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1 Introduction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Visibility is one of the most fundamental topics in computational geometry. Visibility problems 

find applications in many areas, such as graphics and robotics. Also, visibility problems often 

appear as subproblems of many other problems in computational geometry (like shortest-path with 

obstacles). In this paper, we consider one important visibility problem: given a pointzyxwvutsrqponmlkjihgfedcbaYXWVUTSQPOMLJIGFEDCBA q and a simple 

n-vertex polygonal chain P in the plane, find all the points of P that are visible from q if P is 

opaque. Our goal is to provide an efficient parallel algorithm for this problem in the C R E W - P R A M 

computational model. Recall that C R E W - P R A M is the synchronous shared-memory model where 

concurrent reads are allowed but no two processors can simultaneously attempt to write in the 

same memory location (even if they are trying to write the same thing). 

One of the major tasks of parallel aJgorithm design for P R A M models is to come up with 

parallel algorithms that are optimal, i.e., that run as fast as theoretically possible for the problem 

they solve and simultaneously have a time x processors bound that is within a constant factor 

of the time complexity of the best sequential algorithm for the problem they solve. This goal 

has been elusive for many simple problems that are trivially in the class NC. Until recently, the 

convex hull problem was one of the few geometric problems for which an optimal algorithm was 

known. Recently, the "cascading divide-and-conquer" technique [C,ACG] has yielded a long list of 

optimal algorithms for geometric problems, in particular for the visibility problem when the opaque 

objects are nonintersecting line segments. The algorithm in. [ACG] runs in O( log 71) time using 

0(n) processors, which is optimal for arbitrary non-intersecting line segments, but is suboptimal 

when the n line segments form the boundary of a simple (possibly closed) polygonal chain. No 

modification of [ACG] seems to yield an optimal algorithm for that problem. Indeed, in order to 

obtain an optimal algorithm for that problem, this paper follows a very different approach, and a 

C R E W - P R A M algorithm that takes O( logn) time and uses 0(nj log 71) processors is provided. The 

contribution of this paper is actually twofold: first, it provides the first optimal parallel algorithm 

for the problem of visibility of a simple polygonal chain from a point, which also gives efficient 

parallel algorithms for other geometric problems on a simple polygonal chain (some of them are 

mentioned in the concluding section); second, it presents geometric insights that allow efficient 

detection of intersections between the visibility chains of different portions of the polygonal chain. 

These insights are likely to be useful in solving other problems about simple polygonal chains. 

This algorithm is optimal to within a constant factor because (i) there is an obvious fl(n) 

sequential lower bound for the problem, and (ii) an fi(log n) lower bound on its C R E W - P R A M 
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time complexity is easily obtained by reducing to it the problem of computing the maximum of 

n entries. Several sequential algorithms [EA,L,DS] have solved the problem within a linear time 

bound. 

In the next section, we give the notations and definitions used in this paper. An overview of 

the algorithm is sketched in Section 3. Section 4 presents the crucial geometric insights, and the 

algorithm based on them. In Section o, we mention some applications of the algorithm. 

Throughout, all logarithms are to the base 2 unless otherwise specified. ywvutsrponmlkihgfedcbaZWVUTSRPOMLJIHGFDCBA

2 Terminology 

The input consists of a pointzyxwvutsrqponmlkjihgfedcbaYXWVUTSQPOMLJIGFEDCBA q and a simple polygonal chain P = (ui, V2,... ,u n ) in the plane 

(possibly = vn), where the given sequence of vertices is such that when we visit them in the 

order ui, V2, . . . , vn, we are traveling along chain P and encounter each point on P exactly once 

(except at the starting point v\Mv\ = Let s; denote the segment joining v; to u l + 1 . The order 

in which a walk along P from v\ to vn encounters the v,-'s is called the chain order and is denoted 

by < p . We say v,- has rank i in the chain order, and denote it by rank(vi). For example, V3 < p u9 

since rank(yz) = 3 < 9 = rank(va). We extend the notion of rank to all points on P as follows: 

for a point p in the interior of a segment S{, rank{p) — rank(vi). 

If u and w are two points in the plane, then uw ( = wu) denotes the line segment joining 

them. We assume that every chain we consider in this paper is simple, that is, no two segments 

in it intersect each other (except possibly at their endpoints), and each segment has at most two 

common endpoints with the other segments in the chain. If, in P, v-i £ vn, then P is open, otherwise 

it is closed. From now on, all chains are assumed to be open because the closed case is reduced to 

the open case by first "opening it" by removing a segment s from it (any s will do), then solving 

the visibility problem for P — s using the algorithm for the open case, and finally including the 

effect of s in O( logn) additional time using the n / l o g n processors available. Each chain C has 

a length, denoted by |C[, which is the number of line segments in it. Given a chain C, let Q be 

the star-shaped polygon consisting of the portion of the plane visible fromtrnifX <7 when C is the only 

opaque object. Then VIS^C), the visibility chain of C from q, equals the boundary of Q minus the 

(at most two) edges on the boundary of Q that are incident to the point at inf init3 r . Once we have 

VIS(C), it is trivial to extract from it the portion of C visible from q (i.e., VIS(C) fl C). Hence, 

our goal from now on is to compute VIS(P) for the input polygonal chain P. 

A point p is given by its z-coordinate and ^-coordinate, denoted by x(p) and y(p), respectively. 

3 



Figure 1. Illustrating the definitions. 

