An optimal online algorithm for packet scheduling with

SODA 2005

agreeable deadlines

Fei |_| lifei@cs.columbia.edu
Joint work with

Prof. Jay Sethuraman Prof. Clifford Stein

jay@ieor.columbia.edu cliffeieor.columbia.edu

January 24, 2005

| Outline I

>> Model & problem

>

>
>
>

SODA 2005 2 January 24, 2005

‘ Model & problem I

> Motivation: best-effort service provided by today’s networks cannot support assured

data transmission for real-time applications.

Goal: if the arriving packets cannot all be stored in a buffer, or if the packets have

deadlines by which they must be delivered, the switch needs to identify the packets

that should be dropped, without knowledge of future arrivals.

Input ports

Output ports

Link Buffer

Link Buffer

Link Buffer

Link Buffer

General switch structure

SODA 2005

Incoming packets

Vs

-

Buffer management

!

T~

—

/

/

Outgoing stream
>

i

Dropped
N

Output port structure

January 24, 2005

‘ Model & problem I

> Model: a buffer of size B € Z; packet j is released at release time r; € Z, it has a
weight w; > 0, adeadline d; € Z. At each integer time step, exactly one packet can

be transmitted.

Objective: max » w; for transmitted packets j.

> Bounded-delay buffer [kesselman et al. 8ToC 011:

Each packet must be transmitted within its allowed delay time (slack time:
s; = d;j — r;) or else it is lost. The buffer management policy is allowed to re-order

the packets. Given a known parameter s,

e s-uniform: V packet 7,s; =d; —r; = s

e s-bounded: V packet 7,55 = d; —1; < S

e Agreeable deadlines: V packets 7 # j, r; < r; implies d; < d; (including

s-uniform, Vs and 2-bounded)

SODA 2005 4 January 24, 2005

‘ Model & problem I

> Competitive ratio: for an online maximization problem, the input received is in an
online manner, the output must be generated online. Let O PT'(I') denote the offline
optimum, an online algorithm A is said to be c-competitive if for any finite input

sequence I and an additive constant ¢,

¢ A(I) + a > OPT(I)

> Known result

e Lower bound ¢ := (1/5 + 1) /2 applies to deterministic online algorithms in

scheduling packets with arbitrary deadlines [Hajek CISS 01] [Chin & Fung

Algorithmica 03] [Andelman et al. SODA 03].

> Problem: find a ¢-competitive deterministic online algorithm.

SODA 2005 5 January 24, 2005

| Outline I

>

>> Previous work
e Lower bound ¢ for an instance with agreeable deadlines
e A 2-competitive greedy algorithm for instances with arbitrary deadlines
e An improved greedy algorithm

e Randomized algorithms

SODA 2005 6 January 24, 2005

| Previous work I

> Lower bound ¢ applies to instances with agreeable deadlines [Hajek CISS 01]

[Chin & Fung Algorithmica 03].

> A simple greedy algorithm scheduling an available packet with the maximum weight

is 2-competitive [Hajek CISS 01] [Kesselman et al. STOC 01].

> An improved greedy algorithm

e 64/33 ~ 1.939-competitive for instances with arbitrary deadlines;

5 — /10 ~ 1.838-competitive for instances with agreeable deadlines [Chrobak

et al. ESA 04].
— A flag indicates alternatively scheduling the earliest packet and the

maximum-weight packet; only 2 packets are considered.
> Randomized algorithms

e Lower bound of 1.25.

e A randomized algorithmis ¢ /(e — 1) a~ 1.582-competitive [Bartal et al.

STACS 04].

SODA 2005 7 January 24, 2005

| Our result I

> A memoryless, deterministic online algorithm with competitive ratio ¢ for instances

with agreeable deadlines.

SODA 2005 8 January 24, 2005

| Outline I

>
>>
>> Qur algorithm
>>

>

SODA 2005 9 January 24, 2005

‘ Our algorithm I

> QObservation: why cannot the greedy algorithm be better than 2-competitive?
jl : (wlvdl) — (1 — 57 1) j2 : <w27d2) — (172>
e The greedy algorithm chooses 72, though 71 has only slightly lower value = 71

becomes invalid.
Buffer at the beginning of step 1 Buffer at the end of step 1 Gain

_ _ Greedy
J1 J2 —
72 is sent

Adversary Y 71 is sent

Adversary
J2 —
J2 is sent
Buffer at the end of step 1 Buffer at the end of step 2

® Selecting the earliest packet among a set of sufficient large weight runs into a
similar difficulty = one packet with slightly lower value but earlier deadline

becomes invalid.

