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Abstract 21 

 22 

Nervous systems allocate computational resources to match stimulus statistics. However, the 23 

physical information that needs to be processed depends on the animal’s own behavior. For example, 24 

visual motion patterns induced by self-motion provide essential information for navigation. How 25 

behavioral constraints affect neural processing is not known. Here we show that, at the population 26 

level, local direction-selective T4/T5 neurons in Drosophila represent optic flow fields generated by 27 

self-motion, reminiscent to a population code in retinal ganglion cells in vertebrates. Whereas in 28 

vertebrates four different cell types encode different optic flow fields, the four uniformly tuned T4/T5 29 

subtypes described previously represent a local snapshot. As a population, six T4/T5 subtypes encode 30 

different axes of self-motion. This representation might serve to efficiently encode more complex 31 

flow fields generated during flight. Thus, a population code for optic flow appears to be a general 32 

coding principle of visual systems, but matching the animal’s individual ethological constraints. 33 

 34 

 35 

 36 

Keywords: global motion processing, convergent evolution, population code, neuroethology, efficient 37 
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 2 

Introduction 39 

 40 

Evolution has matched neural resources to the sensory information that is available to the 41 

animal (1, 2). This is particularly well studied in vision, where the sensitivity of photoreceptors 42 

efficiently covers the range of intensities in the environment (3, 4), and many other specializations in 43 

retinal circuitry match the statistics of visual information (5, 6). But how did evolution accommodate 44 

sensory systems in which the physical distribution of information encountered depends on animal 45 

behavior? For example, any visual animal that navigates through its environment needs to detect and 46 

compute global motion patterns elicited on the eye, which will depend on the type of locomotion. In 47 

vertebrates, such optic flow generated by self-motion is represented by the population of local motion-48 

sensitive retinal ganglion cells(7). Here, topographically organized directional tuning maps represent 49 

optic flow that match the global motion patterns generated during walking. In insects, the first direction-50 

selective cells that encode local motion are the T4 and T5 neurons of the ON and OFF pathways. T4/T5 51 

are thought to be uniformly tuned throughout the visual field, representing the four cardinal directions: 52 

upward, downward, front-to-back and back-to-front motion(8–10). One synapse downstream of T4/T5 53 

cells, optic flow patterns are then encoded by wide-field neurons that sample information globally 54 

across visual space(11, 12). This suggests that the coding of optic flow is fundamentally different 55 

between vertebrate and invertebrate visual systems. It is unclear why flies would have evolved a system 56 

in which optic flow has to be computed through complex transformations from local motion detectors 57 

with uniform tuning, to ultimately match the motion patterns generated during flight. 58 

 59 

Insect wide-field neurons that are tuned to specific optic flow patterns generated by forward 60 

movement or turns of the animal have been extensively characterized(13–15). Such wide field neurons, 61 

the lobula-plate tangential cells (LPTCs), also exist in Drosophila(16–18), and are involved in the 62 

control of optomotor responses, as well as in stabilizing gaze and forward walking(19–21). To extract 63 

optic-flow information, wide-field neurons pool information from presynaptic local motion detectors. 64 

In Drosophila, this is achieved by LPTCs receiving strong input from the columnar T4/T5 direction-65 

selective cells (8, 22). T4/T5 provide excitatory input to downstream LPTCs within the same layer and 66 

inhibitory input via lobula plate-intrinsic neurons to LPTCs of the adjacent lobula plate layer with 67 

opposite tuning, thus establishing motion opponency (22, 23). Most LPTCs  extend their dendrites along 68 

one layer of the lobula plate and thus pool information from one subtype of T4/T5 neurons (16, 17, 24), 69 

although recently described LPTCs also project to more than one layer (18, 25). Additionally, local 70 

motion signals are selectively amplified within the LPTC dendrites if they match the preferred global 71 

motion pattern (26). However, it is not fully understood how the flow-field-encoding receptive fields in 72 

the LPTCs are computed from presynaptic circuitry. The direction-selective T4/T5 cells respond to 73 

local motion, together forming a retinotopic map (8, 9). Whether their tuning to four cardinal directions 74 

