
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

1991 

An Optimal Parallel Algorithm for Detecting Weak Visibility of a An Optimal Parallel Algorithm for Detecting Weak Visibility of a 

Simple Polygon Simple Polygon 

Danny Z. Chen 

Report Number: 
91-008 

Chen, Danny Z., "An Optimal Parallel Algorithm for Detecting Weak Visibility of a Simple Polygon" (1991). 

Department of Computer Science Technical Reports. Paper 857. 

https://docs.lib.purdue.edu/cstech/857 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


AN OPTIMAL PARALLEL ALGORITHM FOR DETECTING

WEAK VISffiILITY OF A SIMPLE POLYGON

Danny Z. Chen

CSD·TR-91-008

February 1991



An Optimal Parallel Algorithm for Detecting
Weak Visibility of a Simple Polygon

(Extended Abstract)

Danny Z. Chen*

Abstract

The problem of detecting the weak visibility of an n-vertexsimple polygon P is that of finding whether or not P is
weakly visible from one of its edges and (if it is) identifying
every edge from which P is weakly visible. In this paper, wepresent an optimal parallel algonthm for solving this prob
lem. Our algorithm runs in O(log n) time using O( n/ log n)
processors in the CREW-PRAM computational model, and
IS very different from the sequential algorithms for this problem. This algorithm also enables us to optimally solve, inparallel, several other problems on weakly visible polygons.

1 Introduction

Visibility is one of the most fundamental topics in computa
tional geometry. Visibility problems arise in many applica
tion areas, such as computer graphics, vision, VLSI design,
and robotics. Visibility problems also appear as subprob
lems in other geometric problems (like finding the short
est obstacle-avoiding paths and computing intersections be
tween geometric figures). Therefore, a great deal of research
has been devoted to finding efficient algorithms for solving
various visibility problems, in both sequential and parallel
computational models.

Weak visibility problems concern visibility with respect
to "observers" in the shape of line segments. An important
class of weak visibility problems deals with the case where
the opaque object is the boundary of a simple polygon. For
a point p in a polygon and a line segment s, p is weakly visible
from s if p is visible from some point on s. An example
of such problems is that of computing the region inside a
polygon that is weakly visible from a segment. For this
problem, many sequential algorithms [4, 12, 14. 18, 23] and
a parallel algorithm [11] have been discovered. For more
examples of the weak visibility problems on simple polygons,
see [2, 3, 6. 13. 15.22].

This paper considers the problem of detecting the weak
visibility of a simple polygon. An n-vertex simple polygon
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P is weakly visible if there exists an edge e of P such that any
point of P is weakly visible from e (e is called a weakly visible
edge of P). The problem of detecting the weak visibility of
P is that of finding whether or not P is weakly visible and
(if it is) identifying all weakly visible edges of P. Note that
this problem is a natunil generalization of the well-known
problem of computing the kernel of a simple polygon [19].
(Recall that a point is in the kernel of a polygon iff the whole
polygon is visible from that point, and that a polygon with
a nonempty kernel is called a star-shaped polygon [21].)

Avis and Toussaint [2] first consider the problem of de
tecting the weak visibility of a simple polygon. They present
a sequential linear time algorithm for the following case:
check whether or not a polygon P is weakly visible from
a specified edge e of P. Another sequential linear time al
gorithm for this case was recently given in [13]. Using the
algorithms in [2, 13), the problem of detecting the weak visi
bility of P can be trivially solved in O(n2

) time (by checking
separately each edge of P), but Sack and Suri [22] succeeded
in finding a linear time algorithm for this problem. Our in
terest here is to solve this problem in parallel. The parallel
computational model we use is the CREW-PRAM; this is
the synchronous shared-memory model where multiple pro
cessors can simultaneously read from the same memory lo
cation but at most one processor is allowed to write to a
memory location at each time unit.

Based on the observations of Sack and Suri [22]. a sub
optimal parallel algorithm can be easily obtained by using
the recent result of Goodrich et al. [11] on constructing a
data structure that supports ray-shooting queries [4]. This
algorithm first preprocesses P and builds the data structure
in O(log n) time using O(n) processors [11], and then does
O(n) ray-shooting queries by using the data structure. The
algorithm takes in total O(log n) time and O(n log n) work
(the work complexity of a parallel algorithm is the total
number of operations performed by the algorithm). Obvi
ously, the work complexity of this algorithm is a factor of
log n away from optimality. The sequential algorithm in [22]
manages to avoid doing the ray-shooting queries, but that
method seems to be inherently sequential.

Our method for obtaining an optimal parallel algorithm
is very different from the above approaches. We give geo
metric insights and parallel techniques which enable us to
use the divide-and-conquer strategies and to avoid the dif
ficulty of doing ray-shooting queries. Our algorithm runs
in O(log n) time using O(n/log n) processors, and is ob
viously optimal. We also use this algorithm to optimally
solve, in parallel, several other problems on weakly visi
ble polygons (such as the shortest paths, triangulation, and
one cruising guard [6] problems); these parallel solutions all
take O(log n) time using O(n/ log n) processors and avoid
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Figure 1: Illustrating HEt and HEi·
the preprocessing step of triangulating an arbitrary simplepolygon. (The best known parallel algorithms for triangulating a simple polygon require O(n) processors in theCREW-PRAM (9,24]' or O(n/log n) processors in the morepowerful CRCW-PRAM [10], and O(log n) time.) The geometric insights we present could be useful in solving othergeometric problems.

There are two major subproblems solved by our weakvisibility algorithm: (1) identifying all weakly visible edgesfor a star-shaped polygon whose kernel contains a convexvertex, and (2) checking whether or not a polygon is weaklyvisible from a specified edge (i.e.. the case solved by [2, 13]).The solutions to these two subproblems could be interestingin their own right. The problem of detecting the weak visibility of a simple polygon is reduced to the two subproblems.The idea for the reduction is derived from the one used in[22], but our reduction procedure is very different from (22].Owing to the limitation of space, we leave the reduction andthe applications of the algorithm to the full paper.The rest of this paper consists of 4 sections. Section 2gives some notations and preliminary results on the weakvisibility of a simple polygon. Section 3 discusses severalgeometric and computational observations needed by thealgorithm. Sections 4 and 5 describe the algorithms forsolving the two subproblems mentioned above, respectively.

2 Preliminaries

An n-vertex simple polygon P is given as a sequence (VI,V2 . ... , v n ) of its vertices. in the order in which they arevisited by a counterclockwise walk along the boundary of P,starting from vertex VI. An edge of P joining Vi and Vi+ Iis denoted bye. = ViVi+1 (= Vi+IVi), with the conventionthat Vn+1 = VI. The boundary of P is denoted by bd(P).Without loss of generality (WLOG), we assume that noedge of P is vertical and no three consecutive vertices of Pare collinear.
Vertex Vi is convex if the interior angle of P at Vi is < 11".Edge ej is convexif both Vi and Vi+1 are convex. For a vertexVi, if Vi+1 (resp., Vi-I) is nonconvex, then let r; (resp., ri)be a ray starting at Vi and containing ei (resp., ei-I). Theset of all such r;'s (resp., ri's) is denoted by Ray+(p)(resp., Ray-(P)). Let ht (resp., hi) be the first point atwhich rt (resp., ri) hits bd(P)-ei (resp., bd(P)-ei-d (i.e.,Vi is closer to h; (resp., hi) than to any other point in r; n(bd(P)-e,) (resp., ri-n(bd(P)-e._I))). Let h; (resp., hi)be on e} - V} (resp., ek - Vk) for some j (resp., k). Then wecall the consecutive edges that are on the portion of bd( P)from Vi+2 (resp., V.-2) counterclockwise (resp., clockwise) tov} (resp., Vk) the counterclockwise (resp., clockwise) hiddenedges of Vi. The set of counterclockwise (resp., clockwise)hidden edges of Vi is denoted by HE; (resp., HEn (see

Fig. 1). For examples, in Fig. 1, HEt = {e3, e4} and HE;= {es}. Note that HEt (resp., HEi) can be empty. Theunion of all HEt (resp., HEi) is denoted by HE+ (P) (resp.,HE-(P)). We henceforth call h; (resp., hi) the first-hitpoint of rt (resp., ri). The following lemma characterizesan important property of the weakly visible polygons.

