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Abstract

We present an optimal real-time scheduling algorithm
for multiprocessors — one that satisfies all task deadlines,
when the total utilization demand does not exceed the uti-
lization capacity of the processors. The algorithm called
LLREF, is designed based on a novel abstraction for rea-
soning about task execution behavior on multiprocessors:
the Time and Local Execution Time Domain Plane (or T-
L plane). LLREF is based on the fluid scheduling model
and the fairness notion, and uses the T-L plane to describe
fluid schedules without using time quanta, unlike the opti-
mal Pfair algorithm (which uses time quanta). We show that
scheduling for multiprocessors can be viewed as repeatedly
occurring T-L planes, and feasibly scheduling on a single
T-L plane results in the optimal schedule. We analytically
establish the optimality of LLREF. Further, we establish that
the algorithm has bounded overhead, and this bound is in-
dependent of time quanta (unlike Pfair). Our simulation
results validate our analysis on the algorithm overhead.

1 Introduction

Multiprocessor architectures (e.g., Symmetric Multi-
Processors or SMPs, Single Chip Heterogeneous Multipro-
cessors or SCHMs) are becoming more attractive for em-
bedded systems, primarily because major processor manu-
facturers (Intel, AMD) are making them decreasingly ex-
pensive. This makes such architectures very desirable
for embedded system applications with high computational
workloads, where additional, cost-effective processing ca-
pacity is often needed. Responding to this trend, RTOS
vendors are increasingly providing multiprocessor platform
support — e.g., QNX Neutrino is now available for a vari-
ety of SMP chips [12]. But this exposes the critical need
for real-time scheduling for multiprocessors — a compara-
tively undeveloped area of real-time scheduling which has
recently received significant research attention, but is not
yet well supported by the RTOS products. Consequently,

the impact of cost-effective multiprocessor platforms for
embedded systems remains nascent.

One unique aspect of multiprocessor real-time schedul-
ing is the degree of run-time migration that is allowed for
job instances of a task across processors (at scheduling
events). Example migration models include: (1) full migra-
tion, where jobs are allowed to arbitrarily migrate across
processors during their execution. This usually implies a
global scheduling strategy, where a single shared schedul-
ing queue is maintained for all processors and a processor-
wide scheduling decision is made by a single (global)
scheduling algorithm; (2) no migration, where tasks are
statically (off-line) partitioned and allocated to processors.
At run-time, job instances of tasks are scheduled on their
respective processors by processors’ local scheduling algo-
rithm, like single processor scheduling; and (3) restricted
migration, where some form of migration is allowed—e.g.,
at job boundaries.

The partitioned scheduling paradigm has several advan-
tages over the global approach. First, once tasks are allo-
cated to processors, the multiprocessor real-time schedul-
ing problem becomes a set of single processor real-time
scheduling problems, one for each processor, which has
been well-studied and for which optimal algorithms exist.
Second, not migrating tasks at run-time means reduced run-
time overhead as opposed to migrating tasks that may suffer
cache misses on the newly assigned processor. If the task set
is fixed and known a-priori, the partitioned approach pro-
vides appropriate solutions [3].

The global scheduling paradigm also has advantages,
over the partitioned approach. First, if tasks can join and
leave the system at run-time, then it may be necessary to re-
allocate tasks to processors in the partitioned approach [3].
Second, the partitioned approach cannot produce optimal
real-time schedules — one that meets all task deadlines
when task utilization demand does not exceed the total pro-
cessor capacity — for periodic task sets [14], since the par-
titioning problem is analogous to the bin-packing problem
which is known to be NP-hard in the strong sense. Third, in
some embedded processor architectures with no cache and
simpler structures, the overhead of migration has a lower



impact on the performance [3]. Finally, global scheduling
can theoretically contribute to an increased understanding
of the properties and behaviors of real-time scheduling al-
gorithms for multiprocessors. See [10] for a detailed dis-
cussion on this.

Carpentar et al. [4] have catalogued multiprocessor real-
time scheduling algorithms considering the degree of job
migration and the complexity of priority mechanisms em-
ployed. (The latter includes classes such as (1) static, where
task priorities never change, e.g., rate-monotonic (RM);
(2) dynamic but fixed within a job, where job priorities
are fixed, e.g., earliest-deadline-first (EDF); and (3) fully-
dynamic, where job priorities are dynamic. )

The Pfair class of algorithms [2] that allow full migration
and fully dynamic priorities have been shown to be theo-
retically optimal—i.e., they achieve a schedulable utiliza-
tion bound (below which all tasks meet their deadlines) that
equals the total capacity of all processors. However, Pfair
algorithms incur significant run-time overhead due to their
quantum-based scheduling approach [7, 14]: under Pfair,
tasks can be decomposed into several small uniform seg-
ments, which are then scheduled, causing frequent schedul-
ing and migration.

