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An Optimal-Order Multigrid Method for
PI Nonconforming Finite Elements

By Susanne C Brenner

Abstract. An optimal-order multigrid method for solving second-order elliptic bound-
ary value problems using PI nonconforming finite elements is developed.

1. Introduction. Let fi be a convex polygon in R2. Let / e L2(Vl), a 6 C1(Q)
and ß e C°(fi). We assume there exist constants an, ßo such that a > a0 > 0 and
ß > ßo, where ßo depends on the boundary condition. In this paper we develop an
optimal-order multigrid method for solving the Dirichlet problem (ßo = 0)

-V-(aVu) + ßu = f inn,
u = 0 on of]

and the Neumann problem (ß0 > 0)

-V ■ («Vu) +ßu = f in fi,

— = 0   on oil,
on

using PI nonconforming finite elements (cf. [3], [4], [10]).  We refer the reader to
[1], [7] and [9] for conforming multigrid methods. As in [1], our multigrid method
will be described in a coordinate-free fashion.

Our method consists of smoothing on the current-grid and coarser-grid correc-
tion, as in the conforming multigrid method. The important difference in the non-
conforming case is that Vk-i <£ Vk, where VVs are the finite element spaces on mesh
level k. Hence we can no longer simply use the natural injection for the intergrid
transfer of grid functions. The key idea is to define an operator Ik-1 : Vk-i -* Vk
that reduces to natural injection on continuous piecewise linear functions. By doing
so, we can use the well-known analysis of the conforming multigrid method. We
will show that the approximate solution satisfies the same type of error estimates
as the discretization error and that it can be obtained in cf(n) steps, where n is
the dimension of the discretized finite element space. Since our intergrid transfer
operator does not preserve either the energy or the L2-norm, the standard proof of
convergence (cf. [2]) for the 2^-cycle does not carry over directly. We will there-
fore only discuss a W-cyc\e method, even though the 2^-cycle method may be
convergent.

The paper is organized as follows. We begin with a discussion of the notation and
fundamental estimates from the theory of finite elements. The intergrid transfer
operator is discussed in Section 3. Section 4 contains the results on the contracting
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2 SUSANNE C. BRENNER

property of the fcth level iteration followed by the convergence theorems for the
nested iteration in Section 5. The singular Neumann problem (ßo = 0 in (1.2))
will be treated in Section 6. A piecewise quadratic nonconforming finite element is
discussed in the last section.

2. Preliminaries and Notation. Let V = W2 (0) for the Neumann problem
(1.2) and V = {v e W¡(Q): v\an = 0} for the Dirichlet problem (1.1). Here,
^(fi) denotes the usual Sobolev space (cf. [3]). The variational formulation for
(1.1) and (1.2) is to find u e V such that

(2.1) a(u,v)=F(v)    V«eV,

where

(2.2) a(u,v)= / aVit • Vv + ßuv   and   F(v) = / fv.
Ju Jet

Let {^k}, k > 1, be a family of triangulations of ii, where ¿7~k+1 is ob-
tained by connecting the midpoints of the edges of the triangles in ¿Tk. Let
hk := maxTe^*diamT (therefore hk = 2hk+i). Then there exist positive con-
stants C\,C2, independent of k, such that

(2.3) C2h2k < \T\ < Cih\   VT <= ̂k,

where \T\ denotes the area of the triangle T. These constants depend only on the
angles that appear in AT1. Throughout this paper we let C and d denote generic
constants independent of k.

For the Dirichlet problem (1.1), define the finite element space

Vk := {v : v\t is linear for all T e ¡Tk, v is continuous at the midpoints
of the edges and v = 0 at the midpoints on dU} .

For the Neumann problem (1.2), we define Vk similarly but without any restrictions
on v along the boundary of Í2. Note that functions in Vk axe not continuous. In
other words, Vk is a nonconforming finite element space.

