
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

1985 

An Optimal Parallel Algorithm For the All Nearest -- Neighbor An Optimal Parallel Algorithm For the All Nearest -- Neighbor 

Problem for a Convex Polygon Problem for a Convex Polygon 

Michael T. Goodrich 

Report Number: 
85-533 

Goodrich, Michael T., "An Optimal Parallel Algorithm For the All Nearest -- Neighbor Problem for a Convex 
Polygon" (1985). Department of Computer Science Technical Reports. Paper 453. 
https://docs.lib.purdue.edu/cstech/453 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


AN OPTIMAL PARALLEL ALGORTI1lM FOR THE ALL
NEAREST-NEIGHBOR PROBLEM FOR A CONVEX POLYGON

Michael T. Goodrich

CSD-TR-533
August 1985



An Optimal Parallel Algorithm For the All

Nearest-Neighbor Problem for a Convex

Polygon

Michael T. Goodrich

Department of Computer Sciences

Purdue University

West Lafayette, IN 47901

August, 1985

CSD-TR-533

Abstract

In this paper we give a parallel algorithm for finding the nearest-neighbor ver­

tex of each vertex of a convex polygon. Our algoritb..z::J. runs in O(log n) time using

O(njlogn) processors, in the parallel computation model CREW PRA.lvr (Concurrent­

Read, Exclusive-Write Parallel RAM). This implies that the all nearest-neighbors prob­

lem for a convex polygon can be solved in O(n/p+logn) time using p processors, which

is optimal.

Keywords: Computational geometry, parallel algorithms, nearest-neighbor problem,

convex polygons, parallel merge.



1 Introduction

Problems of a geometric na.ture arise often in many areas where a. fast solution is essential [6]. Thus

it seems natural that we should be interested in finding emcient parallel algorithms to solve such

problems. Previous work in this area. addressed the convex hull problem, the closest pair problem,

Voronoi diagrams, segment intersection, and polygon triangulation, among others [1,2,31.

In this paper we give an optimal parallel algorithm solving the All Nearest-Neighbor Problem

for a. Convex Polygon: given a convex polygon with n vertices, find the 'nearest-neighbor vertex of

each vertex oi the polygon. This problem has been studied for the sequential computation model,

and an optimal O(n) time algorithm is known [4,5,91. The fast serial algorithm for this problem

makes repeated use of the "plane-sweep" paradigm, in which one sequentially scans through a set

of objects, usually updating some data structure with each new object encountered. Since the fast

serial algorithm reEes on this paradigm, it doesn't seem likely that we can simply "parallelize" the

known iast sequemial algorithm to gel; an efficient parallel algorithm.

We present a new parallel algorithm for this problem which runs in O(1og n) time using O(n/log n)

proc~ors. This, of coux:se, i.!D.plies that the problem can be solved in O(~/p+ log 11) time using p

processors, which is optimal. The parallel com.putation model we use is one in which all processors

share a common rner::::lOry, arld no two processors may si.r:!:J.ultarleously ",-rite to the same me:n-

----~G~e~a~wed. Th.is madel---is usuelly i"efe!ed-ta---as-a~"\1'-------­

(Concurrent-Read, Exclusive-Write Parallel RA.l\-f).

The algorithm consists of two parts: a partition phase a.i1d a merge phc.se. We present the

partition phase in section 2, and the merge phase in section 3. Our algorithm makes repeated use

or a parallel merging technique which may be useful in finding efficient parallel algoritb.rn.s for other

geometric problems.

2 The Partition Phase

Let P = (111,112 •••• , vn) be the cIock-v."'ise listing of the verticies of some convex polygon P. A

vertex chain C = (Vi.Vi+l' ... 'V,Y is said to have the semi~cif"cle property if (i) 11, and Vj are

two farthest vertices in C, and (ii) if all the vertices of C are contained in a circle with diameter

ViVj. Let 11a and V~ be two farthest vertices of P, and let v~ (Vel:) be a vertex which is farthest to

the left (right) of the line V"I1~. In [5] Lee and Preparata show that the vertices Va, 11~, 11~, and Vel:

partition Pinto 4 vertex chains with the semi-circle property (C1 = (V", ... ,Vb), Cz. = (V~•... , 11~),

Cs = (ve, ... , lid), and Cot = (Vd, ••• , l1a )), and that the nearest-neighbor vertex in Ci of any VI::: E C,

is Uk'::""l or VI:::+1 (see Figure 1). In this section we show how to find the vertices Va, V~, 11~, and Vel:

I All subscripts are :LS8umed to be (mod 11.) -+- 1.

