
An optimal O(log log n) time parallel 
string matching algorithm 1 

Dany Breslauer 
Columbia University 

Zvi Galil 
Columbia University 
and Tel-Aviv University 

March 1989 
cues 492-89 

1 Work ,.,poNd b,HSr Gru .. CCI. II OUU ... Ca .... 1411T 



Abstract 

An optimal o (log log n t time parallel algorithm for string matching on 

CRCW-PRAM is presented. It improves previous results of [G] and [V] . 

• All logarithms are to the base 2 



1 Introduction 

On a CRCW-PRAM we can solve some problems in less than the logarith­

mic time needed on weaker models such as CREW-PRAM. For example 

OR and AND of n input variables, and finding the minimum or maximum 

of integers between 1 and n (see section 7) can be done in 0(1) time using 

n processors. Finding the maximum in the general case takes O(log log n) 

time on n/log log n processors ([Val and [SV]) , and the same is true for 

merging ([Val, [Krl and [BH]). Recently, few more O(loglogn) optimal 

parallel algorithms have been found for finding prefix minima [Sc], all near­

est neighbors in convex polygons [Sc Vl, triangulation of a monotone poly­

gone and finding nearest smallers [BSVl. We show that the string matching 

problem can be solved in o (log log n) time with n/log log n processors too, 

establishing that it belongs to one of the lowest parallel complexity classes. 

The problem of string matching is defined as follows: Given two input 

arrays TEXT(l··· n) and PA.TTERN(l··· m), find all occurrences of the 

pattern in the text. ~ amely, find all indices j such that T EXTU + i - 1) = 

P .4.TT E RN( i), for i = 1 ... m. In the sequential case, the problem can be 

solved using the two well known linear time algorithms of Knuth, Morris 

and Pratt [KMPl and Boyer and Moore [BMl. In the parallel case, an opti­

mal algorithm discovered by Galil [G] for fixed alphabet and later improved 

by Vishkin [V] for general alphabet solves the problem in O(log n) time on 

a CReW·PRAM. Recall, that an optimal parallel algorithm is one with 

a linear time-processor product. We use the weakest version of CRCW­

PRAM: the only write conflict allowed is that processors can write the 

value 1 simultaneously into a memory location. 

1 



Our algorithm solves the string matching problem for general alphabet 

in O(1oglogm) time using n/loglogm processors on a common CRCW­

PRAM. It is based on the previous two optimal algorithms, and simi­

larly works in two stages. In the first, we gather some information about 

the pattern and use it in the second stage to find all the occurrences of 

the pattern in the text. The output of the algorithm is a Boolean array 

.:.\1ATCH(1··· n) which has the value 'match' in each position where the 

pattern occurs and 'unmatch' otherwise. 

Suppose we have mn processors on a CRCW-PRAM, then we can solve 

the string matching problem in O( 1) time using the following method: 

• First, mark all possible occurrences of the pattern as 'match' . 

• To each such possible beginning of the pattern, assign m processors. 

Each processor compares one symbol of the pattern with the corre­

sponding symbol of the text. If a mismatch is encountered, it marks 

the appropriate beginning as 'unmatch'. 

Assuming we can eliminate some of the possible occurrences and have 

only I left (ignoring the problem of assigning the processors to their tasks), 

we can use the method described above to get an 0(1) parallel algorithm 

with 1m processors. Both [G] and [V] use this approach. The only problem 

is that one can have many occurrences of the pattern in the text, even much 

more than the n/m needed for optimality in the discussion above. 

To eliminate this problem, we use the notion of the period suggested in 

[G] and aJao used in [Y]. A string u is called a period of a string w if w is 

a prefix of uk for some positive integer k or equivalently if w is a prefix of 

uw. We call the shortest period of a string w the period of w. 