(a)

(b)

Figure 1: A Task Set that EDF Cannot Schedule On Two Processors

Thus, scheduling algorithms other than Pfair—e.g.,
global EDF [7–9, 13], have also been intensively studied
though their schedulable utilization bounds are lower. Fig-
ure 1(a) shows an example task set that global EDF cannot
feasibly schedule. Here, task T1 will miss its deadline when
the system is given two processors. However, there exists
a schedule that meets all task deadlines; this is shown in
Figure 1(b).

Interestingly, we observe in Figure 1(b) that the schedul-

ing event at time 1, where task T1 is split to make all tasks
schedulable is not a traditional scheduling event (such as
a task release or a task completion). This simple obser-
vation implies that we may need more scheduling events
to split tasks to construct optimal schedules, such as what
Pfair’s quantum-based approach does. However, it also
raises another fundamental question: is it possible to split
tasks to construct optimal schedules, not at time quantum
expiration, but perhaps at other scheduling events, and con-
sequently avoid Pfair’s frequent scheduling and migration
overheads? If so, what are those scheduling events?

In this paper, we answer these questions.1 We present an
optimal real-time scheduling algorithm for multiprocessors,
which is not based on time quanta. The algorithm called
LLREF, is based on the fluid scheduling model and the fair-
ness notion. We introduce a novel abstraction for reasoning
about task execution behavior on multiprocessors, called the
time and local remaining execution-time plane (abbreviated
as the T-L plane). T-L plane makes it possible for us to en-
vision that the entire scheduling over time is just the repeti-
tion of T-L planes in various sizes, so that feasible schedul-
ing in a single T-L plane implies feasible scheduling over
all times. We define two additional scheduling events and
show when they should happen to maintain the fairness of
an optimal schedule, and consequently establish LLREF’s
scheduling optimality. We also show that the overhead of
LLREF is tightly bounded, and that bound depends only
upon task parameters. Furthermore, our simulation experi-
ments on algorithm overhead validates our analysis.

The rest of the paper is organized as follows: In Sec-
tion 2, we discuss the rationale behind T-L plane and present
the scheduling algorithm. In Section 3, we prove the opti-
mality of our algorithm, establish the algorithm overhead
bound, and report simulation studies. The paper concludes
in Section 4.

2 LLREF Scheduling Algorithm

2.1 Model

We consider global scheduling, where task migration is
not restricted, on an SMP system with M identical proces-
sors. We consider the application to consist of a set of tasks,
denoted T={T1, T2, ..., TN}. Tasks are assumed to arrive
periodically at their release times ri. Each task Ti has an ex-
ecution time ci, and a relative deadline di which is the same
as its period pi. The utilization ui of a task Ti is defined as
ci/di and is assumed to be less than 1. Similar to [1, 7], we
assume that tasks may be preempted at any time, and are

1There exists a variant of EDF, called Earliest Deadline until Zero Lax-
ity (EDZL), which allows another scheduling event to split tasks, but it
does not offer the optimality for multiprocessors [11].



independent, i.e., they do not share resources or have any
precedences.

We consider a non-work conserving scheduling policy;
thus processors may be idle even when tasks are present
in the ready queue. The cost of context switches and task
migrations are assumed to be negligible, as in [1, 7].

2.2 Time and Local Execution Time Plane

In the fluid scheduling model, each task executes at a
constant rate at all times [10]. The quantum-based Pfair
scheduling algorithm, the only known optimal algorithm for
the problem that we consider here, is based on the fluid
scheduling model, as the algorithm constantly tracks the
allocated task execution rate through task utilization. The
Pfair algorithm’s success in constructing optimal multipro-
cessor schedules can be attributed to fairness — informally,
all tasks receive a share of the processor time, and thus are
able to simultaneously make progress. P-fairness is a strong
notion of fairness, which ensures that at any instant, no ap-
plication is more than one quantum away from its due share
(or fluid schedule) [2, 5]. The significance of the fairness
concept on Pfair’s optimality is also supported by the fact
that task urgency, as represented by the task deadline is not
sufficient for constructing optimal schedules, as we observe
from the poor performance of global EDF for multiproces-
sors.