Lemma 1 (Sack and Suri [22]) Suppose that polygon P isweakly visible from edge en and en is convex. Then for everyi = 1,2, ... , n, the following holds: if h; exists, then h; isthe first point on bd(P) - ei collinear with ei encountered inthe counterclockwise walk along bd( P) starting from Vi+ I,and if hi exists, then hi is the first point on bd(P) - ei-Icollinear with ei_1 encountered in the clockwise walk alongbd(P) starting from Vi-I.

Proof. See Lemma 3 of [22].
0It is shown in [22] that the set of weakly visible edges ofP, denoted by ~E(P), is equal to bd(P) - (HE+(P) UHE-(P)) (see Theorem 1 of (22]). For convenience, we callthe edges in HE+ (P) U HE- (P) the bad edges of P. IfHE+(P) and HE-(P) were available, then ~ E ( P ) couldbe obtained in the desired complexity bounds. The maindifficulty, therefore. is in computing HE+ (P) and H E- (P).WLOG, we will show the computation for HE+(P) (thecomputation for HE-(P) is similar).

A point p is represented by its x-coordinate and ycoordinate, denoted by x(p) and yep), respectively. For aline segment s (resp., a ray r), the line containing s (resp.,r) is denoted by l( s) (resp., l( r)). The slope of a line I (resp.,a segment s, a ray r) is denoted by slope(l) (resp., slope(s),slope(r)).

The chain on bd(P) from Vi counterclockwise to V;, i -:f.j, is denoted by bdij. The size of a chain C is the number ofline segments on C, denoted by ICI. For three non-collinearpoints p, q, and r, we say that the directed chain from p toq to r makes a left (resp., right) turn if x(r)(y(p) - y(q)) +y(r)(x(q) - x(p)) + x(p)y(q) - x(q)y(p) > 0 (resp., < 0).For a directed simple chain C = (PI, P2, ... ,Pk), k ~ 3, Cissaid to only make left (resp., right) turns iff every subchainof the form (Pi-I,Pi,P.+d makes a left (resp., right) turn,1 < i < k.
If polygon P is weakly visible from edge en and en isconvex, then for 1 :S i :S j :S n, the (directed) shortest pathfrom Vi to V} inside P goes through only the vertices onbdi;, and the shortest path only makes right turns (this factis shown in (2, 13]). Hence, we call such a shortest path theinternal convex path of bdi}, and denote it by /CP( bdi}).Let I be a non-vertical line. We say a point p is above(resp., below} I iff the vertical line passing p intersects I ata point q such that y(q) < y(p) (resp., y(q) > y(p)). Asegment s is said to be (properly) above (resp., below) I iffevery point of s is above (resp., below) I. The upper (resp.,lower) half-plane of I is the half-plane defined by I whoseinterior points are all above (resp., below) I, A left (resp.,right) half-plane of a ray r is the half-plane whose boundarycontains r and which is to the left (resp., right) of l(r). For aset L of lines, we use UPC/(L) (resp., LPC/(L)) to denotethe common intersection of the upper (resp., lower) halfplanes for the lines in L.

Internal convex paths and common intersections of halfplanes play important role in our algorithm. We will represent the internal convex paths and common intersections ofhalf-planes by a data structure called the hull tree (8, 9] orrank tree [5]. This data structure supports efficient implementation for the parallel operations of search, concatenation, and split (see (8, 9, 5] for the details).

2.



3 Some Useful Observations

This section gives some useful geometric observations and
develops the computational machinery needed by the algo
rithm.

The following type of tests will be frequently done by the
algorithm: given a set L of lines and a line segment s, find
(i) whether there is a line 1 E L such that s is below 1, or (ti)
whether s is above all the lines in 1. We call such a test a
lines-vs-segment test and denote it by Test( L, s).

(Note: Another type of tests which is also needed by the
algorithm is: (i') whether there is a line 1 E L such that s
is above 1, or (ti') whether s is below all the lines in L. The
tests for (i') and (ti') are handled similarly to the tests for
(i) and (ti). Hence we omit the discussion for (i') and (ti').)

Doing Test(L, s) by a brute force method, which checks
segment s against every line in L, is inefficient (it requires
O(ILI) work and O(log ILl) time). We would like to achieve
O(log ILl) time and O(ILIO) work for every Test(L, s) done
by the algorithm, where a is some constant, 0 < a < 1.
Our method for doing the tests makes use of the common
intersection of upper half-planes. It is clear that s is above
all the lines in L iff s is properly contained in UPCI(L).
However, it is not necessarily true that if s does not intersect
UPCI(L), then s is below a line in 1. Our solution to the
tests is based on the following observation.

Lemma 2 Given a non-vertical segment s and a set L of
lines, if L is partitioned into two subsets L' and L" such that
L' (resp., L") contains the lines of L whose slopes are all ::::
slope(s) (resp., < slope(s)), then the following is true: (i) s
is below a line in L iff s does not intersect either UPCI(L')
or UPCI(L"), and (ii) s is above all the lines in L iff s is
properly contained in both UPCI(L') and UPCI(L").

Proof. Omitted. See the full paper. 0
The computational lemma below follows from Lemma 2.

Lemma 3 Given a non-vertical segment s and a set L
of m lines, suppose that the slopes of all the lines in
L are:::: (resp., ~ ) slope(s) and that UPCI(L) is avail.
able. Then using k processors. Test( L, s) can be done in
O(log m/log(k+ 1)) time ifUPCI(L) is stored in an array,
and in O((log m)2 /log(k + 1)) time if UPCI( L) is stored in
a rank tree.

Proof. Omitted. See the full paper. 0
Note that in Lemma 3, if k = O(mO) for any constant

0'. 0 < a < 1, then the time complexities become 0(1)
(when UPCI(L) is stored in an array) and O(log m) (when
UPCI (L) is stored in a rank tree).

Based on Lemmas 2 and 3, the next lemma describes the
basic operation done by the procedure for performing the
lines-v5-segment tests.

Lemma 4 Given a non-vertical segment s and a set L of
m lines, suppose that L is partitioned into mIle subsets L I ,
L2, ... , L mI/e of equal size such that the slope of every
line in Li+ I is :::: the slopes of all the lines in Li , and
that UPCI(LI), UPCI(L 2), ... , UPCI(LmI/e) are avail
able (each stored in a rank tree), where c > 1 is a con-
stant. Then, in O(log m) time using O(me') processors,
either the result of Test( L, s) is found, or the test range is
restricted to a unique L] (i.e., Test(L, s) is completed by
doing Test(L] , s)), where c' is a constant and Ilc < c' < 1.

