
An optimal online algorithm for packet scheduling with

agreeable deadlines

Fei Li lifei@cs.columbia.edu

Joint work with

Prof. Jay Sethuraman Prof. Clifford Stein

jay@ieor.columbia.edu cliff@ieor.columbia.edu

SODA 2005 1 January 24, 2005

Outline

 Model & problem

 Previous work

 Our algorithm

 Analysis

 Open problems

SODA 2005 2 January 24, 2005

Model & problem

 Motivation: best-effort service provided by today’s networks cannot support assured

data transmission for real-time applications.

Goal: if the arriving packets cannot all be stored in a buffer, or if the packets have

deadlines by which they must be delivered, the switch needs to identify the packets

that should be dropped, without knowledge of future arrivals.

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���Link Buffer

Link Buffer

Link Buffer

Link Buffer

Input ports Output ports

General switch structure

Incoming packets

Outgoing stream

Output port structure

Dropped

Buffer management

SODA 2005 3 January 24, 2005

Model & problem

 Model: a buffer of size� � �; packet � is released at release time �� � �, it has a

weight�� � �, a deadline �� � �. At each integer time step, exactly one packet can

be transmitted.

Objective: ���
�

�� for transmitted packets �.

 Bounded-delay buffer[Kesselman et al. STOC 01]:

Each packet must be transmitted within its allowed delay time (slack time:

�� � �� � ��) or else it is lost. The buffer management policy is allowed to re-order

the packets. Given a known parameter �,

� �-uniform: � packet �� �� � �� � �� � �

� �-bounded: � packet �� �� � �� � �� � �

� Agreeable deadlines: � packets � �� �, �� 	 �� implies �� � �� (including

�-uniform, �� and �-bounded)

SODA 2005 4 January 24, 2005

Model & problem

 Competitive ratio: for an online maximization problem, the input received is in an

online manner, the output must be generated online. Let
�� �
� denote the offline

optimum, an online algorithm� is said to be �-competitive if for any finite input

sequence
 and an additive constant �,

� ���
� � � �
�� �
�
 Known result

� Lower bound � 	� �
�

 � ���� applies to deterministic online algorithms in

scheduling packets with arbitrary deadlines [Hajek CISS 01] [Chin & Fung

Algorithmica 03] [Andelman et al. SODA 03].

 Problem: find a �-competitive deterministic online algorithm.

SODA 2005 5 January 24, 2005

Outline

 Model & problem

 Previous work

� Lower bound � for an instance with agreeable deadlines

� A �-competitive greedy algorithm for instances with arbitrary deadlines

� An improved greedy algorithm

� Randomized algorithms

 Our algorithm

 Analysis

 Open problems

SODA 2005 6 January 24, 2005

Previous work

 Lower bound � applies to instances with agreeable deadlines [Hajek CISS 01]

[Chin & Fung Algorithmica 03].

 A simple greedy algorithm scheduling an available packet with the maximum weight

is �-competitive [Hajek CISS 01][Kesselman et al. STOC 01].

 An improved greedy algorithm

� �
��� � �����-competitive for instances with arbitrary deadlines;

��
�� � �����-competitive for instances with agreeable deadlines [Chrobak

et al. ESA 04].

– A flag indicates alternatively scheduling the earliest packet and the

maximum-weight packet; only � packets are considered.

 Randomized algorithms

� Lower bound of ���
.

� A randomized algorithm is ����� �� � ��
��-competitive [Bartal et al.

STACS 04].

SODA 2005 7 January 24, 2005

Our result

 A memoryless, deterministic online algorithm with competitive ratio � for instances

with agreeable deadlines.

SODA 2005 8 January 24, 2005

Outline

 Model & problem

 Previous work

 Our algorithm

 Analysis

 Open problems

SODA 2005 9 January 24, 2005

Our algorithm

 Observation: why cannot the greedy algorithm be better than �-competitive?
�� 	 ���� ��� � ��� Æ� �� �� 	 ���� ��� � ��� ��

� The greedy algorithm chooses ��, though �� has only slightly lower value ��

becomes invalid.

Buffer at the beginning of step 1 Buffer at the end of step 1

Greedy

Adversary

Adversary

Buffer at the end of step 1 Buffer at the end of step 2

Gain

is sent

is sent

��

��
��

��

��

�� Æ
�

�� is sent

� Selecting the earliest packet among a set of sufficient large weight runs into a

similar difficulty one packet with slightly lower value but earlier deadline

becomes invalid.

