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An Optimal-Order Multigrid Method for
P1 Nonconforming Finite Elements

By Susanne C. Brenner

Abstract. An optimal-order multigrid method for solving second-order elliptic bound-
ary value problems using P1 nonconforming finite elements is developed.

1. Introduction. Let (2 be a convex polygon in R2. Let f € L%(f)), a € C'(0)
and 8 € C°(f1). We assume there exist constants ag, fg such that o > ag > 0 and
B 2> Bo, where 3y depends on the boundary condition. In this paper we develop an
optimal-order multigrid method for solving the Dirichlet problem (4y = 0)

-V (aVu)+Pu=f inQ,

1.1
(L1) u=0 on o]

and the Neumann problem (£ > 0)

-V (aVu)+Bu=f inQ,
(1:2) Ou =0 on 01},
on
using P1 nonconforming finite elements (cf. (3], [4], [10]). We refer the reader to
(1], [7] and [9] for conforming multigrid methods. As in [1], our multigrid method
will be described in a coordinate-free fashion.

Our method consists of smoothing on the current-grid and coarser-grid correc-
tion, as in the conforming multigrid method. The important difference in the non-
conforming case is that Vj_, ¢_ Vi, where Vi’s are the finite element spaces on mesh
level k. Hence we can no longer simply use the natural injection for the intergrid
transfer of grid functions. The key idea is to define an operator IF_,: Vi_1 — Vi
that reduces to natural injection on continuous piecewise linear functions. By doing
so, we can use the well-known analysis of the conforming multigrid method. We
will show that the approximate solution satisfies the same type of error estimates
as the discretization error and that it can be obtained in &'(n) steps, where n is
the dimension of the discretized finite element space. Since our intergrid transfer
operator does not preserve either the energy or the L2-norm, the standard proof of
convergence (cf. [2]) for the 7 -cycle does not carry over directly. We will there-
fore only discuss a 7 -cycle method, even though the 7 -cycle method may be
convergent.

The paper is organized as follows. We begin with a discussion of the notation and
fundamental estimates from the theory of finite elements. The intergrid transfer
operator is discussed in Section 3. Section 4 contains the results on the contracting
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2 SUSANNE C. BRENNER

property of the kth level iteration followed by the convergence theorems for the
nested iteration in Section 5. The singular Neumann problem (8, = 0 in (1.2))
will be treated in Section 6. A piecewise quadratic nonconforming finite element is
discussed in the last section.

2. Preliminaries and Notation. Let V = W4 () for the Neumann problem
(1.2) and V = {v € W}(Q)): v|]sqa = 0} for the Dirichlet problem (1.1). Here,
(

W4 (€1) denotes the usual Sobolev space (cf. [3]). The variational formulation for
(1.1) and (1.2) is to find u € V such that

(2.1) a{u,v) = F(v) Yv eV,

where

(2.2) a(u,v) = /QaVu Vo+ puv and F(v / fu.

Let {7*}, k > 1, be a family of triangulations of (1, where J*¥*! is ob-
tained by connecting the midpoints of the edges of the triangles in . Let
hx := maxpe 7« diamT (therefore hy = 2hgi1). Then there exist positive con-
stants C1, Cq, independent of £, such that

2.3 Coh2 < |T| < C1h2 VT € TF,
k k

where |T'| denotes the area of the triangle T. These constants depend only on the
angles that appear in .7 !. Throughout this paper we let C and C; denote generic
constants independent of k.

For the Dirichlet problem (1.1), define the finite element space
(2.4) Vi = {v: v|r is linear for all T € k v is continuous at the midpoints

. of the edges and v = 0 at the midpoints on 92} .
For the Neumann problem (1.2), we define Vi similarly but without any restrictions
on v along the boundary of 0. Note that functions in Vj are not continuous. In
other words, Vi is a nonconforming finite element space.

We also use a conforming finite element space for our analysis. Define

(2.5) Wi := {w: w7 is linear for all T € 7 %, w is continuous

on () and w|pq = 0}

for the Dirichlet problem (1.1). For the Neumann problem (1.2), we make no
assumptions on w along the boundary of 2. The space Wy will only be used to
obtain our theoretical estimates. We emphasize that it will not play any role in the
actual multigrid algorithm. Observe that W =V, NV =V, N Vi,y.