Without loss of generality, we assume in the rest of tliis paper that the visibility is computed with 

respect tozyxwvutsrqponmlkjihgfedcbaYXWVUTSQPOMLJIGFEDCBA q = (0,+OD). Note that VIS(C) is monotone with respect to the ar-axis, in the sense 

that its intersection with any vertical line is either a single point of C , or a vertical line segment 

that connects two visible portions of C (Figure 1). Except for their endpoints, these vertical line 

segments of VIS(C) d o not belong to C, and we therefore call them the extra vertical segments of 

VIS(C). In Figure 1, C is the chain from ui to vm, and the segments of VIS(C) are, from left to 

right, lu, uv, vw, w/, fw', w'v , v'u\ U'T (yw and w'v' are the extra segments). Note that the two 

endpoints of VX9(C) are the same as the leftmost and rightmost points of C, and need not coincide 

with the endpoints of C (in Figure 1, the endpoints of C are and vm, while the endpoints of 

VJS(C) are I and r). 

The monotonicity of VIS(C) enables us to store it in a binary search tree structure that allows 

one processor to search, in time proportional to its height, by i - coordinate or, alternatively, by leaf 

order (i.e., "fmd the k~th vertex of V I S ( C ) " ) . The tree structure also supports "split" operations 

in time proportional to its height (i.e., "remove from the tree all leaves whose x-coordinate is less 

than x o " ) . Even if these splits are done very naively (i.e., if each of the two trees resulting from 

a split has the same height as the original one), we shall later show that the height of this binary 

search tree remains logarithmic in its number of leaves. T o avoid introducing new terminology, we 

also use the same symbol (i.e., VIS(C)) to denote both the visibility chain of C and the balanced 

tree data structure describing it. 

We say that point v is below point w if y(v) < y(ti>) and a ( v ) = x(w). W e say v is to the left of 

u> if i ( u ) < x(w), in which case w is to the right of v. For two points v and w, x(v) < x(w), we say 

that point u is geometrically in between v and w iff z ( r ) < < X(UJ). If a point v of a chain C 
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is also onzyxwvutsrqponmlkjihgfedcbaYXWVUTSQPOMLJIGFEDCBA VIS(C), then we say that v is an open point of C. We use I(C) to denote the interval on 

the i-axis determined by the vertical projection of C on the x-axis. In Figure 1, 1(C) is [x(/),x(r)|. 

Suppose that chain C is partitioned into k subchains and the visibility chain of each subchain is 

available. Then when we talk about combining the k visibility chains, we mean computing VIS(C) 

from these k visibility chains. 

To simplify the exposition, we assume that no segment of P is vertical, and that no two consec-

utive segments of P are collinear, (the general case can be included in our solution without much 

difficulty). ywvutsrponmlkihgfedcbaZWVUTSRPOMLJIHGFDCBA

3 An Overview of the Algorithm 

We call V i s C h a i n the recursive procedure for computing the visibility chain of a simple polygonal 

chain. The procedure is outlined below. The initial call to the procedure is V i s C h a i n ( P , l o g n ) , 

where P is a simple polygonal chain and n = |P|. 

V i s C h a i n ( C , d) 

Input : A simple polygonal chain C of length m, and max(l , m / d ) CHEW-PRAM processors. 

O u t p u t : The visibility chain VIS(C) from the point (0,oo) . 

Step 1. K m < i , then compute VIS(C) with one processor in 0(m) time, using any of the known 

sequential linear-time algorithms. 

Step 2. If d < m < d2, then divide C into two subchains C\ and of equal length and recursively 

call V i sCha in (C i , f i ) and V i s C h a i n ( C 2 , tf) in parallel. Then compute VIS(C) from VIS(Ci) 

and VIS(C2)y in O( ( l ogm) 2 ) time using one processor. 

Step 3. If m > d,2, then partition C into g = (m/d)1/4 subchains Clt C2, •.., Cg of length m 3 / ^ 1 / ' 1 

each. In parallel, call V i s C h a i n ( C i , <f), V i sChain (C 2 , d), . . . , V i s C h a i n ( C s , d). Then 

compute V7S(C) from VZ?(Ci) , VJS{C2), ..., VIS(Cg), in O ( l ogm) time and using the mid 

processors available. 

end. 

The main difficulty lies in the "conquer" steps: two visibility chains VIS(Ci) ajid VlS(Cj) 

can have two intersections, and we have (cf. Step 3 above) only g2 ~ (m/d)1/2 processors to 

compute these two intersections between each pair (VT^C;) . VJS(Cj)). Doing this in O( logm) 



time may appear impossible at first sight: the length of each of KZS^C,) andzyxwvutsrqponmlkjihgfedcbaYXWVUTSQPOMLJIGFEDCBA VIS(Cj) can be 

m 3 / 4 ^ 1 / 4 , and there is a well-known linear lower bound [CD] on the work needed for computing 

the two intersections of two arbitrary polygonal chains that intersect twice (even if both chains are 

convex). This seems to imply that, since we have only ( m / d ) 1 / 2 processors assigned to the task, it 

will take m 3 / 4 d 1 ^ ( m / d ) - ^ ' 2 = m I / 4 d 3 ^ time rather than the claimed O( l ogm) . What saves us is 

the fact that C,- and Cj are subchains of a simple polygonal chain. How to exploit this fact is one 

of the main contributions of this paper. 