generalizes over retinotopic locations is not known.  75 

 76 

Here, we characterize the direction tuning distribution of T4/T5 neurons across anatomical and 77 

visual space. We demonstrate that directional preference of T4/T5 subtypes changes gradually, forming 78 

continuous maps of tuning. At the population level, T4/T5 cells in fact do not fall into four but six 79 

subgroups that encode six diagonal directions of motion, matching the hexagonal lattice of the eye. The 80 

six topographic tuning maps match optic flows field generated by self-motion of the fly. Therefore, the 81 

organization of local direction-selective cells that represents self-motion parallels the retinal code for 82 

optic flow, providing a striking example of convergent evolution. The specific types of optic flow that 83 

are encoded differ between the mouse retina and the Drosophila visual system, arguing that evolution 84 

matched neural resources to the different physical distribution of information encountered during 85 

walking or flight.  86 
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 3 

Results  87 

 88 

T4/T5 population tuning clusters around hexagonal directions of motion 89 

To understand how the T4/T5 neurons contribute to downstream optic flow fields, it is 90 

necessary to have a detailed map of T4/T5 direction tuning across retinotopic space. We used in vivo 91 

two-photon calcium imaging to record motion responses from large populations of T4/T5 neurons in 92 

individual flies. We imaged GCaMP6f responses to ON and OFF edges moving in eight directions at 93 

different fly orientations relative to the screen, together subtending ~150° in azimuth and ~60° in 94 

elevation (fig. S1, A and B). Tuning across 3537 individual cells (1376 T4, 2161 T5), recorded in 14 95 

flies was broad, together spanning 360º of motion. Neurons in both layer A and B covered more than 96 

120° of tuning direction, and thus twice the range of cells in layers C and D, which were tuned to a 97 

range of ~60° (Fig. 1A). Dorsoventral location strongly impacted tuning direction in layers A and B 98 

(Fig. 1A). In layer A, cells that were more dorsally located in the lobula plate preferentially covered the 99 

300°- 360° range, whereas more ventral cells of the lobula plate showed tuning directions in the 0°- 60° 100 

range. In layer B, more dorsally located cells were tuned to the 120°- 180° range, and more ventrally 101 

located cells were tuned to 180°- 240°  (Fig. 1A). Although the population of T4/T5 cells covered all 102 

directions of motion, the tuning distribution was non-uniform (Circular Rayleigh test: p<0.0001).  103 

Looking at the number of neurons sensitive to a certain motion direction, most neurons in layers 104 

A and B were tuned to the diagonal directions of motion, flanking the overall average orthogonal tuning 105 

of these layers (Fig. 1B). Cells in layers C and D each showed a unimodal directional tuning distribution 106 

in the upward or downward direction, respectively (Fig. 1B). The bimodal distribution in layers A and 107 

B were well fit by two Gaussians (fig. S1C). When thus assigning each cell to one of six subtypes, 108 

tuning of two subtypes in layer A and B split at 0° or 180°, respectively (fig. S1D). The population 109 

average of the A.I subtypes was tuned to diagonal upward motion (~30°) and the A.II subtype was tuned 110 

to diagonal downward motion (~330°). Layer B subtypes encoded the two opposite axes of motion 111 

direction (fig. S1D). Taken together, our data show that at the population level, T4/T5 neurons fall into 112 

six functional subtypes (Fig. 1C and fig. S1D) Average motion tuning within individual subtypes 113 

reveals sensitivity to six directions with each subtype spanning a 60°-range, matching the hexagonal 114 

arrangement of the fly compound eye (Fig. 1, C and D).  115 

 116 

 117 
Fig. 1. Directional tuning clusters around hexagonal directions of motion. (A) Directional tuning of individual neurons 118 

from 3537 cells (Layer A: 479/926 T4/T5. Layer B: 252/662 T4/T5. Layer C: 365/220 T4/T5. Layer D: 280/353 T4/T5) in 14 119 
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 4 

flies. Motion responses were represented by a vector(27), whose direction depicts tuning, whereas its length indicates 120 

selectivity. Hue illustrates z-depth relative to a reference (the outermost T4/T5 cell bodies). (B and C) Circular histograms of 121 

