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ABSTRACT Existing power grids (PGs) and in-home energy management controllers do not offer its

users the choice to maintain comfort and provide a bearable solution in terms of low cost and reduced

carbon emission. This work is based on energy usage scheduling and management under electric utility

and renewable energy sources i.e., solar energy (SE), controllable heat and power (CHP) and wind energy

(WE) together. Efficient integration of renewable energy sources (RES) and battery storage system (BSS)

have been suggested to solve the energy management problem, reduce the bill cost, peak-to-average ratio

(PAR) and carbon emission. User’s electricity bill reduction have been achieved by proposed power usage

scheduling method and integrating low cost RESs. PAR minimization have been achieved through shifting

the demand in response to real time price from high-peak hours to low-peak hours. In this context, load

scheduling and energy storage system management controller (LSEMC) is proposed which is based on

heuristic algorithms i.e., genetic algorithm (GA), wind driven optimization (WDO), binary particle swarm

optimization (BPSO), bacterial foraging optimization (BFO) and our suggested hybrid of GA, WDO and

PSO (HGPDO) algorithm. The performance of the heuristic algorithms and proposed scheme is evaluated

numerically. Results demonstrate that our proposed algorithm and the LSEMC reduces the electricity bill,

PAR and CO2 in Case 1, by 58.69%, 52.78% and 72.40%, in Case 2, by 47.55%, 45.02% and 92.90% and

in Case 3, by 33.6%, 54.35% and 91.64%, respectively as compared with unscheduled. Moreover, the user

comfort by our proposed HGPDO algorithm in terms of delay, thermal, air quality and visual improves by

35.55%, 16.66%, 91.64% and 45%, respectively.

INDEX TERMS Energy management; battery energy storage systems; renewable; hybrid heuristic

algorithms; power usage scheduling; smart grid.

I. INTRODUCTION

With the growth of population and development, it is esti-

mated that the energy demand may grow by 3% at the end

of year 2021 [1]. Traditional power grids (PGs) powered by

fuels, produce 64.5% of power worldwide. These PGs emit

a larger amount of carbon, where the generation sector and

transport sector almost release 40% and/ 24% carbon respec-

tively [2]. According to the Energy Information Adminis-

tration (EIA), the average electric bill for U.S. households

could increase by 2.3% next year [3]. This drastic increase

in demand and cost will result int the need to generate

electricity from alternative sources like solar, thermal, and

wind. Moreover, to cover the exponential increase in energy

demand, reduce carbon emission and low cost, researchers

have suggested new means of power generation by renewable

energy sources (RES) [4]. To efficiently use these RES, we
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need to renovate traditional PGs into smart grids (SGs). SG

has the ability to meet growing demands and incorporate

new RES together. SG incorporate modern communication

infrastructure with existing grid to efficiently use available

energy sources at site [5].

Nomenclature

Main symbols

vt
j Velocity of particles at t

Fc Coriolis force

µ Inertia factor

Ω Earth rotation

αc coefficient of friction

ρ Air density

Ff Friction force

Fpg Friction gradient

Fg Gravitational force

δv Finite volume of the air

∆ Pressure gradient

z Ant

g Acceleration due to gravity

v Smart home

x Set

M Set of shift-able appliances

T Time interval

t Time slot

N Set of non-shiftable appliances

vt
i Current velocity at t

Psch Power scheduling matrix

A All appliances

DTR Delay time rate

Ngmax Maximum iteration

ρDTRa Total DTR

X
t−1
gbest

Global best position

Eex(t) Energy purchased from external grid

Lt Total load

Lsch
bill Schedulable load bill

Lnsch
bill Non-schedulable load bill

Epv PV power

Pwd Wind generation power

Ebio CHP generation power

l Appliance operation time

α/β Operation start/end time

η Price per kWh

γ Electricity emissions factor

φ(t) Total RES at time t

Epv Energy conversion efficiency factor

Apv Area of panel in (m2 )

Ir(t) Solar irradiance at time slot t
Ta(t) Outdoor temperature at time slot t

ζ Weighted factor

α1, α2 Shape factors

β1 ,β2 Scale factors

Atb Area of wind turbine blade

Vs(t) Wind speed in m/s at time slot t
∂ Total system efficiency

We CHP electric output

Qth Total thermal output

L Lower heating value

Qf Fuel input to CHP

Qbr Bio-gas recovery

γe Recovery efficiency

CF Capacity factor

pt EV on-board PV generation

gt Remaining energy of pt
lτ EV load at time slot τ
ω Time constant of HVAC system

ηe Thermal conversion efficiency

Ac Overall thermal conductivity

Abbreviations

UC, TC, VC User , thermal and visual comfort

NSA Non-schedulable appliances

LOT Lyapunov optimization technique

SSA Smart schedulable appliances

BPSO, PSO Binary/particle swarm optimization

PAR Peak to average ratio

EP Electricity price

RTP Real time price

GA Genetic algorithm

WDO Wind driven optimization

HEMS Home energy management system

SG, MG Smart grid, micro grid

HGPDO Hybrid-GA, PSO and WDO

At user end, there is absence of energy management

and load scheduling. Moreover, at traditional PGs, there is

lack of communication infrastructure. Besides, due to excess

emission of carbon from fuel based PGs, a rise in the en-

vironmental pollution has occurred [32]. It is not feasible

for the consumers to change the schedule of their electric

appliances by compromising comfort level. Accordingly, the

LSEMC is required, which smartly schedule the load of

home appliances. The main highlights of our research are as

follows:

• Efficient Integration of power storage systems and gen-

eration systems i.e., BSS, solar, thermal, WE, electric

vehicles storage system (EVSS) and external electric

grid (EEG) have been suggested to solve the problem

of energy management.

• The SE, CHP, WE, BSS, EVs and domestic consump-

tion is made controllable so that the management of

power is possible.

• To reduce power consumption form EEG in response to

RTP which narrows and shifts load in peak hours.

• Procurement of energy from low price systems i.e. SE,

CHP and wind to reduce the user electricity bill.

• Efficient BSS integration and utilization of EVSS in

peak hours.

• Maximize user comfort (UC) by minimize delay (delay

is the waiting duration to serve the appliances).

• PAR and CO2 emission percentage reduction.

• Average UC maximization in terms of delay, visual

comfort (VC) and thermal comfort (TC).

• Scheduling HVAC which uses almost 50% of the load

[25], in such a way to not compromise the TC and

achieve less delay comfort and bill as compared with

the unscheduled.

The remaining work is organized as follows: section II

presents the related works, section III explains the proposed

algorithms, section IV describes the proposed system model

and, section V discusses the simulation results. Section VI

concludes the work.

II. RELATED WORKS

Several approaches have been adopted for optimized energy

management and load scheduling. Moreover, with the advent

of information technology, the demand for power rises day-

by-day. In the literature, for enhanced energy management

and load scheduling, numerous techniques have been sug-

gested. Providing opportunity for the user to schedule and

shift their demand from high peak hours to off peak hours

using energy management controllers (EMC). Related work

with techniques used, objectives and limitations are summa-

rized in Table 1.