Figure 2: Fluid Schedule versus a Practical Schedule

Toward designing an optimal scheduling algorithm, we
thus consider the fluid scheduling model and the fairness
notion. To avoid Pfair’s quantum-based approach, we con-
sider an abstraction called the Time and Local Execution
Time Domain Plane (or abbreviated as the T-L plane),
where tokens representing tasks move over time. The T-
L plane is inspired by the L-C plane abstraction introduced
by Dertouzos et al. in [6]. We use the T-L plane to describe
fluid schedules, and present a new scheduling algorithm that

is able to track the fluid schedule without using time quanta.
Figure 2 illustrates the fundamental idea behind the T-L

plane. For a task Ti with ri, ci and di, the figure shows
a 2-dimensional plane with time represented on the x-axis
and the task’s remaining execution time represented on the
y-axis. If ri is assumed as the origin, the dotted line from
(0, ci) to (di, 0) indicates the fluid schedule, the slope of
which is −ui. Since the fluid schedule is ideal but prac-
tically impossible, the fairness of a scheduling algorithm
depends on how much the algorithm approximates the fluid
schedule path.

When Ti runs like in Figure 2, for example, its execu-
tion can be represented as a broken line between (0, ci)
and (di, 0). Note that task execution is represented as a
line whose slope is -1 since x and y axes are in the same
scale, and the non-execution over time is represented as a
line whose slope is zero. It is clear that the Pfair algorithm
can also be represented in the T-L plane as a broken line
based on time quanta.

Figure 3: T-L Planes

When N number of tasks are considered, their fluid
schedules can be constructed as shown in Figure 3, and a
right isosceles triangle for all tasks is found between every
two consecutive scheduling events. We call this as the T-L
plane TLk, where k is simply increasing over time. The
size of TLk may change over k. The bottom side of the
triangle represents time. The left vertical side of the tri-
angle represents a part of tasks’ remaining execution time,
which we call the local remaining execution time, li, which
is supposed to be consumed before each TLk ends. Fluid
schedules for each task can be constructed as overlapped in
each TLk plane, while keeping their slopes.



2.3 Scheduling in T-L planes

The abstraction of T-L planes is significantly meaning-
ful in scheduling for multiprocessors, because T-L planes
are repeated over time, and a good scheduling algorithm for
a single T-L plane is able to schedule tasks for all repeated
T-L planes. Here, good scheduling means being able to con-
struct a schedule that allows all tasks’ execution in the T-L
plane to approximate the fluid schedule as much as possible.
Figure 4 details the kth T-L plane.

Figure 4: kth T-L Plane

The status of each task is represented as a token in the T-
L plane. The token’s location describes the current time as
a value on the horizontal axis and the task’s remaining ex-
ecution time as a value on the vertical axis. The remaining
execution time of a task here means one that must be con-
sumed until the time tkf , and not the task’s deadline. Hence,
we call it, local remaining execution time.

As scheduling decisions are made over time, each task’s
token moves in the T-L plane. Although ideal paths of to-
kens exist as dotted lines in Figure 4, the tokens are only
allowed to move in two directions. When the task is se-
lected and executed, the token moves diagonally down, as
TN moves. Otherwise, it moves horizontally, as T1 moves.
If M processors are considered, at most M tokens can diag-
onally move together. The scheduling objective in the kth

T-L plane is to make all tokens arrive at the rightmost vertex
of the T-L plane—i.e., tkf with zero local remaining execu-
tion time. We call this successful arrival, locally feasible. If
all tokens are made locally feasible at each T-L plane, they
are possible to be scheduled throughout every consecutive
T-L planes over time, approximating all tasks’ ideal paths.

For convenience, we define the local laxity of a task Ti

as tkf − tcur− li, where tcur is the current time. The oblique
side of the T-L plane has an important meaning: when a

token hits that side, it implies that the task does not have
any local laxity. Thus, if it is not selected immediately, then
it cannot satisfy the scheduling objective of local feasibil-
ity. We call the oblique side of the T-L plane no local laxity
diagonal (or NLLD). All tokens are supposed to stay in be-
tween the horizontal line and the local laxity diagonal.

We observe that there are two time instants when the
scheduling decision has to be made again in the T-L plane.
One instant is when the local remaining execution time of a
task is completely consumed, and it would be better for the
system to run another task instead. When this occurs, the to-
ken hits the horizontal line, as TN does in Figure 4. We call
it the bottom hitting event (or event B). The other instant is
when the local laxity of a task becomes zero so that the task
must be selected immediately. When this occurs, the token
hits the NLLD, as T1 does in Figure 4. We call it the ceiling
hitting event (or event C). To distinguish these events from
traditional scheduling events such as task releases and task
departures, we call events B and C sub-events.