neuronal tuning preference. Black vectors depict average tuning per layer (B) or subtype (C). (D) On average, tuning of the 122 

six subtypes matches the hexagonal arrangement of the fly eye. 123 

 124 

To understand the spatial organization of six T4/T5 subtypes projecting to four anatomically 125 

distinguishable lobula plate layers, we plotted cellular subtype identity back onto the anatomical 126 

structure of the lobula plate (Fig. 2A and fig. S2). T4/T5 cells of one subtype dominated one lobula 127 

plate layer recorded in one plane along the dorsoventral axis. At more ventral planes, subtype A.I and 128 

B.I as well as the single respective subtypes of layers C and D were found more frequently. Dorsal 129 

planes more prominently housed subtypes A.II and B.II, but hardly showed any layer C or D cell 130 

responses (Fig. 2, A and B and fig. S2). This argues for a spatial separation of layer A and B subtypes 131 

at the level of T4/T5 axon terminals. Importantly, local T4/T5 recordings in an individual fly 132 

preferentially showed either four subtypes (as e.g. described in(8, 9)), or two subtypes, each 133 

representing snapshots of the T4/T5 population (Fig. 2, A to D). Only a global analysis of tuning 134 

revealed the six T4/T5 subtypes encoding six diagonal directions of motion (Fig. 2e).   135 

 136 

 137 
Fig. 2. Layer A and B subtype projections separate along the dorsoventral axis.  (A) In vivo two photon calcium images 138 

of the lobula plate at two planes along the dorsoventral axis (Z30/Z60 = z-depth 30/60 µm). ROIs are color coded based on 139 

their subtype identity. (B) Histograms displaying number of neurons from the different classes along the dorsoventral axis (z-140 

depth). Scale bar 10 µm. (C and D) Tuning of individual neurons from one fly recorded in a ventral (Z60) (C), or dorsal (Z30) 141 

(D) plane of the lobula plate. Below: Same data plotted as circular histograms. (E) Tuning of all neurons recorded at different 142 

dorsoventral planes within one fly. 143 
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 5 

T4/T5 neurons form topographic maps of directional tuning 146 

We next asked if the ~60º distribution of directional tuning within one subtype was random, or 147 

topographically organized. Color coding axon terminals based on their directional preference revealed 148 

that the tuning of neighboring cells was similar and gradually changed along the distal-to-proximal axis. 149 

As such, recording in one ventral plane of layer A (group A.I) revealed T4/T5 tuning ranging from 150 

diagonally upward on the proximal end to front-to-back motion on the distal end of the lobula plate 151 

(Fig. 3, A and B). T4/T5 cells of other subtypes also gradually changed tuning from proximal to distal. 152 

Subtler changes in the tuning of neighboring cells within one subtype were also apparent along the 153 

dorsoventral axis (fig. S3, A and B). This gradually distributed tuning existed for both T4 and T5 when 154 

analyzed separately (Fig. 3, C and D and fig. S3C). Because T4/T5 neurons are retinotopically 155 

organized, this directional tuning map suggests that the population of T4/T5 cells is sensitive to specific 156 

global motion patterns. 157 

 158 

 159 
Fig. 3. T4/T5 neurons form topographic maps of directional tuning. (A) Image of one layer of the lobula plate with ROIs 160 

color coded according to their directional tuning.  (B) Data from (A) shown in vector space. (C and D) Data shown separately 161 

for T4 and T5 neurons. Scale bar = 10 µm.  162 

 163 

 164 

The six T4/T5 subtypes encode optic flow induced by self-motion  165 

The local differences in the tuning preference within one T4/T5 subtype are reminiscent of 166 

direction-selective ganglion cells in the vertebrate retina, where the population of cells encodes 167 

translational optic flow generated by self-motion of the animal(7). We hypothesized that the differential 168 

tuning measured within each subtype of T4/T5 cells in the fly visual system serves a similar function. 169 