Let {¢%,..., 0% } be the basis of Vi such that each ¢¥ equals 1 at exactly one
midpoint and equals 0 at all other midpoints. For any linear functions %, ¢ on a
triangle K,

3
(26) [ ve =31 (Z w(mi>¢(mi)) ,

where the m;’s are the midpoints of the sides of K (cf. (3, p. 183]). It follows that
the ¢,’s are orthogonal with respect to the L2-inner product.
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AN OPTIMAL-ORDER MULTIGRID METHOD 3

Similarity is an equivalence relation on triangles. For each equivalence class %,
there exist constants C» > 0 and C’, > 0 such that for any triangle T € % and
v € P (T), the space of first-degree polynomials on T, we have

C,0(v / |Vo|? < C,0(v).

Here, ©(v) = [v(m1)~v(m2)]*+[v(mz)—v(m3)]*+[v(m3)—v(my)]* and my, mg, m3
are the midpoints of the sides of T'. Since any triangle in 7% (k = 1,2,...) is similar
to a triangle in 7!, there exist C3,C4 > 0 such that

(2.7 C30(v / IV’U|2 < C46(v)

for any v € A(T), T € I%, k = 1,2,.... Moreover, as a consequence of (2.3),
(2.6) and (2.7), there exists C > 0 such that

(2.8) / IVof? < Chi? ]2,
T

forve P (T)and T € T*,
For each k, define (on Vi + W4 (Q))

(2.9) Z / (@Vu - Vv + fuv)

Te 7k
and

(2.10) llullk :== Vak(u, u).

The bilinear form ax(-,-) is obviously symmetric and positive definite on V. The
stiffness matrix representing ax(-,-) with respect to the basis {¢¥,..., ¢k .} has at
most five entries per row. As a consequence of (2.8), we have

(2.11) lulle < ChpullLe Yu € V.

We also note that if u,v € W1(Q), then ax(u,v) = a(u,v).
We now recall some fundamental estimates from the theory of finite elements.
Let ITx and fIk be the interpolation operators associated with Vi and Wy, re-
spectively. If u € W2(Q), we have the following estimates for the interpolation

error:

(2.12) llu ~ Myl 22 + hillu — Meulle < CRJullws
and

(2.13) o = Tl L2 + hellu — el < ChE[lullws
(cf. [3)).

Since f € L?(2), elliptic regularity implies that u € W(Q) (cf. [6]). For the
same f, let u; € Vj satisfy

& (U, v / fv YweV

and let uy € Wy satisfy

k (U, v / fv YveW.
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4 SUSANNE C. BRENNER

Since Vi satisfies the patch test (cf. [8], [10]), we have the following estimate for
the discretization error:

(2.14) llu = wkllzz + hellu — uklle < ChEllullw;

(cf. 4], [10]). The estimate for the conforming discretization error is, of course, well
known (cf. [3]):

(2.15) lu = @ellz2 + hellu — @elle < ChEllullwsz.

In [1], it was shown that @, could be calculated by an iterative procedure to within
an accuracy comparable to the error estimated by (2.15) using an amount of work
that is proportional to the number of unknowns, namely the dimension of Wy. Our
main goal in this paper is to prove a corresponding result for the computation of
Uk,

From the spectral theorem, there exist eigenvalues 0 < Ay < Ay <+-- < Ay, and
eigenfunctions ¥y, v, ..., ¥n, € Vi, (¥i,¥;)L2 = 6i; (= the Kronecker delta), such
that ax(¢i,v) = Ai(¥s,v) 2 for all v € V. From (2.11), there exists Cs > 0 such
that

(2.16) Xi < Cshi?

If v € Vi, we can write v = > *, v;9;. The norm |||v]||sk is defined (cf. [1]) as
follows:

nk 1/2
(2.17) vllls,k = (Z V?/\f) :
=1

Note that |||v|lo,k = [|v]lz2 and [[[v|[|1.x = llv]|c.
Finally, it follows from the Cauchy-Schwarz inequality that

(2.18) lak (v, w)| < |[o]ll1+2.xlllwll]1-¢,k
forany t € R and v, w € V.