2 



Suppose u is the period of the pattern w. As explained below, we 

cannot have two occurrences of the pattern at positions i and j of the 

text for Ij - il < lui. If instead of matching the whole pattern, we look 

only for occurrences of u, assuming we could eliminate many of them and 

have only nllul possible occurrences left, we can use the 0(1) algorithm 

described above to verify them using only n processors. Then by counting 

the number of consecutive matches of u, we can match the whole pattern. 

In many cases, we slow down some computations to fit in our processor 

bounds. This is done using a theorem of Brent [B], which allows us to 

count only the number of operations performed without concern about 

their timing. 

Theorem (Brent). Any synchronous parallel algorithm of time t that 

consists of a total of x elementary operations can be implemented on p 

processors in r x I p 1 + t time. 

Using this theorem for example, we can slow down the 0(1) time string 

matching algorithm described above to run in 0(.9) time on Im/.9 processors. 

Brent's Theorem as well as other computations described below require 

the assignment of processors to their tasks which in our case is done using 

standard techniques. 

In section 2 we review two facts on periexis from [G] and in section 

3 we review the notion of witness from [V]. In sections 4-6 we describe 

the algorithm. Section 7 is devoted to some technicalities left out in the 

previous 8eCtions. 

3 



2 P·eriodicity properties 

vVe will use some simple facts about periods in the next sections. The proof 

can be found in [G]. 

1. If w has two periods of length p and q and I w I ~ p + q, then w has a 

period of length gcd(p, q) ([LS]). 

2. If w occurs in positions p and q of some string and 0 < q - p < Iwl 

then w has a period of length q - p. Therefore we cannot have two 

occurrences of the pattern at positions p and q if 0 < q - p < lui and 

u is the period of the pattern. 

3 Witnesses 

An important idea in our algorithm is a method suggested in [V], which 

enables us to eliminate many possible occurrences in O( 1) time. One com­

putes some information about the pattern which is called WIT N ESS(l .. , m) 

in [V], and uses it in the second stage for the analysis of the text. 

Let u be the period of the pattern w, and let v be a prefix of w. It follows 

immediately from the periodicity properties that if 11.£1 does not divide Ivl 

and Ivl < max(lul, /wl - 11.£/), then w is not a prefix of vw. In that case we 

can find an index k such that 

PATTERN(k):/: PATTERN(k -Ivl). 

We call this k a witness to the mismatch of w and vw, and define 

WITNESS(lv/ + 1) = k. 

4 



We are interested only in vVITNESS(i) for 1 < i ~ lui which by fact 2 

can be based only on the first 21ul - 1 symbols of the pattern. Suppose we 

already computed WIT N ESS(i) ~ 21ul, let r = WIT N ESS( i) mod lui, 

then, ifr < i, we set WITNESS(i) tor+lul, otherwise we set WITNESS(i) 

to r. 

4 Duels and Counting 

Assume that u is the period of the pattern w, w = ukv, V IS a proper 

prefix (possible empty) of u and p = lui. We call the pattern periodic 

if its length is at least twice its period length (i.e. m ~ 2p). Hav­

ing computed the WITNESS array in the first stage, Vishkin [V] sug­

gests the following method to eliminate close possible occurrences which 

he calls a duel. Suppose we suspect that the pattern may start at posi­

tions i and j of the text where 0 < j - i < lui, thus, since we computed 

r = WIT N ESS(j - i + 1) we can find in 0(1) time a symbol in the text 

which will eliminate one or both of the possible occWTences. More specifi­

cally, since PATTERN(r) # PATTERN(r - j + i), at most one of them 

can be equal to TEXT(r + i-I) (see figure 1). 

T 

x 
r 

y 

Figure 1. X :f: Y and therefore we cannot have T = X and T = Y. 