We also use a conforming finite element space for our analysis. Define

(2.5) Wk := {w: w\t is linear for all T efTk,w is continuous

on Ü and w\gçi = 0}

for the Dirichlet problem (1.1). For the Neumann problem (1.2), we make no
assumptions on w along the boundary of Í1 The space Wk will only be used to
obtain our theoretical estimates. We emphasize that it will not play any role in the
actual multigrid algorithm. Observe that Wk = Vk D V = Vk (~l Vfc+i.

Let {<pk,..., <j>nk} be the basis of Vk such that each <pk equals 1 at exactly one
midpoint and equals 0 at all other midpoints. For any linear functions x¡), <j> on a
triangle K,

(2.6) I M=\\K\ (¿tfKMmO J ,
where the m¿'s are the midpoints of the sides of K (cf. [3, p. 183]). It follows that
the <pi$ are orthogonal with respect to the L2-inner product.
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AN OPTIMAL-ORDER MULTIGRID METHOD 3

Similarity is an equivalence relation on triangles. For each equivalence class M,
there exist constants Cc% > 0 and C'^ > 0 such that for any triangle T e 9? and
v e ¿P\(T), the space of first-degree polynomials on T, we have

Qjr&{v) < Í \Vv\2 < C'^S(v).

Here, Q(v) = [v(mi)-v(m2)]2 + [v(m2)-v(m.3)]2+[v(rn3)-v(rni)]'2 andmi,m2,m3
are the midpoints of the sides of T. Since any triangle in ETk (k = 1,2,... ) is similar
to a triangle in AT1, there exist C73,C4 > 0 such that

(2.7) C3G(v) < Í \Vv\2 < C4S(v)

for any v G £P\(T), T 6 ¡Tk, k = 1,2, — Moreover, as a consequence of (2.3),
(2.6) and (2.7), there exists C > 0 such that

(2.8) Í \Vv\2 <_ChZ2i
'T

loxvea°i(T) andTe^*.
For each k, define (on Vk + W¡(Q))

(2.9) ak(u,v) :=   Y       (aVu-Vv + ßuv)
T€.Tk Jt

and

(2.10) ||u|U := y/ak(u,u).

The bilinear form ak(-, •) is obviously symmetric and positive definite on Vk. The
stiffness matrix representing ak(-, ■) with respect to the basis {cj>\,..., 0* } has at
most five entries per row. As a consequence of (2.8), we have

(2.11) \M\k<Ch^\\u\\L2   VueVfc.
We also note that if u,v 6 W^^ï), then ak(u, v) = a(u,v).

We now recall some fundamental estimates from the theory of finite elements.
Let Ilk and Life be the interpolation operators associated with Vk and Wk, re-

spectively. If u e W2 (Q), we have the following estimates for the interpolation
error:

(2.12) ||u - nH|L2 + Ml« - fíku\\k < ch2k\\u\\W2
and

(2.13) ||u - Ûku\\Li + hk\\u - ilku\\k < Ch2k\\u\\W2

(cf. [3]).
Since / e L2(Q), elliptic regularity implies that u e W^(Q) (cf. [6]). For the

same /, let uk e Vk satisfy

ak(uk,v) = I fv   Vue Vk
Ju

and let ùk e Wk satisfy

ak(ùk,v) = / fv   VveWk-
Jn
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4 SUSANNE C. BRENNER

Since Vjt satisfies the patch test (cf. [8], [10]), we have the following estimate for
the discretization error:

(2.14) ||u - u*:||L2 + hk\\u - uk\\k < Ch\\\u\\W2

(cf. [4], [10]). The estimate for the conforming discretization error is, of course, well
known (cf. [3]):

(2.15) ||u - ùfc||L2 + hk\\u - «fcHfc < CA^IItxIlwi.

In [1], it was shown that ük could be calculated by an iterative procedure to within
an accuracy comparable to the error estimated by (2.15) using an amount of work
that is proportional to the number of unknowns, namely the dimension of Wk. Our
main goal in this paper is to prove a corresponding result for the computation of
Ufc-

From the spectral theorem, there exist eigenvalues 0 < Ai < A2 < • • • < X„k and
eigenfunctions ipi, 1P2, ■ ■ ■, tpnk e Vk, (ipi, iPj)l2 — ̂ ij (= the Kronecker delta), such
that ak(i¡)i,v) = \i(il>i,v)L2 for all v e Vk. From (2.11), there exists C5 > 0 such
that

(2.16) A, < C5hk2.