3. The Intergrid Transfer Operator. For v € V;_; the intergrid transfer
operator I ,’f_l : Vk—1 — Vi is defined as follows. Let p be a midpoint of a side of a
triangle in 7. If p lies in the interior of a triangle in 7 %~!, then we define

(If_,v)(p) := v(p).

Otherwise, if p lies on the common edge of two adjacent triangles T; and T3 in
F k=1 then we define

(1E-1)@) = 3Dir,(7) + vl ()]

Note that the matrix for I,’f_l with respect to the bases {¢’f‘1,...,¢’°"1 } and

Nk-1t
{¢%,..., ¢k, } has at most five entries per row.
From the definition of I¥_,, it is clear that

(3.1) If v=v YWeWir_1=VinVik_ CV.

In other words, I ,’f_llw,:_1 is just the natural injection.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use




AN OPTIMAL-ORDER MULTIGRID METHOD 5

LEMMA 1. There exists C > 0 such that

(3.2) I17E_1vllk < Cllv|lk-1
and
(3.3) |TE_ ]|z < Cllv| L2

for allv e Vi_;.

Proof. The inequality (3.3) follows immediately from (2.6), the definition of I¥_,
and the quasi-uniformity of the triangulations.
Inequality (3.2) can be deduced from (3.3) as follows. Given v € Vj_;, define

g€ Vi1 by

(3.4) |96 =as(0.6) V6 €Vir,
w € Wi_y by

(3.5) oulw,8)= [ g0 VoeWer,
and 2 € V by

(3.6) a(z,6) = /n g6 VeV,

Then (3.3), (2.11), (2.14), (2.15) and elliptic regularity imply that
K- 1ollx < -y (v = w)lli + lwllx
< ChiMIE_y (v ~ w2 + llw = vlle—1 + [[o]lk—1
(3.7) < ChiHlv = wllza + [Jolle-1
< Chi'llv = 2llz2 + l|lw = 2]l 2] + [lolle—1
< Chillzllwz + llvlle-1 < Cheligllzz + lloll~1-

But

lgllZz = ak-1(v,9) < [[vlle-1llgllk-1 < Ch, lollk-1llgll2-
Therefore,
(3.8) lgllzz < Chil llvlle-1.

Combining (3.7) and (3.8), we obtain (3.2). O

4. Contracting Properties of the kth Level Iteration. The kth level
iteration with initial guess zy yields MG(k, 20, G) as an approximate solution to
the following problem.

Find 2z € Vi such that ax(z,v) = G(v) Vv € Vi, where G € V}.

For k =1, MG(1, 29, G) is the solution obtained from a direct method. For k£ >
1,MG(k,29,G) = 2, + I¥_,q,, where the approximation z,, € Vj is constructed
recursively from the initial guess zg and the equations

(Zi - Z,‘_l,U)Lz = (Ak)—l(G(U) — ak(zi_l,v)), YveVi, 1<i1<m.

Here, Ay = Csh;? (cf. (2.16)), which is greater than or equal to maX;<i<n, Ai,
and m is an integer to be determined later. With respect to {¢%,...,0% }, 2

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use




6 SUSANNE C. BRENNER

can be obtained from zy by iterating a sparse band matrix because the d)f’s are
L2-orthogonal. The coarser-grid correction g, € Vix_; is obtained by applying the
(k — 1)-level iteration p times (p = 2,3). More precisely,
do = 07
qizMG(k_laqi—laé)’ ISZSPa
where G € V]_, is defined by G(v) := G(IF_,v) — ak(zm, If_,v) Yv € Vi_y.
The main result in this section is the following theorem.
THEOREM 1. If the number of smoothing steps is large enough, then the kth

level iteration is a contraction for both the energy norm and the L2-norm. Moreover,
the contraction number is independent of k.

Theorem 1 is a trivial consequence of the following lemmas. In order to simplify
the notation, we define the statements
(Sk): When the kth level iteration is applied to the problem of finding z € Vj
such that ax(z,v) = G(v) Vv € Vi, we have ||z — MG(k, 20, G)|lx <

"z = zollk,

(Sk): When the kth level iteration is applied to the problem of finding z € Vj,
such that ax(z,v) = G(v) Yv € Vi, we have ||z — MG(k, z0,G)||L2 <
Allz — 2ol 2.

