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An Optimal-Order Error Estimate
for the Discontinuous Galerkin Method

By Gerard R. Richter

Abstract. In this paper a new approach is developed for analyzing the discontinuous
Galerkin method for hyperbolic equations. For a model problem in R2, the method is
shown to converge at a rate 0(hn+l) when applied with nth degree polynomial approxi-
mations over a semiuniform triangulation, assuming sufficient regularity in the solution.

1. Introduction. We shall analyze the discontinuous Galerkin method in the
context of a model hyperbolic equation:

du du      .,     . ,     .     _.     _o
(1) aiTx+a2Ty=f{x^        ^)ei]Cfi2'

u(x,y) given for (x,y) € rin(fi).

Here rjn(fî) is the "inflow" portion of the boundary T of fi, defined by

r¡n(íí) = {(a:,í/)€r|a-n<0},
where n is the unit outer normal to Q, and a is assumed to be a constant vector,
with a\ + a\ = 1 and a2 > 0.

Assuming n is a polygon and that it has been divided into triangles, it is always
possible to order the triangles {Ti,T2,...} such that for each k the domain of
dependence of 7* consists of some subset of rin(fi) and {7i,... ,7fc_i} [4]. With
such an ordering, one can develop a finite element approximation in an explicit
fashion, triangle by triangle. To date, the most important application of this type
of finite element approach has been in solving the neutron transport equation. See,
e.g., [3], [5]. Two such finite element methods have been analyzed theoretically—the
discontinuous Galerkin method [2], [4], and a continuous method [1].

Our concern here is the discontinuous method, which we describe as follows: For
an arbitrary domain D, we denote by Pn(^) the space of polynomials of degree
< n over D. We seek an approximate solution «/, such that for each triangle T,
«fclr € Pn(T) and

(2) ((ti*)«,,«*)- /        (u+-Uh-)vha-n = (f,vh),    all vh € P„(T),
Jr,n(T)

where ( , ) denotes the L2(T)-inner product. Here we have used the more compact
notation (u/,)Q for the directional derivative of Uh with respect to a, and, for a
point PeTia(T),

u+-(P)=e\jm+uh(P±£a).
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76 GERARD R. RICHTER

The development of u/, starts from an interpolant of the given initial condition along
r¡n(n). Note that there are two types of triangles: Those with one inflow side and
those with two, hereafter referred to as type I and type II triangles. Provision in
(2) for a discontinuity across the inflow, rjn(T), allows the same space of test and
trial functions, P„(T), to be used for a triangle of either type.

The discontinuous Galerkin method was first analyzed by Lesaint and Raviart
[4], who established an L2 convergence rate of 0(hn) for an arbitrary triangulation,
where h is the mesh size. Later, Johnson and Pitkäranta [2], in an analysis using
variational and Fourier techniques, obtained improved error estimates in LP(Q),
p > 1, including

(3) |«ft-«||L8(n)<CftB+1/2||«|U»+Mn).
In this paper we develop a new method of analysis, utilizing exact representations
for Uh on triangle boundaries. We use our approach to obtain an error estimate of
the form

(4) \\uh - u\\L2{n) < Chn+1\\u\\Hn+*ln),

assuming some uniformity in the triangulation. The symbol C represents a generic
constant, independent of u and h. The latter estimate indicates a higher (optimal)
order of convergence while requiring an additional derivative. It arises because the
error in the finite element solution is oscillatory, and is damped in type II triangles.

In Section 2 we derive relevant results applicable to single triangles of both
types. In Section 3 we assemble our results into the estimate (4) for the case of
a semiuniform triangulation of a periodic domain. In Section 4 we present several
corroborating computational examples. We also note that the 0(hn+1) convergence
rate appears to be quite robust and can occur for irregular triangulations. In an
appendix we provide a brief analysis of a modified version of the discontinuous
Galerkin method in which continuity is enforced across the inflow side of type I
triangles. The resulting method is slightly less costly to apply. We obtain an
0(hn) error estimate for general meshes and show that the higher-order estimate
(4) remains valid under the same uniformity conditions as for the discontinuous
Galerkin method.