To relate tuning to the visual input, we mapped receptive-field centers (fig. S4, A and B) and plotted 170 

tuning at each receptive-field location on the screen (fig. S4, C and D). This revealed that cells of one 171 

subtype do not encode a uniform direction of motion, but rather that direction tuning of all cells within 172 

one subtype change gradually across visual space (Fig. 4A and fig. S4E). These topographic tuning 173 

maps resemble flow fields generated by different directions of self-motion in the fly. T4/T5 neurons in 174 

layers C and D appear to encode optic flow generated by downward or upward movement of the fly, 175 

whereas T4/T5 neurons in layers A and B seem to be tuned to diagonally upward or downward motion. 176 

The two flow fields encoded by the two subtypes of layers A or B are vertically flipped versions of each 177 

other (Fig. 4A). The successive change of tuning along azimuth and elevation matches the change of 178 

tuning seen in the topographic maps in the lobula plate (Fig. 4A, Fig. 3, and fig. S4, E and F).   179 

To investigate the type of self-motion encoded by the different subtypes, we trained an optic 180 

flow model (28) to match the population receptive fields of T4/T5 neurons. We fitted the parameters 181 

for the three axes of motion for both translation (Tx,Ty,Tz) and rotation (Rx,Ry,Rz) (Fig. 4B). Although 182 

the population data did not fully cover the visual field of one eye (fig. S5A), optic flow fields were well-183 

matched filters for each of the six T4/T5 subtypes (Fig. 4C and fig. S5B). We compared performance 184 

including models where the fly only turned (rotational optic flow) or moved straight (translational optic 185 

flow). Across the six subtypes, only the model combining rotations and translations outperformed the 186 

null model consisting of a uniform vector field, with larger performance in layers A.I, B.II, C and layer 187 

D (Fig. 4D and fig. S4C). Thus, T4/T5 subtypes are tuned to optic flow generated by mixtures of 188 

translational and rotational motion. For each T4/T5 subtype, a single component tended to dominate 189 

the translational axis of motion, whereas the rotational axis was more distributed across the three 190 

components (Fig. 4C and fig. S5A). Together, our data show that local direction-selective T4/T5 191 
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 6 

neurons display a population code for different types of self-motion of the fly. Populations of T4/T5 192 

cells are tuned to optic flow patterns, similar to their vertebrate counterparts(7), but representing six 193 

instead of four types of self-motion.  194 

 195 

 196 
Fig. 4. The population of T4/T5 neurons encode optic flow induced by self-motion. (A) Arrows indicate tuning direction 197 

of individual neurons plotted at their receptive field center coordinates in visual space. Length of vectors indicates direction 198 

selectivity of T4 (red) or T5 neurons (blue), n=14 flies. Horizontal and vertical dashed lines mark the split between left and 199 

right visual hemispheres and the horizon, respectively. Black tuning vectors show mean across 10 degree-wide bins. Gray 200 

shaded areas indicate the visual space in the left hemisphere that cannot be seen by the right eye. (B) Schematic of rotational 201 

and translational flow fields around the three body axes of the fly (modified after (29)). (C) Flow fields of data from two 202 

subtypes and the fitted normalized optic-flow model. Model vectors are shown for each corresponding data vector. (D) 203 

Differences of the fit quality for three model types (translation + rotation [T+R], pure translation [T], pure rotation [R]) 204 

compared to a uniform vector field model (***Wilcoxon: p<0.001).  205 

 206 

 207 

Discussion 208 

In this study, we have demonstrated that the local motion detectors T4 and T5 are divided into 209 

six subtypes that encode specific optic flow pattern. T4/T5 appear to implement an optimal population 210 

code for global motion patterns containing information about translational and rotational self-motion of 211 

the fly.  212 

Direction-selective T4/T5 neurons in Drosophila have been described to encode four cardinal directions 213 

of motion(8, 9). Population T4/T5 recordings now reveal average tuning to diagonal rather than cardinal 214 

motion directions, such that six subtypes of T4/T5 neurons exist. Only a global analysis of directional 215 

tuning reveals these six subtypes, but tuning to diagonal motion has been observed in 216 

electrophysiological recordings of an individual T4 neuron(30), and in optical recordings of T4/T5(9, 217 

31). T4/T5 neurons compute direction-selective signals across neighboring columns within the eye(32, 218 