LEMMA 2. There ezists v € (0,1) and an integer m > 1, both independent of
k, such that

(Sk—1) implies (Sk).

LEMMA 3. There exists 5 € (0,1) and an integer m > 1, both independent of
k, such that
(Sk—1) 1tmplies (Sg).

Our analysis is based on estimates of the following errors. Let ey := 2z — 2,
ém =z — zm and ey := 2z — MG(k, 29,G). Also let e € V_; satisfy
(4.1) ak_1(e,v) = G(v) = ak(em,I,’f_lv) Vv € Vi_y,

and let € € Wy_; satisfy
(4.2) ak-1(8,v) = G(v) = ax(em, If_1v) = ar(em,v) Yo € Wi_;.

As in the conforming case (cf. [1]), we have the following effects of the smoothing
steps.

LEMMA 4. There exists C > 0 such that

(4.3) llemllL2 < lleollr2,

(4.4) lemlle < lleollx

and

(4.5) llemlllz.e < Chy*m="2|lleolll1x = Chyg 'm™"/?|leo||x-
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AN OPTIMAL-ORDER MULTIGRID METHOD 7

From (4.1) and (3.2) we have
lelli-1 = ax(em, I§_1€) < llemllkllTE-rellk < Cllem{lilielle-1.
Therefore, there exists C > 0 such that
(4.6) lelle—1 < Cllemlle < Clleollk-

Since e and ¢ are approximate solutions in different spaces to the same problem
(cf. (4.1) and (4.2)), they are close to each other.

LEMMA 5. There exists C > 0 such that

(4.7) lle = éllz < Chim™"3leo]| 2
and
(4.8) lle = éllk—1 < Cm™""?|leo k.

Proof. Let fo € Vi_ satisfy
(fo,v)12 = aklem,IF_1v) Vv € Viy.
It follows from (2.18) and (3.2) that

1 foll22 = alem, IE_1 fo) < lllem|ll2.klHIR_1 folllo.k
< Clllemlllz,kll foll L2-

Therefore,
(4.9) 1 follz < Clllemll2,x-
Let vo € W2(Q) satisfy

-V - (aVuyg) + Bug = fo in , vp=0 on 9o (% =0on 89)

in the Dirichlet (Neumann) case. Note that e and € are the finite element (Galerkin)
approximations to vg in Vi1 and Wi_,, respectively. By (2.14) and (2.15), we have
llvo —ell Lz + hi—1llvo —elle-1 < ChE_llvollw;z and flvo &l Lz +hk—1lvo — €llk—1 <
Chi_sllvollwg-

Since hx—1 = 2hg, it follows from the triangle inequality that

lle = éllzz + helle — éllx-1 < Chllvollwg-
By elliptic regularity, ||lvollwz < Cl|fol|z2. Therefore, from (4.9) we obtain
(4.10) lle — &llzz + hille — Ell—1 < Chlllem|llz,k-

The inequalities (4.7) and (4.8) now follow from (4.10) and (4.5). O
Next, observe that from (4.2) and the fact that Wx_; C V we have an orthogo-
nality relation,

(4.11) ag(em —€,0) =0 YveW,_,.

The analysis of e,, — € is similar to the one used in conforming multigrid methods.
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8 SUSANNE C. BRENNER

LEMMA 6. There exists C > 0 such that

(412) “6m - é”L2 S Cm_l/2“60”L2
and
(4.13) llem — Elle < Cm™/2leo|x-

Proof. By (4.11), (2.18) and (4.5) we have
llem — €ll% = ak(em ~ €, em — &) = ar(em — €, em)
(4.14) < llem — élllo.klllem|ll2.x
< Chi'm™3|lem — élllo,klleollk-
We will use a duality argument to estimate ||lem — €||lo,x = |lem — €|lL2. Let
w € W2(Q) satisfy
L ow

-V - (aVw)+pw=-¢, —€ inf, w=0 ondN E{=00n89

in the Dirichlet (Neumann) case. Let wy € Vj satisfy
ak(wg,v) = / (em — €)v Vv € V.
Q

Then
e =l = [ (em = E)(em — &) = axwn,em —
= ar(w —v,em — €) + ax(wk — w, ey — €)
for any v € Wj_; by the orthogonality relation (4.11). Therefore, by the ap-

proximation property (2.13), the discretization error estimate (2.14) and elliptic
regularity we have

lem —éll72 < inf |lw = vllllem — éllx + llwk — wllkllem — éllx
vEW,
< Chillwllwzllem — €llk < Chillem — €llLz(lem — €|k
Thus,
(4.15) llem — &llz2 < Chllem — &lx.