SODA 2005 10 January 24, 2005

‘ Our algorithm I

>> |ntuition: “balance” the first packet and the maximum-weight packet

e I|dentify a packet that has “sufficient large” weight compared to the

maximum-weight packet, also “sufficient large” weight compared to an
earliest-deadline packet.
e 2 important packets:

— h: the maximum-weight packet with the earliest deadline in the buffer.

— e: the earliest-deadline packet with the maximum weight in the buffer.

- {:} We consider scheduling a packet “in-between” the earliest packet and the

maximum-weight packet.

SODA 2005 11 January 24, 2005

‘ Our algorithm I

e Early dropping: buffer contains a set of packets that can be scheduled. For

> Technical issues

example, if 3 packets arrive, each with slack time 2, the algorithm immediately

drops a minimum-weight packet.

e Canonical order: packets in the buffer are assigned in increasing order of deadline,

with ties broken in order of decreasing weight.

> Qur algorithm M GG (modified greedy)
1. At the beginning of each step t, M (identifies a set of packets from the packets in

the buffer and newly released ones: maximum-valued feasible subset of at most 13

packets. All remaining packets are dropped.
2. The selected packets are arranged in canonical order.

3. fwe > wh/gb, packet e is sent; otherwise, the earliest packet f satisfying

wy > maxq{pwe, wy/¢P} is sent— such packet exists because h is a

candidate.

SODA 2005 12 January 24, 2005

> An example showing how M G runs

SODA 2005

e Packet j is represented as (w;, d;).

Step

‘ Our algorithm I

Buffer size B = 3

(3,1) (2,2) (3,2) (1, 4)

3. 2)

1, 4)

13

e—packet

h—packet

f-packet

MG gains

January 24, 2005

| Outline I

> Analysis

>

SODA 2005 14 January 24, 2005

‘ Analysis I

> Approach: online computing is regarded as a game with its adversary. Our analysis

method is original and it simplifies the analysis.

> Basis
e M (G and the adversary have identical buffers at the beginning of step .

e Both M (G and the adversary process arriving packets and transmit a packet, at

the end of the step, their buffer contents may be different.

e Modify the adversary’s buffer and make it identical to M G’s buffer => may let

M Gs adversary collect more weight.
Forstep t
e U4 py: value collected by the (modified) adversary (ADV).

® v,/ value collected by M G.

> Crux: Uprg > Vapv /@

SODA 2005 15 January 24, 2005

deadline order.

‘ Analysis I

> Assumption: without loss of generality, AV delivers packets in non-decreasing

MG and the adversary’s buffer at the beginning of step t

1

2

B

€

f

The adversary sends packet |

J

"1

2

MG sends packet e or packet f

1 2

!l 7 7

e . f e h

—/e

f/_

h

J The adversary’s buffer at the end of step

"1

2

MG’s buffer at the end of step t

with new released packets

Modify the buffer to be identical

B Costincurred

E

F

H

MG and the adversary’s buffer at the beginning of stept + 1

SODA 2005

16

January 24, 2005

‘ Analysis I
> (Cases

1. If MG and ADV transmit the same packet: vapyv = vam ¢ and their buffers
are identical.
. M G transmits packet e; ADV transmits packet j:
— We 2> Wh/P > wj/P=>vapy = w; < Pwe = PVMG.
— ADV’s buffer does not contain 7, but contains e; M G’s buffer contains 7, but
not e. Replace e with 7.

MG and ADV buffer at the beginning of step t

e | ..l .. ' W

#MGsendse e | - |

ADV’s buffer at the end of step-

B

MG’s buffer at the end of step t Replace e with j

SODA 2005 17 January 24, 2005

‘ Analysis I

3. M (G transmits packet [# e; ADV transmits packet e:

> (Cases

— ADYV must transmit f eventually. Let the modified adversary send e and f in
this time step and keep ¢ in its buffer.
— VADV = We + Wf; VMG = Wy =>

vapv /vmc = 1+ we/wy <1+1/¢ = ¢.

