Purdue University
Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1985

An Optimal Parallel Algorithm For the All Nearest - Neighbor
Problem for a Convex Polygon

Michael T. Goodrich

Report Number:
85-533

Goodrich, Michael T., "An Optimal Parallel Algorithm For the All Nearest - Neighbor Problem for a Convex
Polygon" (1985). Department of Computer Science Technical Reports. Paper 453.
https://docs.lib.purdue.edu/cstech/453

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.


https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

AN OPTIMAL PARATILEL ALGORITHM FOR THE ALL
NEAREST-NEIGHBOR PROBLEM FOR A CONVEX POLYGON

Michael T. Goodrich

CSD-TR-533
August 1985




An Optimal Parallel Algorithm For the Al
Nearest-Neighbor Problem for a Convex
Polygon

Michael T. Goodrich

Department of Computer Sciences
Purdue University
West Lafayette, IN 47907

Angust, 1985
CSD-TR-533

Abstract

In this paper we give a parallel algorithm for finding the nearest-neighbor ver-
tex of each vertex of a convex polygon. Our algorithm runs in O(logn) time using
O(n/log r) processors, in the parallel computation model CREW PRAM (Concurrent-
Read, Exclusive-Write Parallel RAM). This implies that the all nearest-neighbors prob-
lem for a convex polygon can be solved in O(n/p+log n) time using p processors, which
is optimal.

Keywords: Computational geometry, parallel algorithms, nearest-neighbor problem,

convex polygons, parallel merge.



1 Introduction

Problems of a geomefric nature arise often in many areas where a fast solution is essential {6]. Thus
it seems natural that we should be interested in finding efcient parallel algorithms to solve such
problems. Previous work in this area addressed the convex hull problem, the closest pair problem,
Yoronoi diagrams, segment intersection, and polygon triangulation, among others [1,2,3[.

In this paper we give an optimal parallel algorithm solving the All Nearest-Neighbor Problem
for a Convex Polygon: given a convex polygon with n vertices, find the nearest-neighbor vertex of
each verfex of the polygon. This problem has been studied for the sequential computation model,
and an optimal O(n) time algorithm is known {4,5,9]. The fast serial algorithm for this problem
makes repeated use of the “plane-sweep” paradigm, in which one sequentially scans through a get
of objects, usually updating some data structure with each new object encountered. Since the fast
serial algorithm relies on this paradigm, it doesn’t seem likely that we can simply “parallelize” the
known fast sequential algorithon to get an efficient parzilel algorithm.

We present a new parallel algorithm for this problem which runs in O(log n) time using O(n/ log n)
processors. This, of course, implies that the problem can be solved in O(n/p + log n) time using p
processors, which is optimal. The parallel computaiion model we use is one in which all processars

shere a common memory, and no two processors may simultansously write to the same mem-

— orycell, but concurrentreads—are allowed-—This mmodeld referad fo—easa CRIEW PRAM

(Concurrent-Read, Exclusive-Write Parallel RAM).

The zlgorithm consisis of two parts: a parfition phase and a merge phese. We present ihe
partition phase in section 2, and the merge phase in seciion 3. Our algorithm makes repeated use
of a parailel merging technique which may be useful in finding eficient parallel algorithmas for other

geometric problems.

2 The Partition Phase

Let P = (vi,v2,...,u,) be the clock-wise listing of the verticies of some convex polygen P. A
vertex chain C = (v, vi:1,...,v;)! is said to have the semi-circle property if (i) v; and v; are
two farthest vertices in C, and (i) if all the vertices of C are contained in a circle with diameter
Tiv;. Let v, and v, be two farthest vertices of P, and let vy (vg) be a vertex which is farthest to
the left (right) of the line ¥30;. In [S] Lee and Preparata show that the vertices va, vs, v, and vg
partition P into 4 vertex chains with the semi-circle property (Cy = (va,-.-, %), C2 = (¥, ..., v},
Cs = (ve,...,v4), and Cy = (vg, .. .,v,)), and that the nearest-neighbor vertex in C; of any v € C;

is up_; or viy; (see Figure 1}. In this section we show how to find the vertices v,, vy, ve, and vg

