs II Mathematics of Op-
erations Research vol. 4, 179 -185.

[Traub 80] Traub, J. F. and H. Wozniakowski 1980 A General Theory of Optimal Algorithm
Academic Press.

[Traub 83] Traub, J. F. and Wasilowski, G. W. and Wozniakowski, H. 1983 Information,
Uncertainty, Complexity Addison-Wesley Publishing Company.

[Hackb 81] Hackbusch, W. and U. Trottenberg (eds.): Multigrid Methods (Proceedings,
Koln-Proz 1981). Lecture Notes in Math. 960, Springer-Verlag.

[Hackb 85] Hackbusch, W. 1985 Multi-Grid Methods and Applications Springer-Verlag.

[Brand 86] Brandt, A. 1986 Multi-level approaches to large scale problems. Proceedings of
International Congress of Mathematicians (Berkeley, California, August 1986)

[Berts 87] Bertsekas, D. P. 1987 Dynamic Programming: Deterministic and Stochastic Mod-
els Prentice-Hall, Englewood Cliffs, New Jersey.

[Odoni 69] Odoni, A. R. 1969 On finding the maximal gain for Markov decision processes
Operation Res. vol 17, p. 857-860.

13