Proof. There are two possible cases: (1) there is a unique
subset L] which contains two lines l' and I" such that

slope(l') < slope(s) < slope(l") , or (2) there is no such
L]. In case (2), we apply Lemma 3 and do Test( L;, s),
in parallel, for each i = 1, 2, ... , mIle. Each Test(Li, s)
takes O(log m) time using O(mO) processors (by Lemma
3), where 0' = c' - (l/c) is a constant and 0 < 0' < 1. The
answer to Test (L, s) can be easily obtained from the answers
to the Test(Li, s)'s (based on Lemma 2), in the desired com
plexity bounds. In case (1), suppose L] is the unique subset
which gives rise to this case. We first do Test( Li, s) for each
i ::f:. j (in O(log m) time using O(m 0) processors). If the
answer to Test( L, s) can be derived from the answers to the
mIle - 1 Test(Li, s)'s (e.g., there is a line in L - L j that is
above s), then we are done. Otherwise, the answers to the
mIle - 1 Test( Li, s)'s must be combined with the answer to
Test( L], s) in order to obtain the result for Test( L, s); hence
Test( L, s) will be completed by performing Test( L j, s). 0

Note that if Lemma 4 can be recursively applied to
Test( L j, s), then we only need to repeat the use of Lemma
4 a constant number of times in order to reduce the size
of the test range to O(me') (at that point the brute force
method can take over). In this way, Test( L, s) is processed
in totally O(log m) time using O(me') processors.

Lemmas 3 and 4 require that the common intersections
of the upper half-planes be available before the tests are
performed. The computation for the common intersection
of m half-planes, in general, requires O(log m) time and
O( m log m) total work. In our situation, there can be as
many as O(n) rays (and thus O(n) half-planes) to consider.
It would be impossible to compute the common intersection
of O(n) half-planes in O(log n) time using O(n/log n) pro
cessors if the O(n) rays were arbitrary. Next, we show that
if polygon P is weakly visible from a convex edge, then it is
possible to obtain a subset of Ray+(P) (resp., Ray-(P)),
denoted by DR+(P) (resp., DR-(P)), with the following
properties: (i) HE+(P) (resp., HE-(P)) can be computed
by using only DR+(P) (resp., DR-(P)), and (ii) DR+(P)
(resp., DR-(P)) can be easily partitioned into two subsets,
each containing rays sorted by slopes. The rays in DR+ (P)
(resp., DR-(P)) are called the dominating rays of Ray+ (P)
(resp., Ray- (P)). We just discuss the case for DR+ (P) (the
case for DR-(P) is similar).

WLOG, we assume that P is weakly visible from convex
edge en, that en is horizontal, and that lien) is below P-e n.
We define the polar angle of a ray rt E Ray+ (P), denoted
by a(rt), as follows: let the starting vertex Vi of r; be at
the origin; then 0'(rtJ is the angle from the positive x-axis
counterclockwise to r;. Note that 0 ~ a(rn < 21r. For
rays rt and r; in Ray+(P), i < j, we say r; dominates
r; if a(rtJ :::: a(rn. Let DR+(P) consist of the rays in
Ray+(P) that are not dominated by any ray in Ray+ (P).
The following lemma characterizes DR+(P).

Lemma 5 For rays r; and r; in Ray+(P), i < j, ifr;
dominates r;, then HE; ~ HEt for some k, i ~ k < j.

Proof. Let Q be the polygon formed by segment Vi+1 h;
and the subchain of bd(P) from Vi+1 counterclockwise to
h; (h; is the first-hit point of rn. WLOG, assume thath; ::f:. V]. There are two possible cases: (a) Vj is in Q (see
Fig. 2 (a), and (b) v] is not in Q (see Fig. 2 (b)). We
first show that in case (a), HE; ~ HE;. If HE; were
not a subset of HE;, then h; would have to be outside Q.

For this to happen, r; must intersect V.+I h; before hittingh; (since v] is in Q); furthermore, r; must start in the
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Figure 2: illustrating the proof of Lemma 5.

right half-plane of rt and hit h; in the left half-plane ofr;. When a(rn - a(r;) ~ 11", such an intersection betweenr; and V.+l Itt is impossible because Vj is iit the right half
plane of rt and a(rn 2:: a(rn (e.g., Fig. 2 (a)). Whena(rt) - a(r;) > 11", such an intersection between r; and
Vi+lht is also impossible for the following reason. Thata(rt)- a(r;) > 11" implies that a(rt) > 11" and a(rn < 11".
If r+ did not intersect bd(P) - ej before crossing Vi+lh;,t h e ~ Vj would not be weakly visible from en, a contradiction.Hence HE; ~ HE; in case (a).

In case (b), chain bd(i+l») first intersects the right halfplane of r; and must later go to the left half-plane ofr; by crossing r; at h;. Let h; be on el, I > i + I.Since P is weakly visible from en, the internal convex pathICP(bd(l+I»)) makes right turns only. It is not hard to seethat there exists a vertex Vk, I < k < j, such that Vk+l is avertex on ICP(bd(l+I»)) and HE; ~ HEt (Fig. 2 (b)). 0
Based on Lemma 5, it is easy to compute DR+ (P) inD(log n) time using D(n/log n) processors (by doing parallel prefix [16, 17]). Note that the rays in DR+(P) aresorted by polar angles. We further partition DR+ (P) intotwo subsets DR;(P) and DR;(P) such that the rays in eachsubset are sorted by slopes. This partition is done by splitting DR+ (P) using a ray whose polar angle is 11". DR; (P)(resp., DRt(P)) contains the rays of DR+(P) whose polarangles are all ~ (resp., » 11". From now on. we assume thatDR; (P) and DR; (P) are already available.

4.1 Phase l.A

We first sketch the outline and describe the main operation of the algorithm. then we give the analysis and somecomputational details.

4.1.1 The Outline

We associate each rt E DR;(P) with Va, and denote by Rethe set of those rays in DRt (P) whose starting vertices areon a subchain C of bd(P). The outline below sketches thedivide-and-conquer strategies used by this phase.

Input. A subchain C of bd(P) with ICI = m, Re, and apositive integer d.

Step a.I. If m ::; d, then use one processor to perform thecomputation in D(m) time.

Step a.2. If d < m ~ d6
, then divide C into two subchainsG l and G2 of equal size, and recursively solve the twosubproblems on (Gl , ReI' d) and (G2 , Re" d), inparallel. Then perform the computation for C and Rcusing the output from the recursive calls on the twosubproblems, with mid processors and in D(log m +(dlog d)1/2) time.

Step a.3. If m > d6
, then partition G into g = (m/d)1/3

subchains C 1 , C2 , .... Cg of size m 2
/

3 d 1
/

3
each. Thenrecursively solve the g subproblems, in parallel. Finally, perform the computation for C and R e usingthe output from the g recursive calls, with mid processors and in O(log m) time.

Observe that, if we could perform the various steps of theabove outline within the claimed complexity bounds, thena procedure with such an outline would run in D(d+log m)time with O(m/d) processors. Choosing d = log m, thenthe time and processor complexities become D(log m) andD(m/logm), respectively. Therefore. a call to the procedure with input (C, Re,log n), ICI = n, will take O(log n)time using O(n/log n) processors.
We must discuss what exactly is computed within theabove outline. Let L( Re) be the set of lines containing therays in Re . The following is computed in Steps a.l-a.3.