With the SG advancement, a user can reduce the electricity

bill charges by integrating the RESs. In [6], the authors

discussed an artificial neural network (ANN) based model for

the integration of RESs to reduce cost and minimize carbon

emission. As a result the energy cost of the consumer is

reduced by 35%. However, they ignored the integration of

BSS and user comfort in their work. In [7], the authors sug-

gested both GA and WDO and then compared the results. The

results showed 29% and 36.2% reduction in the bill cost and

PAR respectively. However, they have ignored RESs integra-

tion in their work. The authors in [8] suggested the techniques

of Harris’ Hawk optimization combined with integer linear

programming (ILP) to solve the randomness problem and to
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schedule the user appliances. Authors’ main objectives were

to analyze cost and the trade-off strategies for user comfort

and financial benefits. Their model is adoptable to user

requirement and robust levels, however, carbon reduction

and RES has been ignored. In [9], to solve the optimization

problem, minimize operation cost and carbon emission, the

authors suggested techniques of multi-objective genetic algo-

rithm (MOGA). The authors in [10] have considered a smart

home, which is connected to a grid while different appliances

were drawing energy from external grid. Integration of mix

energy system has been discussed which includes energy

storages, renewable sources and photo voltaic (PV). Authors

in [11] have used a multi-objective linearization approach

for home energy management with RES and plug-in hybrid

electric vehicle (PHEV). Their objectives were to minimize

energy bill and load profile deviation. Nevertheless, user

comfort has not considered. In [12], authors have proposed

an intelligent approach for demand side management with

forecasting and net-metering structure. Their objectives were

to reduce cost, PAR and carbon emission. In [13], authors

have developed a load scheduling and energy management

model for electric vehicle, which was connected to external

grid and charging stations. In remote areas, where power

grid extendibility is costly and not feasible, the mini grid

concept is effective and reliable [14]. The authors in [13]-

[15] have worked on management of storage and real-time

load scheduling of renewable energy (RE) integrated electric

vehicle (EV). Their main objectives were to minimize energy

gaining from external grid and charge stations which is park-

ing station, public and home charge stations. Moreover, delay

minimization, load scheduling, price reduction of aboard

PV, PV efficiency and reduction of battery degradation cost

and yearly carbon in air were also their objectives. In [16],

authors have proposed a model for IoT-enabled smart home

for energy management and load scheduling. Their main

objectives were to alleviate peak formation and reduce the

cost with constraints of user comfort. In [17], an innovative

home EMC based on ANN and day-ahead grey wolf modified

enhanced differential evolution algorithm (DA-GmEDE) is

suggested. They develop a strategy for energy management

with day-ahead demand response and power consumption

forecasting in SG. In [18], authors have recommended a

smart charge and discharge scheduling algorithm based on

linear programming (LP) for EV. However, user comfort,

carbon emission and RE integration to grid were ignored.

In [19], authors have suggested a nano-grid concept to cater

peak demand and reduce blackouts. This model work for

residential side to auto disconnect the low priority loads.

Their objectives were to reduce system from blackout based

on the neighbour level. However, user comfort is not included

in system model. In [20], authors have presented a pyramid

convolution neural network (CNN) based learning model for

energy forecasting. They have suggested that power con-

sumers can be grouped into clusters and then representative

system could be designed and trained, which can accurately

forecast power load for each customer. In [21], authors have

presented a storage management model by installing EV

batteries as backup. It further involves integration of EV

batteries system to smart grid by adopting MILP formula-

tion. However, battery degradation and capacity were not

included in cost reduction. In [22], authors particularize a

demand side-management methodology that is useful for

households based on ANN. Their model includes PV and

energy storage and aim a decision-making system to reduce

bill, however, battery degradation cost and user comfort is

not considered. In [23], authors suggested a home energy

management system model to establish and predict a con-

trol system based on mixed-integer quadratic programming

(MIQP) technique powered by thermal source. Their main

objective was to curtail electricity bill, though RESs were

not integrated. In [24], authors have suggested micro-grid

concept to run data centers on it, to mitigate carbon emission,

reduce bill and power outage issues. They used lyapunov

optimization technique (LOT) to design and simulate their

system model. In [25], an energy management system for

sustainable smart home is suggested with HVAC load and

random occupancy. Their objectives were to minimize cost

and reduce cost of thermal discomfort using LOT. Although,

carbon emission reduction in system model were ignored.

In [26], a novel controller for scheduling of appliances and

integrating RES in virtual plant have been designed. They

have used PSO algorithm to minimize cost in crucial time and

prioritize the sustainable resources. In [27], to increase the

smart grid potential, they have integrated smart homes with

renewable energy. The main objectives were PAR and cost

reduction, but the impact of comfort were not considered. In

[28], a data focused machine learning (ML) approach applied

to model the demand and electricity forecasting have been

proposed. However, EMC was not included in this work. In

[29], a multi-headed CNN based model for price prediction

and integration of RES and BSS with SG were suggested.

Their proposed scheme helps to reduce the electricity bill of

users by 58.32% and 63.02% through integration of RESs

without and with BSS, respectively. In [30], authors have

proposed a dynamic programming (DP) based EMC for

shifting load of demand side management to optimize the

smart home appliances usage pattern. Their objectives were

to reduce cost, PAR and maintain UC level. In [31], authors

have presented a domestic demand model, which showed all

dwelling appliances scheduling pattern for twenty two homes

over a year. In [32], a hybrid programmable home man-

agement system has been proposed based on PSO and GA

algorithm. However, thermal comfort and CHP generation

was not included. In [34], authors have suggested an optimal

home EMC based on heuristic algorithms. Their objectives

were to reduce cost, PAR and integrate RES into the system

model. They have achieved 59.06% and 17.40% reduction

in bill cost and PAR respectively. In [35], an optimal load

scheduling framework based on hybrid gray wolf-modified

enhanced differential evolutionary (HGWmEDE) algorithm

has been suggested. They scheduled the household load using

the output of the forecaster module. In [36], a shaping load
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techniques based on demand side management for industrial

plant has been optimized using GA. It has achieved an overall

PAR reduction of 21.91%.

III. PROPOSED MODEL

In this section, our proposed model is discussed in detail.

The methods which have been adopted have also been sum-

marized. We used BPSO, GA, WDO, BFO and HGPDO,

because the said algorithms have heuristic nature and initial-

ization of population, which initially tends to optimal and

best solutions and subsequently, fills up to the rest of the

population with the random solutions. Previously, LP, ILP,

DP, MILP, etc., methods have been adopted for appliances

scheduling and multi-objective problems. Nevertheless, these

methods cannot handle a bulky number of home appliances

and also face several convergence difficulties. GA, BPSO,

WDO, HGPDO, BFO algorithm overtakes the classical tech-

niques of optimization, and for solving multi-objective prob-

lems it provide various methods. The parameters and their

respective values are specified in Table 2.

A. GA

The GA is adopted which is a natural inspired algo-

rithm to find optimal solutions. It randomly generates so-

lutions of population containing a defined number of char-

acters/individuals. Each solution contains a set of all kinds

of variables denoted as a chromosome. New solutions can

be obtained which contains old and new characteristics by

calculating the fitness values, after that selecting individuals,

crossover and mutation. A solution of best fitness can be

generated after its judgement. The defined GA algorithm is

used as taken in [32]. Referring to the selection process, the

roulette selection method is used, in which the individual

with a better fitness value has a higher probability to be

selected for further processing. In general, the chromosomes

are exemplified through binary strings and these are taken

easy to splitting and recombining. Table 2 shows all parame-

ters with values used in algorithm.

B. BPSO

BPSO is a technique inspired by nature for searching optimal

solution inside a search space. Initially, it was presented in

form of continuous domain. But, later it was explored to dis-

crete domain. The PSO discrete domain is known as BPSO.

It has mainly dependency on four aspects: (i) individual best

position of particles, (ii) best global position, (iii) initial

velocity and (iv), the initial position amongst all the particles.

In BPSO, an exploration space is formed, and a randomly

population is initialized and spread in the exploration space.

To update the particles velocities in each iteration equation

(1) is used in [32]. While the parameters values are in Table

2.

24
∑

t=1

I
∑

i=1

24
∑

t=1

I
∑

i=1

vt+1
i =

24
∑

t=1

I
∑

i=1

uvti (t)+

z1k1(Xlbest, i (j) + z2k2(Xgbest, i (j)− xt
i(j))

(1)

In the above equation u is the inertia factor, vti and vtj is

current velocity and velocity of particle, respectively. k1 and

k2 are random numbers while, z1, z2 are local and global pull,

respectively. x is the particle’s current position, Xlbest and

Xgbest are the local and global best positions respectively. To

map the velocities of particle between 0 and 1, equation (2)

is used.

sim
(

vt+1
i (j)

)

=
1

1 + exp(−vt+1
i (j))

(2)

C. WDO

WDO is a heuristic based optimization algorithm. It is

centered on air particles motion phenomenon in atmo-

sphere. In this technique, an N-dimensional exploration space

is formed, in which unlimited particles of air move. In

WDO, frictional, gravitational, Coriolis, and pressure gradi-

ent forces are involved to control air particles. Each force

have their own functions i.e., pressure gradient force and fric-

tion force function for shifting the air particles in the forward

direction and resisting this forward direction respectively.

