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‘ Model & problem I

> Motivation: best-effort service provided by today’s networks cannot support assured

data transmission for real-time applications.

Goal: if the arriving packets cannot all be stored in a buffer, or if the packets have

deadlines by which they must be delivered, the switch needs to identify the packets

that should be dropped, without knowledge of future arrivals.
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‘ Model & problem I

> Model: a buffer of size B € Z; packet j is released at release time r; € Z, it has a
weight w; > 0, adeadline d; € Z. At each integer time step, exactly one packet can

be transmitted.

Objective: max »  w; for transmitted packets j.

> Bounded-delay buffer [kesselman et al. 8ToC 011:

Each packet must be transmitted within its allowed delay time (slack time:
s; = d;j — r;) or else it is lost. The buffer management policy is allowed to re-order

the packets. Given a known parameter s,

e s-uniform: V packet 7,s; =d; —r; = s

e s-bounded: V packet 7,55 = d; —1; < S

e Agreeable deadlines: V packets 7 # j, r; < r; implies d; < d; (including

s-uniform, Vs and 2-bounded)
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‘ Model & problem I

> Competitive ratio: for an online maximization problem, the input received is in an
online manner, the output must be generated online. Let O PT'(I') denote the offline
optimum, an online algorithm A is said to be c-competitive if for any finite input

sequence I and an additive constant ¢,

¢ A(I) + a > OPT(I)

> Known result

e Lower bound ¢ := (1/5 + 1) /2 applies to deterministic online algorithms in

scheduling packets with arbitrary deadlines [Hajek CISS 01] [Chin & Fung

Algorithmica 03] [Andelman et al. SODA 03].

> Problem: find a ¢-competitive deterministic online algorithm.
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>> Previous work
e Lower bound ¢ for an instance with agreeable deadlines
e A 2-competitive greedy algorithm for instances with arbitrary deadlines
e An improved greedy algorithm

e Randomized algorithms
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| Previous work I

> Lower bound ¢ applies to instances with agreeable deadlines [Hajek CISS 01]

[Chin & Fung Algorithmica 03].

> A simple greedy algorithm scheduling an available packet with the maximum weight

is 2-competitive [Hajek CISS 01] [Kesselman et al. STOC 01].

> An improved greedy algorithm

e 64/33 ~ 1.939-competitive for instances with arbitrary deadlines;

5 — /10 ~ 1.838-competitive for instances with agreeable deadlines [Chrobak

et al. ESA 04].
— A flag indicates alternatively scheduling the earliest packet and the

maximum-weight packet; only 2 packets are considered.
> Randomized algorithms

e Lower bound of 1.25.

e A randomized algorithmis ¢ /(e — 1) a~ 1.582-competitive [Bartal et al.

STACS 04].
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| Our result I

> A memoryless, deterministic online algorithm with competitive ratio ¢ for instances

with agreeable deadlines.
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‘ Our algorithm I

> QObservation: why cannot the greedy algorithm be better than 2-competitive?
jl : (wlvdl) — (1 — 57 1) j2 : <w27d2) — (172>
e The greedy algorithm chooses 72, though 71 has only slightly lower value = 71

becomes invalid.
Buffer at the beginning of step 1 Buffer at the end of step 1 Gain

_ _ Greedy
J1 J2 —
72 is sent

Adversary Y 71 is sent

Adversary
J2 —
J2 is sent
Buffer at the end of step 1 Buffer at the end of step 2

® Selecting the earliest packet among a set of sufficient large weight runs into a
similar difficulty = one packet with slightly lower value but earlier deadline

becomes invalid.
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‘ Our algorithm I

>> |ntuition: “balance” the first packet and the maximum-weight packet

e I|dentify a packet that has “sufficient large” weight compared to the

maximum-weight packet, also “sufficient large” weight compared to an
earliest-deadline packet.
e 2 important packets:

— h: the maximum-weight packet with the earliest deadline in the buffer.

— e: the earliest-deadline packet with the maximum weight in the buffer.

- {:} We consider scheduling a packet “in-between” the earliest packet and the

maximum-weight packet.
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‘ Our algorithm I

e Early dropping: buffer contains a set of packets that can be scheduled. For

> Technical issues

example, if 3 packets arrive, each with slack time 2, the algorithm immediately

drops a minimum-weight packet.

e Canonical order: packets in the buffer are assigned in increasing order of deadline,

with ties broken in order of decreasing weight.

> Qur algorithm M GG (modified greedy)
1. At the beginning of each step t, M ( identifies a set of packets from the packets in

the buffer and newly released ones: maximum-valued feasible subset of at most 13

packets. All remaining packets are dropped.
2. The selected packets are arranged in canonical order.

3. fwe > wh/gb, packet e is sent; otherwise, the earliest packet f satisfying

wy > maxq{pwe, wy/¢P} is sent— such packet exists because h is a

candidate.
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> An example showing how M G runs

SODA 2005

e Packet j is represented as (w;, d; ).

Step

‘ Our algorithm I

Buffer size B = 3

(3,1) (2,2) (3,2) (1, 4)

3. 2)

1, 4)

13

e—packet

h—packet

f-packet

MG gains
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‘ Analysis I

> Approach: online computing is regarded as a game with its adversary. Our analysis

method is original and it simplifies the analysis.

> Basis
e M (G and the adversary have identical buffers at the beginning of step .

e Both M (G and the adversary process arriving packets and transmit a packet, at

the end of the step, their buffer contents may be different.

e Modify the adversary’s buffer and make it identical to M G’s buffer => may let

M Gs adversary collect more weight.
Forstep t
e U4 py: value collected by the (modified) adversary (ADV).