To provide local feasibility, M of the largest local re-
maining execution time tasks are selected first (or LLREF)
for every sub-event. We call this, the LLREF scheduling
policy. Note that the task having zero local remaining ex-
ecution time (the token lying on the bottom line in the T-
L plane) is not allowed to be selected, which makes our
scheduling policy non work-conserving. The tokens for
these tasks are called inactive, and the others with more
than zero local remaining execution time are called active.
At time tkf , the time instant for the event of the next task re-
lease, the next T-L plane TLk+1 starts and LLREF remains
valid. Thus, the LLREF scheduling policy is consistently
applied for every event.

3 Algorithm Properties

A fundamental property of the LLREF scheduling algo-
rithm is its scheduling optimality—i.e., the algorithm can
meet all task deadlines when the total utilization demand
does not exceed the demand capacity of the processors in
the system. In this section, we establish this by proving that
LLREF guarantees local feasibility in the T-L plane.

3.1 Critical Moment

Figure 5 shows an example of token flow in the T-L
plane. All tokens flow from left to right over time. LL-
REF selects M tokens from N active tokens and they flow
diagonally down. The others which are not selected, on the
other hand, take horizontal paths. When the event C or B
happens, denoted by tj where 0 < j < f , LLREF is in-
voked to make a scheduling decision.

We define the local utilization ri,j for a task Ti at time tj
to be li,j

tf−tj
, which describes how much processor capacity



Figure 5: Example of Token Flow

needs to be utilized for executing Ti within the remaining
time until tf . Here, li,j is the local remaining execution
time of task Ti at time tj . When k is cancelled, it implicitly
means the current kth T-L plane.

Theorem 1 (Initial Local Utilization Value in T-L plane).
Let all tokens arrive at the rightmost vertex in the (k− 1)th

T-L plane. Then, the initial local utilization value ri,0 = ui

for all task Ti in the kth T-L plane.

Proof. If all tokens arrive at tk−1
f with li = 0, then they can

restart in the next T-L plane (the kth T-L plane) from the
positions where their ideal fluid schedule lines start. The
slope of the fluid schedule path of task Ti is ui. Thus, ri,0 =
li,0/tf = ui.

Well-controlled tokens, both departing and arriving
points of which are the same as those of their fluid schedule
lines in the T-L plane (even though their actual paths in the
T-L plane are different from their fluid schedule paths), im-
ply that all tokens are locally feasible. Note that we assume
ui ≤ 1 and

∑
ui ≤ M .

Figure 6: Critical Moment

We define critical moment to describe the sufficient and
necessary condition that tokens are not locally feasible.
(Local infeasibility of the tokens implies that all tokens do

not simultaneously arrive at the rightmost vertex of the T-
L plane.) Critical moment is the first sub-event time when
more than M tokens simultaneously hit the NLLD. Figure 6
shows this. Right after the critical moment, only M tokens
from those on the NLLD are selected. The non-selected
ones move out of the triangle, and as a result, they will not
arrive at the right vertex of the T-L plane. Note that only
horizontal and diagonal moves are permitted for tokens in
the T-L plane.

Theorem 2 (Critical Moment). At least one critical moment
occurs if and only if tokens are not locally feasible in the T-L
plane.

Proof. We prove both the necessary and sufficient condi-
tions.

Case 1. Assume that a critical moment occurs. Then,
non-selected tokens move out of the T-L plane. Since only
-1 and 0 are allowed for the slope of the token paths, it is
impossible that the tokens out of the T-L plane reach the
rightmost vertex of the T-L plane.

Case 2. We assume that when tokens are not locally
feasible, no critical moment occurs. If there is no critical
moment, then the number of tokens on the NLLD never ex-
ceeds M . Thus, all tokens on the diagonal can be selected
by LLREF up to time tf . This contradicts our assumption
that tokens are not locally feasible.

We define total local utilization at the jth sub-event, Sj ,
as

∑N
i ri,j .

Corollary 3 (Total Local Utilization at Critical Moment).
At the critical moment which is the jth sub-event, Sj > M .