Also, the force of gravitational function pulls the particles

of air in the direction of origin, and the Coriolis force’s act to

detect the particles of air in the atmosphere. To calculate the

frictional, gravitational, pressure gradient force and Coriolis

force, equations (3), (4), (5) and (6) are used, respectively.

Which are given below [32].

Fpg = −∆ρσv (3)

Fc = −2Ω× µ (4)

Fg = −ρσv × g (5)

Ff = −ρσv (6)

Where Coriolis force; velocity factor of wind is represented

by Fc. The Ω notation represents the earth rotation. The

symbols Ff and α denotes friction force and friction coef-

ficient respectively. Fpg is the gradient force due to pressure,

δv represents the air finite volume, ∆ denotes the gradient

of pressure, Fg denotes the gravitational force, ρ and g is

the density of air and acceleration because of gravitational

force respectively. In WDO, particles of air are taken as n,

and random solutions are formed from these particles. A

fresh population is produced, after updating velocities and

evaluating the fitness function. After this, the comparison of

old and new air particles fitness function for an optimal home

appliance scheduling structure is found.

D. BFO

BFO is a nature-stimulated optimization algorithm. It is

inspired by the social searching behavior of Escherichia coli

bacteria. In BFO algorithm, the bacteria swim in exploration

of n number of nutrients and choose the best nutrients (solu-

tions) to make the most of its energy. BFO also has four steps:

reproduction, elimination-dispersal, swimming and chemo-

taxis. In the chemotaxis step, the parameters initialization of

foraging starts, after that the parameters initialization takes
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Table 1: Related work summary.

Reference No Techniques Objectives Limitations/Research gaps

[6] ANN Integrate RESs to reduce bill and carbon emission BSS and UC is ignored

[7] GA,WDO Reduce bill and alleviate PAR RE integration is not included

[8] ILP Schedule appliances and reduce uncertainty No RES integration and carbon emission reduction included

[9] MOGA Reduce operation cost and CO2 emission No UC

[10] LOT Reduce cost and PAR No UC and carbon emission

[11] Multi-objective linearization technique Reduce cost, and load profile deviation No UC

[12] HBFPSO Curtail cost, PAR and carbon emission No WE,SE and CHP

[13]- [15] LOT Minimize system cost and carbon emission Applicable to remote area

[16] Hybrid-WDO, BFA Minimize cost, PAR and improve comfort No BSS model included and carbon emission is ignored

[17] DA-GmEDE Cost reduction, PAR reduction and UC enhancement Carbon emission is ignored

[18] LP EV smart charge/discharge schedule controller Cost and carbon emission is not discussed

[19] UFUV Energy management and load reduction No UC and carbon emission reduction included

[20] CNN Energy forecasting UC and BSS model ignored

[21] ANN PV integration and reduction bill Battery cost ignored

[22] Game theory PAR and cost reduction Low comfort

[23] ML Demand forecasting No EMC model

[24] NN Shape demand and estimate load UC is ignored

[25] LOT Improve comfort, reduce electricity bill UC is ignored

[26] PSO Integrating RES in virtual plant No BSS and UC included

[27] Analytical model To increase SG potential by integrating RES No UC included

[28] ML Demand forecasting No EMC model

[29] CNN Price prediction, RES and BSS integration UC is ignored

[30] MKP, DP Reduce electricity bill and PAR BSS model is ignored

[31] Stochastic, LOT Optimize power cost Thermal and visual comfort ignored

[32] HGPO Reduce bill, PAR and carbon emission Low load and no thermal comfort included

[33] Analytical model Large BSS integration to PV system High cost

[34] Hybrid of GA and ACO Reduce cost, PAR and carbon emission No wind generation and less UC achieved

[35] HGWmEDE Optimal load scheduling and handle load randomness No RES and BSS model included

[36] GA Shaping load and demand Comfort is not included

place, the primary positions of all appliances are examined,

and then the new positions of the bacteria (solution matrix)

are calculated by the scheme. In the second step, the swim-

ming loop is initialized to find the current best condition of

the appliances, after this step is completed, the reproduc-

tion iteration loop starts. For the new population, only the

fittest solution is used. Finally, the minimum fit solutions are

removed, and new random samples are fitted with reduced

probability. This is an important step because, the least fit

solutions are rejected, and the probability of recurrence is

minimized.

E. HGPDO

The HGPDO is our suggested algorithm. In HGPDO, the

features of GA, BPSO and WDO algorithms are combined to

proficiently reduce electricity bill cost, PAR and UC in terms

of VC, TC and CO2 emission. The GA, WDO and BPSO

are chosen because these algorithms efficiently reduces PAR,

effectively reduce electricity cost and return maximum UC in

terms of visual and thermal comfort, respectively. HGPDO

primarily has three stages where, in the stage one, the initial

steps of PSO are implemented. In the stage two, the steps of

WDO are adopted and in the third stage, the GA mutation

and crossover are applied to the current global best position

Xt−1
gbest, form by BPSO and UCTC,V C

best found by WDO,

respectively. The GA features of crossover and mutation

functioned at the best global position and best comfort offers

good results as compared with their working to the individual

and random based population. Figure 2 presents the flowchart

of HGPDO algorithm. The parameters used in HGPDO and

their values on which its best optimal results are achieved

are listed in Table 2. All parameters and constraints values

of GA, PSO and WDO are applied. The proposed method

inputs, parameters initialization and step by step computation

are given in Algorithm 1.

Table 2: Algorithms parameters

Algorithm Parameters Values

GA Number of iterations 200

Population size 200

Pm 0.1

Pc 0.9

N 11

BPSO Number of iterations 200

Swarm size 200

Vmax 4

Vmin -4

Wi 2

C1 0.4

C2 2

N 11

WDO Number of iterations 200

Population size 200

dimmin -5

dimmax 5

Vmin -0.3

Vmax 0.3

Rt 3

n 11

g 0.2

a 0.4

BFO Number of iterations 200

Ne 24

Nr 5

Nc 5

Np 30

Ns 2

Ci 0.01

Ped 0.1

θ 0.1

HGPDO Same parameters as Same values as of

of GA, PSO and WDO GA, PSO and WDO

IV. SYSTEM MODEL

Consider a residential area, an EG connected smart home

building (SHB) is fitted out with smart meters having load

scheduling and energy storage system management con-

troller (LSEMC) which employ and work on our proposed

HGPDO algorithm. The LSEMC fetch all elements, such

VOLUME 4, 2016 5
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Figure 1: Proposed HGPDO algorithm flowchart

as electrical home appliances, user comfort signal (share

preferences of appliances), renewable energy sources (RESs)

local generations i.e., SE, WE, CHP running on biomass

and energy storage devices i.e., home BSS and electric

vehicle storage system (EVSS). Our algorithm will check

for EV availability at home and having sufficient energy

level to serve as backup at peak hours. Smart appliances

will communicate with controller through home area network

and LSEMC will control scheduling of those appliances on

proposed scheme.