This section deals with the following problem: given thatP is star-shaped and its kernel contains a convex vertex(say vd, compute the bad edges in HE+(P) using DR+(P).Clearly, P is weakly visible from el (since P is visible fromvI) and el is a convex edge. The algorithm for this problemhas two phases. Phase 1.A computes the internal convexpaths and the data structure storing the common intersections of the half-planes for the rays of DR+ (P). This phasealso identifies some bad edges. Phase I.B completes theidentification of all bad edges; it makes use of the internalconvex paths and the data structure constructed in Phasel.A. The computation consists of two separate parts. oneusing DR; (P) and the other using DR; (P). Due to thesimilarity between the two parts, we only discuss the partusing DR;(P).

4 Detecting the Weak Visibility
of a Star-Shaped Polygon

(i) Compute the internal convex path ICP(C).
(ii) Build the data structure which stores the common intersection of the relevant half-planes of L(Re) (e.g.,UPCI(L(Re)) (this data structure is needed for performing the lines-vs-segment tests).

(iii) Do the lines-vs-segment tests to identify the bad edgeson G (we may not be able to identify all the bad edgesin this phase; some of them are left to Phase l.B).

Since P is star-shaped, in each of the three steps, theinternal convex paths for the subchains of bd( P) can becomputed in the required complexity bounds by using thealgorithm in (5). By Lemma 5, Re (thus L(Re )) is sorted byslopes. Hence the common intersection of the relevant halfplanes for L(Re ) is also computable in the required complexity bounds (e.g., by the algorithms in [8, 5]). Therefore.we will focus on how to use the internal convex paths andthe data structure for the lines-vs-segment tests returnedfrom the recursive calls to identify the bad edges in thisphase.

if



Figure 3: Illustrating the four cases of IICP(Cj)l.

4.1.2 The Main Operation

The following operation is crucial in the conquer stages of
Steps a.2 and a.3 (say, in Step a.3): given lCP(C,) and
UPCl(L(Rc. )),5 = 1, 2, ... , g, determine the bad edges on
CJ using Rc" for every pair of i and j, 1 s: i < j s: g. We
classify lCP(C

J ) into one offour possible cases according to
its size, and show how to determine the bad edges on CJ by
using Rc, in each case. The classification is as follows.

Case (a). lCP(CJ ) has more than 3 segments (see Fig.
3 (a)). Then all the edges on CJ are bad. In Fig. 3 (a), the
edges on CJ are all contained in BEt_1 U BEd+l . Hence
there is no need to use Rc, to identify the bad edges on CJ .

Case (b). lCP(CJ ) has exactly 3 segments (see Fig. 3
(b)). Then the edges on subchains bdab and bdcd of CJ are all
bad (ef. Fig. 3 (b)), because they are contained in BEtI
U BE-;+I' Furthermore, if VbVc is not an edge of P (i.e., c >
b+1), then all the edges on CJ are bad because the edges on
subchain bdbc are also contained in BEt I U BE-; I' The
only edge on Cj that may not be bad is VbVc, provided that
c = b + 1. Thus the problem in this case, when c = b + 1,
is that of finding whether or not VbVb+ I is bad with respect
to Rc,.

Case (e). lCP(CJ ) has 2 segments (see Fig. 3 (c)). Then
clearly all the edges on CJ , except the two edges Vh_1 Vb and
VbVb+I, are bad (ef. Fig. 3 (c)). We need to check ~
and VbVb+l by using R co '

Case (d). lCP(CJ ) has 1 segment (see Fig. 4 (d)). If
there is a ray r( E Rc , such that bdab ~ BE(, then certainly
all the edges on CJ are bad. Otherwise, we might have to
"shoot" the rays of RCi onto CJ to find which of the edges
on CJ are bad (this ray-shooting on CJ is to be done in
Phase l.B). Thus we need to check whether bdab ~ BEt
for a rt E Rco' This check is done by testing segment VaVb
against the rays in Rc,.

From the discussion above, it is clear that the main com
putation in Cases (a)-(d) is to test an edge of CJ (in Cases
(b) and (e)) or a segment of ICP( CJ ) (in Case (d)) against
the rays in Rc o ' in order to find out whether the edge of C Jor CJ itself is bad with respect to RCi' We call such a test
a bad-segment test.

We need some notations for describing the solution to
the bad-segment tests. WLOG, let VI be at the origin and
el be on the positive x-axis (hence P - el is above l(ed).
The polar angle of a point p E bd(P) - VI, denoted by (Y(p),
is the one from the positive x-axis counterclockwise to the
ray starting at Vl and going through p. Since VI is in the
kernel of P and VI is convex. it follows that 0 s: (Y(p) < 7l" for

~ , ~ - ...

" t 'tes
"

\ I

" .... ···r·.. ~". ,_ P' ~.... .
VI

Figure 4: Illustrating the proof of Lemma 6.

each point p E bd(P) - VI, and that the polar angles of the
points on bd(P) - VI, from VI counterclockwise to Vn, are
in non-decreasing order. For each rt E DRt (P), hi is on
bd(t+2)I' For a ray rt E DRt (P) and a segment s, we say
s is properly contained in the upper-right (resp., upper-left)
quarter-plane of r( iff (i) s is contained in the intersection
of the right (resp., left) half-plane of rt and the left half
plane of the ray starting at VI and going through V,+I, and
(ii) s does not intersect r(. Observe that if el E BEt, then
el is properly contained in the upper-right quarter-plane of
rt

WLOG, we assume that for each ray r in Rc , the right
half-plane of r is equal to the lower half-plane of line l( r).

We would like to obtain the answer to the bad-segment
test on Rc i and a segment s (of CJ or lCP(CJ )) by perform
ing a lines-vs-segment test Test( L( Rci)' s) (because we can
handle Test(L(Rco )' s) by using Lemma 4). In general, how
ever, a bad-segment test cannot be answered by a lines-vs
segment test. For example, line l( r) intersecting a segment
s' does not necessarily imply that ray r also intersects 5'.
Furthermore, even though the half-line defined by a ray r
E RCi does intersect segment s (of Cj or ICP(Cj)), r may
first-hit a point on some Ck, i s: k < j, before it intersects s
(i.e., Ck blocks r from reaching s if r is viewed as a beam of
light emanating from its starting vertex). Therefore, even if
the result of Test(L(Rci)' s) does indicate that s is properly
contained in the upper-right quarter-plane of r( for a r( E
RCi! the rays of RCi may be totally blocked from CJ • This
means that, in this situation, no edge of CJ truly belongs
to BEt for any rt E R co , and hence no edge of CJ is bad
with respect to R co ' If we had to find out whether or not
Rco is totally blocked from CJ , then for every k, i s: k <
j, we might either do O(llCP(Ck)1) bad-segment tests (for
RCi and each segment of lCP(Ck)), or "shoot" each ray of
Rco on ICP(Ck) (by doing a binary search on lCP(Ck)).
Since we can have IlCP(Ck)1 proportional to ICkl and IRc,1
proportional to lCd, either method would be too expensive
to be performed within the desired complexity bounds. The
next lemma saves us from doing these costly computations.

Lemma 6 If a ray r E R Ci first-hits some Ck at edge e" is: k < j, and if edge ew on Cj is properly contained in the
upper-right quarter-plane of r, then there exists a vertex V z
on bdC,- I )(w-2) such that ew E HE";.