Observe that, if we could perform the various steps of the above algorithm within the claimed 

bounds, then it would indeed run in 0(d + log m) time with 0{mjd) processors since its time and 

processor complexities would satisfy the following recurrences: 

t{jn, d) = < 

p(m, d) = 

ci d i[m < d 

t[m/2,d) + c 2 ( logm) 2 if d < m < d2 

t(m3^dl/4,d) + C3 log m if d2 < m 

max{ l , mfd} if m < d 

max.{m/d, 2p(m/2, d ) } if d < m < d2 

t max{m/d, (m/dy^p(m3W4,d)} if d2 < m 

where ci,c2, C3 are constants. From the above recurrences, the following bounds for t(m,d) and 

p[m, d) are easy to prove by induction: 

{
a j d if m < d 

a 2 d + &(logm) 2 log£2 if d < m < d2 

d + /?3 log m if d2 < m p(m,d) = m/d 

where a 2 , P2, Q3, Ps are constants. 

Choosing d = l ogm, the above implies that i ( m , l o g m ) = O( logm) and j?(m, l ogm) = 0(m/ logm). 

Hence the call VisChain(P, ]ogra) would compute V7S(P) in O(log n) time using 0(71/ l ogn ) pro-

cessors. 

Thus, in the rest of this paper, it suffices for us to show how, with mjd processors, to do 

the "combine" part of Step 2 in 0 ( ( l o g m ) 2 ) time, and more importantly, how to implement the 

"combine" part of Step 3 in O( logm) time. 

We use the terminology of the above algorithm in the rest of this paper, so that a C; is one of 

the subchains from the partition of C, and VIS(C;) is already available from the recursive call that 

computed it (i.e., we are focusing on the "combine" part). We define B{ to be the subchain of C 
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which iszyxwvutsrqponmlkjihgfedcbaYXWVUTSQPOMLJIGFEDCBA before Ci along the chain order, that is, Bi consists of the concatenation of C\, Co,..., C,-_i. 

The subchain A,- of C which is after C; along the chain order is defined similarly, that is, A ; consists 

of the concatenation of C;+i,C trnifX, ' +2, - - • , Cg. ywvutsrponmlkihgfedcbaZWVUTSRPOMLJIHGFDCBA

4 Visibility Chains and Their Intersections 

This section presents the geometric insights together with their algorithmic implications. The most 

crucial ones are Lemma 4.5 and Lemma 4.6. 

4 . 1 S i m p l e G e o m e t r i c Facts 

Let s = ab be any straight line segment in VIS(C) fl C, where a is encountered before b by a 

vi-to-t>„ wait along P. Then s is leftward if z(&) < x(a) , and is rightward if x (a ) < x(6). For 

example, in Figure 1, segments uv and u'v' aTe leftward, while segments fw and fw' are rightward. 

Let p be a vertex of VIS(C), and let s and s' be the two segments of VIS(C) having p as their 

common endpoint. Observe that, if none of s or s' is vertical, then either both of these segments 

are leftward, or both are rightward. If both are leftward (resp., rightward) then p is said to have a 

left (resp., right) arrow tag. If one of { s , s1} is vertical or does not exist (in case p is an endpoint 

of VIS(Cy), say it is s', then p has a left (resp., right) arrow tag iff s is leftward (resp., rightward). 

In Figure 1, the arrow tags of u, u,l,r,u', and v' are left, while those of w, / , and w' are right. 

Lemma 4.1 Let C be a simple chain, C' be a subchain of C. Then VIS(C) fl VIS(C') has at most 

three connected components (i.e., at most three separate portions of VIS(C') appear in VIS(C)). 

If C — C' has a single connected component (i.e., C' is at the beginning or the end of C), then 

VJS(C) fl VIS(C') has at most two connected components. 

P r o o f . We begin with the proof of the part when C' is at the beginning or the end of C. By 

contradiction, suppose that VIS(C) D VIS(C') has three connected components. Let a,b,c be 

arbitrary points on each of these three components, respectively, with x(a) < a:(i) < z (c ) . Let u and 

w be points of VIS(C) - VIS{C') such that x (a ) < x(u) < z(b) < x(w) < a:(c). Now, the path Q in 

C — C' joining u to w cannot pass above any of { a , b, c } , and therefore Q must pass below b in a way 

that isolates b, making it impossible for C' to go through b without crossing Q. This contradicts the 

fact that C is simple. W e now prove the part when C' is neither at the beginning nor at the end of C. 

By contradiction, assume that VIS(C) fl VIS(C') has four connected components, and let a, b, c, e be 

points on each of those four components, respectively, with x(a) < i ( 6 ) < i ( c ) < x(e). Let u, v, w 

be points of VIS(C) - VIS(C') such that z (a ) < x(u) < x(b) < x(v) < z ( c ) < z(u>) < x(e). Let A 



andzyxwvutsrqponmlkjihgfedcbaYXWVUTSQPOMLJIGFEDCBA B be the two connected components of C — C'. By the pigeonhole principle, at least two points 

in the set {u,v,u>} are both in A or both in B (say, both in A). But then, VIS (A U C') fl VIS(C') 

has three connected components, contradicting the already proved part of the lemma. • 

The above lemma implies that, in order to obtain from VIS(Ci) the portions of VIS(Ci) that 

are visible in VIS(C), we need only perform a constant number of "split" operations on the tree 

representing VIS(Ci). Over all such i, the total of 0(g) such splits results in g' < 3g trees that 

are then used to create the tree VIS{C) by simply building a complete binary tree "on top" of the 

roots of the g' trees, resulting in the height of VIS(C) being higher by log(3<?) ( = O( logm)) than 

the highest of the VlS(Ci) trees. We shall explain later how to obtain the correct ordering of the 

g' trees used to build VIS(C). For now, we simply observe that this method of building VIS(C) 

from the VTS(C;)'s results in the height of V7S(C) being logarithmic in the number of its leaves 

(the proof of this is by an easy induction). 