A LSEMC is operated at the external grid connected SHB

which gathers these information: (i) UC signal about the

loads pattern (i.e., scheduled or urgent; in terms of their dura-

tions of operations, tolerable delay, time of arrival, etc.) and

comfort in terms of optical, heat, ventilation and air controller

(HVAC), (ii) PV power generation output and corresponding

constraints, (iii) Wind power generation output values and

respective constraints, (iv) micro-combine heat and power

(CHP) and gas boiler (GB) generation values and relevant

constraints, (v) level of energy of both BSS and EVSS and

their relevant constraints, (vi) real time price signals of elec-

tricity and external electricity grid constraints. On sharing the

above information, the LSEMC apply the proposed algorithm

to determine optimal scheduling, manage the energy and

storage system. It is assumed that all the LSEMC operations

are performed at fixed time slots, carried per time slot, and

all the essential data is securely and timely brought by a

communications network. There are many wireless solutions

for communication purpose such as Wi-Fi, ZigBee, Z-Wave,

or a wired home plug protocol in SG. A simple system

architecture of SHB is presented in Figure 2.
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Figure 2: Proposed system model

A. ENERGY PROCUREMENT

The smart building in residential area procures energy for

scheduled loads and urgent loads from EG, in home PV, WE

and CHP. While in peak hours, it also uses BSS along with

the EV battery as backup if available at home.

B. EXTERNAL GRID

The smart building is purchasing energy from external grid

at defined price, discussed in subsequent subsection. The

building procure energy from the external electricity grid. Let

Eex(t), be the procured amount of energy from the grid at

time t.

0 ≤ Eex(t) ≤ Eex,max (7)

C. PRICE MODEL

There are several electricity tariffs, to set a price over 24

hours i.e., peak pricing (PP), time of use pricing (ToUP),

critical peak pricing (CPP) and real time pricing (RTP) [32].

In most of the appliances scheduling systems, the pricing of

electrical energy is supposed to be ToUP or RTP. Moreover,

in ToUP, the pricing of total duration is divided into different

slabs and for each slab a fixed price is defined. In this work,

we practice RTP, in which the price of electrical energy vary

on the hourly basis and rests constant during an hour’s dura-

tion. Equations (8) and (9) calculate the 24 hours electricity

bill of smart schedulable appliances (SSA) Lsch and non-

schedulable appliances (NSA) Lnsch respectively.

Lsch
bill =

24
∑

t=1

(

m
∑

M=1

(

Lsch
m∈M (t)× Ssch

m∈M (t)× EP (t)
)

)

(8)

Lnsch
bill =

24
∑

t=1

(

n
∑

N=1

(

Lnsch
n∈N (t)× Snsch

n∈N (t)× EP (t)
)

)

(9)

Ltotal
bill = Lsch

bill + Lnsch
bill = Lsch

bill =
24
∑

t=1

(

m
∑

M=1

(

Lsch
m∈M (t)×

Ssch
m∈M (t)× EP (t) +

n
∑

N=1

(

Lnsch
n∈N (t)× Snsch

n∈N (t)× EP (t)
)

(10)

Ssch
m∈M (t) =

{

1 if schedulable appliance is ON
0 if schedulable appliance is OFF

(11)

Snsch
m∈N (t) =

{

1 if non− schedulable appliance is ON
0 if non− schedulable appliance is OFF

(12)

Where Ssch
m∈M (t) represent the indication of on/off state of

M number SSA and Snsch
n∈N (t) represent the on/off state of N

number NSA, and EP (t) is electricity price in the particular

time slot t. The electricity bill L at any time slot t after taking

all RES and BSS into consideration is calculated as following

Lbill = (Lsch (t) + Lnsch (t)− (Eex (t) + Epv (t) + Pwd (t)+

Ebio (t))−BSS(τ))
(13)

Where the τ is the duration when the RESs are either not

available or sufficient, so the load drains energy from BSS.

Our main objective function is given in (14) below.

min
(

T
∑

t=1

Lbill(t) + CO2 + PAR+Delay
)

(14)

subject to constraints (15)-(19).

Lsch (t) + Lnsch (t) = (E (t) +BSS (t) + ϕ (t)) (15)
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Algorithm 1: HGPDO Algorithm steps
A. Algorithm Inputs: RTP, operation time duration, energy usage pattern, wind speed in m/s, temperature,

solar irradiance, efficiency, bio-gas availability, prior-scheduling pattern of appliances, BSS, CHP and EVSS

initialization.

B. Parameters initialization: Number of iterations, population size, Pm , Pc , N , Wi , C1 , C2 ,

dimmin , dimmax , Vmin , Vmax , Rt , n, g, a, maximum and minimum velocity, number

of swarms, global and local pulls, initial and final momentum weights, cost per hour, PAR, Tc , Vc and

emission of CO2 .

for Time=1:24 do
For initial position

for hour=1:swarm do

for i=1:n do

if rand>0.7 then
X=1

end

else
X=0

end

end

end

For initial velocity

for vel1=1:10 do

for vel2=1:6 do

if Thour=0 then
H=0

end

end

end

return Vbest1 , return Pbest1
For initial velocity and initial position, Calculate V elbest1 and Posbest1
Generate population for WDO

Assign position and velocity

begin

Based on 1st position and velocity do evaluation of fitness function

Using equations (1) and (2) update the velocity and position respectively

V elbest2 , Posbest2
Based on 2nd best position and velocity do evaluation of fitness function

Using equations (3)-(6) update velocity, position, check limits and boundaries, respectively

Evaluate the fitness for WDO

Check for Tc and Vc feasibility:

if thermal comfort and visual comfort is less than WDO scheduled comfort then
Crossover wbest and gbest , Crossoverresult = crg

end

else
Crossover Posbest1 and Posbest2 , Crossoverresult = crg ,

Mutate crg , Mutationresult=globalbest
end

end

returned globalbest
C. Compute objectives: EBC, PAR, Carbon emission and UC

begin
1. Compute user comfort

for returned globalbest , to calculate UC do
a. Usage power schedule=globalbest
b. Compute TC using equations (29) and (43)

c. Compute VC using equations (39) and (41)

d. Compute delay comfort using equation (38)

e. Compute air quality comfort by equation (44)
end

2. Compute electricity cost

for returned globalbest , to calculate cost do
a. Only EG: Lt = Power×globalbest
b. EG with RES: Lt(RES)=Load-Energy from RES

c. EG with RES and BSS: Lt(RES and BSS)=Load-Energy procured from RES-BSS

discharge

d. Compute EBC by equation (13) for Case a, b and c
end

3. Compute CO2 emission

for returned global-best, to calculate CO2 emission do
a. Only EG: average cost excluding RES and BSS

b. EG with RES: average cost including RES

c. EG with RES and BSS: average cost including both RES and BSS

d. Compute CO2 by equation (37) for Case a, b and c

end

4. Compute PAR

for Operated returned global best, to calculate PAR do
a. Only EG: Lt = Power×globalbest
b. EG and RES: Lt(RES)=Load- Procured energy by RES

c. EG, RES and BSS: Lt(RES and BSS)=Load- Procured energy from RES-BSS

discharge

d. Compute PAR by equation (36) for Case a, b and c
end

end

end

n
∑

a=1

η = l(a) (16)

n
∑

a=1

α ≤ η ≤ β (17)

ϕ (t) = RES (18)

0 ≤ BSSmin ≤ BSSmax, ∀t ∈ T (19)

Where, l represent length of appliance operation time, α

and β shows the appliance operation start and end time

respectively. While, ϕ(t) denotes the total procurement of

renewable energies at time slot t.

D. PV GENERATION SYSTEM

PV panel solar power generation depend primarily on solar

radiations and over-all estimated radiation [32]. Solar power

output depend on radiation amount, direction of panels and

transfer efficiency [34]. The generated energy in each time

slot within 24 hours is firstly supplied to scheduled load and

is characterized as in (20) [32].

Epv (t) = Epv Apv Ir (t) (1− 0.05) (Ta (t)− 25) ∀ t
(20)

In equation (20), Epv denotes the energy efficiency conver-

sion factor of the solar panels, Apv is the surface area of the

panels (m2), Ir(t) is the radiance of solar (kW/m2) at time

t, the correction factor of temperature is 0.005 [34], Ta(t)
denotes the outside temperature in (°C) at time t and stan-

dard room temperature is 25(°C). The sun hourly irradiation

distribution generally follows a bimodal spreading that can

be measured as a linear blend of two unimodal distribution

functions. It could be demonstrated using Weibull probability

density function as in equation (21) [34].

f (Irpv (t)) = ζ

(

α1

β1

)(

Ir (t)

β1

)(α1−1)

e−( Ir
β1 )

α1

+ (1− ζ)

(

α2

β2

)(

Ir (t)

β2

)(α2−1)

e−(
Irpv
β1 )

α2

0 < Ir (t) < ∞

(21)

Where, ζ denotes a weighted factor, α1 and α2 are the shape

factors, together with β1 and β2which are scale factors.