® v,/ value collected by M G.

> Crux: Uprg > Vapv /@
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deadline order.

‘ Analysis I

> Assumption: without loss of generality, AV delivers packets in non-decreasing

MG and the adversary’s buffer at the beginning of step t

1

2

B

€

f

The adversary sends packet |

J

"1

2

MG sends packet e or packet f

1 2

!l 7 7

e . f e h

—/e

f/_

h

J The adversary’s buffer at the end of step

"1

2

MG’s buffer at the end of step t

with new released packets

Modify the buffer to be identical

B Costincurred

E

F

H

MG and the adversary’s buffer at the beginning of stept + 1
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‘ Analysis I
> (Cases

1. If MG and ADV transmit the same packet: vapyv = vam ¢ and their buffers
are identical.
. M G transmits packet e; ADV transmits packet j:
— We 2> Wh/P > wj/P=>vapy = w; < Pwe = PVMG.
— ADV’s buffer does not contain 7, but contains e; M G’s buffer contains 7, but
not e. Replace e with 7.

MG and ADV buffer at the beginning of step t

e | ..l .. ' W

#MGsendse e | - |

ADV’s buffer at the end of step-

B

MG’s buffer at the end of step t Replace e with j
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‘ Analysis I

3. M (G transmits packet [ # e; ADV transmits packet e:

> (Cases

— ADYV must transmit f eventually. Let the modified adversary send e and f in
this time step and keep ¢ in its buffer.
— VADV = We + Wf; VMG = Wy =>

vapv /vmc = 1+ we/wy <1+1/¢ = ¢.

MG and ADV buffer at the beginning of step t

e | .. f ADVsendse _
47\‘

ADA/’s buffer at the end of step t

¢ MG sends f

€

MG’s buffer at the end of step t ADV sends e and f, keeps e back in its buffe
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‘ Analysis I

4. M G transmits packet | # e, h; ADYV transmits packet j that is after packet f:

> (Cases

- Wy > wWh/¢ > wj/d=>vapv = w; < dwy = puma.
— ADV doesnotsend f = w; > w;y.

— ADV’s buffer does not contain 7, but contains f; M G’s buffer contains 7, but
not f. Replace f with j.

MG and ADV buffer at the beginning of step t

A

¢ MG sends f el - f .

MG’s buffer at the end of step t Replace f with |

ADV’s buffer at the end of step t
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‘ Analysis I
> (Cases

5. M G transmits packet [ # e; ADV transmits packet 7 # e that is earlier than f:
— f must be eventually transmitted by ADV .
— ADYV has a feasible schedule in which f is transmitted now, regardless of the
future arrivals.
x Letp1,p2, ..., bethe packets in the buffer: f = p;, 7 = pk. All packets
are schedulable in the absence of future arrivals = d,,, > t + 7.

Packet p; is critical if dp, = 1 4 1.

Since d,; > t + ¢ and all future arrivals have deadlines no earlier than d s,

none of the packets pk, px’, . .., pir, p1 transmitted by the adversary is
critical. So the sequence p;, Pk, Pk, - - - , Py is a valid transmission
sequence for ADV .
— fissent=> MG and ADV transmit the same packet and gain identical
weight in this step.
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‘ Analysis I

e Case 9 is the only case that requires agreeable deadlines assumption.

> Notice

— Following is the buffer content comparison for M G and the modified ADV at
the beginning and at the end of step ¢.

MG and ADV buffer at the beginning of step t

e J /

ADV supposes to send at the beginning of step

MG sends f; the modified adversary sends f

V e j o ADV does not send

MG and ADV buffer at the end of step t

— We investigate the packet sequence change with the modification on the

adversary’s buffer.
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‘ Analysis: case I

ADV buffer at the beginning of step t
€ J f last ADV packet in the buffer

/ /
/
/

The modified adversary sends f

/ . ’ ’ ’

v / / / / /
6 / / ] / / 7
/ / / /
/ 4 / / 4
’

ADV buffer at the end of step t

Packets sent in the adversary‘at the beginning of step t

¥, //

T =] Packets already in the buffer

T 1 ==  ADV supposes to send at the beginning of step t

ADYV does not send

1 e % Packets released after t and ADV supposes to sen

Y
|
|

Y
I
I

Packets sent in the (modified) adversary at the beginning of step t
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Analysis (summary)

Only case 9 requires agreeable deadline assumption.

After each step, with corresponding modification on the adversary’s buffer, the

modified adversary and M GG have identical buffers.
For each step, the modified adversary gains at most ¢ times of what M GG gains.

M G is simple, both in design and analysis.

Case ratio (Vapv /UM G) modification

1 ; ; ’wj/’ijI —

w;/we < @ replace e with j

(we +wyg)/wy < ¢ | sende and f, keep e

wi/ws < ¢ replace f with j

wy/wy =1 send f, keep j
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Open problems
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‘ Open problems I

e MV ( is an optimal deterministic algorithm for instances with agreeable deadlines.

> Known

e A concrete instance with agreeable deadlines reaches lower bound .

e Lower bound of 1.25 for online randomized algorithms.

e A randomized algorithm with competitive ratio e /(e — 1) ~ 1.582.

>> (Open problems
e /[ (G’s competitiveness for instances with arbitrary deadlines?
e Exists an instance with arbitrary deadlines, the lower bound > ¢?
e An optimal deterministic online algorithm for instances with arbitrary deadlines?

e Close the gap [1.25, 1.582] for randomized online algorithms?
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