MG and ADV buffer at the beginning of step t

e | .. f ADVsendse _
47\‘

ADA/’s buffer at the end of step t

¢ MG sends f

€

MG’s buffer at the end of step t ADV sends e and f, keeps e back in its buffe

SODA 2005 18 January 24, 2005

‘ Analysis I

4. M G transmits packet | # e, h; ADYV transmits packet j that is after packet f:

> (Cases

- Wy > wWh/¢ > wj/d=>vapv = w; < dwy = puma.
— ADV doesnotsend f = w; > w;y.

— ADV’s buffer does not contain 7, but contains f; M G’s buffer contains 7, but
not f. Replace f with j.

MG and ADV buffer at the beginning of step t

A

¢ MG sends f el - f .

MG’s buffer at the end of step t Replace f with |

ADV’s buffer at the end of step t

SODA 2005 19 January 24, 2005

‘ Analysis I
> (Cases

5. M G transmits packet [# e; ADV transmits packet 7 # e that is earlier than f:
— f must be eventually transmitted by ADV .
— ADYV has a feasible schedule in which f is transmitted now, regardless of the
future arrivals.
x Letp1,p2, ..., bethe packets in the buffer: f = p;, 7 = pk. All packets
are schedulable in the absence of future arrivals = d,,, > t + 7.

Packet p; is critical if dp, = 1 4 1.

Since d,; > t + ¢ and all future arrivals have deadlines no earlier than d s,

none of the packets pk, px’, . .., pir, p1 transmitted by the adversary is
critical. So the sequence p;, Pk, Pk, - - - , Py is a valid transmission
sequence for ADV .
— fissent=> MG and ADV transmit the same packet and gain identical
weight in this step.

SODA 2005 20 January 24, 2005

‘ Analysis I

e Case 9 is the only case that requires agreeable deadlines assumption.

> Notice

— Following is the buffer content comparison for M G and the modified ADV at
the beginning and at the end of step ¢.

MG and ADV buffer at the beginning of step t

e J /

ADV supposes to send at the beginning of step

MG sends f; the modified adversary sends f

V e j o ADV does not send

MG and ADV buffer at the end of step t

— We investigate the packet sequence change with the modification on the

adversary’s buffer.

SODA 2005 21 January 24, 2005

‘ Analysis: case I

ADV buffer at the beginning of step t
€ J f last ADV packet in the buffer

/ /
/
/

The modified adversary sends f

/ . ’ ’ ’

v / / / / /
6 / /] / / 7
/ / / /
/ 4 / / 4
’

ADV buffer at the end of step t

Packets sent in the adversary‘at the beginning of step t

¥, //

T =] Packets already in the buffer

T 1 == ADV supposes to send at the beginning of step t

ADYV does not send

1 e % Packets released after t and ADV supposes to sen

Y
|
|

Y
I
I

Packets sent in the (modified) adversary at the beginning of step t

SODA 2005 22 January 24, 2005

Analysis (summary)

Only case 9 requires agreeable deadline assumption.

After each step, with corresponding modification on the adversary’s buffer, the

modified adversary and M GG have identical buffers.
For each step, the modified adversary gains at most ¢ times of what M GG gains.

M G is simple, both in design and analysis.

Case ratio (Vapv /UM G) modification

1 ; ; ’wj/’ijI —

w;/we < @ replace e with j

(we +wyg)/wy < ¢ | sende and f, keep e

wi/ws < ¢ replace f with j

wy/wy =1 send f, keep j

SODA 2005 23 January 24, 2005

| Outline I

Open problems

SODA 2005 24 January 24, 2005

‘ Open problems I

e MV (is an optimal deterministic algorithm for instances with agreeable deadlines.

> Known

e A concrete instance with agreeable deadlines reaches lower bound .

e Lower bound of 1.25 for online randomized algorithms.

e A randomized algorithm with competitive ratio e /(e — 1) ~ 1.582.

>> (Open problems
e /[(G’s competitiveness for instances with arbitrary deadlines?
e Exists an instance with arbitrary deadlines, the lower bound > ¢?
e An optimal deterministic online algorithm for instances with arbitrary deadlines?

e Close the gap [1.25, 1.582] for randomized online algorithms?

SODA 2005 25 January 24, 2005