Proof. The local remaining execution time li,j for the tasks
on the NLLD at the critical moment of the jth sub-event is
tf−tj , because the T-L plane is an isosceles triangle. There-
fore, Sj =

∑N
i=1 ri,j =

∑M
i=1

tf−tj

tf−tj
+

∑N
i=M+1

li
tf−tj

>

M .

From the task perspective, the critical moment is the time
when more than M tasks have no local laxity. Thus, the
scheduler cannot make them locally feasible with M pro-
cessors.

3.2 Event C

Event C happens when a non-selected token hits the
NLLD. Note that selected tokens never hit the NLLD. Event
C indicates that the task has no local laxity and hence,
should be selected immediately. Figure 7 illustrates this,
where event C happens at time tc when the token TM+1

hits the NLLD.
Note that this is under the basic assumption that there are

more than M tasks, i.e., N > M . This implicit assumption



holds in Section 3.2 and 3.3. We will later show the case
when N ≤ M .

For convenience, we give lower index i to the token with
higher local utilization, i.e., ri,j ≥ ri+1,j where 1 ≤ i < N
and ∀j, as shown Figure 7. Thus, LLREF select tasks from
T1 to TM and their tokens move diagonally.

Figure 7: Event C

Lemma 4 (Condition for Event C). When 1− rM+1,c−1 ≤
rM,c−1, the event C occurs at time tc, where ri,c−1 ≥
ri+1,c−1, 1 ≤ i < N .

Proof. If the sub-event at time tc is event C, then token
TM+1 must hit the NLLD earlier than when token TM hit
the bottom of the T-L plane. The time when TM+1 hits the
NLLD is tc−1 + (tf − tc−1 − lM+1,c−1). On the contrary,
the time when the token TM hits the bottom of the T-L plane
is tc−1 + lM,c−1.

tc−1 + (tf − tc−1 − lM+1,c−1) < tc−1 + lM,c−1

1− lM+1,c−1

tf − tc−1
<

lM,c−1

tf − tc−1
.

Thus, 1− rM+1 ≤ rM at tc−1.

Corollary 5 (Necessary Condition for Event C). Event C
occurs at time tc only if Sc−1 > M(1− rM+1,c−1), where
ri,c−1 ≥ ri+1,c−1, 1 ≤ i < N .

Proof.

Sc−1 =
M∑

i=1

ri,c−1+
N∑

i=M+1

ri,c−1 >

M∑

i=1

ri,c−1 ≥ M ·rM,c−1.

Based on Lemma 4, M ·rM,c−1 ≥ M ·(1−rM+1,c−1).

Theorem 6 (Total Local Utilization for Event C). When
event C occurs at tc and Sc−1 ≤ M , then Sc ≤ M for
∀c where 0 < c ≤ f , and ri,c−1 ≥ ri+1,c−1, 1 ≤ i < N .

Proof. We let tc− tc−1 = tf − tc−1− lM+1,c−1 as δ. Total
local remaining execution time at tc−1 is

∑N
i=1 li,c−1 =

(tf − tc−1)Sc−1 and it decreases by M × δ at tc as M
tokens move diagonally. Therefore,

(tf − tc)Sc = (tf − tc−1)Sc−1 − δM.

Since lM+1,c−1 = tf − tc,

lM+1,c−1×Sc = (tf−tc−1)Sc−1−(tf−tc−1−lM+1,c−1)M.

Thus,

Sc =
1

rM+1,c−1
Sc−1 + (1− 1

rM+1,c−1
)M. (1)

Equation 1 is a linear equation as shown in Figure 8.

Figure 8: Linear Equation for Event C

According to Corollary 5, when event C occurs, Sc−1

is more than M · (1 − rM+1,c−1). Since we also assume
Sc−1 ≤ M , Sc ≤ M .

3.3 Event B

Event B happens when a selected token hits the bottom
side of the T-L plane. Note that non-selected tokens never
hit the bottom. Event B indicates that the task has no local
remaining execution time so that it would be better to give
the processor time to another task for execution.

Event B is illustrated in Figure 9, where it happens at
time tb when the token of TM hits the bottom. As we do
for the analysis of event C, we give lower index i to the
token with higher local utilization, i.e., ri,j ≥ ri+1,j where
1 ≤ i < N .

Lemma 7 (Condition for Event B). When 1− rM+1,b−1 ≥
rM,b−1, event B occurs at time tb, where ri,b−1 ≥ ri+1,b−1,
1 ≤ i < N .