If v e Vk, we can write v = Y^¡=\ ui^i- The norm |||u|||s,fc is defined (cf. [1]) as
follows:

(2.17) IIMIk* := (X>i A?\¿=i
Note that |||u|||o,fc = \\v\\l* and |||u|||i,fc = ||u|U-

Finally, it follows from the Cauchy-Schwarz inequality that

(2-18) |afc(i;,«;)| < |||u 111 n-t,fc I ! I^f 1111—* ,A:
for any t € R and v, w e Vk.

3. The Intergrid Transfer Operator. For v e Vk-i the intergrid transfer
operator Ik_x : Vk-\ —> Vk is defined as follows. Let p be a midpoint of a side of a
triangle in ATk. If p lies in the interior of a triangle in ATk~x, then we define

(Ikk-1v)(p):=v(p).

Otherwise, if p lies on the common edge of two adjacent triangles Tx and T% in
ATk~l, then we define

(Ik-Iv)(p)--=2¡V\TAP)+V\T2(P)}-

Note that the matrix for Ik_¡ with respect to the bases {4>k~1, ■ ■ ■ 10*^-1} an<^
{4>k,.. -, 4>nk} has at most five entries per row.

From the definition of Ik_ j, it is clear that

(3.1) ikk_xv = v  Vv e Wk-i =vkn vk-i ç v.

In other words, Ik-i\wk-i is just the natural injection.

1/4

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



AN OPTIMAL-ORDER MULTIGRID METHOD 5

LEMMA 1.   There exists C > 0 such that

(3-2) ||Jfcfc_if||* < CM*-,
and

(3-3) \\lS-iv\\ifl < CM»
for allv e Vjt_i.

Proof. The inequality (3.3) follows immediately from (2.6), the definition of Ik_x
and the quasi-uniformity of the triangulations.

Inequality (3.2) can be deduced from (3.3) as follows. Given v G Vk-\, define
geVk-i by

(3.4) ¡ g<p = ak-Á[v,(¡>)    V0GVfc_,,
Ju

weWk-i by

(3.5) ak(w,<t>)= Í g<t>   V<t>eWk-u
Ja

and z e V by

(3.6) a(z,<f>) = [ g<t>   V<A e V.
Jn

Then (3.3), (2.11), (2.14), (2.15) and elliptic regularity imply that

\\Ikk-iv\\k<\\Ikk-i(v-w)\\k + \\w\\k

< CÏÇ'IUÊ-it« - *>)\\l* + II«; - «lU-i + Nl*-i
(3.7) <chj;lp-v>\\tfl + Mk-i

< Chkl\\\v - z\\l* + \\w - z\\L2] + \\vWk-x

< Chk\\z\\W22 + \\vU-, < Chk\\g\\L2 + \\vh-i.
But

\\g\\h = ak-Av,g) < \\v\\k-i\\g\\k-i < C/i^ijIvIlk-iUfflI^.
Therefore,

(3.8) IMU»<e*iiiNU-i.
Combining (3.7) and (3.8), we obtain (3.2).    D

4. Contracting Properties of the fcth Level Iteration. The fcth level
iteration with initial guess zq yields MG(k, zo,G) as an approximate solution to
the following problem.

Find zeVk such that ak(z, v) = G(v) Vw G Vk, where G G V¿.

For fc = 1, MG(1, zo, G) is the solution obtained from a direct method. For k >
l,MG(k,Zo,G) = zm + Ik_xqp, where the approximation zm G Vk is constructed
recursively from the initial guess zo and the equations

(zí -Zi-i,v)L2 = (Afc)_1(G(c>) -ak(zl-1,v)),    Vu G 14, 1 < i < m.