SODA 2005 10 January 24, 2005

Our algorithm

 Intuition: “balance” the first packet and the maximum-weight packet

� Identify a packet that has “sufficient large” weight compared to the

maximum-weight packet, also “sufficient large” weight compared to an

earliest-deadline packet.

� � important packets:

– �: the maximum-weight packet with the earliest deadline in the buffer.

– �: the earliest-deadline packet with the maximum weight in the buffer.

�We consider scheduling a packet “in-between” the earliest packet and the

maximum-weight packet.

SODA 2005 11 January 24, 2005

Our algorithm

 Technical issues
� Early dropping: buffer contains a set of packets that can be scheduled. For

example, if � packets arrive, each with slack time �, the algorithm immediately

drops a minimum-weight packet.

� Canonical order: packets in the buffer are assigned in increasing order of deadline,

with ties broken in order of decreasing weight.

 Our algorithm�� (modified greedy)

1. At the beginning of each step �,�� identifies a set of packets from the packets in

the buffer and newly released ones: maximum-valued feasible subset of at most�

packets. All remaining packets are dropped.

2. The selected packets are arranged in canonical order.

3. If �� � ����, packet � is sent; otherwise, the earliest packet � satisfying

�� � ���	���� ����
 is sent — such packet exists because � is a
candidate.

SODA 2005 12 January 24, 2005

Our algorithm

 An example showing how�� runs
� Packet � is represented as ��� � ���.

e−packet h−packet f−packet

(3, 1) (2, 2) (3, 2) (1, 4)

(3, 1) (3, 2) (1, 4) (3, 1) (3, 1)

Send e (6, 5)

(3, 2) (1, 4) (6, 5) (3, 2) (6, 5) (6, 5)

Send f

(1, 4) (1, 4) (1, 4)

Step Buffer size B = 3 MG gains

�

�

�
�

�

�

�

SODA 2005 13 January 24, 2005

Outline

 Model & problem

 Previous work

 Our algorithm

 Analysis

 Open problems

SODA 2005 14 January 24, 2005

Analysis

 Approach: online computing is regarded as a game with its adversary. Our analysis

method is original and it simplifies the analysis.

 Basis

� �� and the adversary have identical buffers at the beginning of step �.

� Both�� and the adversary process arriving packets and transmit a packet, at

the end of the step, their buffer contents may be different.

� Modify the adversary’s buffer and make it identical to��’s buffer may let

��’s adversary collect more weight.

For step �

� ���� : value collected by the (modified) adversary (���).

� ��	: value collected by��.

 Crux: ��� � ���� ��.

SODA 2005 15 January 24, 2005

Analysis

 Assumption: without loss of generality,��� delivers packets in non-decreasing

deadline order.

....

....

MG’s buffer at the end of step t
Modify the buffer to be identical

with new released packets

....

MG and the adversary’s buffer at the beginning of step t

MG and the adversary’s buffer at the beginning of step t + 1

MG sends packet e or packet f

The adversary’s buffer at the end of step t

....

The adversary sends packet j

Cost incurred
�

�
�

�

�

�
�

�

�
�

�

�

�
��

�

�
��

�
�

�
��

	
 �

�

��� ���

SODA 2005 16 January 24, 2005

Analysis

 Cases

1. If�� and��� transmit the same packet: ���� � ��	 and their buffers

are identical.

2. �� transmits packet �;��� transmits packet �:

– �� � ���� � ���� ���� � �� � ��� � ���	.

– ��� ’s buffer does not contain �, but contains �;��’s buffer contains �, but

not �. Replace � with �.

MG and ADV buffer at the beginning of step t

MG sends e

....

....

....

ADV sends j

MG’s buffer at the end of step t Replace e with j

ADV’s buffer at the end of step t

�

�

�
�

SODA 2005 17 January 24, 2005

Analysis

 Cases

3. �� transmits packet � �� �; ��� transmits packet �:

– ��� must transmit � eventually. Let the modified adversary send � and � in

this time step and keep � in its buffer.

– ���� � �� � �� ; ��	 � �� 

���� ���	 � � � ����� � � � ��� � �.

....