E. WIND ENERGY

Power generation of wind turbines owed to the kinematic

energy of wind speed, hence, its production of electrical

energy primarily depends on meteorological conditions and

direction of wind flow. It is assumed that procured amount of

energy from wind turbine is given by:

Pwd (t) =
1

2
∗ ρ ∗Atb ∗ Vs (t)

3
(22)

Where, ρ,Atb denotes the air density and area of turbine

blade, respectively, while, the symbol Vs(t) denotes the air

speed in m/s.

F. MICRO-CHP

In order to meet the SHB power demand, it is supposed

that the building is acquiring energy from its own control-

lable micro-CHP generation system. Details of CHP system

are specified as follows. CHP system electricity generation

on average uses 32% less fuel, thus results in 50% less

carbon emission. Renewable fuel such as biomass, biogas,

renewable natural gas (RNG) and renewable hydrogen (RH)

have potential to reduce carbon emission even further. For

thermal generation, electrical generation or as transport fuel,
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the methane CH4 biogas can be used [5]. The efficiency CHP

system is calculated by equation 23:

∂ =
We +

∑

Qth

Qf
(23)

In the above equation symbol ∂ is the total system efficiency,

We is the valuable electric output, Qth is the total thermal

output and Qf is the fuel energy input. A CHP system

achieve about 60 to 80 percent efficiency.

The important fuel source for CHP is biomass, mostly pro-

duced from the forests. From the decomposition of organic

matter the biogas is obtained in the absence of oxygen in a

controlled tanks or landfills. CH4 is the main components

of biogas . CH4 concentration generally ranges from 30%

to 65%. CH4 material of biogas can be used for thermal and

electrical power generation as a transport fuel. Now, biogas

is an active means for producing RE, so it in turn plays

a significant part in energy production and is eco-friendly.

There are numerous means for gaining biogas in the urban

areas like waste of Industries, pruning waste, solid waste,

municipal and industrial wastewater. The electrical power

generation through biogas is defined in equation (24). This

equation is associated to the biogas conversion to valuable

energy of heat and electricity [5].

Ebio(t) =
L ∗Qbr(t) ∗ ∂

γe
(24)

Where Ebio(t) is the available electrical power (kWh) at slot

t, L is lower biogas calorific value, Qbr is biogas recovery

and availability, ∂ is efficiency and γe is recovery efficiency.

The total power P of micro-CHP generator is calculated using

equation (25) as in [5]. Where CF denote capacity factor; is

the plant accessibility factor which is taken in [80-90]% and

t is duration in hours.

P (t) =
Ebio(t)

t ∗ CF
(25)

G. EV ON BOARD PV

EV On board PV generated energy is used for driving tasks

and remaining is stored in electric vehicle storage system

(EVSS). We assume that the harvested amount of energy

from the PV source installed at EV is firstly used for driving

loads and motor [13], while, the remaining energy is stored

in EVSS. The EV on-board PV harvested amount of energy

is gt, such that:

pt = min
{

t
∑

τ=0

lmτ1τ (∆ω, τ), gt
}

(26)

Where, the term
∑t

τ=0 lmτ1τ (∆ω, τ) represents the total

EV load arriving at time slot t [13]. The 1τ (∆ω, τ) indicate

whether the load lmτ is being served or not at time slot τ . The

remaining energy, if any, is stored into EVSS and drawn from

it only in peak hours and if the home BSS is not sufficient.

H. POWER CONSUMPTION

In SHB there are schedulable smart appliances and fixed

appliances which consume power from EG and RES. Power

consumption of load and HVAC is discussed below in detail.

I. LOAD CONSUMPTION MODEL

We suppose that SHB has different appliances loads L(t)
at 24 hour duration which arrive over the time slots with

temporal variability and uncertainty. Each L(t) has power

rating ς for a duration . In this work, the appliances are

classified in two kinds: smart schedulable appliances (SSA).

SSA can operate themselves such as washing machines, dish

washer, air conditioners, refrigerator and manually-operated

[12] while fixed loads does not incur in bill or PAR reduction.

Consider that the SH has two major sets of appliances

i.e. Lsch and Lnsch, where Lsch is the set of schedulable

i.e., can be shifted to operate in low peak slots, Lsch(t) =

{a1, a2, a3...am} and Lnsch is the set of non-schedulable

appliances i.e., immediately operate on the time and prefer-

ence set by the consumer, Lnsch(t) = {b1, b2, b3...bn} over a

scheduling duration of t ={1, 2, 3, ..., 24}. The 24 hours en-

ergy consumption of schedulable and non-schedulable load

are given by equations (27) and (28) respectively.

Lsch(t) =
24
∑

t=1

( m
∑

M=1

Lscht,m ∈ M

)

= {Lscht1,m ∈ M+

Lscht2,m ∈ M + . . . + Lscht24,m ∈ M}
(27)

Lnsch(t) =
24
∑

t=1

( m
∑

M=1

Lscht,m ∈ M

)

= {Lnscht1,m ∈

M + Lnscht2,m ∈ M + . . . + Lnscht24,m ∈ M}
(28)

J. HVAC CONSUMPTION MODEL

HVAC is other shift-able appliance for heating, cooling and

ventilation in a building. HVAC uses almost 50% of total

consumption [25]. The HVAC generally, has two mode of

operations i.e., heating and air cooling. In this work, we fo-

cused on cooling in summer and heating in winter. According

to [25], the indoor temperature dynamics caused by an HVAC

system could be obtained as follows:

Tt+1 = ǫTt + (1 − ǫ)(T out
t +

ηe
Ac

et ), ∀ t (29)

Where, Tt the indoor temperature and T out
t denote outdoor

temperature, ηe is the thermal conversion efficiency, and Ac

in kW/◦F is the overall thermal conductivity, moreover, ε =
e−τ/ω where ω is the time constant of system.

K. STORAGE MODEL

1) BSS Model

BSS is used to stores the remaining amount of RE to serve

as backup in peak hours. It stores the energy by satisfying
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This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3087321, IEEE Access

Ateeq Ur Rehman et al.: An optimal power usage scheduling in smart grid

the overcharging and depth of charging constraints. Energy

charged in the BSS at time slot t is described by equation

(30) as in [32]. The electricity discharged, the electricity

charged and the self-discharging rate is also considered. The

discharging and charging of BSS would gain or lose electrical

energy, so turn-around the BSS efficiency is depicted as:

BS (t) = BS (t − 1) + k.δBS .EP ch(t)−
k.EP dch(t)

δBS

(30)

Where, BS denote the stored energy (Ah) at time t, k is time

slot duration (hour), δBS is the efficiency of BSS, EP ch is

the electric power (kW) provided to BSS from RES at time

t and EP dch is the electric power (kW) provided to the load

from BSS at time t. The battery charging and discharging

constraints are given below.

EP ch(t) ≤ EP ch
UB (31)

EP dch(t) ≤ EP dch
LB (32)

BSS(t) ≤ ESch
UB (33)

In order to keep the BSS in good condition and avoid deep

discharging or overcharging, discharge and charge rate of

electrical energy, and energy stored in BSS should not cross

the limits approved by the company.

2) EVSS mobile backup

Depending on the EV total load and total source conditions,

the EVSS can be charged from PV, WE system and external

power grid and its on-board PV [13]. EVSS can be used as a

mobile backup, our algorithm will check for the availability

of EV at home and the battery charge level for serving as

mobile backup in peak hours to shift load. Let EV availability

is indicated as:

Ev (a) = {1 if availabe at home, else 0} (34)

Ev (s) = {1 if charging, 0 idle and− 1 if discharging}
(35)

The EV battery charging level at different hours after the

driving tasks and status of availability is shown in Figure 12

and charge level in Figure 13.