Here, A* = C^hk2 (cf. (2.16)), which is greater than or equal to maxi<¿<„t A¿,
and m is an integer to be determined later.   With respect to {4>k,... ,(¡>k },zm
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6 SUSANNE C. BRENNER

can be obtained from zq by iterating a sparse band matrix because the <j)k 's are
L2-orthogonal. The coarser-grid correction qp G Vk-i is obtained by applying the
(k — l)-level iteration p times (p = 2,3). More precisely,

<7o =0,
qi = MG(k-l,qi-i,G),        l<i<p,

where G G Vk'_x is defined by G(v) := G(I^_xv) - afc(2m, Jj^v) Vu G Vk-v
The main result in this section is the following theorem.

THEOREM 1. // the number of smoothing steps is large enough, then the kth
level iteration is a contraction for both the energy norm and the L2-norm. Moreover,
the contraction number is independent of k.

Theorem 1 is a trivial consequence of the following lemmas. In order to simplify
the notation, we define the statements

(Sk) :  When the fcth level iteration is applied to the problem of finding z G Vk

such that ak(z,v) = G(v) Vu G Vfe, we have \\z — MG(k, zo,G)\\k <

l\\z- Z0\\k,

and
(Sk) ■  When the fcth level iteration is applied to the problem of finding z G Vk

such that ak(z,v) = G(v) Vu G Vk, we have \\z - MG(k, zo,G)\\l,2 <

l\\z - zoWl* ■
LEMMA 2. There exists 7 G (0,1) and an integer m > 1, both independent of

k, such that
(Sk-i)    implies    (Sk).

LEMMA 3. There exists 7 G (0,1) and an integer m > 1, both independent of
k, such that

(Sk-i)    implies    (Sk).

Our analysis is based on estimates of the following errors. Let eo := z — zo,
em := z — zm and e¡ := z - MG(k, z0, G). Also let e G Vit—1 satisfy

(4.1) ak-i(e,v) = G(v)=ak(em,Ikc_1v)    VuGVfc_i,

and let è G Wk-\ satisfy

(4.2) ak-i(ë,v) = G(v) = ak(em,l£_1v)=ak(em,v)   VveWk-i.

As in the conforming case (cf. [1]), we have the following effects of the smoothing
steps.

LEMMA 4.   There exists C > 0 such that

(4.3) ||em||L2 < ||e0||¿2,

(4-4) ||em|U < lleolU
and

(4.5) |||cm|||a,fc < Chk 1m-1/2|||e0|||i,fc = Chk 1m-1/2||e0||fc.
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AN OPTIMAL-ORDER MULTIGRID METHOD 7

From (4.1) and (3.2) we have

llellfc-i =ak(em,Ik-ie) < llem|UP£-ieIU < C||em|UI|e|U-i.
Therefore, there exists C > 0 such that

(4.6) ||e||fc-i<C||eJ|fc<C||eo||fc.

Since e and ë are approximate solutions in different spaces to the same problem
(cf. (4.1) and (4.2)), they are close to each other.

Lemma 5.   There exists C > 0 such that

(4.7) \\e-ë\\L2<Chkm-^2\\e0\\L2

and

(4.8) He-ellfc-i^Cm-^IMIfc.
Proof. Let /o G Vk-i satisfy

(fo,v)L2 = ak(emJk-iv)   Vu G Vk-\.

It follows from (2.18) and (3.2) that

ll/o|lz,2 = o,k(em,Ik-ifo) < |||em|||2,*;|||4-i/o|||o,fc
<C|||em|||a,fcj|/o||L».

Therefore,

(4-9) 11/olU» < CIIMHa,*.
Let u0 G W^(ü) satisfy

-V • (aVu0) + ßvo = /o   in fi,        u0 = 0   on dfl        ( -p- = 0 on dU J

in the Dirichlet (Neumann) case. Note that e and ë are the finite element (Galerkin)
approximations to urj in Vk-i and Wk-i, respectively. By (2.14) and (2.15), we have
||t>o-e||L2 + rifc-i||i>o-e||fc-i < C/i^jIIuoIIh'I and ||u0-ê||L2 +hk-i||t>o-ê||k-i <
Chl.JvoWw*.