Proof. Chain bdC.-I)w must start in the right half-plane
of r. It then intersects r on e., and eventually enters the
right half-plane of r to join V w (see Fig. 4). Since P is
visible from VI, ICP(bd. w ) makes right turns only. Hence
there must exist a vertex Vz+I on ICP(bd. w ) such that 5 - 1s: z s: w - 2 and e w E BE~ . 0

Lemma 6 implies that if edge ew of CJ is properly con
tained in the upper-right quarter-plane of a ray r E Rc o ,

then ew is definitely a bad edge. Note that for any k' such
that k' < i or k' > j, Ckl cannot block the rays of RCi from
Cj (by Lemma 1).
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The next lemma justifies the use of the lines-vs-segment
tests for the bad-segment tests.

Lemma 7 For i < j, a bad-segment test on R e ; and
a segment s of C

J or ICP( CJ) can be done by using
Test(L(Re,),s).

Proof. Let rt be a ray in Re,. Recall that by our as
sumption, the left half-plane of ri is the upper half-plane
of l( rn. The lemma holds if the following is true: (i) s is
properly contained in the upper-right quarter-plane of rt
iff s is below l(rn, and (ii) s is properly contained in the
upper-left quarter-plane of rt iff s is above l( rn. We only
give the proof for (i) (that for (ii) is very similar). If s is
properly contained in the upper-right quarter-plane of ri,
then s is below l(rt). If s is below l(ri), then s is prop
erly contained in the lower half-plane of l(ri) (i.e.. the right
half-plane of ri) and certainly s =P VtVt+l. The facts that i
< j, that s =P VtVt+l, that P is visible from VI, and that VI
is convex, together imply that O'(v,+d :s; O'(p) < 1r for each
point p on s. This means that s is to the left of the ray r
starting at VI and going through V,+I, and thus s is in the
left half-plane of r. 0

If the result of Test(L(Re,), s) indicates that neither (i)
s is below a line in L(Re,) nor (ii) s is above all the lines
in L(Rei)' then there must be a ray r ERe, such that the
half-line defined by r intersects s. We need to distinguish
two types of intersection between rand s.

Suppose that Test(L(Re,),s) indicates that neither (i)
nor (ii) occurs. Let ray r in R e , intersect s. Let s = VaVb,
a < b, and let r( s) be the ray starting at Va and going
through Vb. If the starting vertex of r is properly contained
in the right half-plane of r(s), then we say r pseudo-hits Sj
otherwise, r does not pseudo-hits. Furthermore, Re; is said
to pseudo-hit s if (1) for each ray r' in Re;, r' intersecting
s implies that r' pseudo-hits s, and (2) there is at least one
ray in Re, that pseudo-hits s; otherwise, we say Re, does
not pseudo-hit s. We distinguish the types of hits from Re,
on s because only when Re; does not pseudo-hit s can the
rays in R e , first-hit bdab - Va (it is still possible that Re,
is blocked from bdab). If Rei pseudo-hits s, then clearly no
ray in Re, can first-hit bdab - Va.

We define the polar angle of s as 0'( s) = Q'( r( s)) (with
obvious meaning for 0'( r( s»). The following lemma charac
terizes the types of hits.

Lemma 8 Suppose that a ray r( of R e , intersects a seg
ment s on ICP(CJ), i < j. Then r( pseudo-hits s iff O'(rtJ
> O'(s).

Proof. Omitted. See the full paper. 0
The next Lemma shows that the lines-vs-segment tests

can be used to find out the type of hits from Re; on s.

Lemma 9 The type of hits from Rei on a segment s of
ICP( CJ), i < j, can be determined by using the lines-vs
segment tests. in the same complexity bounds as those for
Test(L(R e ,), s).

Proof. Omitted. See the full paper. 0
If the result of Test(L(Re,), s) indicates that s is neither

below a line in L(Re,) nor above all the lines in L(Re ,),
then one of the following three situations occurs: (1) if s is
an edge of CJ , then s is not bad with respect to Re" or (2)
if s is not an edge of CJ and Re; pseudo-hits s, then bdab
is not bad with respect to Re; (where s = VaVb, a < b), or
(3) if s is not an edge of C J and Re , does not pseudo-hit s.
then IICP(CJ)I may be Case (d) (which is to be handled
in Phase l.B).

4.1.3 Performing Test(L(Rc;),s) in Step a.3
We need to discuss how the lines-vs-segment tests are ac
tually performed in the algorithm. We only discuss this for
Step a.3 (Step a.2 is left to the full paper).

In Step a.3, there are O(l) = 0«m/d?/3) pairs of Cj
and CJ , i < j, where m = ICI. For each pair of Cj and CJ , we
need to do Test(L(Re,) , s) for 0(1) segments s on ICP(CJ),
if ICP(Cj) is not of Case (a). There are totally O(m/d)
processors available. Thus O(g) = 0((m/d)I/3) processors
are allocated to each pair of C j and CJ • It suffices to show
how to do one Test(L(Re,),s) using O(g) processors.

Our primary tool is Lemma 4. In Step a.3, to perform
Test(L(Re ,), s) in O(log m) time, we need to achieve two
things: (i) in performing the test, Lemma 4 is recursively
applied only 0(1) times, and (ii) the size of the test range,
after (i) is done, is reduced to 0«(m/d)I/3) (so that the
brute force method can take over).

In the conquer stage of Step a.3, UPCI( L( R e , )) is avail
able (stored in a rank tree), for each i = 1, 2, ... , g, and we
compute UPCI(L(Re)) from the UPCI(L(Re,))'s. Because
L(Re ) is sorted by slopes, for each i, bd(UPCI(L(Re,»)) n
bd(UPCI(L(Re ))) consists of at most one connected compo
nent, and bd(UPCI(L(Re,») - bd(UPCI(L(Rc)) consists
of at most two connected components. After UPCI(L(Re )
is computed. we still retain the (at most) two connected
components of bd(UPCI(L(Re ,))) - bd(UPCI(L(Re»)) in
two separate rank trees. This structure can be readily
maintained in every recursion level of Step a.3. Us
ing this structure, it is easy to obtain the information
about each UPCI(L(Rei » (either from UPCI(L(Re» or
from the two connected components of bd(UPCl(L(Re, »)
bd(UPCI(L(Re »». Furthermore, for a subchain Ct of Cj,
the information about UPCI(L(Rek» can be obtained from
UPCI(L(Re,) and UPCI(L(Rek» - UPCI(L(Re,)). In
general, the information about the common intersection of
the half-planes at each level of the algorithm can be ob
tained from the information stored at its ancestor levels.

WLOG, we assume that in the recursive call on
(C" R e" d). Cj was partitioned into O( (m/ df/9) subchains
(the case where Ci was as in Step a.2 can be easily taken
care of within the desired complexity bounds). In perform
ing Test(L(Re .), s), we repeat the following two steps. (i)
Apply Lemma 4 to Test(L(Re,),s) using 0(m/d)I/3) pro
cessors. (Note that the information on U P C I ( L ( R e ~ » , for

each subchain C ~ of Cj, is obtained using the structure
described in the previous paragraph.) (ii) Either we have
found the answer to Test(L(Re.), s) in (i), or we have re
duced the test to a unique subchain ct of Cj, in which case
we continue the test by repeating (i) for Test(L(Rek),S).

The size of C is m at the current recursion levei of the
algorithm. The following can be easily proved by induc
tion: at the i-th recursion level below, i ~ 1, the chain
size is O(m!(i)dl-!(j)) and the chain is partitioned into
0«(m/d)!(j)(1/3) subchains (for the (i +1)-th level), where
f( i) = (2/3)'. We want to stop the recursive procedure
for Test(L(Re;), s) when we reach the structure for the i-th
level below (in the recursion tree of Phase l.A) for some
i ~ 1, such that the size of the chain at that level is :s;
(m/d)I/3. Hence we have

(m/d)I/3 ~ m!(j)dl-!(i).

which is equivalent to

m(I/3)-!(j) ~ i 4 / 3 )-!(j).