2. Local Properties of the Approximate Solution. In this section we
establish some basic properties of the approximate solution over a single triangle.
To do this, we need additional notation.

For a generic triangle T we use as independent variables s (parallel to a) and í
(perpendicular to a), as indicated in Figure 2.1. Triangle T is described by

T = {(s,t) | s G Mí),¿out(í)]. t € [t0,ti]},

and both Tin(T) and rOutC0 can be parameterized by t €E [io, h]. We set h = ti -to
and assume that T satisfies a minimum angle condition independent of h. We shall
use several I? projections: An interior projection Pn with range Pn(T), and bound-
ary projections P¡n and PCut- If r¡n(T) consists of side(s) Tj, the corresponding
interval [£o,<i] consists of subinterval(s) Aí¿, andP¡n: L2(r¡n(T)) —► {v(t) | v\&tj €
P„(Atj)}. We define P0ut in the same way as P¡n. Note that the range of P¡n (P0ut)
is continuous only for a type I (type II) triangle. We also use the notation

Uin(í)=«lrl0(T).      «fc,in(i) = «fclr111(r).      ^(t) = Pin«inW - «£,!„(*).
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FIGURE 2.1

with an analogous set of quantities defined on rout(T). Finally, we denote by || \\k
the norm in the Sobolev space Hk(T), with k omitted as a superscript when it has
value zero, and by | | an L2-norm taken with respect to t G [í0, íi] over the inflow
or outflow boundary of T.

In the lemmas that follow, we establish some basic properties of u/, over T.

LEMMA 2.1 (JOHNSON & Pitkäranta [2]). uh is well defined in T and has
the local stability property

(5) |M + /i^Klr^T) < C{fc1/2Klrin(r) + fc|l/B>.
LEMMA 2.2.  For a type II triangle,

/•Sout(<)

«h,in(0+/ /(*,«) d*
■'«In

(ii)    e~ut(i) = Pouted (i)-
Proof, (i) We rewrite (2) as

(6)

(7)

0)      u/.,out(í) = -Pout
,(«)

(8) ((uh)a,vh) + /    [ti+ln(t) - ulin(t)]vh-m(t)dt = (f,vh),        vh € P„(T),
Jto

where Vh,iD = Vh\rin(T)- Integration by parts yields

(9) -(tifc, (Vh)a) +  /     [«fc out(í)«fc,out(0 - «fc,in(t)»fc,ln(0] dt = (/i Vh)-
Jto

If we take vn(s, t) = w(t), a polynomial of degree n in i, then (9) becomes
rt\ fti  / /-Sout(t) \

(10) /     KoutW - «fc,in(0]t«(í) dt= / /(a, Í) ds    w(t) dt.
Jto                                                                Jto    \Jsia(t) )

But for a type II triangle, w(t) is an arbitrary element in the range of Pout. Thus
/•Sout(t)

poutKout(i) - Ufcito(0] = Pout / /(a, i) ds,
•/Sln(t)

which is equivalent to the desired result.
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78 GERARD R. RICHTER

(ii) The exact solution to (1) satisfies

/•«out(t)

(H) tlout(í) = «in(0 +  / /(«, t) ds.
Jsir,(t)

We obtain part (ii) of the lemma by applying Pout to (11), replacing P0ut«in by
PoutPin"in (valid because range(Pout) C range(P¡n) for a type II triangle), then
subtracting (6).   D

LEMMA 2.3.   For a type I triangle,

(12) e-ut(t) = ern(t) + v(t),

where

(13) (i)     PiDv(t) = 0    (thus v(t) 1 e," (i)),
(14) (ii)   M<cä*+1/2|M|„+1.