The inequality (4.13) now follows by combining (4.14) and (4.15).

From (4.15), (4.13) and (2.11) it follows that

llem — €llLz < Chyllem — é€llx
< Cm™ Y2 h|leolle < Cm~Y2||eg||L2. O

Proof of Lemma 2. Recall that ey = 2 — MG(k, 20, G) and ep = 2 — z9. We have

by (3.1)
leslle = llem — Te_1pllx
< llem — éllk + 176-1(€ = e)llx + 1761 (e — gp) -
From (4.13), (4.8), (3.2) and (Sk-,), it follows that
lleslle < Cm="2|leo|lx + C* llellk-1-

But (4.6) yields
lleslle < (Cm™'2 + C4P)leox-
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AN OPTIMAL-ORDER MULTIGRID METHOD 9

If v € (0,1) is small enough, then C~? < ~/2 (since p > 1). If m is large enough,
then Cm~1/2 < ~/2. For such choices, we have
lleslle < lleollx- O
Proof of Lemma 3. We have by (3.1)
leslize < llem = llzz + 1TE-1 (€ — e)llLa + [ i—1 (e — gp)ll -
By (4.12), (4.7), (3.3) and (Sk—,) it follows that
(4.16) lesllzs < Cm™' 2 eql|Le + CF el 2.

But 5 5
lleflze < lle — éllzz + |l€ — emllL2 + |lem]| L2

< COm™'2|leo]| 2 + |leol|2
by (4.7), (4.12) and (4.3). Therefore, |le||L2 < C||eo||L2. Hence from (4.16),
lesllLz < (Cm™'% + CFP)|leoll 2
If 5 € (0,1) is small enough, then C57 < 7/2. If m is large enough, then Cm~1/2 <
/2. For such choices we have
lesllze < lleollze. O

5. Nested Iteration. We have a sequence of discretizations for the problem
(1.1) or (1.2). For each k, we want to find an approximate solution @y to the
problem of finding u, € Vi such that

ak(uk,v)=/fv Yu € V.
Q

In the overall multigrid strategy, 4, is obtained by a direct method. The approxi-
mations 4 (k > 2) are obtained recursively by

;= ul.
Here r is an integer to be determined.
Define éj := ux — @k. In particular, é; = 0. Lemma 2, (2.14), (2.13), (3.1) and
(3.2) imply that
lléelle < 7wk — Ti_yde-1lx
< {llwk = wllk + llw = Moyl + 176y (Tem1u — a1 16}
< O {hxllullwz + IMk—1u — de_1]lx—1}
< Oy {hellullwz + IMk-1w = ulle—1 + [l — we—1 k-1 + k-1 — x—1llk-1}
< O {ellullwg + - ulwg + ék—ille-1).

Since hg—1 = 2hy,

(5.1) léxlle < Char"llullwz + CY lléx—1llk—1-
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10 SUSANNE C. BRENNER

By iterating (5.1) we have
léelle < Chaen" llullwz + C?he—17* lullwz + - + C*hay*"|lullw;z
r
e
if 2Cy" < 1. Therefore,
(5.2) llelle < Chillullwg.
In summary, we have proved the following theorem.
THEOREM 2. Ifr is large enough, then there exists a constant C > 0 such that
[l — dklle < Chellujlw;-
Similarly, we can prove the following theorem for the L2-error.
THEOREM 3. Ifr is large enough, then there exists a constant C > 0 such that
llu — @l < ChEllullwz-
THEOREM 4. The cost for obtaining Gy is @ (ny), where ny is the dimension
of Vy.