Since hk-i = 2hk, it follows from the triangle inequality that

||e - èllx.2 + hk\\e - e||*-i < C^fcll^o||w|•

By elliptic regularity, ||vo||vv2 ^ CII/olU2- Therefore, from (4.9) we obtain

(4.10) ||e - ë||L2 + hk\\e - ë\\k-i < Ch2k\\\em\\\2,k.

The inequalities (4.7) and (4.8) now follow from (4.10) and (4.5).    D
Next, observe that from (4.2) and the fact that Wk-\ Ç V we have an orthogo-

nality relation,

(4.11) ak(em-e,v) = 0   VuGWW

The analysis of em — ë is similar to the one used in conforming multigrid methods.
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8 SUSANNE C. BRENNER

LEMMA 6.   There exists C > 0 such that

(4.12) ||em-è|U2<c7m-1/2||eo|U2

and

(4.13) Ikm-êlU^Cm-^Heoll*.
Proof. By (4.11), (2.18) and (4.5) we have

|pm       &\\k = O'ky^m ~ 6j ^m       C) — ßfc(ßm "~ 6) Cm)

(4.14) < |||em-ë|||o,fc|||em|||2lfc

< Chk 1m~1/2\\\em - è|||o,fc||e0|U.

We will use a duality argument to estimate |||em - è|||o,fe = ||em - e||¿2. Let
weW22(Q) satisfy

-V • (aVty) + ßw = em - ë   in Q,        w = 0   on dfi        I —— = 0 on dU )
\dn )

in the Dirichlet (Neumann) case. Let wk G Vk satisfy

ak(wk, v)=     (em - ë)v   Vu G Vk.
Jn

Then

K-«.-/<*.-«K*.-l)-«.(*.,.-l>Jn
= ak(w -v,em-ë) + ak(wk -w,em- ë)

for any v G Wk-X by the orthogonality relation (4.11). Therefore, by the ap-
proximation property (2.13), the discretization error estimate (2.14) and elliptic
regularity we have

llem-e||¿2<     inf    ||uj-u||fc||em-eUfc-l-Hk;*:-w||fc||em-e||fc
f€Wt-i

< CAfclMlwiHem -ê||fc < Chk\\em -e||L2||em - e"||fc.

Thus,

(4.15) ||em - e||¿2 < Chk\\em - ë\\k.

The inequality (4.13) now follows by combining (4.14) and (4.15).
From (4.15), (4.13) and (2.11) it follows that

11 Cm - è||i,2 < Chk\\em - ë\\k
< Cm-ll2hk\\eo\\k < Cm-1/2||e0||z,2.    D

Proof of Lemma 2. Recall that tj = z — MG(k, zq, G) and eo = z — z0. We have
by (3.1)

||e/||fc = ||em-/fc_1gPIU
<\\em-ë\]k + \\lLi(S-e)\\k + \\lti(e-qP)\\k.

From (4.13), (4.8), (3.2) and (Sk-i), it follows that

||e/|U<c7m-1/2||e0|U + C7p||e|U-1.

But (4.6) yields
||e/|U<(C7m-1/2 + C7P)||e0|U.
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AN OPTIMAL-ORDER MULTIGRID METHOD 9

If 7 G (0,1) is small enough, then Oyp < 7/2 (since p > 1). If m is large enough,
then Cm~1/2 < 7/2. For such choices, we have

||e/||it < 7l|eo||fc-    □

Proof of Lemma 3. We have by (3.1)

lk/IU»<l|em-«||La + ||/í-i(«-e)||L» + ||/í_i(e-*)|U..
By (4.12), (4.7), (3.3) and (Sk-i) it follows that

(4.16) ||e/||L2 < Cm-^HeolUa + C7p||e|U2.

But
||e||x,2 < ||e - è||x,2 + ||è - em\\L2 + \\em\\L2

<Cm-ll2\\eoWL2 +\\eo\\L2
by (4.7), (4.12) and (4.3). Therefore, ||e||L2 < C||e0||z,2- Hence from (4.16),

||e/||L2<(C7m-1/2 + C7P)||eo||L2.