33). Thus, motion can simply be computed along the internal organization of the fly eye, and the 219 

hexagonal arrangement of the eye does not need to be transformed into a cardinal coordinate system.  220 
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Individual directional preference of a T4/T5 neuron correlates with its dendrite orientation, which 221 

manifests during development(34–36). Interestingly, developmental dendrite orientation for subtypes 222 

A and B reveal two peaks of diagonal rather than orthogonal orientation of dendrites(36), consistent 223 

with their distribution of direction selectivity. Our data show that each T4/T5 subtype retinotopically 224 

covers overlapping regions in visual space. A comprehensive analysis of T4/T5 dendrite anatomy across 225 

the visual system will be needed to clarify how adult dendrite orientation is distributed across the visual 226 

system to represent the six subtypes. Furthermore, single-cell transcriptomics has assigned developing 227 

T4/T5 cells to distinct clusters based on their genetic profiles(36–39), but genes involved in dendrite 228 

development or the differentiation are expressed in narrow time windows(39). Interestingly, one recent 229 

study identified a genetic subpopulation of T4 neurons, restricted to lobula plate layers A and B(37). 230 

While it remains to be determined whether this corresponds to the functional layer A/B subtypes, 231 

genetic access will help to better understand the development and anatomy of the individual subtypes. 232 

While downstream of T4/T5, wide-field LPTCs are thought to encode self-motion(13, 17), our data 233 

show that the population of T4/T5 cells already encodes optic flow generated by a combination of 234 

rotational and translational self-motion of the fly. Within an optic flow field, single T4/T5 tuning 235 

changes along the retinotopic map. This could be inherited by the spatial distribution of ommatidia 236 

along the optical axis which varies with the curvature of the eye(40, 41). T4/T5 can then pass this 237 

information to downstream LPTCs, which do to not need to transform cardinal motion information into 238 

complex flow fields. Further internal dendritic processing, such as suppression of adjacent local motion 239 

signals, electrical coupling between LPTCs (17) and feedforward inhibition from lobula plate intrinsic 240 

neurons (23) will support the computation of diverse optic flow fields(22, 23, 26).  241 

The fly eye and the vertebrate retina both show differences between local and global directional 242 

tuning(7, 42), and similarly compute visual signals generated by self-motion at the population level(7). 243 

A population code for optic flow generated by self-motion might therefore be canonical and evolved 244 

convergently during evolution. Such functionally driven convergence of neuronal circuit organization 245 

argues for an optimal design of encoding self-motion.  However, mice and flies differ in the number 246 

and directions of optic flow encoded by local direction-selective cells. Flying animals might encode 247 

more motion axes than walking animals to match the higher degrees of freedom encountered during 248 

flight. This difference might therefore highlight adaptation to visuoecological niches of flying and 249 

walking animals. We are just starting to understand how a population code in visual systems matches 250 

the statistics of the visual environment(6, 7, 43–45), or animal behavior. Thus, this work is an important 251 

step towards understanding how anatomy, ethological constraints, and neuronal function are ultimately 252 

linked. 253 
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Materials and Methods 264 

 265 

Drosophila strains and fly husbandry 266 

Drosophila melanogaster were raised on molasses-based food at 25°C and 55% humidity in a 12:12 hr 267 

light-dark cycle. For all imaging experiments female flies of the genotype w+; R59E08-LexAattP40, 268 

lexAop-GCaMP6f-p10su(Hw)attp5/ R59E08-LexAattP40, lexAop-GCaMP6f-p10su(Hw)attp5  were recorded 3-5 269 

days after eclosion at room temperature (RT, 20°C). R59E08-LexAattP40 and lexAop-GCaMP6f-270 

p10su(Hw)attp5 were obtained from the Bloomington Drosophila Stock Center (BDSC #52832 and 271 