Proof, (i) (10) remains valid for a type I triangle, but now w(t) is an arbitrary
element in the range of P¡n. Thus

(15) JWi0ut(t) = "fc.inW + fin / ' /(*, t) ds.

To (11) we apply P¡n, then write Pinu0ut = finPoutUout, and subtract (15). The
result is (i).

(ii) Consider the effect of replacing / in (8) by Pn_i/. [For the degenerate case
n = 0, we define P_i = 0.] The solution u*h(s,t) to (8) would become

(16) U'h(s,t) = Ufcjt) +  f Pn-lfds,
Jsin(t)

which has no discontinuity across the inflow boundary. This can be shown by direct
substitution into (8). Moreover, the stability result (5) applied to u£ — un yields

{17) Kout - u".°utl < ch^ui - pn_x)/||
<Chn+1l2\\f\\n<Chn+1'2\\u\\n+l.

Thus,

(18) «Mut(0 = «fciinW+r    l Pn-ifds + e,        |c-|<C/i"+1/2||U||n+1.
•'Sin(t)

The exact solution can be written in an analogous form:

/•«out(t) rsout(t)

(19) «out(0 = «in(0+ / Pn-ifds + e',        e'= (I-Pn-i)fds.
Jsin(t) Jsin(t)

To (19) we apply Pout,

/•Sout(t)

(20) Pout «out = Pinttin + (Pout - Pin )"in +   / P„_l/ds + Pout£',
Jsin(t)
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DISCONTINUOUS GALERKIN METHOD FOR HYPERBOLIC EQUATIONS 79

where we have used the fact that f„Sou,!l   Pn-if ds is in the range of Pout for a type
''Sin \l)

I triangle. We then bound (Pout - Pm)uin and Poute' as follows:

IP      c'l mav ((I - Pn-l)f,Vh(t))Pout^   = max -¡—j-r-.-
vh(t)€iznge(P0»t) \Vh(t)\

||(J-fi,-i)/|||Mf)||
< max -¡—T-T-.-

«h(t)€range(Pout) \vh(t)\

< Ch^2\\(I - Pn-O/H < C/l"+1/2||u||n+1,
KPout - fin)«ln| < |(/ - Pout)Uin| + |(/ - fin)Win|

< 2\(I - Pin)uin|    (since range(Pin) C range(Pout)

for a type I triangle)

< 2|u — u/|rln(r),        ui = standard interpolant for u in Pn(T)

<Chn+1^2\\u\\n+i.

Subtracting (18) from (20) and applying the above bounds, we obtain (ii).    D
The preceding lemmas lead to an 0(hn+1/2) error estimate for tt/, over an arbi-

trary triangulation of U. For, on a type I triangle, via (12)-(14),

(21) |e-ut|2 = lefj2 + \v\2 < K|2 + Ch2n+1\\u\\2n+1,

and, on a type II triangle, via (7),

(22) |e-ut|2 < |e-|2.

Assuming that, at a certain point, Uh has been developed in Qj Ç Q, we sum (21)
and (22) over all the triangles of Qj to obtain

(23) leöutlLtiA) < K\L(v,) +Ch*"+l\\u\\l+lxli.
Thus, if u^" |r,„(n) is chosen to be a standard interpolant of the given initial data,

KoUtlrout(nJ)<C/i"+1/2||u||n+1,nJ,

which implies
l«-«hlrout(ny)<C/in+1/2|H|n+1,nj.

An analogous interior estimate,

(24) ||ü-«h||n,<CÄn+1/2|H|n+1,ni,

can then be obtained by a suitable application of Lemma 2.1. This result has
already been obtained by Johnson and Pitkäranta [2] using variational and Fourier
analysis techniques. We shall use our approach to show that u/, converges at a rate
0(hn+1) under certain conditions. The key observation is that (22) fails to exploit
any potential damping of the error as it is projected across a type II triangle via
(7). We proceed with the development of a mechanism which accounts for this.