If 7 G (0,1) is small enough, then C^f < 7/2. If m is large enough, then Cm~1/2 <
7/2. For such choices we have

IMU2 < 7l|eo||í,2.    D
5.  Nested Iteration. We have a sequence of discretizations for the problem

(1.1) or (1.2).   For each fc, we want to find an approximate solution ûk to the
problem of finding Uk G Vk such that

ak(uk,v) =      fv   VveVk.
Jn

In the overall multigrid strategy, ûi is obtained by a direct method. The approxi-
mations ûk (fc > 2) are obtained recursively by

u0 =I3j_lùj-u

u\ = MG(j,uj_vF),        l<l<r,        F(v) = f fv,
Ja

ùj = u\.
Here r is an integer to be determined.

Define êk := u/t - ûk- In particular, êi = 0. Lemma 2, (2.14), (2.13), (3.1) and
(3.2) imply that

||êfc||fc < 7r|K-/jt_iáfc-i|U
< 7r{||ttfc - u\\k + \\u - flk-M\k + Wtf-AÍlk-iU - ûfc_i)||fe}
< ^{/ifclllíllwl + Hñ/fc-iU - Ûfc_i||fc_i}
< C7r{^fc||w||iv| + ||nfc-itt-u|U-i + ||«-Ufc_i||fc_i + \\uk-i -ûfc_i||fc_i}

< CY{hk\\u\\W2 +hk-i\\u\\W2 + ||êfc_i||fc_i}.

Since hk-i = 2hk,

(5.1) ||êfc||fc < C/ife7''||u||H/2 +C77r||êfc_i||fc_i.
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10 SUSANNE C. BRENNER

By iterating (5.1) we have

Hêfcllfc < Chklr\\u\\W2 + c72/iJfc_172r||«ll^ + • ■ • + Ckhllkr\\u\\w?

< IM hkCY
wî̂ i - 2Cr

if 2<?7r < 1. Therefore,

(5.2) ||êfc||fc <C/ifc||u||W2.

In summary, we have proved the following theorem.

THEOREM 2.   If r is large enough, then there exists a constant C > 0 such that

||u-ûfc||fc < C/ifc 11^11^2.
Similarly, we can prove the following theorem for the L2-error.

THEOREM 3.   If r is large enough, then there exists a constant C > 0 such that

||u-ûfc||fc < C7/ifc||ií||w2.

THEOREM 4. The cost for obtaining ûk is (f(nk), where nk is the dimension
ofVk.

Proof. This is a consequence of the fact that p = 2,3 and that the number of
nonzero entries in the stiffness matrices, the smoothing iteration matrices and the
intergrid transfer matrices are all proportional to nk- The proof is the same as the
one in [1],    D

6. The Singular Neumann Problem. When ß = 0 in (1.2), the necessary
and sufficient condition for the existence of a solution is

(6.1) [ f = o.
Ja

If (6.1) is satisfied, there exists a unique solution u in V = {v G W2(^l): /nu =
0}. The multigrid method developed in earlier sections can be modified to yield
approximate solutions of u. Let Vk = {v G Vk : /n u = 0} and Wk = {w G
Wk : /n w = 0}. Let Uk G Vfc satisfy

(6.2)

and ¿fc G Wk satisfy

(6.3)

Then

(6.4)

Qk(uk,v) = /  fv   Vu G Vfc
Ja

ak(ük,v) =      fv   VuGH^fc.
Ja

|«-«fc||fc =   inf  ||u-v||fc
v€Wk

< Ylku ~ |fi|Ja IlfcU

= \\u - ñfcullfc < C7/ifc||u||w2.
A duality argument shows that

(6.5) |u-ùfc||z,2 <C/ifcl|u.|liv.2.