#44277), recombined, and crossed into a w+ background. 272 

 273 

In vivo two-photon calcium imaging  274 

Fly preparation, experimental setup and data acquisition 275 

Prior to two-photon imaging, flies were anesthetized on ice and fit into a small hole in stainless-steel 276 

foil, located in a custom-made holder. The head was tilted approximately 30° to expose the back of the 277 

head. To fix the head of the fly, a small drop of UV-sensitive glue (Bondic) was used on the left side of 278 

the brain and the thorax. The cuticle on the right eye, fat bodies and tracheae were removed using 279 

breakable razor blades and forceps. To ensure constant nutrients and calcium supply flies were perfused 280 

with a carboxygenated saline containing 103 mM NaCl, 3 mM KCl, 5 mM TES, 1mM NaH2PO4, 4 mM 281 

MgCl2 1.5 mM CaCl2, 10mM trehalose, 10mM glucose, 7mM sucrose, and 26mM NaHCO3 (pH~7.3). 282 

To record calcium activity, a two-photon microscope (Bruker Investigator, Bruker, Madison, WI, USA), 283 

equipped with a 25x/1.1 objective (Nikon, Minato, Japan) was used. For excitation of GCaMP6f, the 284 

excitation laser (Spectraphysics Insight DS+) was tuned to a wavelength of 920nm with <20mW of 285 

laser power measured at the objective. Emitted light was filtered through an SP680 short pass filter, a 286 

560 lpxr dichroic filter and a 525/70 emission filter and detected by PMTs set to a gain of 855V. Imaging 287 

frames were acquired at a frame rate of ~15-20 Hz and 4-7 optical zoom using PrairieView software. 288 

Each fly was recorded in at least three to five different focal planes (z-depth). We determined z-depth 289 

position relative to cell bodies and started the first recording at a z-depth of 30μm from there. Planes 290 

were then imaged every 15μm from there (Error! Reference source not found.b).  291 

Visual stimulation 292 

Visual stimuli were presented on an 8 cm x 8 cm rear projection screen in front of the fly covering a 293 

visual angle of 60° in azimuth and elevation. To cover a larger part of the horizontal visual field of 150° 294 

we rotated the fly with respect to the screen two times by 45° (Extended Data Fig. 1a). Stimuli were 295 

filtered through a 482/18 bandpass filter (Semrock) and ND1.0 neutral density filter (Thorlabs) and 296 

projected using a LightCrafter 4500 DLP (Texas Instruments, Texas, USA) with a frame rate of 100 Hz 297 

and synchronized with the recording of the microscope as described previously(46). All visual stimuli 298 

were generated using custom-written software using C++ and OpenGL.  299 

Moving OFF and ON edges  300 

Full-contrast dark or bright edges moving with a velocity of 20°/s across the full screen to four or eight 301 

different directions. Each stimulus direction was presented at least twice in pseudo-random order. The 302 

four-direction stimulus was merely used for the subsequent identification of T4 and T5 axon terminals.  303 

 304 

Data analysis 305 

Preprocessing 306 

All data analysis was performed using MATLAB R2017a (The MathWorks Inc, Natrick, MA) or 307 

Python 2.7. Motion artifacts were corrected using Sequential Image Alignment SIMA, applying an 308 

extended Hidden Markov Model(47). 309 

Automated ROI selection 310 

For the extraction of single T4 or T5 axon terminals we made use of their contrast- and direction-311 

selective responses to ON and OFF edges moving into four directions. First, the aligned images were 312 

averaged across time and the average image intensity was Gaussian filtered (s=1.5) and then threshold-313 

selected by Otsu’s method(48) to find foreground pixels suitable for further analysis. After averaging 314 

responses across stimulus repetitions, we selected pixels that showed a peak response larger than the 315 

average response plus two times the standard deviation of the full trace. These pixels were grouped 316 

based on their contrast preference (ON or OFF pixels) and further assigned to four categories based on 317 
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their anatomical location within the lobula plate (layers A, B, C, or D). We further calculated a direction-318 

selectivity index (DSI) and contrast selectivity index (CSI) for each pixel as follows: 319 