Proof. If the sub-event at time tb is event B, then token TM

must hit the bottom earlier than when token TM+1 hits the
NLLD. The time when TM hits the bottom and the time



Figure 9: Event B

when TM+1 hits the NLLD are respectively, tb−1 + lM,b−1

and tb−1 + (tf − tb−1 − lM+1,b−1).

tb−1 + lM,b−1 < tb−1 + (tf − tb−1 − lM+1,b−1).

lM,b−1

tf − tb−1
< 1− lM+1,b−1

tf − tb−1
.

Thus, rM ≤ 1− rM+1 at tb−1.

Corollary 8 (Necessary Condition for Event B). Event B
occurs at time tb only if Sb−1 > M ·rM,b−1, where ri,b−1 ≥
ri+1,b−1, 1 ≤ i < N .

Proof.

Sb−1 =
M∑

i=1

ri,b−1+
N∑

i=M+1

ri,b−1 >

M∑

i=1

ri,b−1 ≥ M ·rM,b−1.

Theorem 9 (Total Local Utilization for Event B). When
event B occurs at time tb and Sb−1 ≤ M , then Sb ≤ M ,
where ri,b−1 ≥ ri+1,b−1, 1 ≤ i < N .

Proof. tb−tb−1 is lM,b−1. The total local remaining execu-
tion time at tb−1 is

∑N
i=1 li,b−1 = (tf−tb−1)Sb−1, and this

decreases by M · lM,b−1 at tb as M tokens move diagonally.
Therefore:

(tf − tb)Sb = (tf − tb−1)Sb−1 −M · lM,b−1.

Since tf − tb = tf − tb−1 − lM,b−1,

(tf − tb−1 − lM,b−1)Sb = (tf − tb−1)Sb−1 −M · lM,b−1.

Thus,

Sc =
1

1− rM,b−1
Sc−1 + (1− rM,b−1

1− rM,b−1
)M. (2)

Equation 2 is a linear equation as shown in Figure 10.
According to Corollary 8, when event B occurs, Sb−1 is

more than M · rM,b−1. Since we also assume Sb−1 ≤ M ,
Sb ≤ M .

Figure 10: Linear Equation for Event B

3.4 Optimality

We now establish LLREF’s scheduling optimality by
proving its local feasibility in the T-L plane based on our
previous results.

In Section 3.3 and 3.2, we suppose that N > M . When
less than or equal to M tokens only exist, they are always
locally feasible by LLREF in the T-L plane.

Theorem 10 (Local Feasibility with Small Number of To-
kens). When N ≤ M , tokens are always locally feasible by
LLREF.

Proof. We assume that if N ≤ M , then tokens are not lo-
cally feasible by LLREF. If it is not locally feasible, then
there should exist at least one critical moment in the T-L
plane by Theorem 2. Critical moment implies at least one
non-selected token, which contradicts our assumption since
all tokens are selectable.

Figure 11: Token Flow when N ≤ M

Theorem 10 is illustrated in Figure 11. When the number
of tasks is less than the number of processors, LLREF can
select all tasks and execute them until their local remaining
execution times become zero.

We also observe that at every event B, the number of ac-
tive tokens is decreasing. In addition, the number of events



B in this case is at most N , since it cannot exceed the num-
ber of tokens. Another observation is that event C never
happens when N ≤ M since all tokens are selectable and
move diagonally.

Now, we discuss the local feasibility when N > M .

Theorem 11 (Local Feasibility with Large Number of To-
kens). When N > M , tokens are locally feasible by LLREF
if S0 < M .

Proof. We prove this by induction, based on Theorems 6
and 9. Those basically show that if Sj−1 ≤ M , then
Sj ≤ M , where j is the moment of sub-events. Since we
assume that S0 < M , Sj for all j never exceeds M at any
sub-event including C and B events. When Sj is less than
M for all j, there should be no critical moment in the T-L
plane, according to the contraposition of Corollary 3. By
Theorem 2, no critical moment implies that they are locally
feasible.

When N(> M) number of tokens are given in the T-
L plane and their S0 is less than M , event C and B oc-
cur without any critical moment according to Theorem 11.
Whenever event B happens, the number of inactive tokens
decreases until there are M remaining tokens. Then, ac-
cording to Theorem 10, all tokens are selectable so that they
arrive at the rightmost vertex of the T-L plane with consec-
utive event B’s.

Recall that we consider periodically arriving tasks, and
the scheduling objective is to complete all tasks before their
deadlines. With continuous T-L planes, if the total utiliza-
tion of tasks

∑N
i=1 ui is less than M , then tokens are locally

feasible in the first T-L plane based on Theorems 10 and 11.
The initial S0 for the second consecutive T-L plane is less
than M by Theorem 1 and inductively, LLREF guarantees
the local feasibility for every T-L plane, which makes all
tasks satisfy their deadlines.