1



efficiently in parallel. We will show how to use these vertices to solve the all nearest-neighbor
problem for P in the section which follows.

We first show how to find a pair of farthest vertices in P. The algorithm DIA..METER, presented
below, accomplishes this in O(1og n) time using O(n/log n) processors.
Algorithm DIA..:.\dETER:

Input: A convex polygon P = (UI' "2, ... , Un).
Output: Two farthest points, 11(1 and Ve , in P.
Method: The cyclic ordering of the vertices of P deterroines a direction for each edge. Treating each
edge as a vector, translate this set of edge vectors to the origin. In [7] Shamos observed that any
line through the origin of this vector diagram intersects two secto~which correspond to anti-podal
vertices (see Figure 2). Since we wish to find all anti-podal vertices in o(log n) time, we cannot
use the method of retatin.g a line containing the origin through the set of vectors, as Shames did.
Instead, we divide the set of vectors in two by the x-axis, reffect one of subsets about the x and y
axes, and use a para:l.le1 merging procedure to enumerate all anti-podal vertices. Then, by taking a
maximum over the D(n) pai..-s we find a farthest pair of vertices in P. The details follow.

Step 1. Using the cyclic ordering of the vertices of Pas determ.i.ni.r.g a cii:ectien on each edge, and
trea:ticg edges as vectors, tra.Il.slate the set of edge vectors to the origin.

Step 2. Tag the vectors (edges) in the vector diagram which are a.bove the =-axis "red," and ta.g the
_______-->re.,maining-v-ectoLs "blue."

Step 3. Reil.eet the set of blue vectors about the y-axis, and then about the z-axis.
Comment: Note that the set of red vectors and the set of blue vectors are now similarly ordered by the

angle each vector makes with the x-axis.
Step 4. Use the merging algorithm of Shiloach and Vishkin [8\ to merge these two sorted lists in

O(Iogn) time using O(n/legn) processors.
Note: Although Shiloach and Vishkin designed their merging algorithm for the CReW PRAL'vf

(Concurrent-Write), their method will work on the CREW PR..A.J.Vf also.
Comment: Now, given any red vector we can find the blue vector which precedes it and the one which

succeeds it in 0(1) time, and vice versa.
Step 5. For each red vector find the two blue vectors which precede it and succeed it in the merged

list. This determines two pairs of anti-pedal vertices for each red vector.
Step 6. Repeat Step 5 for blue vectors.

Comment: Steps 5 and 6 enumerate all anti-podal pairs of vertices of P (in fact, some pairs are counted
twice ).

Step 7. Take the max over all the distances betweeo. anti-podal vertices to find a farthest pair of
vertices in P. Thi.':l can be done in O(logn) time using the familiar D(n/logn) processor
max~finding algorithm, in which each processor finds a maximum of O(leg n) elements se-

2



quentially, and then all the processors find the maximum of these values in parallel, using a

"binary tree" combining rule.

End of algorithm D1AJ.VlETER.

Theorem: Algorithm D1A.J.\.1ETER correctly finds a farthest pair of vertices of a polygon P in

O(logn) time using O(n/logn) processors on a CREW PRA..ivL

Proof: The correctness of the algorithm D1A.J.\.1ETER should be clear from the comments made

above, so we turn immediately to the time and processor bounds. Note that Steps 1, 2,3, 5. and

6 could be solved in 0(1) time ii we were using O(n) processors, since we are doing 0(1) work for

each of O(n) objects in each of these steps. Thus we can perform each of these steps in o(log n)

time using O(n/log n) processors.. We have alrea.dy observed that Steps 4 and 7 can be done in

O(1ogn) time using O(n/logn) processors, so this completes the proof.•

We use the algorithm D1A.J.\1ETER to help partition P into four vertex chains with the semi-

circle property in the algorithI::::1 PARTITIO~ presentad "ext. The algorithm PARTITIOX t"o.lIlS iu.

O(logn) time using O(n/logn) processors.