Actually, we eliminate possible occurrences of some prefix of the pat-

5 



tern. In the periodic case, we saw in the previous section that the witness 

information can be based only on the first 2p symbols of the pattern, thus 

we eliminate positions in which there is no occurrence of u2 • 'While in the 

nonperiodic case, the witness information is based on the whole pattern 

and positions where there is no occurrence of it can be eliminated. Having 

many such duels in pairs, the algorithm of [V] eliminates enough possible 

occurrences of u in the text in o (log m) time and verifies them using the 

0(1) time algorithm described above. We manage to reduce the time of [V] 

to O(log log m) time algorithm using the following observations: 

• Duels "work like" maximum. Having a block of the text of length 

equal to p, only one occurrence of the pattern might start in it. As­

sume that the pattern can start anywhere within that block, and 

suppose we have p2 processors. Assign a processor to each pair and 

perform a duel. Since in every pair at least one loses, at the end we 

are left with no more than one possible occurrence in each block. The 

exact details of the algorithm appear in the next sections. 

• \Ve simplify the "counting" of consecutive occurrences of u in the text 

in the periodic case. A recent result of Bearne and Hastad [BRa] shows 

that computing the parity of n bits on a CRCW-PRAM takes 1~1o;n 

with any polynomial number of processors, so no "real" coutings is 

p088ible within our time bounds. Assume without loss of generality 

thai the text is of length n = 2m - p ( di vide the text into m: p = O( ~ ) 

ovedaping groupe of length 2m - pl. We call an occurrence of u2 

at position i an initial occurrence if there is no occurrence of it at 

position i - p. We call such occurrence a final occurrence if there is 

6 



no occurrence at position i + p. The main observation is that there is 

at most one initial occurrence of interest which is the rightmost initial 

occurrence in the first m - p positions. Any initial occurrence in a 

position greater than m - p is of no interest since there are not enough 

symbols in the text to match the whole pattern. Since the pattern 

is periodic with period length p initial occurrences which are smaller 

cannot start occurrences of the pattern either. The corresponding 

final occurrence is the smallest final occurrence which is greater than 

the initial occurrence. 

5 Processing the text 

As we mentioned above, duels are like maximum. We describe an optimal 

O(loglogm) time text analysis based on having WITNESS(2···r), for 

r = min(p, r m/21) computed in the pa.ttern analysis stage that works sim­

ilarly to the maximum finding algorithm of [SV]. Recall that p = lui is the 

length of the period of the pattern. In the periodic case we divide the text 

into groups of length n = 2m - p, while in the nonperiodic case we work 

on the whole text. 

\Ve have WIT N ESS( i) < 2p. Partition the text into blocks of length 

r. We have n/r such blocks. In each block mark all positions as possible 

occurrences. Partition them into groups of size Vr and repeat recursively. 

The recursion bottoms out with one prossesor per block of size 1, where 

nothing. done. When done, we a.re left with one possible occurrence (or 

none) in each block of size Vr, thus Vr possible occurrences altogether. 

Then in 0(1) time make all duels as described above. We are left with a 

7 



single possible occurrence (or none) in each block of size r. 

The algorithm described above takes O(log log m) time but is not opti­

mal; it requires n processors. To achieve optimality we first partition our 

block into small blocks of size log log r. To each one of the r flog log r small 

blocks assign a processor and make duels between pairs using a sequential 

algorithm till left with at most one possible occurrence in each small block. 

Then, proceed with the O(log log r) algorithm having at most r Ilog log r 

possible occurrences to start with. Since we have nlr blocks and in each 

block we used r Ilog log r processors, we need a total of n/log log r proces­

sors for this computation. Left with at most nlr possible occurrences, we 

can use the 0(1) algorithm we described in the introduction to verify these 

occurrences. The next step depends on the periodicity of the pattern, we 

ha ve two cases: 

1. The pattern is not periodic (m < 2p, r = m/2): Verify the whole 

pattern at each possible occurrences. This can be done using ~n = 2n 

processors in O( 1) time. 

2. The pattern is periodic: 

• Verify at each possible occurrence in the text only the first 2p 

symbols of the pattern. This can be done using only 2n proces­

sors in O( 1) time. 