3.5 Algorithm Overhead

One of the main concerns against global scheduling algo-
rithms (e.g., LLREF, global EDF) is their overhead caused
by frequent scheduler invocations. In [14], Srinivasan et al.
identify three specific overheads:

1. Scheduling overhead, which accounts for the time
spent by the scheduling algorithm including that for
constructing schedules and ready-queue operations;

2. Context-switching overhead, which accounts for the
time spent in storing the preempted task’s context and
loading the selected task’s context; and

3. Cache-related preemption delay, which accounts for
the time incurred in recovering from cache misses that
a task may suffer when it resumes after a preemption.

Note that when a scheduler is invoked, the context-
switching overhead and cache-related preemption delay
may not happen. Srinivasan et al. also show that the num-
ber of task preemptions can be bounded by observing that
when a task is scheduled (selected) consecutively for execu-
tion, it can be allowed to continue its execution on the same
processor. This reduces the number of context-switches and
possibility of cache misses. They bound the number of task
preemptions under Pfair, illustrating how much a task’s ex-
ecution time inflates due to the aforementioned overhead.
They show that, for Pfair, the overhead depends on the time
quantum size.

In contrast to Pfair, LLREF is free from time quanta.
However, it is clear that LLREF yields more frequent sched-
uler invocations than global EDF. Note that we use the
number of scheduler invocations as a metric for overhead
measurement, since it is the scheduler invocation that con-
tributes to all three of the overheads previously discussed.
We now derive an upper bound for the scheduler invocations
under LLREF.

Theorem 12 (Upper-bound on Number of Sub-events in
T-L plane). When tokens are locally feasible in the T-L
plane, the number of events in the plane is bounded within
N + 1.

Proof. We consider two possible cases, when a token Ti

hits the NLLD, and it hits the bottom. After Ti hits the
NLLD, it should move along the diagonal to the rightmost
vertex of the T-L plane, because we assume that they are
locally feasible. In this case, Ti raises one sub-event, event
C. Note that its final event B at the rightmost vertex occurs
together with the next releasing event of another task (i.e.,
beginning of the new T-L plane). If Ti hits the bottom, then
the token becomes inactive and will arrive at the right vertex
after a while. In this case, it raises one sub-event, event
B. Therefore, each Ti can cause one sub-event in the T-L
plane. Thus, N number of tokens can cause N + 1 number
of events, which includes N sub-events and a task release
at the rightmost vertex.

Theorem 13 (Upper-bound of LLREF Scheduler Invoca-
tion over Time). When tasks can be feasibly scheduled by
LLREF, the upper-bound on the number of scheduler invo-
cations from time ts to te is:

(N + 1) ·
(
1 +

N∑

i=1

⌈ te − ts
pi

⌉)
,

where pi is the period of Ti.

Proof. Each T-L plane is constructed between two consec-
utive events of task release, as shown in Section 2.2. The
number of task releases during the time between ts and te is∑N

i=1 d te−ts

pi
e. Thus, there can be at most 1+

∑N
i=1 d te−ts

pi
e



number of T-L planes between ts and te. Since at most
N +1 events can occur in every T-L plane (by Theorem 12),
the upper-bound on the scheduler invocations between ts
and te is (N + 1) · (1 +

∑N
i=1 d te−ts

pi
e).

Theorem 13 shows that the number of scheduler invoca-
tions of LLREF is primarily dependent on N and each pi

— i.e., more number of tasks or more frequent releases of
tasks results in increased overhead under LLREF.

3.5.1 Experimental Evaluation

We conducted simulation-based experimental studies to val-
idate our analytical results on LLREF’s overhead. We con-
sider an SMP machine with four processors. We consider
four tasks running on the system. Their execution times
and periods are given in Table 1. The total utilization is
approximately 1.5, which is less than 4, the capacity of pro-
cessors. Therefore, LLREF can schedule all tasks to meet
their deadlines. Note that this task set’s α (i.e., maxN {ui})
is 0.818, but it does not affect the performance of LLREF,
as opposed to that of global EDF.