Choosing i to be 5, the inequality becomes

and it holds as long as m 2': d6
• Thus. the test range size is

reduced to O((m/d)I/3) by going down at most five levels
in the recursion tree of Phase l.A.

4.1.4 The Procedure for Step a.3

We only sketch the computation for Step a.3, as follows.
(1) For every pair OfCi and Cj such that i < j and IICP(Cj)1
is not Case (a), do Test(L(Re,),s) for each segment s on
ICP(C]). (2) For every Re" find ali segments S such that
S is tested in (1) and s is not below any line in L(Re ,);
furthermore, among these segments s, find Sj = VaVb such
that the vertex indices a and b for Si are no bigger than
the vertex indices for any of these segments, where a < b
(by Lemma 1, Rej cannot reach any of these segments other
than sd. Let Si be on ICP(C],) for some)'. (3) IfIICP(C]/)1
is Cases (b) or (e), or Si is above ali the lines in L(Re,), or
Rei pseudo-hits Si, then the bad edges on the subchain of
bd(P) from the last vertex of Ci counterclockwise to Vb (on
Cjl) can be determined; otherwise, IICP(Cjl)1 is Case (d)
and R e , does not pseudo-hit Sj (in this case, we will decide
in Phase l.B the bad edges on the subchain of bd( P) from
Ci counterclockwise to Cj/).

4.2 Phase LB

By using the structure built in Phase l.A, this phase fin
ishes the identification of the edges in HE+ (P). Phase l.B
has the same algorithmic outline as Phase l.A. Its com
putation follows the recursion tree of Phase l.A, level by
level, from the root down to the leaves.

The following operation is typical in this phase: iden
tify the bad edges on C' by using Re, where C ::j:. C' and
IICP(C')I is Case (d). What we do is to shoot Re onto
each subchain cI of C' . Thus, we encounter one of the four
cases at each ICP(CI) , and we may have to continue the
recursive computation on a unique C; where IICP(C;)I is
again Case (d).

We will not go into the details of this procedure, since
these details are similar to those in Phase l.A. But we
would like to point out one thing that must be handled
carefully in this top-down procedure, as follows. If one keeps
using the same data structure for R e (i.e., UPCI(L(Re»)
in the upcoming recursion levels below C', then the same
O(log ICI) time will be spent at each level. This will not
give an O(log n) time algorithm; instead, the time bound
so resulted will be O(log n log log n). To avoid this ineffi
ciency, what we do when shooting Re onto C' is to par
tition C into g = (ICI/d)'/3 subchains C\, C2 , ••• , C g
(as in Phase l.A). Then, by using the structures for the
UPCI (L( Rek »'s (rather than UPCI(L(Re))), every Rek
is independently shot onto each of the CI's. Note that
each UPC/(L(Rek) can be recovered from UPCI(L(Re))
and from the (at most) two connected components of
UPCI(L(Rek») - UPCI(L(Re )) in the desired complexity
bounds.

Figure 5: Illustrating Lemma 10.

5 Checking the Weak Visibility
of a Polygon from an Edge

This section concerns the following problem: check whether
or not a simple polygon P is weakly visible from a specified
edge e of P (i.e;, the case solved sequentially in [2. 13]).
We show how to solve this problem in O(log n) time using
O( n/ log n) processors. Our solution consists of two parts:
a preprocess and a two-phase procedure. WLOG, let e =
en, en be on the x-axis, and xCvI) > x(vn). The preprocess
reduces the problem to that of checking the weak visibility
of a simple polygon from a convex edge. Also, the preprocess
checks to make sure that for every i, 1 < i < n. none of the
following local conditions is satisfied: (i) e does not intersect
the left half-plane of r(ed, and (ii) C\'(r(ei-I)) < 7l", C\'{r(e,))
> 11", and Vi is nonconvex. where r( ej) is the ray starting at
Vi and containing ei. (For any i, P is not weakly visible from
e if either (i) or (ii) is satisfied.) The two-phase procedure
handles the problem of checking the weak visibility of P
from a convex edge (say, en).

5.1 The Basic Idea

We still use ICP(bdi]) to represent the directed shortest
path from Vi to Vj that goes through only the vertices of
bdi] (i.e., the computation of ICP(bdij) is based only on
bdi] and disregards bd( P) - bdi]). Note that in general,
ICP( bdi]) does not necessarily make consistent right turns
for i < j; furthermore, ICP(bdi]) may even intersect the
exterior of P (because it can intersect bd(P) - bdi]).

The lemma below gives the basic idea for solving this
weak visibility problem. For i < i' (resp., i > i"), let
si(i') (resp., si(i")) be the segment on ICP(bdiil) (resp.,
ICP( bdi/J i) that contains Vi·

Lemma 10 If P is weakly visible from en, then for any i,
j, and k, 1 :::; i < j < k :::; n, a scan of the interior angle
of P at v], from edge e j -I clockwise to edge e], encounters
e]_I, s](i), sj(k), and ej, in that order (cf. Fig. 5).

Proof. Omitted. See the full paper. 0
By Lemma 10, if s](i) and Silk) are not in correct order

with ej_1 and ej for some i, j, and k, i < j < k, then Pis
not weakly visible from e. If they are in correct order, then
there is a ray (say, the one starting at V] and containing
s](i» separating ICP(bdij) from ICP(bd]k)' Let the ray
starting at V] and containing s](i) be denoted by r(sj(i)). If
r(s](i» separates ICP(bdij) from ICP(bd]k), then ICP(bdik)
can be computed efficiently from ICP(bdij) and ICP(bd]k).
This is the idea used in the recursive algorithm.

It is known that if there is a ray (e.g., r(s] (1»)) separating
ICP(bd1j) from ICP(bdjn ) for every j, 1 < J < n, then P
is weakly visible from e (e.g., see [12]). Our ultimate goal,
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Proof. An immediate consequence of Lemma 11. 0

Lemma 11 Suppose P is not known to be non-weakly vis

ible from e. For i < j, if ICP( bdi)) is in order and makes

only right turns, then for two consecutive segments Va Vb and

VbVc on ICP(bdi)), a < b < c,a(r(vbvc)) < a(r{VaVb)).

Lemma 12 Suppose P is not known to be non-weakly vis

ible from e. For i, j, and k. 1 ::; i < j < k ::; 11, if both

ICP( bdi)) and ICP( bd)k) are in order and make only right

turns, then ICP( bdik) is in order and makes only right turns.

en

Figure 6: An example for illustrating Lemma 14.
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call, where C is a subchain of bd ln , either an answer "no"
(indicating that P is already known to be non-weakly visible

from e) or ICP( C) is returned. All internal convex paths

in this phase are stored in rank trees. Here we only discuss

the computation in Step c.3.
In Step c.3, a chain C = bd. t is partitioned into 9 =

(m/d)I/3 subchains CI , C2 , ... , Cg , where ICI = m and s

< t. There are O(l) processors available. After the recur
sive calls for the Ci'S, if P is not known to be non-weakly

visible from e, then ICP(CI), ICP(C2 ), ... , ICP(Cg ) are all
available. Let v

ZJ
be the common vertex of C, and C,+ 1, for

each j = 1, 2 ... , g - 1. For each VZj , let Bef, (resp., Aft,)

denote the subchain of C before (resp., after) VZj , that is,

Bef, = bd,zj (resp., Aft, = bdzje). One important opera

tion in this step is to find SZj(s) and sz;{t) for each v,;, This

is because if SZj(s) and SZj(t) are in correct order with e'j-l

and e Zj (d. Lemma 10) for each V Zj , then there is a ray sep

arating every pair of ICP(C;) and ICP(C,), which makes

the computation of ICP(C) possible. Note that ICP(Bef,)

and ICP(Aft) are in general not explicitly available for the

computation of S'j(s) and sz·(t). We only explain how to

use Aft, to compute SZj(t) (the case for SZj(s) is similar).