The analog of (2.15) therefore holds for the space Wk-
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AN OPTIMAL-ORDER MULTIGRID METHOD 11

To estimate ||u - Ufc||fc, we start with the formula (cf. [8])

/cßN i, i,   ^ . t. \ak(u-uk,v)\(6.6) ||ti-Wk||fc<  inf ||« - u||fc + sup -—--.
vevk vçyk IMIfc

By arguments similar to those that led to (6.4), we see that the first term is bounded
by C/ifc||ci||Vy2. The second term is also bounded by C/ifc||u||iy2; the analysis is
similar to that in [4]. Therefore,

(6.7) ||u-ufc||fc <C/ifc||u||w2.

Again, a duality argument (cf. the proof of (4.15)) shows that

(6.8) \\u-Uk\\L2<Ch2k\\u\\W22.

Thus the analog of (2.14) holds for Vk.
The operator Ik_1 defined in Section 3 must be modified so that it maps Vfc_i

into Vk. We define /£_, : VVi - Vfc by

(6-9) %-iV:=lLiV-^jnlLiV.

The computation of the integral involves only cf(nk) operations (using the quadra-
ture formula (2.6)). Note that Ik_xw = w for all w G Wk-X.

We have, by (3.2),

(6.10) ll#-i»||* = l|/fc-if|l* < C\Mk-i
and, by the Cauchy-Schwarz inequality and (3.3),

H4*-lf||L* =

(6.11)

rfc
ifc-

1     Í  rk
iV~m   Ik-n\liZl Ja IIl2

<iij*-i»iu»+ Ui /Ik~ivII l"l Ja L2

<2||iî_1w|U.<c|HU,.
Because of (6.4), (6.5), (6.7), (6.8), (6.10) and (6.11), the theory developed in earlier
sections carries over to this case if we replace V, Vk, Wk and Ik_1 by V, Vk, Wk and
/fc_i) respectively.

In practice we can use the same scheme with Ik_1 replaced by îk_x and Vi
replaced by V\. The solution obtained is in Vfc since the zero mean value is pre-
served by the intergrid transfer operator, the smoothing steps and the coarser-grid
correction.

7. Extension to a Quadratic Nonconforming Finite Element. The prin-
ciples which led to our optimal-order multigrid method for PI nonconforming el-
ements can also be applied to higher-order nonconforming finite elements. In this
section we will indicate how this can be done for a quadratic nonconforming finite
element (cf. [5]). For simplicity, we restrict our discussion to the Dirichlet problem
for the Laplace equation

,     , -Aw = /   in fi,
(7.1) u = 0   on ¿90,
where fi is a convex polygon.
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Let V = {v e W21(Q): u|an = 0} and a(u,v) = /n Vu ■ Vu for u,v G V. Then
the variational formulation for (7.1) is to find u eV such that

(7.2) a(u,v) = j fv VveV.

We assume that u G W2 (fi) n V in order to fully exploit the properties of the
quadratic element.

FIGURE 1

Let If be a triangle. The barycentric coordinates of the six Gauss-Legendre points
Pi,P2,P3,P4,P5,P6 along the sides of K (cf. Figure 1) are obtained by permuting

(JH).2HR
If g is a quadratic polynomial on K, then

(7.3) g(p6) - g(p5) + g(Pi) - g(ps) + gfa) - g(Pi) = 0
(cf. [5]).

Let ß,ot\,02,03,04,05,06 G R such that Y^=i(~^Yai = 0-   Then there is
exactly one quadratic polynomial g such that g(pi) = ai and f/(centroid) = ß.

Let ATk be the family of triangulations described in Section 2. Define

Vfc := {u:  u|r is a quadratic polynomial for each T G ATk, u is continuous

(7.4) at the Gauss-Legendre points of interelement boundaries and u

vanishes at the Gauss-Legendre points on dfi}

and

Wk := {w : w\t is B, quadratic polynomial for each T G ATk, w is
(7.0) continuous on fi and to = 0 on 30}.