Table 1: Task Parameters (4 Task Set)
Tasks ci pi ui

T1 9 11 0.818
T2 5 25 0.2
T3 3 30 0.1
T4 5 14 0.357
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Figure 12: Scheduler Invocation Frequency with 4 Tasks

To evaluate LLREF’s overhead in terms of the number
of scheduler invocations, we define the scheduler invocation
frequency as the number of scheduler invocations during a
time interval ∆t divided by ∆t. We set ∆t as 10. According
to Theorem 13, the upper-bound on the number of scheduler
invocations in this case is (4+1)·(1+d10/11e+d10/25e+
d10/30e + d10/14e) = 25. Therefore, the upper-bound on
the scheduler invocation frequency is 2.5.

In Figure 12, the upper-bound on the scheduler invoca-
tion frequency and the measured frequency are shown as
a dotted line and a fluctuating line, respectively. We ob-
serve that the actual measured frequency respects the upper-
bound.

Table 2: Task Parameters (8 Task Set)
Tasks ci pi ui

T1 3 7 0.429
T2 1 16 0.063
T3 5 19 0.263
T4 4 5 0.8
T5 2 26 0.077
T6 15 26 0.577
T7 20 29 0.69
T8 14 17 0.824
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Figure 13: Scheduler Invocation Frequency with 8 Tasks

We now consider eight tasks; the task parameters are
given in Table 13. The total utilization for this set is ap-
proximately 3.72, which is slightly less than the number of
processors. Therefore, LLREF again can schedule all tasks
to meet their deadlines. When we set ∆t as 10, the upper-
bound on the number of scheduler invocations is computed
as 88, and the upper-bound on the scheduler invocation fre-
quency is computed as 8.8.

Figure 13 shows the upper-bound on the invocation fre-
quency and the actual frequency for the 8-task set. Con-
sistently with the previous case, the actual frequency never
moves beyond the upper-bound. We also observe that the
average invocation frequencies of the two cases are approx-
imately 1.0 and 4.0, respectively. As expected (by The-
orem 13), the number of tasks proportionally affects LL-
REF’s overhead.

Thus, our experimental results validate our analytical re-
sults on LLREF’s overhead.



4 Conclusions and Future Work

We present an optimal real-time scheduling algorithm
for multiprocessors, which is not based on time quanta. The
algorithm called LLREF, is designed based on our novel
technique of using the T-L plane abstraction for reasoning
about multiprocessor scheduling. We show that scheduling
for multiprocessors can be viewed as repeatedly occurring
T-L planes, and correct scheduling on a single T-L plane
leads to the optimal solution for all times. We analytically
establish the optimality of our algorithm. We also estab-
lish that the algorithm overhead is bounded in terms of the
number of scheduler invocations, which is validated by our
experimental (simulation) results.

We have shown that LLREF guarantees local feasibility
in the T-L plane. This result can be intuitively understood
in that, the algorithm first selects tokens which appear to be
going out of the T-L plane because they are closer to the
NLLD.

However, we perceive that there could be other possibili-
ties. Theorems 6 and 9 are fundamental steps toward estab-
lishing the local feasibility in the T-L plane. We observe that
the two theorems’ proofs are directly associated with the
LLREF policy in two ways: one is that they depend on the
critical moment, and the other is that the range allowed for
Sj−1 is computed under the assumption of LLREF, where
j is c or b. This implies that scheduling policies other than
LLREF may also provide local feasibility, as long as they
maintain the critical moment concept. (The range allowed
for Sj−1 could be recomputed for each different scheduling
event.) The rules of such scheduling policies can include:
(1) selecting as many active tokens as possible up to M at
every sub-event; and (2) including all tokens on the NLLD
for selection at every sub-event.

If such algorithms can be designed, then tradeoffs can be
established between them and LLREF — e.g., on algorithm
complexity, frequency of event C, etc. Note that even in
such cases, the upper-bound of scheduler invocations given
in Theorems 12 and 13 hold, because those theorems are not
derived under the assumption of LLREF. Designing such
algorithms is a topic for further study.

We also regard that each task’s scheduling parameters in-
cluding execution times and periods are sufficiently longer
than the system clock tick, so that they can be assumed as
floating point numbers rather than integers. This assump-
tion may not be sufficient for the case when task execution
time is shorter so that integer execution times are a better
assumption. However, our intuition strongly suggests that
even when task parameters are considered as integers, it
should be possible to extend our algorithm to achieve a cer-
tain level of optimality—e.g., the error between each task’s
deadline and its completion time is bounded within a finite
number of clock ticks.

Many other aspects of our task model such as arrival
model, time constraints, and execution time model can be
relaxed. All these extensions are topics for further study.
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