~..ugorithm. PA..RTITION:

Input: A polygon P = "(VI. LIz, •.• , v~).

O~tput: A partitioning of P into four vertex chains C 1 = (v:;, .. "ViI), C:

----\'("..,_.~.,.",',fi,-),and-C<-={v,•... ,u.j,<~mi-€i<c~e.",.,'Y·'_------------­

Method: We use the algorithm DlA.l\-fETER to find a. farthest pair of vertices in P (v:; and v~),

and then find vertices which are farthest left and right of the line Va Vc, respectively. As we haYe

alrea.dy noted this determines four vertex chains with the semi-circle property.

Step 1. Use the algorithm D1A.L\1ETER to find a farthest pair (Va, tie) of vertices in P.

Step 2. Find a vertex Vb (Vd) which is a. farthest point left (righ.t) of the line Vatic by taking a max of all

the distances of vertices to the line Va tic. This can be done in o(leg 11.) time using O(n/ log~)

processors using the familiar O(log~) time, O(~/Iog 11.) processor max-finding algorithm.

The points {Va, Vb, Ve.Vd} divide Pinto 4 vertex chains C 1 = (va, ... ,Vb), C2 = (Vb •... ,Vc ),

C3 = (vc•... , Vel), a.nd C" = (Vel, ... , va), eacn with the semi-circle property.

End of Algoritb= PARTITION.

Theorem: The algorithm PARTITION correctly partitions a convex polygon into four vertex

chains with the semi-circle property in 0 (log n) time using 0 (n/ log n) processors on a CREW

PRAM.

Proof: The correctness of the a.lgorithm PARTITION follows from the lemma by Lee and

Preparata [5] which states that the vertices Va, Vb, Vc, and Vd partition P into four vertex chains with

the semi-circle property. The time and processor bounds follow immediately from the observations

made above.•

3



In the section which iollows we show how to solve the All Nearest-Neighbors Problem for a

Convex Polygon, using the algorithm PARTITION.

3 The Merge Phase

The algorithm NEIGHBORS solves the All Nearest-Neighbor Problem [or a Convex Polygon in

O(Iogn) time using O(njlogn) processors.

Algorithm NEIGHBORS:

Input: A convex polygon P = (VI, vz, .. . , vn).

Output: Au array NN, with NN(i) being the nearest-neighbor vertex or the vertex v,.

Method: We use the algorithm PARTITION to divide P into four vertex chains which have the

semi-cirde property. We can solve the all nearest-neighbor problem for each vertex chain in O(log n)

time using 0 (:l! log n) processors, because the intra-cb.:rin nearest neighbor ror any vedex in one

of these the verte~ chains can be detennined in 0(1) time Gust by looking at predecessor and

Succ.essor vertices). We then marry the solutions to each consecutive pair of vertex chains, in turn.

To marry t1:.e solutions to two consecutive vertex cb.ains, say CI and Cz, we project the poli::Lts of G!

aJld C~ onto the line which separates them, auo me!'g~ these two sorted futs. This the!!. allO';,.-s us

to find inter-6ai.n nearest neighbors for any vertex in 0(1) time. Thus we can marry the solutions

to two cO!JSecutive vertex chains in 0(105' n) time using O(n/log n) processors; hence, can solve the

All Nearest-Neighbor problem for P in those some bounds. The details [ollew.

Step 1. Use the algorithm PARTITION to partition P into four vertex chains C I = (va' ... ' Vb), C2 =
(Vb, •• . ,Vc), C3 = (V", .•. ,vdL and C4 = (Vd" ... , va), each with the semi-circle property.

Step 2. Solve the A.1~N problem for each verte;::: chain in parailel, finding an intra-chain nearest

neighbor ::q for each vertex v,.
Comment: Since each vertex chain has the semi-circle property, each nearest neighbor can be found by

simply looking at immediate successor and predecessor vertices.

Step 3. Let L be the line separating C I and C2 (in this case the line through the vertex Vb perpen­

dicular to the line vavc). Translate all the points of C1 and C2 to L (see Figure 3). Let q
(CD be the set of translations of vertices in C I (C2 ).

Step 4. Merge the two sorted lists C{ and C; in O(log n) time with O(njlog n) processors using the

me.hod of [8].
Step 5. For each v; E Ci find the projections y~ and z~ in G~ which precede and follow v~ in the

merged list.