L. PAR

PAR is the ratio of peak load consumed in a time slot t and the

average of total load used over the scheduling hours duration

i.e., from t = 1 to T where T = 24 hours. PAR describes the

power consumption activities of the user and the operation

EG peak hours and have a direct relationship with the user

PARs. So, it is in favor for both the electric utility and user to

mitigate PAR so that energy supply and user demand balance

can be sustained. For single user, it is considered as in [34].

PAR =
max(Ltotal(t))
1
T

∑T
t=1 L

total(t)
(36)

M. CARBON EMISSION

In this work, carbon emission is calculated using equation

(37) as in [32] and [14]. Where avg(EP (t)) denotes the

average cost of electricity per month, while η illustrate the

electricity price per kWh equal to 0.20 dollars and γ repre-

sents the emission factor of electricity equal to 1.37, while m
denotes number of months in one year.

CO2 =
avg(EP (t))

η.γ.m
(37)

N. UC MODEL

In this work, we compute the UC in terms of delay, thermal,

air quality and visual comfort, each details and mathematical

formulation is given below.

1) Delay comfort

This comfort is related to serving time of each appliance.

Delay comfort is calculated using equation (38) as in [32].

Where unsch(t) denotes the time of serving in unscheduled

method while sch(t) denotes the time of serving in scheduled

method. Delay and electricity cost are both related to UC.

Dcomfort =

∑

|unsch (t )− sch (t ) |
∑

(sch (t ))
(38)

2) Visual comfort

Visual comfort is related to the number of lights and waiting

time to serve. It will be adjusted to user preference while,

indoor luminous intensity is defined as in [14].

Vcomfort(t) ,
Ne.Le (t) .fs.ϑ.M

A
(39)

Where Ne denotes the number of lightening devices,

Vcomfort(t) in (39) shows the indoor illumination in A
illuminated indoor area. The room luminous can be adjusted

by energy consumption level of individual lighting devices

Le(t), that have their respective source flux value fs, ϑ
utilization factor and M maintenance factor. The user visual

comfort Vc and delay APLights
Wt

have an inverse relation, this

relationship can be mathematically presented as in [30]:

Vc ∝
1

APLights
Wt

(40)

APLights
Wt

= (APLights
Dh

−APLights
Sh

) (41)

Where APLights
Dh

is the user preference of lights and

APLights
Sh

is the scheduled hours for lights.

3) Indoor temperature comfort

The temperature of adjustable HVAC system, their temper-

ature is varied in a definite range which is based on user

preferences. The indoor temperature can be adjusted by

varying the energy consumption of temperature adjustable

HVAC equipment. The indoor temperature is varied within

the range of 20°C∼25°C [14], for a single person in the smart

home, to feel comfortable. The thermal comfort is calculated
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by equation (43). The user thermal comfort and waiting time

APHVAC
Wt

have an inverse relation, this relationship can be

mathematically expressed as follows:

Tc ∝
1

APHVAC
Wt

(42)

APHVAC
Wt

= (APHVAC
Dh

−APHVAC
Sh

) (43)

Where Tc is the thermal comfort, APHVAC
Dh

is user pref-

erence of HVAC and APHVAC
Sh

is the scheduled hours for

HVAC.

4) Air quality

Air quality is measured in terms of carbon emission in the

environment. The concentration of indoor carbon can be

varied through adaptive ventilation system in the SHB. Thus,

based on user preferences, indoor good air quality can be kept

by ventilating fresh air into the indoor area. Mathematically,

the parameters of the indoor carbon concentration can be

stated as in [14]:

ζt+1 = ζt +
Fair(ζout−ζt) + ζin

V
(44)

This equation (44) shows that the carbon concentration ζt+1

in an indoor zone of volume V that can be adjusted by vary-

ing the amount of fresh air Fair in the zone with respect to its

accumulation value of the CO2 concentration ζt depending

upon the outdoor carbon concentration ζout and the indoor

carbon generation ζin. The fresh air cooling and heating can

be adjusted by complementing the equation (29) when the

cooling mode is required. The desired range of indoor fresh

air is taken in terms of carbon concentration which ranges

between 740ppm∼780ppm [14].

V. RESULTS AND DISCUSSION

The results and simulations of proposed LSEMC algorithm

are presented in this section. In our system model, the

incorporation of RES, BSS, EVSS and proposed HGPDO

algorithm performance is evaluated and discussed in three

cases. In case one, only EG (excluding RES and BSS),

while, the case two is EG with RES, and the case three is

EG combine with both BSS and RES. For simulations, we

used the MATLAB simulation tool. To discuss the suggested

LSEMC, we assumed a smart home having six shiftable

appliances and EG, RES and BSS as a source. While BSS

and EVSS is only used at peak price hours for load shifting.

The smart grid signals; RTP [32], forecasted temperature [4],

wind speed [4], biogas output [5] and solar irradiance [34]

taken in the suggested LSEMC are showed in Figures 3, 4,

5, 6 and 7 respectively. The electricity generation by solar

system primarily depends on ambient temperature and solar

irradiance, while, wind and CHP depends on wind speed and

biogas recovery efficiency. We have assumed 90% of total

RES in all available time slots of the scheduled time. As well,

30% of RES in each time slot is consumed for BSS charging,

of which the 20% contributes from the solar, while 10%

Figure 3: Real time pricing signal

Figure 4: Forecasted temperature

contributes from the wind and CHP. Figure 8, 9 and 10 shows

the estimated power generation of solar, CHP, wind and the

remaining RE after BSS charging respectively . Furthermore,

figure 11 shows charging level of BSS along with EVSS.

A. CASE 1: ONLY EG

In this scenario, the smart home building is only using the

external grid power for scheduled and unscheduled loads.

We will discuss electricity bill cost (EBC), PAR and carbon

emission.

1) Electricity bill cost

Figure 14 demonstrates the EBC of unscheduled load and

scheduled load without BSS and RESs. In unscheduled, the

maximum electricity cost is 1091 cents in slot hour 9 and

in hour slot 16, the minimum cost is 165.81 cents. In case

of BPSO, the maximum electricity cost is 727.41 cents in

the hour slot 9 and minimum cost is at hour slot 19. In
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Figure 5: Forecasted wind speed

Figure 6: Biogas Qbr availability

Figure 7: Solar irradiance

Figure 8: Solar power generation

Figure 9: CHP power generation

Figure 10: Wind power generation
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Figure 11: BSS and EVSS Charging

Figure 12: EV availability at home

Figure 13: EVSS Charge level at different slots

case of WDO, the maximum electricity cost is 699.70 cents

in the hour slot 9. In HGPDO algorithm, maximum cost

in the hour slot 7 is 386.64 cents, whereas in BFO, it is

488.83 cents in time hour slot 9. It is 727.41 cents in the

time slot 9 in GA based scheduling method. The HGPDO

algorithm performance is better in terms of EBC reduction

when compared with the other exploratory algorithms. The

average electricity bill over 24 hours in unscheduled, GA,

WDO, BPSO and BFO are 337.34, 224.89, 170.92, 324.17,

160.07 cents, respectively. While with our proposed algo-

rithm, it is 138.82 cents. The cumulative, electricity bill cost

illustrates that GA, BPSO, WDO, BFO and HGPDO reduce

the electricity bill cost by 33.33%, 3.90%, 49.33%, 52.54%

and 58.69%, respectively. Nevertheless, in this case, the best

cost minimization is achieved with the proposed scheduling

algorithm. The average cost over 24 hours of all algorithms

as compared with the proposed model is shown in Table 3.