Let C' and C" be two subchains of C such that C' and C" are disjoint except possibly at a 

common endpoint. Since both VIS(C) and VIS(C ) can contain open points of C, and since they 

can intersect each other, we would like to compute exactly where the intersections occur in order to 

find which portions of VIS(C ) are hidden by VIS(C ) (and vice versa). The next lemma ensures 

that the number of intersections between the two visibility chains VIS(C') and VIS(C") is no more 

than two. 

L e m m a 4.2 If C' and C" are two subchains of C that are disjoint except that they may share 

one endpoint, then there are at most two intersections between VIS(C') and VIS(C"). If there are 

two intersections, then one of I(C') or I(C") contains the other. If (say) it is I(C') that contains 

I(C"), then C' hides two disjoint portions of VIS(C") that are at the beginning and the end of 

VIS(C") (so that the portion ofVIS(C") not hidden by C is contiguous in VIS(C")). 

P r o o f . The lemma would follow if we could show that there do not exist four points a,b,c,e such 

that x(a) < x(b) < x(c) < i ( e ) , a and c are in VIS(C') and are not hidden by C", while b and 

e are in VIS(C") and are not hidden by C'. Suppose to the contrary that four such points exist. 

The only way C' and C" can link a to c and (respectively) b to e without hiding any of the four 

points {a, t, c , e } would require an intersection between C' and C", contradicting the fact that C 

is simple. • 

Figure 2 gives an example in which VIS(C') and VIS(C") have two intersections and I(C') 

contains I(C"). 
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Figure 2. Illustrating the two-intersection case. 

Although the above lemma limits to two the number of possible intersections between the two 

visibility chains of two subchains that are disjoint (except possibly at a common endpoint), the 

linear-work lower bound for detecting intersections between polygonal chains proved by Chazelle 

and Dobkin [CD] holds even for two chains that intersect each other no more than twice. We shall 

exploit the fact that the two chains are subchains of a simple chain in order to get around the lower 

bound. Specifically, the rest of the paper shows how to compute, for each C;, the (by Lemma 4.1, at 

most two) portions ofzyxwvutsrqponmlkjihgfedcbaYXWVUTSQPOMLJIGFEDCBA VlS(Ci) that are hidden by A,- (computing the portions of VIS(C{) hidden by 

B j is done in a symmetrical way and is therefore omitted). Note that there can be two intersections 

between VIS(Ai) and VlS (Ci ) , and we must compute these intersections in order to compute the 

(by Lemma 4.1, at most three) portions of VIS(C{) hidden by A,- and B{. The computation of 

the portions of VIS{Ci) hidden by A; and immediately gives us the (at most three) portions of 

VIS(Ci) that belong to VIS(C). Once we have done this (in parallel) for every i € { ! , . . . , ( / } , it 

is easy to "stitch" the resulting g' < 3g pieces of VJS(C) and create VJS(C): first split the trees 

representing VIS(Ci), VIS(C?), ..., VIS[Cg), in order to discard all portions of the YIS(Ci)'s that 

are invisible in VIS(C); then the problem essentially becomes that of sorting the 0(g) endpoints 

of those portions of the VIS(Ciys that axe visible in VIS(C), which can be done in time O( l ogm) 

using g processors. We have gA processors available, more than enough to do this sorting. Thus 

we are justified in focusing, for the rest of the paper, on the problem of determining the portions 

of VIS(C{) that are hidden by A,-. 
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4 . 2 S imple C o m p u t a t i o n a l Observations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

We next observe that, although VIS^A,-) is not available after the recursive calls of Step 3 return 

the VTS(Cy)'s, we can still use thezyxwvutsrqponmlkjihgfedcbaYXWVUTSQPOMLJIGFEDCBA g3 processors assigned to each Ci in order to answer meaningful 

queries about VJS(A{). 

L e m m a 4.3 Let the VIS(Ci)'s be given. Let I be any vertical line, and let w be the highest inter-

section point between I and VIS(Ai). Then g processors suffice for computing, in O ( l ogm) time, 

the point w and the arrow tag of w on VIS(Ai). 

P r o o f . Although we do not have VIS(A\) itself, we know that w is one of the g — i points determined 

by the g — i intersections of I with each of VIS(Ci+1), VIS(C{+2), ..., VIS(Cg), where 1 < i. Thus 

w can be obtained in O( logm) time by (i) computing the intersection between / and each of 

VIS(C;+1), VIS(C{.trnifX(-2), - VIS(Cg), then (ii) choosing the highest such intersection. As for the 

arrow tag computation, it too is done in O( logm) time by computing the immediate predecessor 

and successor of w on VIS(Ai)\ these are easy to obtain, since they are determined by the set of 

2 (g — i) vertices that are adjacent to x(w) on each of VIS(Ci+\), VlS(Ci+2), - - -, VIS(Cs). • 

C o r o l l a r y 4 .4 Let the VIS(C,) 's be given. Given k vertical lines {/1?..., lk} in left-to-right order, 

let Wj, 1 < j < k, be the highest intersection point between lj and VIS(Ai). With gk processors 

assigned to each Ci, each Wj and its arrow tag for VIS(A;) can be computed in 0(logTO) time. 