• Find the initial occurrence and the corresponding final occur­

rence: First find all initial occurrences and final occurrences. 

Then, find the maximal initial occurrence in the first m - p sym­

bols and the corresponding final occurrence. This can be done in 

8 



0(1) time using m processors on our weak CRCW-PRAM (see 

section 7). 

• Verify v right after the final occurrence. Note that v occurs after 

each nonfinal occurrence since v is a prefix of u. 

• For each verified occurrence of u 2 check if enough occurrences 

follow and if followed by a verified occurrence of v. This can be 

done using the position of the initial occurrence and the final oc­

currence, and the information about v computed in the previous 

step. 

Both 1 and 2 can be done in O( 1) time using n processors or O(log log m) 

time using n/log log m processors. 

6 Processing the pattern 

The W ITN ESS array which we used in the text processing stage is com­

puted incrementally. Knowing that some witnesses are already computed 

in previous stages, one can compute more witnesses easily. Let i and j 

be two indices in the pattern such that i < j < r m/21 + 1. If s = 

WIT N E S S(j - i + 1) is already computed then we can find at least one of 

lVITNESS(i) or WITNESS(j) using a duel on the pattern as follows: 

• If, + i-I ~ m then s + i-I is also a witness either for i or for j . 

• If, + i -1 > m then either s is a witness for j or s - j + i is a witness 

for i (see figure 2). 

9 



x 
5 

y 
. I 

~i~~1 ______ ~Z~ ____________ ~ 

Figure 2. X =1= Y and therefore we cannot have Z = X and Z = Y. 

First we describe an O(1og log m) non optimal algorithm. It works in 

stages and it has at most log log m stages. Let k i = m l - 2 -
i

, ko = 1. At the 

end of stage i, we have at most one uncomputed witness in each block of 

size kj • The only uncomputed index in the first block is 1. 

1. At the beginning of stage i we have at most kd k i - 1 uncomputed 

witnesses in the first ki-block. Try to compute them using the naive 

algorithm on PATT ERN(l··· 2k i ) only. This takes 0(1) time using 

2k; ~ = 2m processors. ,..-} 

2. If we succeed in producing witnesses for all the indices in the first 

block (all but the first for which there is no witness), compute wit­

nesses in each following block of the same size using the optimal 

duel algorithm described in the text processing section. This takes 

O(log log m) time only for the first stage. In the following stages, we 

will have at moet rm indices for which we have no witness, and duels 

can be done in O( l) time. 

3. If we fail to produce a witness for some 2 ~ j ~ kj , it follows that 

PATT ERN(l··· 2kd is periodic with period length p, where p = 
j - 1 and j is the smallest index of an uncomputed witness. By 

10 



the periodicity properties mentioned above, all uncomputed indices 

within the first block are of the form kp + 1. Check periodicity with 

period length p to the end of the pattern. If p turns out to be the 

length of the period of the pattern, the pattern analysis is done and we 

can proceed with the text analysis. Otherwise, the smallest witness 

found is good also for all the indices of the form kp + 1 which are in 

the first k;-block, and we can proceed with the duels as in 2. 

These three steps seem to require simultaneous write of different values. 

In the next section we show that our weaker CRCW-PRAM can do it too. 

In order to make our algorithm optimal, we take a more careful look at the 

algorithm described above. \Ve redefine our block sizes ki as follows, 

ko = 1 

m l - 2-' 

k; = , for i = 1· .. log log m 
log log m 

k; = 2k;-1, for i > log log m, 

in trod ucing log log log m more stages. Using this new sequence, m flog log m 

processors are enough for step 1 of the original algorithm. Step 2 will now 

take log log m time for the first two stages after which we will have less than 

. 11;" uncomputed witnesses. However, step 3 still needs m processors V og ogm 

and we need to modify the entire algorithm. 

\Ve have two kinds of stages: non periodic stages and periodic stages. 