....

....

ADV sends e

MG’s buffer at the end of step t

ADV’s buffer at the end of step t

MG sends f

MG and ADV buffer at the beginning of step t

ADV sends e and f, keeps e back in its buffer

�

�
�

�

�

SODA 2005 18 January 24, 2005

Analysis

 Cases

4. �� transmits packet � �� �� �;��� transmits packet � that is after packet � :

– �� � ���� � ���� ���� � �� � ��� � ���	.

– ��� does not send �  �� � �� .

– ��� ’s buffer does not contain �, but contains � ;��’s buffer contains �, but

not � . Replace � with �.

ADV sends j

Replace f with j

MG sends f

....

MG’s buffer at the end of step t

MG and ADV buffer at the beginning of step t

....

ADV’s buffer at the end of step t....

....

�
�

� �

�

�
�

SODA 2005 19 January 24, 2005

Analysis

 Cases

5. �� transmits packet � �� �;��� transmits packet � �� � that is earlier than � :

– � must be eventually transmitted by��� .

– ��� has a feasible schedule in which � is transmitted now, regardless of the

future arrivals.

� Let ��� ��� � � � � be the packets in the buffer: � � �
, � � �� . All packets

are schedulable in the absence of future arrivals ��� � �� �.

Packet �� is critical if ��� � �� �.

� Since ��� � �� � and all future arrivals have deadlines no earlier than �� ,

none of the packets ��� ��� � � � � � �
� � �
 transmitted by the adversary is

critical. So the sequence �
� ��� ��� � � � � � �
� is a valid transmission

sequence for��� .

– � is sent�� and��� transmit the same packet and gain identical

weight in this step.

SODA 2005 20 January 24, 2005

Analysis

 Notice
� Case
 is the only case that requires agreeable deadlines assumption.

– Following is the buffer content comparison for�� and the modified��� at

the beginning and at the end of step �.

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

���
���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���
���
���

���
���
���
���
���
���
���

....

MG and ADV buffer at the beginning of step t

....

MG sends f; the modified adversary sends f

MG and ADV buffer at the end of step t

ADV supposes to send at the beginning of step t

ADV does not send�
� �

�
�

– We investigate the packet sequence change with the modification on the

adversary’s buffer.

SODA 2005 21 January 24, 2005

Analysis: case �

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��
��
��
��
��
��

��
��

��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���

���

���

���

���

���

....

....

The modified adversary sends f

........

....

ADV buffer at the beginning of step t

....

....

Packets sent in the (modified) adversary at the beginning of step t

..

..

..

last ADV packet in the buffer

.... ADV buffer at the end of step t

....

.... ..

Packets sent in the adversary at the beginning of step t

Packets already in the buffer

ADV supposes to send at the beginning of step t

ADV does not send

Packets released after t and ADV supposes to send

�
�

�

�

�

�

�
�

SODA 2005 22 January 24, 2005

Analysis (summary)
� Only case
 requires agreeable deadline assumption.

� After each step, with corresponding modification on the adversary’s buffer, the

modified adversary and�� have identical buffers.

� For each step, the modified adversary gains at most � times of what�� gains.

� �� is simple, both in design and analysis.

Case ��	 ���� ratio (���� ���) modification

1 �� �� ����� � � �

2 �� �� ����� � � replace � with �

3 �� �� � �� ��� � �� ���� 	 � send � and � , keep �

4 �� �� (�� � ��) ����� � � replace � with �

5 �� �� (�� 	 ��) ����� � � send � , keep �

SODA 2005 23 January 24, 2005

Outline

 Model & problem

 Previous work

 Our algorithm

 Analysis

 Open problems

SODA 2005 24 January 24, 2005

Open problems

 Known

� �� is an optimal deterministic algorithm for instances with agreeable deadlines.

� A concrete instance with agreeable deadlines reaches lower bound �.

� Lower bound of ���
 for online randomized algorithms.

� A randomized algorithm with competitive ratio ����� �� � ��
��.

 Open problems

� ��’s competitiveness for instances with arbitrary deadlines?

� Exists an instance with arbitrary deadlines, the lower bound� �?

� An optimal deterministic online algorithm for instances with arbitrary deadlines?

� Close the gap ����
� ��
��� for randomized online algorithms?

SODA 2005 25 January 24, 2005