P r o o f . Assign g of the gk available processors to each vertical line, and use Lemma 4.3 for each 

such line. • 

4 .3 T h e Relat ive Positions of and VIS(C{) 

This subsection gives a classification of the various possible relative positions of .4; and VIS(Ci). We 

also point out how to identify each case. We do not yet compute the actual intersections of T /̂S^A,-) 

and V7S"(C,) (if any): this is postponed until the next subsection, when we will have developed 

more machinery for the computation of intersections (the most difficult cases will turn out to be 

Subcases 3.2 and 4.2 below, where two intersections might occur). Each of the subcases below can 

easily be seen to be identifiable in O( logm) time by using Lemma 4.3, where by "identifying a 

subcase", we mean just ascertaining that the subcase holds, not actually computing the portions 

of VIS(C{) hidden by .4; in that subcase. 

Recall that we use 1(C) to denote the interval on the x-axis defined by the vertical projection 

of C on the x-axis. In the case analysis that follows, let [x / ,x r ] = / ( A , ) n I(C,-); a;i and a.o denote 
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the two highest points on V7S( A,) such that x (a , i ) = xj and x(a,-2) =zyxwvutsrqponmlkjihgfedcbaYXWVUTSQPOMLJIGFEDCBA xr, while c,-i and c,-2 denote 

the two highest points on VIS(Ci) such that s ( c , i ) = xi and x(c,2) = xT. [if, xT] is easily computed 

from I{Ci), I(C,+i), ..., I{Cg) in O ( l ogm) time using 0(g) processors. The points G,i and a l 2 are 

obtained in O( logro) time using Lemma 4.3, while the points a 1 and c,-2 are easy to obtained from 

VIS(Ci) in O(log m) time by a simple one-processor search. 

C a s e 1. The intervals / ( A , ) and I(C,-) are disjoint except at a common endpoint (i.e., X[ = 

xr). In this case, it is clear that no portion of VIS(Ci) is hidden by A,-. 

C a s e 2. The intervals I(Ai) and I(C{) overlap without either of them containing the other. 

There are three subcases. 

S u b c a s e 2.1. Both c,i and ai are above VlS(Ai). Then there is no intersection between VIS(A{) 

and V75(C,-), and no portion of VIS(Ci) is hidden by A,-. 

S u b c a s e 2 .2 . Both en and e,^ are below VIS(A{). Then there is no intersection between VZS"(At) 

and VIS(C{), and the portion of VIS(Ci) geometrically in between c,-i and c,-2 is hidden by A,- (one 

of c,x or Cj2 is also hidden). 

S u b c a s e 2.3. One of c,i or c l 2 is above VJS(A{) and the other is below VIS^A,-). Then V7£(A;) 

and VIS(Ci) have exactly one intersection. To know which portion of VIS(C{) is hidden by A,-, 

we must later on compute the intersection between VIS(Ai) and VJS(Ci) (how to do this will be 

explained in the next subsection). 

C a s e 3. I(Ci) is contained in /(A,-). There are three subcases. 

S u b c a s e 3 .1 . Both c,i and c,-2 are above VIS(Ai). Then VIS(A{) and VlS(Ci) do not intersect, 

and no portion of VIS(C{) is hidden by A,-. 

S u b c a s e 3 .2 . Both cn and c l 2 are below VIS(Ai). Then either VIS(C{) is completely liidden by 

A,-, or FJS(A,') and VIS(Ci) have two intersections (cf. Lemma 4.2). Lemma 4.5 results in a method 

to distinguish these two situations, and to compute the portions of VIS(C{) that are hidden by A,-

(the details are in the next subsection). 

S u b c a s e 3.3. One of c^ or c,-2 is above VIS(Ai) and the other is below VIS(A{). Then there is 

exactly one intersection between ViS^A,-) and VIS(Ci). The portion of VIS(Ci) hidden by A,- is not 

known until the intersection between V75(At-) and VIS(Ci) is found (how to find it will be explained 

in the next subsection). 

C a s e 4. J(-4t-) is contained in I (Ci ) . There are three subcases. 

Subcase 4.1. Both a,i and <2;2 are above VlS(Cr). Then the portion of VIS(C{) hidden by A,- is 

in geometrically between a^ and a,-2 (except both c,i and c,2), and T-7S(A,-) and VIS(C{) do not 

intersect. 
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S u b c a s e 4.2 . Both a,i andzyxwvutsrqponmlkjihgfedcbaYXWVUTSQPOMLJIGFEDCBA a^ are below V7S(C,-). Then either A; is completely hidden by VIS(Ci), 

or VIS(Ai) and VIS(C{) have two intersections. Lemma 4.6 results in a method to distinguish these 

two situations, and to compute, if there is one, the portion of VJS(Ci) that is hidden by A{ (the 

details are in the next subsection). 

Subcase 4.3 . One of an or is above VIS(Ci) and the other is below VJS(C{). Then there is 

exactly one intersection between VIS(Ai) and VIS(Ci). The portion of VIS(Ci) hidden by Ai is not 

known until the intersection between VIS(A{) and VIS(Ci) is found (we will explain how to find it 

in the next subsection). 

The above discussion considered the four possible cases and their subcases, and pointed out 

that each of them can easily be identified. ywvutsrponmlkihgfedcbaZWVUTSRPOMLJIHGFDCBA

4.4 Computing the Portions of VIS(Ci) Hidden by .4; 

Now that we have identified which case ajid subcase holds for A; and VlS(Cj) , we turn our attention 

to the problem of actually computing, for each subcase, the portions of VIS{Ci) that are hidden 

by Ai . Note that, from Lemma 4.1, there are at most two such portions. Doing this for Case 1, 

Subcase 2.1, and Subcase 3.1 is trivial, since no portion of VIS(Ci) is then hidden by A;. 