Each kiDd ia associated with certain initial conditions. The first stage is a 

nonperiodic stage 1 for which the initial conditions hold vacuously because 

ko = 1 and no witnesses are computed. 

11 



A nonperiodic stage i starts with at most one uncomputed witness in 

each ki_1-block (in the first ki_1-block the uncomputed witness is always 

the first). Moreover, all computed witnesses satisfy 

WITNESS(1) :::; 1 + ki+1 • (1) 

A periodic stage i starts with some uncomputed witnesses in the first k;_l­

block. They are all the indices of the form kp + 1, where p is the period 

length of the first ki-block. In a periodic stage i all computed witnesses 

satisfy 

WITNESS(1):::; 1 + ki (2) 

and also, 

WITNESS(1) :::; 2p:::; ki for 2:::; 1:::; p. (3) 

In a nonperiodic stage i we execute step 1 of our original algorithm and if 

all witnesses in the first k;-block are computed we perform the duels of step 

2, which result in at most one uncomputed witness in any k;-block. The new 

witnesses in the first k;-block obviously satisfy WIT N ESS(l) :::; 2k; :::; k;+l' 

Hence, the new witnesses in the other k;-blocks satisfy WIT N ESS( /) < 

1 + k;+2. So all computed witnesses satisfy (1) with i increased by 1. If 

all witnesses in the first k;-block have been computed we proceed in a 

nonperiodic stage i + 1; otherwise, we verify p to be the period length of 

the first ki+t-block. If it is not, we found the same witness (:::; k;+l) for 

all the indices of the form kp+ 1 in the first kj-block and we continue with 

the duel. of step 2 as in the previous case; otherwise we proceed with a 

periodic stage i + 1. In both cases, the initial conditions obviously hold. 

In a periodic stage i we first check if p is the period length of the 

first k;+1-b1ock. In case it is, we use the periodicity to compute witnesses 

12 



for all indices I where 1::/;1 (mod p) in the first ki-block as follows. Let 

j = ll;tJp. Set WITNESS(I) = j + WITNESS(l- j) ~ 2ki ~ ki+t (by 

(3)). \Ve then proceed with a periodic stage i + 1, and the initial conditions 

obviously hold. Actually, (3) might not hold immediately. By (2) we have 

WIT N E S S(l) < ki+1 for 2 ~ I ~ p. Since p is the period length of the 

first ki+t-block, we can modify the witnesses to satisfy (3) as in section 3. 

If we find that p is not the period length of the first ki+t-block, we 

actually find at once a witness for all indices of the form kp + 1 in the 

first ki_t-block. This witness is not larger than ki+1' \Ve then perform 

the duels in each of the ki_t-blocks, which result in all computed witnesses 

satisfying (1) and with at most one uncomputed witness in each ki_t-block. 

These are the initial conditions for a nonperiodic stage i. We then proceed 

with a nonperiodic stage i. Note that unlike the nonoptimal algorithm, we 

perform duels only if the next stage is nonperiodic. 

\Ve now take a careful look at the last stage. Let r be maximal index 

such that kr < m and define kr+t = m. As we have shown, duels can 

be made for all i and j where i < j < r m/21 + 1, thus in a nonperiodic 

stage r everything works well if we perform duels only in the first half of 

the pattern. In a periodic stage r we either verify the period of the whole 

pattern, or we find a witness and enter a nonperiodic stage r. 

Since we can be in a periodic stage i and a nonperiodic stage i at most 

once for each i, the total number of operations is O( m) and by Brent's 

theorem our algorithm is optimal. 

13 



7 Some detail 

Our computation model is a CRCW-PRAM where the only write conflict 

allowed is that processors can write the value 1 simultaneously into a mem­

ory location. The duels of our text analysis can obviously be implemented 

on such a model, while the duels of the pattern analysis and few other 

steps seem to require a stronger model of computation. We show how to 

implement the algorithm on our weaker model. 