Again, note that Wk = Vk f) V = Vk n Vk+i-
For each fc, define

.(7.6) ak(vx,v2)=   Y   /  Vvi-Vva    for ui,u2 G V + Vk
Te3rk Jt

and
(7.7) Nfc^afcKu)1'2.
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Pi Pi P» P*

Figure 2

Let Ufc G Vfc satisfy

ak(uk,v) =     fv   VuG Vfc,

and ¿fc G Wk satisfy

ak(ük,v) = I fv   VuG Wfc.

Then we have the estimates

(7.8) ||« - «fc||L2 + hk\\u - UfcHfc < Chl\\u\\wi

and

(7.9) ||« - üfc||L2 + hk\\u - ¿fcllfc < Ch3k\\u\\W3.

Inequality (7.9) is well known. Inequality (7.8) holds because the nonconforming
element satisfies the patch test (cf. [4], [5]). The theory for PI nonconforming finite
elements can be extended to this case in a straightforward manner if we can find
an operator j£_x : Vfc—i —► Vfc such that (i) it is a bounded linear operator with
respect to both the L2 norm and the energy norm and (ii) it reduces to the natural
injection on Wk-\.

For u G Vfc_i, the operator Ik,_1 : Vk-i —► Vk is defined as follows.
Let p be a Gauss-Legendre point of a side of a triangle in !Tk. If p lies on the

common edge of two adjacent triangles Ai and A2 in ATk~x, then

(/£_!«)(?) :=-Ma,(p) + »Ua(p)].
If p lies inside a triangle T in yk~l, then there are two cases to consider. Ik-\V
assumes the same values as u at the points b2,bi and be; the value of /¿LjU at
the points 61,63 and 65 is determined by condition (7.3) applied to the three outer
triangles T\, T2, T3 (cf. Figure 2). To complete the definition of the intergrid transfer
operator we must verify that the values of Ik-iv at the six Gauss-Legendre points
of T4 satisfy (7.3). Then we let Ik-\V take the same value as u at the centroids of
r^T^andr,!.
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LEMMA 7.   Let Pi,...,Pi2 6e i/ie Gauss-Legendre points along the boundary of
T eFk (cf. Figure 2). Then

12 12

(7.10) D-WtifXPi) = D-iHrte).
¿=1 1=1

Proo/. Let e denote the edge that contains pi,p2,P3 and p$. We have

4 4 4   Í-1V
(7.11) Ç(-1)<(/fc-iv)(p«) = E(-1)i,;l''(p«) + ELyLHr'(Pi)-«|T(pi)],

t=l ¿=1 t=l

where T" is the neighboring triangle in ATk~x that also contains e. On e, g := u|î" -
u|r is a quadratic polynomial that vanishes at the two Gauss-Legendre points of the
original triangle T, which are symmetric with respect to the midpoint. Therefore
q is symmetric with respect to the midpoint of e. Thus q(pA) = q(p\) and q(p3) =
q(p2). Hence the second sum on the right-hand side of (7.11) adds up to zero.

Since a similar equality holds for each edge, Lemma 7 is now proved.    D
Because u satisfies (7.3) on T\,T2 and T3,

(7.12) £(-i)MPi) + £(-i)M&;) = 0.
¿=i j=i

But v also satisfies (7.3) on T4, hence

6
(7.13) £(-l)'u(M = 0.

3=1

Equalities (7.12), (7.13) and Lemma 7 then imply that

f;(-l)i(/fcfc_1t;)(Pi) = 0.
i=l

But by construction,

D-i)'(4fc-i«)(Pi)+ ¿(-WtifXM = 0.
t=i j=i

Therefore,

¿(-l)^(/fcfc_1u)(6,)=0,

and the compatibility condition on T4 is satisfied. Hence Ik-\v is well defined.
By our definition of Ik_iV, it is obvious that Ik-iw = w îox w e Wk-i-
The proof of Lemma 1 is still applicable for this intergrid transfer operator.

Therefore, Ik_x is bounded with respect to both the L2 and energy norms.
As indicated earlier, once Ik_1 has these properties we can obtain a multigrid

method for finding approximate solutions ûk of Uk such that

II« - «fclU2 + hk\\u - ûfcHfc < C/ifc||u||W3.
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