For Subcase 2.2 and Subcase 4.1, in which there is no intersection between V7S(A,-) and VlS(Ci), 

a simple one-processor binary search in VJS(Ci) computes, in O ( l ogm) time, the portion of VlS(Ci) 

hidden by A,-. 

For Subcases 2.3, 3.3, and 4.3, in which there is exactly one intersection between VIS(A{) and 

VIS(Ci), we must locate that intersection in order to find the portion of VIS(C{) hidden by A; . In 

the search for that intersection, the arrow tags are not needed (however, they will play a crucial 

role in the two-intersection cases discussed later). 

In Step 2 of the algorithm, the (one) intersection is found by applying a one-processor binary 

search method, and results in the intersection being computed in 0((logm)2) time (because there 

are O ( l ogm) queries in the binary search, and each such query requires O( logm) time). Such 

an O((log m) 2 ) time one-processor search is fine in Step 2, since our goal there is to perform the 

"combine" within this time bound anyway. 

In Step 3, however, we need to find the intersection in O( logm) time, and thus we cannot afford 

to use the one-processor search. However, since g3 = ( m j d f l * processors are available for each C„ 

we can use Corollary 4.4 (with k = (g -J- l ) 2 ) to perform a search for the intersection, as follows. 

A query of this search involves (i) finding g -f 1 vertical lines for each VJS(Ca), i < a < g, that 

would partition VIS(Ca) into g equal pieces (the leftmost and rightmost such lines for VIS(Ca) go 
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through the endpoints of ViS^Ca)), (ii) sorting thezyxwvutsrqponmlkjihgfedcbaYXWVUTSQPOMLJIGFEDCBA g' ( = 0(g2)) vortical lines of (i) in left to right 

order, (iii) checking whether the intersection point we seek is on one of those g' vertical lines (if so 

we stop, if not we proceed to (iv)), (iv) computing the (left to right) sequence of points ioi, W2, 

..., wg> where wt is the highest intersection of the i-th vertical line with VlS(Ci) U VIS(Ai) (and 

may thus come from either VlS(Ci) or VIS^A,)). The query either finds the intersection, or allows 

us to restrict the next stage of the search to the region [x(u>j), 1(11/5+1)] x [ - 3 0 , trnifX+0 0 ]  where one 

of {wj , u»j+ 1 } is on VXS(Ci) while the other is on ViS^A,-). Such a query is done in O( logm) time 

using Corollary 4.4 (where k = (g + l ) 2 ) . Clearly, a query either finds the intersection, or restricts 

the next stage of the search for it to the portion of every VIS(Ca) in [I(TDJ),I(IUJ+I)] X [—00, +00] . 

The search terminates within 0(1 og^ m) ( = 0 ( 1 ) ) such queries, because for each a G { i , . . . the 

portion of VIS(Ca) that lies in [x(wj),x(wj+1)] x [—00, +00]  has a size that is smaller by a factor 

of g than the size of VIS(Ca). At the "bottom" of the recursion, either the intersection has been 

found, or each VIS(Ca) has been reduced to a size of 0 ( 1 ) and hence it is a trivial matter to find 

the intersection among the 0(g) surviving segments. 

For Subcases 3.2 and 4.2, in which there are either zero or two intersections between ViS^A;) and 

VJS(Ci), we can no longer directly apply the above one-intersection search, because the outcome 

of a query no longer enables us to constrict the search range. The rest of this subsection develops 

the machinery needed to tackle these two tricky subcases. 

First observe that, in Subcase 3.2, if VIS(Ci) is not completely hidden by A,-, then there are 

exactly two intersections between VJS(Ai) and VIS(C{), and the portion of VIS(Q) not hidden by 

Ai is contiguous in VlS(Ci) (cf. Lemma 4.2). Thus, any point p of VJS(C{) not hidden by A,- must 

lie geometrically in between the two intersections. If we could find such a point p, then the two 

intersections would be found by using, for each of them, the one-intersection search procedure (one 

search would operate to the left of p, the other to the right of p). This reduces the problem of 

tackling Subcase 3.2 to that of locating such a point p. Lemma 4.5 (to be given below) will help 

us compute such a pointp p. 

Similarly, in Subcase 4.2, if V7S(A,) is not completely hidden by Ci, then there are exactly two 

intersections between yi?(A,-) and PTS(C,-), and the portion of VIS(Ci) hidden by A,- is contiguous 

in VlS(Ci) (cf. Lemma 4.2). Thus, any point p of VJS(Ai) not hidden by Ci must lie geometrically 

in between the two intersections. If we could find such a point p, then the two intersections would 

be found by using, for each of them, the one-intersection search procedure. Lemma 4.6 (to be given 

below) will help us compute such a point p. 

In the next two lemmas, the rank of a point is always with respect to its chain order in the 
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Figure 3. Illustrating the proofs of Lemmas 4.5 and 4.G. 

original input chain P . 

L e m m a 4.5zyxwvutsrqponmlkjihgfedcbaYXWVUTSQPOMLJIGFEDCBA Suppose that /(A,-) contains 7(C,-). Let the left and right endpoints of VIS(C{) be I 

and r, respectively. Let W = (101, Wh) be a sequence of points on VIS(Ai) that are all above 

VIS{Ci), and x(l) = x(w1) < x(w2) < ••• < x(wk) = x(r). If the portion of VIS(Ci) that is in 

[ i ( u j j ) , x [—oo,-(-co] contains a point p that is not hidden by A; (i.e., that is visible ifCi 

and Ai are the only opaque objects), then exactly one of Wj or u-'y+i has lowest chain rank among 

all of wi, w2, ..., u ; I f it is Wj then its arrow tag is left, and if it is Wj+i then its arrow tag is 

right. 