Consider the following problem: given an array of k integers, find the 

first O. Fich, Ragde, and vVigderson [FRvV] proposed the following 0(1) 

time algorithm using k processors on our weak CRCW-PRAM. Partition 

the array into Vk blocks of size Vk. For each block find in O( 1) time if it 

has a 0 using Vk processors. Find the first block which has a 0 using O( 1) 

time minimum algorithm, and then find in that particular block the first 

position of a 0 using the same algorithm. 

Using this algorithm, we find the initial occurrence, the final occurrence 

and witnesses in the first block in any stage of the pattern analysis without 

increasing our time/processor bounds on our weak CRCW-PRAM. The 

implemetation of finding the initial occurrence, the final occurrence and 

witnesses is obvious. However, the duels of the pattern analysis need to 

be done carefully. Suppose we perform duels among h indices, using h2 

processors. Each processor will write to a different memory location; then 

assign h processors to each of the h indices and check if a witness was found 

using the algorithm mentioned above. 

We left out the details of the processor allocation for the duels since 

it can be done exactly as in Shiloach and Vishlcin's [SV] maximum find-

14 



ing algorithm. We need to calculate some sizes for our algorithm and for 

the usage of Brent's theorem (i.e. ki's). Llog log m J can be calculated in 

O(log log m) time using a single processor and square roots can be com­

puted in 0(1) time on few processors as in [SV]. 

As in [G] the text analysis can also be done in O(log l/e) time using nm~ 

processors and the pattern analysis in O(l/e) time using ml+~ processors. 

15 



References 

[BSV] Berkman, 0., Schieber, B., and Vishkin, U. (1988), Some doubly 

logarithmic optimal parallel algorithms based on finding nearest 

smallers, preprint. 

[BHa] Beame, P., and Hastad, J. (1987), Optimal Bound for Decision 

Problems on the CREW PRAM, Proc. 19th A CM Symp. on Theory 

of Computing (1987), 83-93. 

[BH] Borodin, A., and Hopcroft, J. E. (1985), Routing, merging, and 

sorting on parallel models of comparison, J. of Compo and System 

Sci. 30, 130-145. 

[BM] Boyer, R. S., and Moore, J. S. (1977), A fast string searching algo­

rithm, Comm. A CM 20, 762-7i2. 

[B] Brent, R. P. (1974), The pa.rallel evaluation of general arithmetic 

expressions, J. A CM 21, 201-206. 

[FRW] Fich, F. E., Ragde, R. L., and Wigderson, A. (1984), Relations 

between concurrent-write models of parallel computation, Proc. 3rd 

A CM symp. on principles of distributed computing, 179-189. 

[G] Galil, Z. (1985), Optimal parallel algorithms for string matching, 

Information and Control 67, 144-157. 

[KMP] Knuth, D. E., Morris, J. H. and Pratt, V. R. (1977), Fast pattern 

matching in strings, SIAM J. comput. 6, 322-350. 

16 



[KrJ Kruskal, C. P. (1983), Searching, merging, and sorting in parallel 

computation, IEEE trans. on computers 32, 942-946. 

[LS] Lyndon, R. C., and Schutzenberger, M. P. (1962), The equation 

aM = bN cP in a free group, Michigan Math. J. 9, 289-298. 

[ScJ Schieber, B. (1987), Design and analysis of some parallel algorithms, 

Ph.D. Thesis, Tel-Aviv University. 

[ScV] Schieber, B., and Vishkin, U. (1987), The parallel complexity of 

finding all nearest neighbors in convex polygons, preprint. 

[SV] Shiloach, Y. and Vishkin, U. (1981), Finding the maximwn, merg­

ing and sorting in a parallel computation model, J. Algorithms 2, 

88-102. 

[Va] Valiant, L. G. (1975), Parallelism in comparison models, SIAM J. 

of comput. 4, 348-355. 

[V] Vishkin, U. (1985), Optimal parallel pattern matching in strings, 

Information and Control 67, 91-113. 

17 