 320 

𝐷𝑆𝐼 = !"!"##	%"!"#

!"!"#

, 321 

𝐶𝑆𝐼 = 	!&!"##%&!"#

!&!"#

. 322 

 323 

where 𝑃𝐷'() and 𝑁𝐷'() denote the maximal response into the preferred direction (PD) and null 324 

direction (ND) and 𝑃𝐶'() and 𝑁𝐶'() denote the maximum responses for the preferred contrast (PC) 325 

and the non-preferred or inverse contrast (NC). We excluded all pixels that did not exceed the CSI 326 

threshold of 0.2 to obtain clean T4 or T5 responses. For the final clustering we used the quantified DSI 327 

and CSI parameter and the timing of the response to the PD. Based on these parameters the Euclidean 328 

distance between each pair of pixels was calculated and average-linkage agglomerative hierarchical 329 

clustering was performed. We further evaluated the optimal distance threshold that yielded most clusters 330 

of the appropriate size between 1 and 2.5 μm2. All resulting clusters that fell outside this range were 331 

excluded from further analysis. Custer locations were saved and matched with subsequent recordings 332 

of the same cells to other stimulus types.  333 

Moving OFF and ON stripes  334 

For dF/F calculation, baseline responses to ~ 0.5s gray epoch were used. To quantify direction 335 

selectivity (DS) of single cells, responses were trial averaged and the peak response to the eight different 336 

directions of either increment or decrement bars was extracted for T4 and T5 cells respectively. We 337 

further quantified the tuning of single cells by computing vector spaces as follows(27):  338 

 339 

𝐿*+, =	 *
∑ .(0$)234	(+0$)$

∑ .(0$)$

*. 340 

 341 

where 𝑅(𝜃5) is the response to angle 𝜃5. The direction of the vector 𝐿*+, 	denotes the tuning angle of 342 

the cell and the normalized length of the vector is related to the circular variance and thus represents 343 

the selectivity of the cell. 344 

Receptive-field center extraction 345 

To extract receptive-field centers, we used a back-propagation algorithm to map the receptive fields of 346 

T4 and T5 cells and to locate the center of the receptive fields(49). First, we imaged neural responses 347 

to eight different directions and created two-dimensional images from one-dimensional response traces. 348 

Neural latency and indicator dynamics introduce delays that will decrease the precision of receptive-349 

field position estimation. To account for this delay, we measured the spatial difference of the response 350 

peaks between a static and a moving stimulus. We found an average of 9.6° delay for both T4 and T5 351 

cells and shifted the traces for 9.6° before calculating the receptive-field map in our back-propagation 352 

algorithm (Error! Reference source not found.a, b). These were rotated according to their corresponding 353 

direction and averaged to obtain a receptive-field map. To find the center of the receptive field, we fitted 354 

a two-dimensional gaussian and took its peak coordinate.  355 

Z-stack generation  356 

Images representing the location of single ROIs color coded by their directional preference were 357 

generated in Matlab. Images containing data from different z-depth layers within the same fly were then 358 

further processed in Illustrator to create pseudo z-stacks. For this, ROIs from the same lobula plate layer 359 

were first compiled in a 3D structure and ROIs from different z-depth layers were stacked to better 360 

represent the third dimension of the lobula plate.  361 

 362 

Statistics 363 

All statistics were done in Matlab using Circular Statistics Toolbox(50).  364 

SNOB analysis  365 

To extract underlying classes from the population of neurons found in layers A and B, we converted 366 

data of each population to be linear in the range of directions that most neurons where selective to, 367 

resulting in a scale from - π to π for layer A, C and D and a scale from 0 to 2π for the data from layer 368 

B. We used the finite mixture model SNOB(51) to predict the number of underlying Gaussians using 369 

minimum message length criterion. We further used the statistical prediction from the model to assign 370 
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individual neurons to each of the underlying classes by choosing the class with the highest probability 371 

of the neuron’s tuning preference (Error! Reference source not found.c,d).  372 

 373 

 374 

Model  375 

We fitted an optic flow field elicited from self-motion on the field of view at a constant distance from 376 

the observer, i.e., a spherical surface. Two coordinates describe the viewing direction: the azimuth 𝜃 377 

and the elevation 𝜙 angles. 378 

The self-motion flow-field vectors 𝑝11⃗
+
 at each viewing location 𝑑11⃗ + on the unit sphere were specified by 379 

the translation and rotation vectors, 𝑣11⃗ 6 = (𝑣6) , 𝑣67 , 𝑣68) and 𝑣11⃗ . = (𝑣.) , 𝑣.7 , 𝑣.8), respectively (28): 380 