P r o o f . Let u and v be the endpoints of C,- (Figure 3). W L O G , assume u <pv (i.e., C,-n Ai = v). 

First observe that, if wj and Wj+1 have same chain rank, then they are on the same segment of 

V/SfAi) , and that segment would hide p (otherwise one of the points {wj,w_j-+1} would be below 

VlS(Ci)). Therefore they have distinct chain ranks, say Wj < p ujj+i (the case itfj+i < v Wj is 

symmetrical, with the roles of "left" and ''right" being interchanged). The v-to-wj+i walk (call it 

Q) along A,1 goes through Wj, and we now show that this implies that (i) the first point among 

{•u>i,.. . ,wi ; } encountered by this walk Q is point Wj, and that (ii) the arrow tag of Wj is left. 

Suppose (i) is not true, i.e., that Q encounters some wt before encountering Wj. Then the Wj-ta-

u)j+i portion of Q would hide wt, a contradiction. Suppose (ii) is not true (i.e., the arrow tag of 

•wj is right). Then w0 is "isolated" from Wj+1 in the sense that the wj-to-wj+i portion of Q would 

have to intersect Ci in order to reach wj.j.i, a contradiction. • 

We now discuss the algorithmic implication of the above lemma for handling Subcase 3.2. 

Assume that we are in Step 3. The above lemma implies that in Subcase 3.2, the point p we seek 
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(if it exists) lies geometrically in between the unique pair (wj , w j+ i ) such that exactly one ofzyxwvutsrqponmlkjihgfedcbaYXWVUTSQPOMLJIGFEDCBA wj or 

Wj+j (say, Wj) has the lowest chain rank among all of w j , w 2 , . . . , Wk, and Wj+i is on the side of Wj 

which is opposite to the direction of the arrow tag of wj. Therefore the lemma implies that the point p

p we seek (if it exists) has z(p) in one interval [ i (u7j) , i ( 'u) j+ 1 ) ] that is easy to identify in O( logm) 

time so long as we have kg processors. This suggests using a search procedure in which a query 

involves (i) finding g + 1 vertical lines for each VIS(Ca), i < a < g, that would partition VIS(Ca) 

into g equal pieces (the leftmost and rightmost such lines for V75(CQ) go through the endpoints 

of VIS(Ca)), (ii) sorting the g' (= 0(g2)) vertical lines of (i) in left to right order, (iii) computing 

the (left to right) sequence of points ui, u2, . . . , ug« defined by the intersection of VIS(Ci) with 

the g' vertical lines (g" < g' as some of these intersections do not exist. If an intersection is a 

vertical segment then its upper endpoint is chosen), (iv) computing the (left to right) sequence of 

points v)\, w2, . . . , wgi defined by the intersection of PTS(A,-) with the g' vertical lines (again, if an 

intersection is a vertical segment then its upper endpoint is chosen), as well as their arrow tags for 

VJ£(A,-), and (v) checking whether any of Ui, U 2 , . . . , UsII is not hidden by A,- (if some of them are 

not hidden by A,- then take arbitrarily one of them to be the point p and stop). Such a query is 

done in O ( l o g m ) time using Corollary 4.4 (where k = (5 + I ) 2 ) . Lemma 4.5 implies that we can use 

the outcome of this query to restrict the next stage of the search for p to the region [i(t<jj), 2;(n>j+1)] trnifX

X [ - c o , + 0 0 ] . The search terminates within O ( l o g s m ) ( = 0 ( 1 ) ) such queries, because the portion 

of each VIS(Ca) that lies in [^(iijj^.ifTUj+i)] x [—oo,-(-co] has a size that is smaller by a factor of 

g than the size of V/S(C I 1) . At the "bottom" of the recursion, either p has been found, or each 

VIS(Ca) has been reduced to a size of 0 ( 1 ) and hence it is a trivial matter to find p among the 0(g) 

surviving segments (actually in that second case we get much more than p: we get the (possibly 

empty) portion of VJS(C,-) which is not hidden by A; ) . If the search terminates without finding 

such a pointp p, then we know that no intersections exist and all of VIS(Ci) is hidden by A,-. If such 

a point p is found then we have already explained how the problem reduces to the one-intersection 

case. 

As far as Step 2 is concerned, the problem is much easier since in that case we know explicitly 

V/SfA,-) (because i E { 1 ) 2 } and A; = C2 if i = 1, and is empty if i = 2). We then handle Subcase 

3.2 by using only one processor to compute the two intersections and the portions of VIS(Ci) hidden 

by A,-: the processor performs a binary search for the desired point p and spends O ( l ogm) time 011 

each query of the search. Since there are then O( l ogm) such queries (not 0 ( 1 ) ) , this one-processor 

search for p takes 0 ( ( l o g m ) 2 ) time, just as required for Step 2. 
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L e m m a 4.6zyxwvutsrqponmlkjihgfedcbaYXWVUTSQPOMLJIGFEDCBA Suppose thai /(C,-) contains / ( A ; ) . Let the left and right endpoints of VIS(Ci) be I 

and r, respectively. Let W = (wi, u>2,..., wk) be a sequence of points on VIS(C{) such that no point 

inW is belowVIS(Ai), and x(l) = x(u/i) < x(w2) < • • • < x(wk) = x(r). If the portion of VIS(Ai) 

that is in [x(wj),x(wj+trnifX1)] X [—00, +00 ]  contains a point p that is not hidden by Ci (i.e., p is visible 

if Ci and A; are the only opaque objects), then exactly one of wj or wj+\ has highest chain rank 

among all of W\, w2, . w ^ . If it is Wj then Us arrow tag is right, and if it is wj+1 then its arrow 

tag is left. 