The following lemma is useful in computing the SZj(s)'s.

Lemma 14 Suppose that P is not known to be non-weakly

visible from e and that every ICP(C k ) is in order and makes

only right turns. For a V'j' let r be the ray starting at V'j

and going through VI, and let r' be the rayon line I(vzjvn )

which starts at V'j and does not contain Vn (see Fig. 6).

For any i E {j + 1, j + 2, ... , g}, if the intersection of the

left half-plane lfp(r) of r and the right half-plane rtp(r') of

r' intersects ICP(Ci) - VZj ' then P is not weakly visible

from e.
oProof. Omitted. See the full paper.

Proof. If a(r(vavb)) ~ 11", then the lemma is obviously true
because ICP(bdi)) is in order and makes only right turns.

If a(r(vavb)) < 11", then either a(r(vbvc)) < a(r{vavb)) or
a(r(vbvc)) > a(r{VaVb)) + 11" (since ICP(bdij) makes only

right turns). But a(r(vbvc)) > a(r(vavb))+1I" and ICP(bdi))

being in order imply that the local condition (ii) tested in

the preprocess is satisfied at Vb, a contradiction. 0

Corollary 1 Suppose P is not known to be non-weakly vis

ible from e. For i < j, if ICP( bdi)) is in order and makes

only right turns, then the polar angles of the segments on

ICP(bd.)) are in sorted order.

therefore, is to compute sj(l) and sj(n) for every j and
check their relative order based on Lemma 10. Clearly, our

main problem is to compute all the sj(l)'s and sj(n)'s.

The algorithm for computing the s)(1)'s and sj(n)'s con

sists of two phases. Phase 2.A uses Lemma 10 to com
pute the internal convex paths on certain subchains of bd(P)

(hence at every recursion level, either it succeeds in comput

ing ICP(C) for a subchain C of bd(P), or it concludes that

P is not weakly visible from e). After the first phase is com
pleted, if P is still not known to be non-weakly visible from

e, then the algorithm proceeds with Phase 2.B. For every

j, Phase 2.B constructs ICP(bd l )) and ICP(bdjn) (by us

ing the internal convex paths obtained in Phase 2.A) and

reports sj(l) and sj(n).

We need to characterize ICP( bdij) before going to the

two-phase algorithm. For bdij, i < j, we say ICP(bdij) is in

order if the vertices of ICP(bd ij ) are in increasing order of
vertex indices in the walk of ICP(bd i)) from Vi to V). For

a segment s = VaVb, a < b, let r( s) be the ray starting at
Va and containing s. The following lemmas enable us to

compute the internal convex paths efficiently.

Lemma 13 Suppose P is not known to be non-weakly vis

ible from e. For i < j, if ICP(bdi)) is in order and makes

only right turns, then ICP(bdi)) can be partitioned into at

most two subpaths C' and C" such that C' (resp., C") is

completely on the convex hull of C' (resp., C").

Proof. Let I be the horizontal line tangent to ICP( bdij)

(let I touch ICP(bdi,) at Va), such that ICP(bdij) - Va is
above I. By Corollary 1, the polar angles of the segments

on ICP{bdia) (resp., ICP(bda))) are all ~ 11" (resp., ::; 11").

Hence, ICP(bdia) (resp., ICP(bdaj)) is completely on the

convex hull of ICP(bdia) (resp., ICP(bda,)). 0

5.2 Phase 2.A

This phase consists of three steps: Step c.1, Step c.2,

and Step c.3. Its algorithmic outline and recurrences for
the time and processor complexities are similar to those

of Phase l.A. Given input (C, ICI, d) to each recursive

Proof. Omitted. See the full paper. 0

For example, in Fig. 6, ICP(Ci) - vZj intersects Ifp(r) n

rtp(r') in such a way that a vertex v'" on ICP(C;) - V'j is

contained in lfp(r) n rtp(r'). Let r' be the ray starting at

V Zj and going through V w ' Then en does not intersect the

left half-plane of r·. Hence P is not weakly visible from en.

Observe that in Phase 2.A, if P is not known to be non

weakly visible from e, then all the ICP(Ck)'S have the prop

erties stated in Lemmas 11 and 12 (that all the ICP( Ck) 's

are in order and make only right turns can be easily proved

by induction by using Lemma 12). Therefore, we can check

whether each ICP(C;) - VZj intersects lfp(r) n rtp(r') in
O(log m) time using O(g) processors.

We compute the SZj(t)'s as follows. We first do the check

ing based on Lemma 14 for every V'j (in O(log m) time us

ing O(l) processors). Suppose P is still not known to be

non-weakly visible from e, then we compute the common

tangent between VZj and ICP(Ci) for each C. ~ Aft), by

B



using the ray starting at vZj and containing VIV zj as a ray
separating VZj from ICP( Cj). This is easily computed in
O(log m) time using O(g) processors for each Cj. Suppose
among the O(g) common tangents so obtained, the tangent
between vZj and ICP( Cj/) is the one first encountered if we
use a ray originating at VZj to scan around VZj clockwise,
by starting at v!VZj ' Then 8z j (t) is the common tangent
Vz;Vb between VZj and ICP(Cj/) (Vb is on ICP(Cjl i). There-
fore, each 8 z ; (t) is computable in O(log m) time using O(l)
processors.

Given 8zj (8) and 8Zj (t) for each vZj ' if SZj(8) and SZj(t)
are in correct order with ezj-l and eZj (cf. Lemma 10),
then the ray r(sZj (s)) (starting at vZ; and containing 8zj (S))
separates Befj from Aft], and hence it separates ICP(Cj)
from ICP(Ck) for each Cj ~ Befj and each Ck ~ Aft]. After
r(sz·(8)) is available, we can compute the common tangent
b e t ~ e e n each pair of ICP(Cj) and ICP( Ck) in O(log m) time
using O(g) processors ~ b y using [8, 5]).

Next, using the O(g ) common tangents so obtained, we
build a complete binary tree of internal convex paths whose
leaves are associated with C1 , C2 , ••• , Cg , respectively. The
root of the tree is associated with bd. t = C and it stores
ICP(bd .. ) (in a rank tree).

The complete binary tree of internal convex paths above
is denoted by Tc. The root of Tc is denoted by root(Tc)
and the left (resp., right) child of an internal node u of
Tc is denoted by Ich(u) (resp., rch(u)). The information
associated with each node of Tc is as follows. root(Tc) is
associated with bd. t and it stores ICP(bd.tl. For an internal
node u, the subchain of C associated with u is the union
of the subchains associated with the descendent leaves of
u. Suppose that the subchain associated with u is bdac and
the subchains associated with Ich(u) and rch(u) are respec
tively bdab and bdbc , a < b < c. Observe that ICP(bdab)
- ICP(bdac ) (resp., ICP(bdbc) - ICP(bdac )) consists of at
most one connected component. The information stored
at Ich(u) (resp., rch(u)) is ICP(bdab) - ICP(bdac ) (resp.,
ICP(bdbc) - ICP(bdac )), represented by a rank tree. The
height of Tc is O(log mi. This tree structure has been used
in [9] for triangulating a one-8idedmonotone polygon (in [9],
each node of the tree stores a portion of the convex hull for
its associated subchain; see [9] for the definitions and the
details). The construction of Tc is done by an algorithm in
[9.5]. in O(logm) time using O(l) processors.