𝑝+111⃗ = −(𝑣11⃗ 6 − (𝑣11⃗ 6 ⋅ 𝑑11⃗ +) 𝑑11⃗ +) − 𝑣11⃗ . × 𝑑11⃗ + 381 

The flow-field vectors were then represented in spherical coordinates 𝑝11⃗
+
= 𝑢+ �̂�0 + 𝑣+ �̂�9 + 𝑟 �̂�, to 382 

extract a vector tangential to the spherical surface 𝑞+111⃗ = (𝑢+ , 𝑣+) that could be matched to the direction-383 

selectivity vectors from T4/T5 data. The uniform flow-field tangent to the spherical surface was 384 

specified by a single vector 𝑣11⃗ : = 𝑞+111⃗ = (𝑢, 𝑣) at every viewing position. 385 

The comparison of data to model was done using the following loss function 386 

ℒ({𝑞11⃗
+,*(<(

, 𝑞11⃗
+,'=*>?

|𝑖 ∈ [1, 𝑁]}) =
∑ 𝑞11⃗

+,'=*>?
%
+@A ⋅ 𝑞11⃗

+,*(<(

∑ |%
+@A | 𝑞11⃗

+,'=*>?
|| ⋅ || 𝑞11⃗

+,*(<(
||

=
∑ |%
+@A | 𝑞11⃗

+,'=*>?
|| ⋅ || 𝑞11⃗

+,*(<(
||cos𝜂+

∑ |%
+@A | 𝑞11⃗

+,'=*>?
|| ⋅ || 𝑞11⃗

+,*(<(
||

 387 

where 𝜂+ is the angle between the model and the data flow vectors at the location 𝑑11⃗ +, for all 𝑁 vectors 388 

in the dataset, and || ⋅ || indicates the magnitude of the vector. When all vectors match in both magnitude 389 

and direction this quantity is 1 and when all vectors match in magnitude but are in opposite directions 390 

this quantity is -1. To optimize for the vectors 𝑣11⃗ 6 = (𝑣6) , 𝑣67 , 𝑣68) and 𝑣11⃗ . = (𝑣.) , 𝑣.7 , 𝑣.8), and 391 

𝑣11⃗ : = 𝑞+111⃗ = (𝑢, 𝑣) that maximize ℒ, the MATLAB function fmincon was used. The positive of the loss 392 

function is the linear projection (LP), shown in (Fig. 4c,d) and (Error! Reference source not 393 

found.a,c).  394 

Four model variations were considered: fitting both 𝑣11⃗ . an 𝑣11⃗ 6; fitting 𝑣11⃗ . with 𝑣11⃗ 6 = 01⃗ ; 𝑣11⃗ 6 with 𝑣11⃗ . = 01⃗ ; 395 

and fitting the uniform model 𝑣11⃗ :. For all cases the model was constrained to vectors of unit magnitude, 396 

to focus on the direction rather than the speed of self-motion, and because the T4/T5 vectors (direction-397 

selectivity index) had magnitudes between zero and one. 398 

The data was fitted using ten-fold cross-validation (CV), dividing the data into ten random subsets. In 399 

each fold, nine subsets were used for training and the remaining subset was used for testing the model 400 

fit. For each CV fold, the same training data was fit ten times starting from ten different random 401 

conditions, and the best fit was stored and used to calculate the performance on the test set. The same 402 

training and testing data were used for all models, resulting in repeated measures of the test performance 403 

across models. Statistical testing was done on the ten test-performance values obtained per model. A 404 

one-tailed nonparametric Wilcoxon signed-rank test was used to determine whether the performance of 405 

each of the self-motion models was higher than the performance of the uniform model, for tests pooling 406 

all subtypes (Fig. 4d) and tests of individual subtypes (Error! Reference source not found.c).A 407 

signed-rank test accounted for repeated measures, and a Bonferroni correction was applied to account 408 

for multiple testing (𝑝 < 0.05/3).	  409 
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