'All subseripts are assumed to be (mod n) + 1.



efficiently in parallel. We will show how to use these vertices to solve the all nearest-neighbor
problem for P in the section which follows.
We first show how to find a pair of farthest vertices in P. The algorithm DIAMETER, presented

below, accomplishes this in O(log n) time using O(n/log n) processors.
Algorithm DIAMETER.:
Input: A convex polygon P = (vi,vz,...,9,).
Output: Two farthest points, v, and Y, in P,
Method: The cyclic ordering of the vertices of P determines a direction for each edge. Treating each
edge as a vector, translate this set of edge vectors to the origin. In {7] Shamos observed that any
line through the origin of this vector diagram intersects two sectors which cotrespond to anti-podal
vertices (see Figure 2). Since we wish to find all anti-podal vertices in O(logn) time, we cannot
use the method of rotating a line containing the origin throush the set of vectors, as Shamos did.
Instead, we divide the set of vectors in two by the z-axis, refect one of subsets ebout the z and y
axes, and use a parzilel merging procedure to enumerate all anti-pedal veriices. Then, by taking =
maximum over the O(n) pairs we find a farthest pair of vertices in P. The details follow.

Step 1. Using the cyclic ordering of the vertices of P ag determining a direction on ezch edge, and

‘reaticg edges as vectors, translate the set of edge vectors to the origin.

Step 2. Tag the vectors (edges) in the vector diagram which are zbove the z-axis “red,” and tag the

remainingvectors “blue >
Step 3. Reflect the set of blue vectors about the y-axis, and then about the z-axis.
Comment: Note that the set of red vectors and the set of blue vectors are now similarly ordered by the
angle each vector makes with the z-axis.
Step 4. Use the merging algorithm of Shiloach and Vishkin [8] to merge these two sorted lists in
O(log ) time using O(x/log ) processors.
Note: Although Shiloach and Vishkin designed their merging alzorithm for the CRCW PRAM
(Concurrent-Write), their method will work on the CREW PRAM also.
Comment: Now, given any red vector we can find the blue vector which precedes it and the one which
succeeds it in O(1) time, and vice versa.
Step 5. For each red vector find the two blue vectors which precede it and succeed it in the merged
list. This determines two pairs of anti-podal vertices for each red vector.
Step 6. Repeat Step 5 for blue vectors.
Comment: Steps 5 and 6 enumerate all anti-podal pairs of vertices of P (in fact, some pairs are counted
twice).
Step 7. Take the max over all the distances between anti-podal vertices to find a farthest pair of
vertices in P. This can be done in O(logn) time using the familiar O(n/logn) processor

max-finding algorithm, in which each processor finds a maximum of O(log n) elenents se-




quentially, and then all the processors find the maximum of these values in parallel, using a
“binary tree” combining rule.
End of algorithm DIAMETER.

Theorem: Algorithm DIAMETER correctly finds a farthest pair of vertices of a polygon P in
O(log n) time using O(n/log n) processors on a CREW PRAM.

Proof: The correctness of the algorithm DIAMETER. should be clear from the comments made
above, so we turn immediately to the time and processor bounds. Note that Steps 1, 2, 3, 5, and
6 could be solved in O{1) time if we were using O(n) processors, since we are doing O(1) work for
each of O(n) objecis in each of these sieps. Thus we can perform each of these steps in O(log n)
time using O(n/log n) processors. We have already observed that Steps 4 and 7 can be done in
Oflog n) time using O(n/ log n) processors, so this completes the proof. »

We use the algorithm DIAMETER to help partition P into four vertex chains with the semi-
circle property in the algorithm PARTITION presented next. The algorichm PARTITION runs in
O(logn) time using O(r/logn) processors.