Table 3: Case 1 cost comparison

Algorithm Average cost (cents) Difference (average cents) Reduction (%)

Unscheduled 337.34 - - - -

GA 224.89 112.45 33.33%

BPSO 324.17 13.17 3.90%

WDO 170.92 166.42 49.33%

BFO 160.07 177.27 52.54%

HGPDO 138.82 198.52 58.69%

2) PAR

Figure 15 shows the PAR in Case 1, when SHB is only

utilizing energy from EG. In unscheduled it is 3.302, while

in GA, PSO, WDO and HGPDO it is 3.037, 2.964, 2.836,

2.654 and 1.559 respectively. Results demonstrate that GA,

PSO, WDO, BFO and HGPDO reduce the PAR by 8.025%,

10.23%, 14.11%, 19.62% and 52.78% respectively. Although

the PSO and WDO shift load to low peak price hours which

create new peaks and disturb the utility system. A penalty

is required to be imposed for preventing the system from

such disturbance. Table 4 shows the PAR comparison of all

algorithms with the proposed algorithm for the Case 1.

Table 4: Case 1 PAR comparison

Algorithm Total PAR Difference (PAR) Reduction (%)

Unscheduled 3.302 - - - -

GA 3.037 0.265 8.025%

BPSO 2.964 0.338 10.23%

WDO 2.836 0.466 14.11%

BFO 2.654 0.648 19.62%

HGPDO 1.559 1.743 52.78%

3) Carbon emission

Carbon emission in Case 1 is shown in Figure 16. Where

the desired carbon (D) is 760ppm. In case of unscheduled

it is 1014 ppm, which shows carbon emission is far from the

desired range. While in GA, BPSO, WDO, BFO and HGPDO

it is 703.7 ppm, 535.5 ppm, 393.1 ppm 534.8 ppm and 72.4

ppm respectively. The reduction in carbon emission in this

VOLUME 4, 2016 13



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3087321, IEEE Access

Ateeq Ur Rehman et al.: An optimal power usage scheduling in smart grid

Figure 14: Case 1 electricity bill cost

Figure 15: Case 1 PAR

case for GA, BPSO, WDO, BFO and HGPDO is 7.40%,

29.53%, 48.27%, 29.63% and 72.40% respectively. In this

case, WDO and HGPDO show good results in case of carbon

emission reduction. Table 5 illustrate the comparisons of user

desired, unscheduled carbon emission and emission by all

scheduling algorithms.

Table 5: Case 1 carbon emission comparison

Algorithm Carbon emission (ppm) Difference (ppm) Reduction (%)

CO2 concentration 760 - - - -

Unscheduled 1014.0 -254 -33.42% (increased)

GA 703.7 56.30 7.40%

BPSO 535.5 224.5 29.53%

WDO 393.1 336.9 48.27%

BFO 534.8 225.2 29.63%

HGPDO 72.4 687.6 72.40%

Figure 16: Case 1 carbon emission in (ppm)

B. CASE 2: EG WITH RES INTEGRATION

In this scenario, the smart building is using the external grid

power along with RES for scheduled and unscheduled task.

We will discuss EBC, PAR and carbon emission.

1) Electricity bill cost

Figure 17 demonstrates the EBC of unscheduled load and

scheduled load utilizing power from EG and RES. In un-

scheduled, the maximum electricity cost is 722.35 cents in

slot hour 9 and in slot hour 16, the minimum cost is 109.10

cents. In BPSO, the maximum cost is 581.13 cents in the

hour slot 9 and minimum cost is at hour slot 19. In case of

WDO, the maximum electricity cost is 496.55 cents in the

slot hour 9. In HGPDO algorithm, cost is 322.24 cents in the

slot hour 8, while in BFO, it is 484.37 cents at slot hour 9. In

GA centered scheduling method, cost is 666.79 cents in slot

hour 9. The performance of the HGPDO algorithm in terms

of EBC reduction is better when compared with the other

discussed exploratory algorithms. The average electricity bill

over 24 hours in unscheduled method, GA, BPSO, WDO

and BFO are 225.91, 208.53, 216.23, 187.45 and 168.82

cents, respectively. While with our proposed algorithm it is

118.48 cents. In cumulative, electricity bill cost illustrate that

GA, BPSO, WDO, BFO and HGPDO reduce the electricity

bill cost by 7.69%, 4.21%, 17.02%, 22.27% and 47.55%,

respectively. Nevertheless, in this Case 2 the best cost mini-

mization is achieved with the proposed scheduling algorithm.

The average cost over 24 hours duration comparison of all

algorithms and the proposed algorithm in case two is shown

in Table 6.
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Figure 17: Case 2 electricity bill cost

Table 6: Case 2 cost comparison

Algorithm Average cost (cents) Difference (average cents) Reduction (%)

Unscheduled 225.91 – –

GA 208.53 17.38 7.69%

BPSO 216.23 9.68 4.21%

WDO 187.45 38.46 17.02%

BFO 168.82 57.09 25.27%

HGPDO 118.48 107.43 47.55%

2) PAR

Figure 18 shows the PAR in Case 2, when SHB is utilizing

energy from EG and RESs. In unscheduled, it is 2.985, while

in the case of GA, PSO, WDO, BFO and HGPDO it is

2.803, 2.523, 2.453, 2.185 and 1.651 respectively. The results

demonstrate that GA, PSO, WDO, BFO and HGPDO reduce

the PAR by 6.13%, 15.47%, 17.82%, 26.80% and 45.02%

respectively. BFO and our proposed algorithm reduce PAR

very efficiently. Although the PSO and WDO shift load to

low peak price hours which create new peaks and disturb

the utility system. A penalty is required to be imposed for

preventing the system from such disturbance. Table 7 shows

the PAR comparisons of all algorithms with the proposed

algorithm for the Case 2.

Table 7: Case 2 PAR comparison

Algorithm Total PAR Difference (PAR) Reduction (%)

Unscheduled 2.985 - - - -

GA 2.803 0.183 6.13%

BPSO 2.523 0.462 15.47%

WDO 2.453 0.532 17.82%

BFO 2.185 0.800 26.80%

HGPDO 1.651 1.344 45.02%

3) Carbon emission

Carbon emission in Case 2 is shown in Figure 19. Where

the desired carbon (D) is 760ppm. In case of unscheduled,

Figure 18: Case 2 PAR

it is 1003 ppm, which shows carbon emission is far from the

desired range. While in GA, BPSO, WDO, BFO and HGPDO

it is 682.1 ppm, 446.8 ppm, 360.7 ppm 594 ppm and 53.4

ppm, respectively. The reduction of carbon emission in this

case for GA, BPSO, WDO, BFO and HGPDO is 10.50%,

41.21%, 52.60%, 21.84% and 92.90% respectively. In this

case, WDO and HGPDO shows good results in terms of

carbon emission reduction. Table 8 illustrate the comparison

of desired, unscheduled carbon emission and emission by all

scheduling algorithms.

Table 8: Case 2 carbon emission comparison

Algorithm Carbon emission (ppm) Difference (ppm) Reduction (%)

CO2 concentration 760 - - - -

Unscheduled 1003 -243 -31.97%(increased)

GA 682.1 77.9 10.50%

BPSO 446.8 313.2 41.21%

WDO 360.7 399.8 52.60%

BFO 594 166 21.84%

HGPDO 53.4 706.6 92.90%

C. CASE 3: EG WITH RES AND BSS INTEGRATION

In this scenario, the smart building using the external grid

power for scheduled and unscheduled task along with RES

and BSS and EVSS. We will discuss EBC, PAR, carbon

emission and UC.

1) Electricity bill cost

Figure 20 demonstrates the EBC of unscheduled load and

scheduled load, utilizing power from EG with RES and BSS.