Consider the situation where there are two adjoining type I triangles T and a
translate 7\ = {(s + k,t + h) | (s,t) € T}, as shown in Figure 2.2. For a function
w defined on T U Ti, we define

Aw(s, t) = w(s + k,t + h)- w(s, t),        (s, t) e T.
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Figure 2.2

Via superposition, we may regard Au on T as the solution of

(Au)a = A/,
Au = Auin   onrin(T),

and Au/, as its finite element approximation. Thus from Lemma 2.3, we infer that

Ae-ut(í) = Aer(í) + At;(í),

where
|A«| < CAn+1/2||A«||n+1.

Let us denote by (s*,t*) the coordinates of the common vertex of T and Ti. Then

l|Au||2+1 =      ¿2      \\(Dk<s + *.* + *)- Dku(s*,f))
0<\k\<n+l

-(Dku(s,t)-Dku(s*,t*))\\2

<2      £     {\\Dku{ait)-Dku(s*,n\\T0Tl}2
0<|fc|<n+l

< eh2    ¿2    II^^IItut,
l<|fc|<n+2

<^2|H|»+3,ruTl.
We summarize as follows:

LEMMA 2.4. For a type I triangle T with an adjoining translate Ti as in Figure
2.2,

Ae-ut(í) = Aer(í) + At,(í),
where

\Av(t)\<Chn+V2\\u\\n+2,TUTl.

3. Error Estimate for a Semiuniform Triangulation. We now extend the
results of Section 2 to an entire triangulation, constructed as follows. We take
fi = [0,27r] x [0,1] as the domain of (1) and assume periodicity with respect to the
first variable, so that only an initial condition u(x,0) is needed. We partition fi
into layers

(25) Sj = {(x,y)e{0Mx[yj,yj+i]},       j = 0,...,m-l,
where 0 = yo < yi < y2 < • • • < Vm = 1- We then divide each layer into "half-
layers" of congruent type I and type II triangles, as shown in Figure 3.1. The finite
element solution can be thought of as developing a half-layer at a time, and in
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f- y = yj+\
y = y}
y = Vj-i

FIGURE 3.1

parallel over the triangles comprising each half-layer. Note that all the triangles in
this triangulation of fi have the same horizontal side length. We shall consider a
family of such triangulations satisfying two additional conditions:

HI. The angles of all triangles of fi are uniformly bounded away from zero.
H2. |a • n\ is uniformly bounded away from zero.
We also need some new notation. We denote by P, the I2-projection into (in

general, discontinuous) piecewise nth degree polynomials in t with respect to the
grid points along y -yj, and by Qj the analogous projection into piecewise con-
stants at level j. We then define

«j(0 = «Iot,,    tt¡^(í) = ul\y=y¡,    ej(t) = PjUj{t) - u~hj(t),
and, for an arbitrary function Zj(t) defined along y = y¡, Azj(t) = Zj(t + h) -
Zj(t). In general, a subscript j, as in z3(t), will denote a piecewise nth degree
polynomial with respect to the grid points along level yj. Similarly, Zj+x/2 will
signify a piecewise nth degree polynomial with respect to the outflow boundary of
the type I portion of Sj. Finally, we denote by \zj\ the ¿2-norm of Zj(t) over level
j-

By applying Lemmas 2.2-2.4 to the j'th layer we obtain

LEMMA 3.1.   There holds

(26) «7+iW - P} + i(e~(t) + v] + 1/2(t)),
where

(27) O)      K+1/2|<C/l"+1/2||u||n+1,Sj,

(28) (ii)     QjVj+1/3 = 0,
(29) (m)    |A^+1/2|<Cn"+3/2||u||n+2,Sj.