Comment: Since we merged the two lists in Step 5, this can be done for any v: E Ci in 0(1) time by

one processor. Thus, O(n/ log n) processors can perform this step in O(Iog n) time.

Step 6. For each i compare the distances from Vi to Xi, !/i and Zi to see which is closer.

4



Step 7. Repeat Steps 3 through 6 to marry the solutions to Cz and C3 , Cs and C", and C4 and C l •

each pair in turn. This finds the nearest neighbor vertex for each Vi E P.

End of Algoritlun NEIGHBORS.

Theorem: The algorithm NEIGHBORS correctly finds the nearest-neighbor vertex of every

vertex of a convex polygon in o (log n) time using O{n/logn) processors on a CREW PRAJ.\1.

Proof: The correctness of the algorithm depends heavily on the fact that in marrying the solutions

to a consecutive pair of vertex chains Cl and C1, we know that for any vertex Vi E Cl the nearest

neighbor of Vi in Cz must have a projection which is a predecessor or successor in C~ of v: in the

merged list. This was proved by Lee and Preperata. in [5]. Having observed that, the correctness

of the algorithm follows from the above discussion.

To prove the tim.e and processor bounds we obserte that Steps 2, 3, and 6 can be done O{logn)

time ~si.c.g O{n/lognL since each step requires doing 0(1) work for each of O(n) objects. We have

alzeady observed tha.t Steps 1~ 4, a.r:;.d 5 run in O(lcg n) time using O(r./log n) processoi'S. Thus,

the en tire algorit;hrr. runs within these bounds.•

References

[IJ A. Aggarwal, B. Chazelle: L. Guioas, C. O'Dunlai.ng, and C. Yap, "P2.Iallel Compmational

Geometry," to appe2.I in P,:,oc. 25f..~ IEEE Symp. on Foundation3 oj Comp'!der Science, 1.985.

[2] M.J. Atallah and M.T. Goodrich, "Efficient Parallel Solutions to Geometric Problems," 1985

Proc. Int. Coni. on Parallel Processing, St. Charles, 11., pp. 411--417.

[2] A. Chow, "Parallel Algorithms for Geometric Problems," Ph.D. dissertation, Computer Sci­

ence Dept., University of illinois at Urbana-Champaign, 1980.

[4j A. Fournier and Z. Kedem, "'Comments on the All Nearest-Neighbor Problem for Convex

Polygons," Injormation Process1·ng Letters, Vol. g, No.3, October 1979, pp. 105-107.

[5j D.T. Lee and F.P. Preparata, "The All Nearest-Neighbor Problem for Convex Polygons,"

Injormation Process1·ng Letters, Vol. 7, No.4, June 1978, pp. 189-192.

[6J D.T. Lee and F.P. Preparata, "Computational Geornetry-A Survey," IEEE Trans. on Com­

puters, Vol. C-33, No. 12, December 1984, pp. 1072-1101.

[7] M.L Shamos, "Geometric Complexity," Proc. of 7th Symp. on Theory of Computing, 1975,

pp. 224-233.

[81 Y. Shiloach and U. Vishkin, "Finding the Maximum, Merging, and Sorting In a. Parallel

Computation Model," Journal of Algorithms, Vol. 2, 1981, pp. 88-102.

5



[9] C.C. Yang 2nd D.T. Lee, "A Nate an the }J.l Nearest-Neighbor Problem for Convex Polygons/

Information P~ocessing Letters, VaL 8, No.4, April 19t9, pp. 193-194.

6



",
C,

C,

C,

Figu:re 1: A partitioning of P iato 4: vertex chain.9 with the semi-circle prcperl;y.

y

0
,1"'

_ 2
o

"3
Vi; :3

4 ",

(aJ

"' 5

"3

(bJ

2

Figure 2: Treating edges as vectors, translate the set of edges to the origin. Note that vertices in
the polygon (a) correspond to sectors in the vector diagram (b).

7



C,

vi

C,

IJ~

L

Figure 3: The projection of vertices of consecutive vertex chains onto the line L which separates
them..

8


	An Optimal Parallel Algorithm For the All Nearest -- Neighbor Problem for a Convex Polygon
	Report Number:
	

	tmp.1307986960.pdf.9GaeJ