In unscheduled, the maximum electricity cost is 711.82 cents

in slot hour 9 and minimum cost is 102.88 cents in slot hour

16. In BPSO, the maximum electricity cost is 503.57 cents

in the slot hour 9 and minimum cost is at slot hour 19. In

WDO, the maximum cost of electricity is 522.29 cents in the

slot hour 9. In HGPDO algorithm, cost is 423.48 cents in

the slot hour 8, while in BFO, it is 444.97 cents in slot hour
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Figure 19: Case 2 carbon emission in (ppm)

9. In case of GA based scheduling technique, it is 652.51

cents in the slot hour 9. The HGPDO algorithm performance

is better in terms of EBC reduction when compared with

the other discussed algorithms. The average electricity bill

over 24 hours in unscheduled, GA, BPSO, WDO and BFO

are 222.51, 203.97, 213.30, 175.05 and 156.38 cents, re-

spectively. While with our proposed algorithm it is 147.61

cents. The cumulative, electricity bill cost illustrates that

GA, BPSO, WDO, BFO and HGPDO reduces the electricity

bill cost by 9.68%, 4.13%, 21.32%, 29.72% and 33.66%,

respectively. Nevertheless, in this Case 3 the best cost min-

imization is achieved with proposed scheduling algorithm

which uniformly distribute load over low and high peaks

hours. The average cost over 24 hours duration comparison

of all algorithms and proposed algorithm in Case 3 is shown

in Table 9.

Table 9: Case 3 cost comparison

Algorithm Average cost (cents) Difference (average cents) Reduction (%)

Unscheduled 222.51 - - - -

GA 203.97 21.54 9.68%

BPSO 213.30 9.21 4.13%

WDO 175.05 47.46 21.32%

BFO 156.38 66.13 29.72%

HGPDO 147.61 74.9 33.66%

2) PAR

Figure 21 demonstrates the PAR of user scheduled and un-

scheduled load. In unscheduled, it is 2.537, while in the case

of GA, PSO, WDO, BFO and HGPDO it is 2.197, 2.049,

1.741, 1.727 and 1.158 respectively. The results demonstrate

that the PAR is reduced as a result of proposed GA, PSO,

WDO, BFO and HGPDO algorithms by 13.40%, 19.23%,

31.37%, 31.92% and 54.35%, respectively. Nevertheless, the

HGPDO algorithm curtail the PAR significantly as compared

with the other exploratory algorithms. The load is shifted to

off peak slots by GA and WDO and create new peaks. Con-

Figure 20: Case 3 electricity bill cost

Figure 21: Case 3 PAR

versely, the PSO and HGPDO algorithms allocate the load

equally and attain the required objective. Table 10 present

the PAR comparisons of all algorithms with the proposed

algorithm in the Case 3.

Table 10: Case 3 PAR comparison

Algorithm Total PAR Difference (PAR) Reduction(%)

Unscheduled 2.537 - - - -

GA 2.197 0.340 13.40%

BPSO 2.049 0.488 19.23%

WDO 1.741 0.796 31.37%

BFO 1.727 0.810 31.92%

HGPDO 1.158 1.379 54.35%

3) Carbon emission

Carbon emission in Case 3 is shown in Figure 22. Where

the desired carbon (D) is 760ppm. In case of unscheduled, it
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Figure 22: Case 3 carbon emission in (ppm)

is 968.3 ppm, which shows carbon emission is far from the

desired range. While in GA, BPSO, WDO, BFO and HGPDO

it is 671.6 ppm, 541.6 ppm, 374.8 ppm 567.5 ppm and 63.5

ppm, respectively. The reduction in carbon emission in this

case for GA, BPSO, WDO, BFO and HGPDO is 11.63%,

28.73%, 50.68%, 25.39% and 91.64% respectively. In this

case, WDO and HGPDO shows better results in terms of car-

bon emission reduction. Table 11 illustrates the comparison

of desired, unscheduled carbon emission and emission by all

scheduling algorithms.

Table 11: Case 3 carbon emission comparison

Algorithm Carbon emission (ppm) Difference (ppm) Reduction (%)

CO2 concentration 760 - - - -

Unscheduled 968.3 -208.30 -27.40% (increased)

GA 671.6 88.40 11.63%

BPSO 541.6 218.40 28.73%

WDO 374.8 385.20 50.68%

BFO 567.5 193.00 25.39%

HGPDO 63.5 696.5 91.64%

D. USER COMFORT

1) Delay and cost comfort

UC is related to both EBC and scheduling wait time. Comfort

is considered using equation (38) in terms of scheduling wait

time in this work. Scheduling wait time is that the consumer

must wait to turn on their appliances. Consumer will control

their home appliances agreeing to scheduling pattern pro-

vided by controller for reduction in EBC. A consumer who

desires to reduce the cost, he will compromise on comfort

level. Figure 23 shows the average scheduling wait time of

all home appliances scheduled by GA, HGPDO, WDO, PSO

and BFO algorithms respectively. GA has no wait time in

serving HVAC load. Our proposed algorithm scheduling wait

time of all appliances is less than one hour. Table 12 displays

the scheduling time of the home appliances in minutes and

respective improvement in case of HGPDO algorithm.

Figure 23: Waiting time of all appliances

Table 12: Delay comfort (minutes)

Appliances GA BPSO WDO BFO HGPDO Comfort(%) by HGPDO

Water heater (WH) 37 37 37 37 41 31.66%

Refrigerator 100 100 60 45 45 25.00%

HVAC 0 16 33 33 50 16.66%

Washing machine (WM) 04 12 12 12 32 46.66%

EV 100 70 100 62 31 48.33%

Lights 09 29 29 29 33 45.00%

2) Thermal comfort

Thermal comfort is calculated using equations (29) and (43)

which is related to HVAC, cooling and heating (summer and

winter season) and user given preference. Figure 24 shows

the thermal comfort of our proposed HGPDO, GA, WDO,

PSO and BFO algorithms. BPSO and WDO returns best

values of TC. Also, it schedules the HVAC load on urgent

basis with zero delay.

3) Visual comfort

Visual comfort is calculated using equations (39) and (41)

which is related to number of lights, luminous intensity and

user given preference. Figure 24 shows the visual comfort

of our proposed HGPDO, GA, WDO, PSO and BFO. WDO

returns the best values of VC because it schedules lights on

urgent basis with zero delay.

4) Air quality comfort

Air quality comfort is calculated using equations (37) and

(44). The AQC is related to carbon emission, electricity con-

sumption and desired air freshness factor. Figure 25 shows

the air quality comfort of our proposed HGPDO, GA, WDO,

PSO and BFO. The proposed algorithm reduces the carbon

emission, which results in less concentration of CO2 in air,

hence, the optimal AQC is achieved.

VI. CONCLUSION AND FUTURE WORK

The authors have proposed an efficient load scheduling and

energy management controller for smart home building to
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Figure 24: Thermal and visual comfort in minutes

Figure 25: Air quality comfort in (ppm)

reduce the electricity bill, PAR, carbon emission and improve

UC in terms of visual, thermal, air quality and delay. This

work considers a smart building utilizing power from EG,

BSS and RES i.e., solar, thermal and wind power to shift load

to peak hours and achieve the objectives. The huge HVAC

load is scheduled with other different shiftable and smart

appliances to reduce load. Each appliance in the smart home

is scheduled using GA, BPSO, WDO, BFO and the proposed

optimization technique, HGPDO. The proposed technique

helps to find the most optimum schedule of each home ap-

pliance considering system constraints. The performance of

the proposed scheme and heuristic algorithms are evaluated

using real time pricing scheme via MATLAB simulations.

Moreover, we compared the results of the proposed method

with the GA, PSO, WDO and BFO to check its efficiency.

Results demonstrate that the proposed algorithm and inte-

gration of RES and BSS reduces the electricity bill, PAR

and CO2 in Case 1, by 58.69%, 52.78% and 72.40%, in

Case 2, by 47.55%, 45.02% and 92.90% and in Case 3, by

33.6%, 54.35% and 91.64%, respectively as compared with

unscheduled. Moreover, the user comfort by our proposed

HGPDO algorithm in terms of delay, thermal, air quality

and visual improved by 35.55%, 16.66%, 91.64% and 45%,

respectively.

This work is based on domestic smart home load in residen-

tial sector. It can be applied to a commercial and industrial

sector, and can also be considered with a large number of

appliances and onsite renewable energy generation.

In future, we will work on real time algorithms and will

evaluate the performance of our proposed system for the

same scenarios.
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