Our strategy for establishing an 0(hn+1) convergence rate will involve showing
that the influence of Vj+i/2 declines exponentially as the solution advances beyond
the j'th layer. At a given level, the cumulative effect of all previous uJ+i/2's will then
be that of a geometrically decaying sum. Observe that if Zj(t) is a nonvanishing
piecewise polynomial at level ; satisfying Q3Zj = 0 and Azj = 0 (implying that Zj(t)
has period h), then zj+i = Pj+xzj satisfies |2j+1| < \Zj\. Further, Qj+izj+1 = 0
and Azj+i = 0, so subsequent projection onto a new level will produce additional
damping. Our situation is similar, although complicated by the fact that \Avj+1/2\,
while small in relation to |w>+1/2|, is in general nonzero. In the following lemma,
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R L R
FIGURE 3.2

we maintain e~(t) inductively in the form e~(t) = Wj(t) + rj(t), where QjWj = 0,
and monitor the growth of Wj, Awj and Tj.

LEMMA 3.2.   Suppose e~(t) has a representation

e-(t) = w](t) + r](t),

where QjWj = 0. Then, by (26) and (28), e~+1(t) can be represented as

ej+1(t) = Wj+i(t) + rj+1(t),

where

(i) Qj+iWj+i = 0,
(30) (ii) \wj+i\ < X\wj\ + \vj+i/2\,

(31) (iii) |A™j+1|<A|A^| + |Aí;j+1/2|,
(32) (iv) [rJ+1| < |r,| + |Avi+1/2| + lAwyl,

where X < I is a constant, independent of h.

Proof. By projecting the grid points along y — yJ+i backward to y = yj along
characteristics, we partition the subintervals of y = yj into left and right sections,
as indicated in Figure 3.2 by L and R. We define

(33)
Wj + l/2{t) = |

y vj+i/

Wj(t), teL,
Wj(t + h),      teR,
Vj+i/2(t), teL,

vj+i/2(t + h),       teR.
Note that

(34) K+i/2 - wj\ < \Awj\,        \vj+i/2 - Vj+i,2\ < \Avj+i/2\

We set

(35) Wj+i = Pj+i(wj+i/2 + %+i/a),
(36) rj+i = Pj+i(rj + Wj - wj+1/2 + vj+1/3 - vj+1/2).

Using (26) and the assumed representation for e~, we obtain

ej+1 = Pj+i(wj + Tj + vj+i/2) = wj+1 + rj+i.

We now prove (i)-(iv).
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(i) We regard Wj+i/2(t) as being defined on the inflow to the type II portion of
Sj (its discontinuities lie at the grid points of this "half-level"). Note that in Figure
3.2, Wj+i/2\rin(T2) arises from ti>j|rin(ri) by "breaking off" the right section of the
latter and "appending" it on the left. Thus

/ wj+i/2(t)dt= / Wj(t)dt,
Jr¡n(T2) Jr^Tt)

and QjWj = 0 implies that Qj+iWj+1/2 = 0.   Analogously, one may show that
Qj+iVj+1/2 = 0. Thus Qj+iWj+i = Qj+i(wj+i/2 + Vj+i/2) = 0.

(ii) If Wj+i/2(t)\r,n(T2) 1S a polynomial (as opposed to a piecewise polynomial),
then it must vanish identically. For, if Wj+i/2(t)\T¡ntT2) is a polynomial, then

m -={wj(t), t e rin(Ti),
1 Wj(t + h),        t€Tia(T)

must be a polynomial on r¡n(T) ur¡n(T1), with £j|rln(r) and £j\r,„(Ti) periodic
images of each other. This is impossible unless £¿ = constant. But QjWj = 0,
so Çj s 0, which implies that %+i/2(i)lrin(r2) = 0. Hence «y+i/a(*)lr,.(J\i)i if
nonzero, is not a polynomial and will therefore undergo a decrease in norm when
projected onto rout(T2). Thus,

(37) |P;-ri%ri/2lrollt(:r2) < A|ty+i/3lri.(3fc) = ^Klrin(r,),    X < 1.
Moreover, the constant X may be taken to be uniformly less than one and indepen-
dent of h, in view of Assumption H2. Application of (37) over the entire layer then
yields

\Pj+iwj+i/2\ < X\wj\,
which, with (35) and the fact that

Ifiy+ify+i/al < Ify-n/al = K+1/2I,
proves (ii).