Algorithm PARTITION:
Input: A polygon P = (v1,v,...,v,).

Qutput: A partitioning of P into four veriex chains C) = (vg,...,%), C2 = (vs,...,4.), C3 =

(veyrtglrand Coy= (v Vo), 0ach with the semicircle property

Method: We use the algorithm DIAMETER to find 2 farthest pair of vertices in P (v, and v.),
and then find veriices which are farthest left and right of the line Ti7;, respeciively. As we have
already noted this determines four vertex chains with the semi-circle property.

Step 1. Use the algorithm DIAMETER to find a farthest pair (vq, v.) of vertices in P,

Step 2. Find a vertex v, {vz) which is a farthest point left (right) of the line v;9; by taking a2 max of all
the distances of vertices {o the line 5;5;. This can be done in O(leg n} time using O{n/ log =)
processors using the familiar O{logn) time, O(n/logn) processor max-finding algorithm.
The points {va, v, v, va} divide P into 4 vertex chains C) = (v,,..., %), C2 = (uvp,..., v.),
Cs =(vey...,v4), 20d Cs = (v4,-..,Va), each with the semi-circle property.

End of Algorithm PARTITION.

Theorem: The aigorithm PARTITION coirectly partitions a convex polygon inéo four vertex
chains with the semi-circle property in O(logn) time using O(n/logn) processors on a CREW
PRAM.

Proof: The correctness of the algorithm PARTITION follows from the lemma by Lee and
Preparata [5| which states that the vertices va, vy, v., and vy partition P into four vertex chains with
the semi-circle property. The time and processor bounds follow immediately from the observations

made above. =




In the seciion which follows we show how to solve the All Nearest-Neighbors Problem for a
Convex Polygon, using the algorithm PARTITION.

3 The Merge Phase

The algorithm NEIGHBORS solves the All Nearest-Neighbor Problem for a Convex Polygon in
O(log n) time using O(n/ log n} processors.

Algorithm NEIGHBORS:

Input: A convex polygon P = (v, v2,...,v,).

Output: Aa array NN, with NN (i) being the nearest-neighbor vertex of the vertex v;.

Method: We use the algorithm PARTITION to divide P into four vertex chains which have the
semi-circle property. We can solve the all nearest-neighbor problem for each vertex chain in O(log n)
time using O(n/log n) processors, because the intra~chain nearest neighbor for any vertex in one
of these the vertex chaips can be determined in O(1) time (just by looking a& predecessor and
successar vertices). We then marry the soluiions to each consecutive pair of veriex chains, in turn.
To marry ke solutions to two consecutive vertex chains, say Cp and C,, we project the points of C1
and Ca onto the line which separates them, and mergs these two sorted lists. This thea allows us

to find inter-chain nearest neighbors for any vertex in C{1) time. Thus we can marry the solutions

to two consecuiive veriex chains in O(log ) time using O(r/log n) processors; hence, can solve the
AN Nearest-Neighbor problem for P in those some bounds. The decails follow.
Step 1. Use the algorithm PARTITION to partition P into four vertex chains Cy = {vg,...,w),C2 =
(vby.-., %), Cz = (vzy...,vq), and Cy = (vy,...,v,), each with the semi-circle property.
Step 2. Solve the ANN problem for each vertex chain in parailel, finding an intra-chain nearest
neighbor z; for each vertex ;.
Comment: Since each vertex chain has the semi-circle property, each nearest neighbor can be found by
simply looking at immediate successor and predecessor vertices.
Step 3. Let L be the line separating C; and C: (in this case the line through the vertex v, perpen-
dicular to the line v;v;). Translate all the points of C) and C; to L (see Figure 3). Let C}
(C%) be the set of translations of vertices in Cy (Ca).
Step 4. Merge the two sorted lists C] and C} in O(log n) time with O{n/logn) processors using the
method of [8].
Step 5. For each v} € C{ find the projections y! and z! in C} which precede and follow u; in the
merged list.
Comment: Since we merged the two lists in Step 5, this can be done for any v; € C] in O(1) time by
one processor. Thus, O(n/ log n) processors can perform this step in Olog n) time.