Proof. This is a consequence of the fact that p = 2,3 and that the number of
nonzero entries in the stiffness matrices, the smoothing iteration matrices and the
intergrid transfer matrices are all proportional to nx. The proof is the same as the
onein [l]. D

6. The Singular Neumann Problem. When # = 0 in (1.2), the necessary
and sufficient condition for the existence of a solution is

(6.1) Af=0

If (6.1) is satisfied, there exists a unique solution u in V = {v € W3(Q): f,v =
0}. The multigrid method developed in earlier sections can be modified to yield
approximate solutions of u. Let Vi = {v € Vg: fQ’U = 0} and W, = {w €
Wy fn w=0}. Let u € Vk satisfy

(6.2) o / fo VeV
and i, € Wy satisfy

(6.3) k (g, v / fv VYveWs.
Then

lu —delle = inf |lu—ovllg
vEW,

- 1 .
u - Hku—-—/ Hku>
( 19 Ja
= |lu — Mxullx < Chillullwz-

A duality argument shows that
(6.5) llu = dillLz: < Chicllullwz-

(6.4)

IA

k

The analog of (2.15) therefore holds for the space We.
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AN OPTIMAL-ORDER MULTIGRID METHOD 11

To estimate ||u — uk||x, we start with the formula (cf. [8])

. ak(u — ug,v
(6.6) = uelle < inf = vl + sup 1208 W)

vEV vev; ”U”k
By arguments similar to those that led to (6.4), we see that the first term is bounded
by Chy|lullwz. The second term is also bounded by Chuflullwz; the analysis is
similar to that in [4]. Therefore,

(6.7) [l = wiellx < Chllullwz.
Again, a duality argument (cf. the proof of (4.15)) shows that
(6.8) lu — willz2 < Chllullwz-

Thus the analog of (2.14) holds for V.
The operator I ,’§_1 defined in Section 3 must be modified so that it maps Vj_;
into Vi. We define f,’f_lz Vi—1 — Vi by

. 1
(6.9) IfF_ve=1If_ v~ —/ If_ v
192 Ja

The computation of the integral involves only &(ny) operations (using the quadra-
ture formula (2.6)). Note that I¥ ,w = w for all w € Wj_;.
We have, by (3.2),

(6.10) 1§10l = 1TE_ 1ol < Cllvlle-1
and, by the Cauchy-Schwarz inequality and (3.3),

1

1
< Mk yollee + ”ﬁ R

<25y vllgz < C|lv| e

Because of (6.4), (6.5), (6.7), (6.8), (6.10) and (6.11), the theory developed in earlier
sections carries over to this case if we replace V,Vy, W and I ,’c‘_l by V, Vi, Wi and

||Illcc—1v||L2 =

L2

(6.11)

L2

i k_,, respectively.

In practice we can use the same scheme with IL‘_I replaced by f,’f_l and V;
replaced by V;. The solution obtained is in Vi since the zero mean value is pre-
served by the intergrid transfer operator, the smoothing steps and the coarser-grid
correction.

7. Extension to a Quadratic Nonconforming Finite Element. The prin-
ciples which led to our optimal-order multigrid method for P1 nonconforming el-
ements can also be applied to higher-order nonconforming finite elements. In this
section we will indicate how this can be done for a quadratic nonconforming finite
element (cf. [5]). For simplicity, we restrict our discussion to the Dirichlet problem

for the Laplace equation
—Au=f in(Q,
(7.1)
u=0 on 9],

where (1 is a convex polygon.
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12 SUSANNE C. BRENNER

Let V = {v € W}(0): v|an = 0} and a(u,v) = [, Vu- Vo for u,v € V. Then
the variational formulation for (7.1) is to find u € V such that

(7.2) a(u,v) = /fv YveV.

We assume that v € W3(Q) NV in order to fully exploit the properties of the
quadratic element.

FIGURE 1

Let K be a triangle. The barycentric coordinates of the six Gauss-Legendre points
D1, P2, D3, P4, Ps, P along the sides of K (cf. Figure 1) are obtained by permuting

(93099

If g is a quadratic polynomial on K, then

(7.3) 9(pe) — 9(ps) + g(p4) — 9(p3) + g(p2) — 9(p1) =0
(cf. [5]).