(iii) This is analogous to (ii) and follows in the same way via superposition,
(iv) This follows from (36) and (34).    D
The solutions of (30)-(32) are

y-i
KI<A>ol + £AfcK-*-i/2l'

fc=0
j'-i

|Awj-| < Aí'lAtuol + £ Afc|A^_fc_1/2|,
fc=0

3-1
|ry|<|r0| + £(|At;fc+1/2| + |Awfc|).

fc=0
Thus,

\wj\ < X]\w0\ + --r    max    \vk+1/7\,(38) l-Ao<fc<,-i

\Awj\ < X3\Aw0\ + j—^o<max_i \Avk+i/2\,

1 2 — A
(39) |r,-| < |r0| + ^—^|Aw0| + —-j o<max_i |A«fc+1/a|.
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Summation of (38) and (39) yields

\ej\ < X'\wo\ + —-r\Aw0\ + |r0|

(40) !        ~A ,
+ T^x \o<m|?-ilVk+1^ + {2~x)jo<mg-i lA^+i/2l} •

We now set
w0 = (I - Qo)eô,        r0 = Q0eö

so that, at level 0, the premise of Lemma 3.2 is satisfied. Then

hol < köI,    lrol<leo~l>    |Au>o| <2|e¿"|.
Substituting these bounds into (40) and applying (27) and (29), we obtain

LEMMA 3.3.   The error at level j satisfies

K"! * ITA {4|eû I +Ch"+1/2   (0<m^_x Mn+l,Sk
(41) ~-3 ,.

+jho<m2f-iMn+2's')j-

We now make the regularity assumption
H3. ||u||„+2,Sj < Cy/h\\u\\n+2,n,

implying, in a sense, that ||u||n-r2,n is distributed uniformly over the layers of Q.
We also assume that the finite element solution at level 0 is a standard interpolant
of the exact initial condition, so that

|eöl<Cft"+1/2||u||n+lSo.

Using the fact that there are 0(/i_1) layers in all (implied by Assumption HI), we
conclude that

max  |e-|<CfcB+1||u||n+a,n,
0<j<m    J

and, as a result,

(42) max  |t£ - u\y=Vj < CÄn+1||«||„+a.n.

To obtain an interior estimate of the error in un, we write (2) in the form

{(uh)a,Vh)- /        («a -ul)vhan = (ua,vh),
Jrin(T)

and note that for the standard continuous nth degree piecewise polynomial inter-
polant uj ss u,

{{ui)a,vh)- /        (uj-uj)vha-n = ((u¡)a,vh).
JTin(T)

Subtracting, we obtain

((un - u/)Q, vn) - / [(uh - u/)+ - (uh - U[)-]vna  n = ((u- u/)Q, vh).
Jr,B(T)

Application of the local stability result (5) over the triangles in Sj then yields

||«h - «/||s, < C{\fh\ul - u-¡\y=yj + h\\(u - u¡)a\\s¡}
< C{/i"+3/2||u||n+2,n + fcn+,|Nln+iA},
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using (42) and relevant approximation properties of u¡. Thus,

K - u/|ß < C{mÄ2"+3||«||2+3,n + ft2n+2||u||2+1>n}
<C7A2n+2||«||2+2,n

and
||«fc - «||n < K - u/||n + 11«/ - «||o < Cftn+1||u||n+2,n.