In total, the procedure for Step c.3 requires O(log m)
time and O(l) processors.

5.3 Phase 2.B

At the root of the recursion tree of Phase 2.A, if P has been
decided to be non-weakly visible from e, then the algorithm
stops. Otherwise, we proceed with Phase 2.B to compute
8)(1) and sj(n) for every j. WLOG, we just show how
to compute the 8j(I)'s (the computation for the 8j(n)'s is
similar).

In Phase 2.A, we have constructed a complete binary
tree of the internal convex paths (d. Step c.3). We denote
this tree by T. T has O(n/d) = O(n/ log n) nodes. The
root of T stores ICP(bd1n ). Each non-root node uses a rank
tree to store at most one connected portion of the internal
convex path for the subchain of bd 1n associated with that
node. Hence there are totally O(n/ log n) internal convex
paths stored at the nodes of T.

The algorithmic structure of Phase 2.B is the same as
the structure of tree T. The procedure follows a top-down
paradigm. It starts at root(T), then goes to the two children

ICP(bdla)

.......

V
q

Figure 7: Illustrating Lemma 15.

of root(T), and so on, level by level. until the leaves of T
are reached. Because the height of T is O(log n), we need
to process each level of T (in most part of the procedure) in
0(1) time, in order to achieve an O(log n) time algorithm.

Let u :j:. root(T) be an internal node of T. Let the chains
associated with u, Ich(u), and rch(u) be respectively bdac .
bdab , and bdbc , 1 < a < b < c. The main computation
of Phase 2.B is based on the lemma below. WLOG. we
assume that up to the level of u, P is not known to be
non-weakly visible from e.

Lemma 15 Let the common tangent between ICP(bd!a)
and ICP(bdac ) touch ICP(bd1a ) at Vq and ICP(bd ac ) at
Vr, the common tangent between ICP(bd 1a ) and ICP(bd ab )
touch ICP(bd1a ) at Vw and ICP(bdab) at Vz. and the common
tangent between ICP(bdab) and ICP(bdbc) touch ICP(bdab )
at VZI (see Fig. 7). Then the common tangent between
ICP(bd 1a ) and a vertex on bdab touches ICP(bd 1a ) on
ICP(bdwa ) (with w 2: q), and the common tangent between
ICP(bd1b) and a vertex on bdbc touches ICP(bd1b) either on
ICP(bdqb) (= ICP(bdqw ) U vwvz U ICP(bdzb)) (when Vr E
ICP(bdbc)) or on ICP(bdzlb) (when Vr E ICP(bdab)).

Proof. Omitted. See the full paper. 0
We call ICP( bdqa ) in Lemma 15 the left internal con

vex path to the chain (i.e., bdac ) associated with u and de
note it by LICPu. Likewise, LICPlch(u) = ICP(bdwa ) and
LlCPrch(u) = ICP(bdqb ) (when Vr E ICP(bdbc )). Observe
that LICPlch(u) and LICPrch(u) are disjoint except possibly
at v w . For convenience, we also let ICPu denote ICP(bd ac ).

The computation based on Lemma 15 involves the fol
lowing main operations: (i) computing the common tan
gent between two internal convex paths, (ii) splitting an
internal convex path into two subpaths, and (iii) combining
two internal convex paths together to form another path.
We need to perform each of these operations in O( 1) time
for most part of the algorithm. Obviously, an appropriate
data structure for representing the internal convex paths is
essential in this process.

We can no longer use rank trees to represent the internal
convex paths because of their logarithmic heights. Instead,
we represent the internal convex path stored at each node
of T by an array. The conversion of the rank tree represen
tation into the array representation for the internal convex
paths is easy to do in O(Iog n) time using O(n/ log n) pro
cessors. We henceforth assume that the internal convex
path stored at each node of T is represented by an array.

The computation on a node u of T involves ICPu and
LICPu, which need to be represented in such a way that
enables us to compute their common tangent in 0(1) time.

Recall that Ich( u) (resp., rch(u)) stores the portion of
ICPlch(u) (resp .. ICPrch(u») that is not on ICPu. Only
root(T) has its internal convex path, i.e., ICP(bd1n ), stored
in a single array. Ich( root(T)) may have one portion



of ICP(bd1(n/2)) stored in root(T). The left child of
Ich(root(T) may have one portion of ICP(bd 1(n/4)) stored
in Ich(root(T)), which may again have a portion stored
in root(T). In general, a node u may have a portion of
ICP .. stored in each of its ancestors in T. That is, ICP.. is
obtained from the O(log n) arrays stored at its ancestors.
Therefore, we represent ICP.. by using O(log n) subarrays.

Let ICP.. be represented by A .. (I), A .. (2), ... , A .. (k), in
order, where each A .. ( i) is a subarray of an array stored at
an ancestor of u. Each A .. (i) is specified by two pointers,
one pointing to the first element of A .. (i) and the other
pointing to the last element of A .. (i). Suppose those 2k
pointers are available in the beginning of the computation
at u, where u is an internal node of T. In the process at u, we
split ICP.. at V:', where V:' (resp., V:II) on ICP lch(.. ) (resp.,
ICPrch(u)) is the endpoint of the common tangent between
ICPlch(.. ) and ICPreh(.. ), as follows. Let v:' be contained
in A .. (i) for some i. Then A .. (i) is split at V:' into two
subarrays A ~ and A ~ , such that v:' is the last element of
A ~ and V:" is the first element of A ~ . Let the representation
of ICP ,ch(.. ) be the union of ICPlch(.. ) n ICP.. (represented
by O(log n) pieces from u) and ICPlch(u) - ICPu (one single
piece stored at lch(u)). That is, ICPlch(.. ) is represented by
A .. (1), A .. (2), ... , A .. (i -1), A ~ , and B leh(,,), in order,
where Bleh(u) is the array representing ICP lch(.. ) - ICP...
The similar thing is done for ICPreh(,,)'

We associate with ICP.. k size parameters size,,(I),
size.. (2), ... , size,,(k), where size .. (i) = IA .. (I)1 + ... +
IA,,(i)l. Using the size parameters, we can quickly access
the j-th vertex on ICP" for any j (say, in 0(1) time us
ing O((log n)1/2) processors). When ICP.. is split to form
ICPlch(.. ) and ICPreh(u) , the size parameters for the rep
resentation of ICPrch(u) n ICP .. can be easily updated (in
0(1) time using O(log n) processors) because we just need
to subtract/add a same number from/to all the parameters
in the list for rch( u) and then add a new parameter (for
ICPrch(,,) - ICP,,) to the beginning of the list. The update
on the parameters for lch(u) is even easier (only a new term
is added to the end of the parameter list).

It can be shown that LICP.. is also represented by
O(log n) subarrays. Hence the "split" and "combine" oper
ations on LICP.. are also the same as on ICP...

With these representations for the ICP .. 's and LICP.. 's,
the common tangent between every pair of ICP.. and
LICP.. , at each level of T (in most part of the algori thm),
can be computed in 0(1) time and O(n/ log n) processors
by using [IJ.
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