Let 3, a1,a2, a3, 04, 05,06 € R such that Z?zl(——l)iai = 0. Then there is
exactly one quadratic polynomial g such that g(p;) = ; and g(centroid) = 3.
Let 7 ¥ be the family of triangulations described in Section 2. Define

Vi := {v: v|r is a quadratic polynomial for each T € S k v is continuous
(7.4) at the Gauss-Legendre points of interelement boundaries and v
vanishes at the Gauss-Legendre points on 91}

and

(1.5) Wy = {w: w|r is a quadratic polynomial for each T' € Tk wis
' continuous on (2 and w =0 on 90} .
Again, note that Wy = Ve NV =V N Vi1,
For each k, define

.(7.6) ax(vy,vg) = Z Vv - Vg forvy,vo €V + Vi
Teg+’T
and
(7.7) lvllx = ax (v, v)"/%.
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FIGURE 2

Let u € Vi satisfy
(UK, v /fv Yv € Vy,
and @y € W, satisfy
k(k, v /fv Yv € Wy.

Then we have the estimates

(7.8) lu — ukllL2 + hellu — ullx < Ch3 ||u||W3
and
(7.9) lu — digll 2 + hillw — Gxlle < Chllullws-

Inequality (7.9) is well known. Inequality (7.8) holds because the nonconforming
element satisfies the patch test (cf. [4], [5]). The theory for P1 nonconforming finite
elements can be extended to this case in a straightforward manner if we can find
an operator If_,: Vi_1 — Vi such that (i) it is a bounded linear operator with
respect to both the L2 norm and the energy norm and (ii) it reduces to the natural
injection on Wi _;.

For v € Vj._;, the operator I ,’f_l : Vik—1 — Vi is defined as follows.

Let p be a Gauss-Legendre point of a side of a triangle in I k. If p lies on the
common edge of two adjacent triangles A; and A, in =1, then

(IE10)(p) = 5Dola, () + vlas (0]

If p lies inside a triangle T in F *~!, then there are two cases to consider. I ,’f_lv
assumes the same values as v at the points by, bs and bg; the value of I,’f_lv at
the points by, b3 and bs is determined by condition (7.3) applied to the three outer
triangles Ty, T2, T3 (cf. Figure 2). To complete the definition of the intergrid transfer
operator we must verify that the values of If_,v at the six Gauss-Legendre points
of Ty satisfy (7.3). Then we let I¥_,v take the same value as v at the centroids of
TI,TQ,T;; and T4.
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LEMMA 7. Let py,...,p12 be the Gauss-Legendre points along the boundary of
T € T% (cf. Figure2). Then

12 12
(7.10) D_(=DUIE_y0) i) = 3 (=10l (ps)-

Proof. Let e denote the edge that contains p;, ps, ps and ps. We have

4
~1)t0|7(p;) +Z 2 S tol(ps) — ol (23)],
1=1

S

[\/]h

(7.11) Z Y(IE_ ) (ps)

i=1 i:l

where T” is the neighboring triangle in 7 *~! that also contains e. On e, q := v|p —

v|T is a quadratic polynomial that vanishes at the two Gauss-Legendre points of the

original triangle T, which are symmetric with respect to the midpoint. Therefore

q is symmetric with respect to the midpoint of e. Thus g(p4) = ¢(p1) and q(ps) =

g(p2). Hence the second sum on the right-hand side of (7.11) adds up to zero.
Since a similar equality holds for each edge, Lemma 7 is now proved. O
Because v satisfies (7.3) on T1,T, and T3,

12 6
(7.12) Y (-Dilp) + Y (-
1=1 7=1

But v also satisfies (7.3) on Ty, hence

6
(7.13) Y (-1 v(b) =0.

i=1

Equalities (7.12), (7.13) and Lemma 7 then imply that

12
Y (—DHIE_ 1) (p:) = 0.
i=1
But by construction,
12 6
Y (=) Ik o) (ps )+ D _(—1Y(IE_1v)(b;) =0
1=1 7j=1

Therefore,
6
Y (~1)7(IE_yw)(b;) =0,

and the compatibility condition on T} is satisfied. Hence I¥_,v is well defined.

By our definition of I,'c‘_lv, it is obvious that I,’f_lw = w for w € Wi_;.

The proof of Lemma 1 is still applicable for this intergrid transfer operator.
Therefore, If_, is bounded with respect to both the L? and energy norms.

As indicated earlier, once I ,’Cc_l has these properties we can obtain a multigrid
method for finding approximate solutions %, of u, such that

llu — k|2 + hllu — aelle < Chllullwg-
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