We summarize as follows:

THEOREM 3.1. Under Assumptions H1-H3, the discontinuous Galerkin ap-
proximation Uh satisfies

(43) \\uh - u||n + „max |t£ - ti|tf=s> < Chn+1 ||u||n+2,n-
0<j<m

We conclude this section with several remarks. We note first that the 0(hn+1)
error estimate is a result of the damping which accompanies projection of the error
from the grid at one level to the interlacing grid at the next level. Specifically, the
fact that QjWj = 0 in the representation e~(t) = Wj(t) + rj(t) implies that Wj is
highly oscillatory and hence damped by Pj+i- Our computational experimentation
indicates that the 0(hn+1) convergence rate is not confined to the assumptions
made in our analysis, and that it can occur even for irregular triangulations. We
believe that the basic mechanism involved is the damping of an oscillatory error
via (7). Some of our assumptions were motivated by ease of exposition rather than
necessity, e.g., that of a periodic domain. Also, H2 is not essential, for in the limiting
case where a ■ n = 0 in a layer Sj, Pj+i = Pj and (26) becomes e~+1(t) = e~(t)
(because Lemmas 2.2-2.4 imply that PjVj+x/2 = 0). Thus, there is no growth in
the error over such a layer.

4. Computational Results. We use as a test problem

/„ .x 1 du     v/3 du . .    ,
(44) 2äi + l-^ = 0'        «€(-00,00), *> 0,

with u(x,0) a cubic B-spline with knots at x = —1, —.5, 0, .5, 1.0 and maximum
value 1 at x = 0. The exact solution is thus the same cubic B-spline, propagated
along characteristics at an angle of 60° with the z-axis. We triangulate fi by means

TABLE 4.1
l? errors; piecewise constant approximation

Ax   error at y = 1     ratio     error at y = 2     ratio

1 .5338 **** .5803 ****
.5 .3383 1.58 .4166 1.39

.25 .2156 1.57 .3009 1.38
.125 .1267 1.70 .1969 1.53

.0625 .6989(-l) 1.81 .1175 1.68
.03125 .3693(-l) 1.89 .6524(-l) 1.80

.015625 .1902(-1) 1.94 .3458(-l) 1.89
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of a uniform set of right isosceles triangles with their hypotenuses parallel to the
i-axis, producing a configuration similar to that depicted in Figure 3.1. Table 4.1
shows the L2 error in the piecewise constant discontinuous Galerkin approximation
at y = 1 and y — 2, as well as ratios of successive values of the error as the subin-
terval size Ax is repeatedly halved. The exact solution has sufficient smoothness to
make the estimate (43) applicable, and the results are consistent with the predicted
0(h) rate of convergence.

Table 4.2 shows the analogous computational results for the case of piecewise
linear approximation. Again, the optimal order of convergence is occurring, as
predicted.

TABLE 4.2
L2 errors; piecewise linear approximation

Ax   error at y = 1     ratio     error at y = 2     ratio

1 .2597 * * * * .2650 * * * *
.5 .7253(-l) 3.58 .1061 2.50

.25 .2109(-1) 3.44 .2598(-l) 4.08
.125 .5164(-2) 4.08 .5784(-2) 4.49

.0625 .1279(-2) 4.04 .1351(-2) 4.28
.03125 .3173(-3) 4.03 .3248(-3) 4.16

.015625 .7982(-4) 4.02 .7977(-4) 4.07

To illustrate that the optimal order of convergence may occur even for nonuni-
form triangulations, we randomly perturbed each triangle vertex, the x coordinate
by as much as .löAz, and a proportionate amount for the y coordinate, and re-
peated the experiment. The L2 errors in the piecewise constant and piecewise lin-
ear discontinuous Galerkin approximations are shown in Tables 4.3 and 4.4. They
again indicate an optimal order of convergence. We have not conducted a thorough
study of the conditions under which the optimal order of convergence occurs, but
this phenomenon appears to be quite robust.