Step 6. For each i compare the distances from v; to z;, y; and z; to see which is closer.




Step T. Repeat Steps 3 through 6 to marry the solutions to C3 and Cj, Cs and Cy, and Cy and O,

each pair in turn. This finds the nearest neighbor vertex for each v; € P.
End of Algorithm NEIGHBCRS.

Theorem: The algoritkm NEIGHBORS correctly finds the nearesi-neighbor vertex of every
vertex of a convex polygon in O(logn} time using O(n/logn) processors on a CREW PRAM.
Prooi: The correctness of the algorithm depends heavily on the fact that in marrying the solutions
to a consecutive pair of veriex chains C} and C; we know that for any vertex v; € C; the nearest
neighbor of v; in C; must have a projection which is a predecessor or successor in C4 of v} in the
merged list. This was proved by Lee and Preperata in [5]. Having observed that, the correctness
of the algorithm follows from the above discussion.

To prove the time and processor bounds we observe tkat Steps 2, 2, and 6 can be done O(log r)
time usinrg O(n/log n), since each step requires doing O(1) work for each of O(n) objects. We have
aiready observed that Steps 1, 4, ard 3 run in O(leg a) time using O{n/log n) processors. Thus,

the entire algorithm runs within these bounds. =

Referances

[} A. Aggarwal, B. Chazelle, L. Guibes, C. O'Drinlaing, and C. Yap, “Parallel Compusztional

Geomeiry,” to appear in Proc. 25i% IEEE Symp. on Foundations of Compuier Science, 1985,

[2] M.J. Atallah and M.T. Goodrich, “Eficiens Parallel Solutions to Geometric Problems,” 1985
Proc. Int. Conf. on Parallel Processing, St. Charles, IL., pp. 411417.

[2] A. Chow, “Parallel Algorithms for Geometric Problems,” Ph.D. dissertation, Computer Sci-

ence Dept., University of Illinois at Urbana-Champaign, 1980.

[41 A. Fowrnier and Z. Kedem, “Comments on the All Nearesi-Neighbor Problem for Convex

Polygons,” Injormation Processing Letters, Val. 9, No. 3, October 1979, pp. 105-107.

[5] D.T. Lee and F.P. Preparata, “The All Nearest-Neighbor Problem for Convex Polyzons,”
Infermation Processing Letlers, Vol. 7, No. 4, June 1978, pp. 189-192.

6] D.T. Lee and F.P. Preparata, “Computational Geometry—A Survey,” IEEE Trans. on Com-
puters, Vol. C-23, No. 12, December 1984, pp. 1072-1101.

(7] M.L. Shamos, “Geometric Complexity,” Proc. of 7th Symp. on Theory of Computing, 1975,
pp. 224-223.

[8] Y. Shiloachk and U. Vishkir, “Finding the Maximum, Merging, and Sorting in a Paraile
Computation Model,” Journal of Algorithms, Vol. 2, 1981, pp. 88-102.



[9] C.C. Yangand D.T. Lee, “A. Note on the All Nearest-Neigkbor Problem for Convex Polygons,”
Information Processing Letters, Vol. 8, No. 4, April 1579, pv. 193-194.




va
1

Vg

Vg

Figure 1: A partitioning of P into 4 veriex chains with the semi-circle property.

J y
vs 5 th
4 / 1

‘\ o
I

Y / \ tra

3
2
U3

() (b)

Figure 2: Treating edges as vectors, translate the set of edges to the origin. Note that vertices in
the polygon {a) correspond to sectors in the vector diagram (b).



Figure 3: The projection of veriices of consecutive vertex chains onto the line L which separates
them.




	An Optimal Parallel Algorithm For the All Nearest -- Neighbor Problem for a Convex Polygon
	Report Number:
	

	tmp.1307986960.pdf.9GaeJ