P r o o f . Let u and v be the endpoints of A,- (Figure 3). WLOG, assume v <p u (i.e., C,- f"l A; = u). 

First observe that, if wj and Wj+i have same chain rank, then they are on the same segment of 

VlS(Ci), and that segment would hide p (otherwise one of the points { tt ) j ,y j j+ i } would be below 

y / ^ A , ) ) . Therefore they have distinct chain ranks, say u;j+1 < p uij (the case wj <p zuj+i is 

symmetrical, with the roles of "left" and "right" being interchanged). The v-to-uij+i walk (call it 

Q) along Ci goes through Wj, and we now show that this implies that (i) the first point among 

{ u / i , . . . , encountered by this walk Q is point Wj, and that (ii) the arrow tag of wj is right. 

Suppose (i) is not true, i.e., that Q encounters some wt before encountering Wj. Then the Wj-to-

yjy+i portion of Q would hide wi, a contradiction. Suppose (ii) is not true (i.e., the arrow tag of 

Wj is left). Then w j is "isolated" from wj+i in the sense that the Wj-to-wj+i portion of Q would 

have to intersect Ci in order to reach Wj+1, a contradiction. • 

We now discuss the algorithmic implication of the above lemma for handling Subcase 4.2. 

Assume that we are in Step 3. In Subcase 4.2, the pointp p we seek (if it exists) lies geometrically in 

between the unique pair (Wj, n>j.fi) such that exactly one of wj or (say, Wj) has the highest 

chain rank among all of {u>i, w2 , and Wj+i is on the side of Wj that is the same as the 

direction of the arrow tag of Wj. Therefore the lemma implies that the point p we seek (if it exists) 

is such that x(p) is in one interval [i(ujj), i ( tu j + 1 ) ] that is easy to identify in O( logm) time. Thus 

a search procedure somewhat similar to the one we described above for Subcase 3.2 can be used, 

in which a query involves (i) partitioning VIS(C{) into g equal pieces using g -VI vertical lines, 

(ii) computing the g + 1 highest points wi,... 1 that are the intersections of the g+ 1 vertical 

lines with VIS(Ci) as well as their arrow tags for VlS(Ci), ( " i ) computing the g + 1 highest points 

u i , . . . , i i a + i that are the intersections of the <7+1 vertical lines with VJS{Ai), and (iv) checking 

whether any of u2 , . . . , u J + i is not hidden by Ct- (if some of them are not hidden then take 

arbitrarily one of them to be the point p and stop). Such a query is done in O( logm) time using 

Corollary 4.4. Lemma 4.6 implies that we can use the outcome of this query to restrict the next 
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stage of the search forzyxwvutsrqponmlkjihgfedcbaYXWVUTSQPOMLJIGFEDCBA p to the region of VIS(Ci) geometrically in between the pair (wj, w j + i ) . A t 

the " b o t t o m " of the recursion, when the portion of VlS(Ci) being searched has shrunk to a single 

segment, either one of this segments' endpoints is p, or we can conclude that no p exists. If the 

search terminates without finding such a pointp p, then we know that all of A,- is hidden by VIS(C{), 

and hence that no portion of VIS(Ci) is hidden by .4,-. If such a point p is found then we have 

already explained how the problem reduces to the one-intersection case. 

As far as Step 2 is concerned, we handle Subcase 4.2 just like we handled Subcase 3.2 (i.e., an 

0 ( ( l o g m ) 2 ) time one-processor search). ywvutsrponmlkihgfedcbaZWVUTSRPOMLJIHGFDCBA

5 Conclusion 

W e have presented a parallel algorithm for computing the visible portion of a simple n-vertex 

polygonal chain from a point in the plane. This algorithm works for any polygonal chain that 

does not self-intersect. T h e algorithm runs in O(logTi) time using 0 ( n / I o g n ) processors in the 

C R E W - P R A M computational model, and thus is optimal. The techniques used in the algorithm 

are a combination of fourth-root divide-and-conquer and two-way divide-and-conquer [AHIJ], and 

include a method for logarithmic time computation of intersections of special polygonal chains that 

intersect twice. Notice that the points on the visibility chain of P for q = ( 0 , o o ) are obtained 

sorted by their i -coordinates . Once the visibility chain of P for q = (0, oo ) is available, many 

problems on simple polygons can be solved optimally in O ( I o g n ) time using 0(n/\ogn) processors. 

For example, we can optimally compute the convex hull of P in the above time and processor 

complexities in C R E W - P R A M by first using our visibility algorithm, and then using the algorithm 

in [G]. A direct method for optimally computing the convex hull of a simple polygon in parallel 

was given by Wagener [Wa]. Also, we can find all the maxima [PS] of the vertices of P by using 

parallel prefix after the portion of P visible from (0 , oo ) has been computed. Another immediate 

consequence of our algorithm is that we can compute the visibility graph [We] of P in O ( l o g n ) 

time using 0 ( n 2 / l o g n) C R E W - P R A M processors, which is worst case optimal. The algorithm is 

likely to find applications in other geometric problems involving polygonal chains. 
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