TABLE 4.3
L   errors; piecewise constant approximation; randomly perturbed grid points

Ax   error at y = 1     ratio     error at y — 2     ratio

1 .5382 * * * * .5867 * * * *
.5 .3402 1.58 .4153 1.43

.25 .2212 1.54 .2964 1.40
.125 .1238 1.79 .1946 1.52

.0625 .6906(-l) 1.79 .1152 1.69
.03125 .3631(-1) 1.90 .6367(-l) 1.81

.015625 .1866(-1) 1.95 .3365(-l) 1.89
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TABLE 4.4

L2 errors; piecewise linear approximations; randomly perturbed grid points
Ax   error at y = 1     ratio     error at y = 2     ratio

1 .2412 * * * * .2497 * * * *
.5 .7649(-l) 3.15 .1040 2.40

.25 .2074(-l) 3.69 .3198(-1) 3.25
.125 .6473(-2) 3.20 .6124(-1) 5.22

.0625 .1410(-2) 4.59 .1498(-2) 4.09
.03125 .3615(-3) 3.90 .3663(-3) 4.09

.015625 .8889(-4) 4.07 .9655(-4) 3.79
Appendix. We briefly consider a variant of the discontinuous Galerkin method

in which Uh is defined by (2) in type II triangles, and by

.    , {{uh)a,vh) = (f,vh),    ailvhePn-i{T),
u+ = t£    onrin(T)

in type I triangles. We assume n > 1 so that the inner product conditions in (45)
are nonvacuous. Since the approximate solution u/, is now continuous along the
inflow to type I triangles, it has fewer degrees of freedom; thus type I triangles
yield smaller linear algebraic systems. This could produce a possibly significant
saving in computational expense for small values of n. For example, with n = 2,
(45) reduces to a linear system of order 3 vs. 6 for the discontinuous Galerkin
method.

To obtain a closed form representation for Uh in a type I triangle T, observe that
the inner product conditions in (45) are equivalent to

(Uh)a = P„_l/.

Integration along characteristics then yields the unique solution

(46) «fc(*.0=«fcin(0+/        Pn-ifds, (s,t)eT.
Jsin't)

As noted in the proof of Lemma 2.3, the discontinuous Galerkin method will produce
the same approximate solution as the above (cf. (16)) if (/ - Pn-i)f — 0 in T. In
particular, for the homogeneous version of (1), / = 0, there is no difference between
the two solutions.

To analyze the error in the modified scheme, we evaluate (46) at sont(t),

(47) «Mut(*)=ufc,inW+r       Pn-ifds,
•'Sin M

then apply Pout to (11):
/•«out(t)

(48) Pout «out (Í) = finUin(t) + (Pout " fin)«in(<) + fimt  / fds.
Jsin(t)

Subtracting (48) from (47), we obtain

eô»t(t) = ei-D(t) + v(t),
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where
/•«out(t)

V(t) = (Pin - Pout)ttin(0 + Pout  / (fi»-l - I)fds.
JßinW

As in Lemma 2.3,
H < C7Än+1/2|M|„+i,r.

However, in place of (13), we have a weaker orthogonality condition,

(49) P*av(t) = 0,

where Pm is defined to be the L2 projection into polynomials of degree < n — 1
on r¡n(T). [In obtaining the above relation, we have used the fact that,
for a polynomial w(t) of degree < n — 1, {w(t), J^VÁ (I - P„_i)/ds) =
fT w(I - Pn-i)f — 0.] As a result of the reduced orthogonality, we have only

(50) |e0-ut|2 < (1 + 0(h))\e7n\2 + Cn2"||u||2+1,r

(using the arithmetic-geometric mean inequality) instead of (21). When combined
with (22), inequality (50) leads to an 0(hn) estimate for the I? error in u&.

However, the 0(hn+1) estimate (43) remains applicable to the modified method
under the same assumptions as for the fully discontinuous method. This follows
from the observation that Lemma 2.4 is still valid, and the fact that the orthogonal-
ity condition (49) is sufficient to make QjVj+1/2 = 0 (cf. (28)) for the semiuniform
triangulation of Section 3. Thus, all the analysis in Section 3, and in particular
Theorem 3.1, apply to the modified method.
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