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ABSTRACT. Since the middle of the twentieth century, the problem of making infer-

ences about the point in a surveyed series of observations at which the underlying distri-

bution changes has been extensively addressed in the economics, biostatistics and statis-

tics literature. CUSUM type statistics have commonly been thought to play a central

role in non-sequential change point detections. Alternatively, we present and examine an

approach based on the Shiryayev-Roberts scheme. We show that retrospective change

point detection policies based on Shiryayev-Roberts statistics are non-asymptotically

optimal in the context of the most powerful testing.

Key words: bayes factors, change point, CUSUM, likelihood, mixture type testing, most powerful
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1 Introduction

Often, formalized econometric or epidemiological studies correspond to the following problem

of testing hypotheses (e.g., Csörgő & Horváth, 1997). There are n independent data points

X1, X2, . . . , Xn. The assumption that observations Xi are identically distributed (say, Xi ∼
f0(x; θ0), 1 ≤ i ≤ n) presents the baseline hypothesis H0, while the alternative hypothesis H1

corresponds to Xk ∼ f0(x; θ0), Xj ∼ f1(x; θ1), k = 1, . . . , ν−1, j = ν, . . . , n, where θ0 and θ1

are parameters. Thus, we suppose that if a change in the distribution did occur at time ν, then

it is unique and the observations after the change all have the same distribution, which differs

from the distribution of the observations before the change. Let Pν and Eν be the probability

measure and expectation conditional on ν such that, under Pν , Xi ∼ f0(x; θ0)I{i < ν}
+f1(x; θ1)I{i ≥ ν}, 1 ≤ i ≤ n, where I{·} is the indicator function and ν = 1, . . . , n + 1.
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(The case with ν = n + 1 corresponds to H0.)

When the parameters ν, θ0, and θ1 are known, the likelihood methodology suggests the

test for H0 versus H1 based on the ratio

Λn(ν, θ0, θ1) =
n∏

i=ν

f1(Xi; θ1)
f0(Xi; θ0)

, (1)

i.e., for a threshold C, the event {Λn(ν, θ0, θ1) > C} declares rejection of H0. By virtue of

the elementary inequality

(A−B) (I{A > B} − δ) ≥ 0, for all A,B, and δ ∈ [0, 1] (2)

with A = Λn(ν, θ0, θ1) and B = C, we have (Λn(ν, θ0, θ1) − C)I{Λn(ν, θ0, θ1) > C} ≥
(Λn(ν, θ0, θ1)− C)δ. Therefore

En+1 ((Λn(ν, θ0, θ1)− C)I{Λn(ν, θ0, θ1) > C}) ≥ En+1 ((Λn(ν, θ0, θ1)− C)δ) ,

where

En+1 (Λn(ν, θ0, θ1)δ) =
∫ n∏

i=ν

f1(xi; θ1)
f0(xi; θ0)

δ
n∏

i=1

f0(xi; θ0)
n∏

i=1

dxi = Eν (δ) , (3)

for any statistic δ based on {X1, . . . , Xn}. Hence, we obtain

Pν{Λn(ν, θ0, θ1) > C} − CPn+1{Λn(ν, θ0, θ1) > C} ≥ Pν{δ = 1} − CPn+1{δ = 1},

for any δ = 0, 1. In this article, we will assume that δ = 0, 1 is any decision rule based on

{X1, . . . , Xn} (for determinacy, say, the event {δ = 1} rejects H0). Thus, supposing that

the event {δ = 1} rejects H0 with type I error Pn+1{δ = 1} = α, we fix the threshold

C : Pn+1{Λn(ν, θ0, θ1) > C} = α and conclude that the likelihood ratio statistic (1) provides

the most powerful test.

In the case, where the baseline and post-change parameters θ0 and θ1 are known but ν is

unknown, the maximum likelihood estimation of ν yields the CUSUM statistic

Λn(θ0, θ1) = max
1≤k≤n

Λn(k, θ0, θ1), Λn(θ0, θ1) =
f1(Xn; θ1)
f0(Xn; θ0)

max (Λn−1(θ0, θ1), 1) . (4)

Decision rules based on CUSUM type statistics are well-accepted change point detection

schemes (e.g., Page, 1954, 1955; Ploberger & Kramer, 1992; Sen & Srivastava, 1975; Pet-

titt, 1980; Gombay & Horvath, 1994 as well as Gurevich & Vexler, 2005). It is widely
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known in change point literature (e.g., Lai, 1995) that likelihood ratio type tests have high

power, therefore, evaluation of their significance level is a major issue. Note that Λn(ν, θ0, θ1)

is an H0-martingale, whereas its estimator Λn(θ0, θ1) is an H0-submartingale (i.e. by the

definitions (1) and (4), for ν < n: En+1

(
Λn(ν, θ0, θ1)

∣∣∣X1, . . . , Xn−1

)
= Λn−1(ν, θ0, θ1),

but En+1

(
Λn(θ0, θ1)

∣∣∣X1, . . . , Xn−1

)
= max (Λn−1(θ0, θ1), 1) ≥ Λn−1(θ0, θ1)), and moreover,

Λn(θ0, θ1) ≥ Λn(ν, θ0, θ1). Thus, the type I error of the test based on the CUSUM statis-

tic can be expected to be raised too high, and hence the idea of a non-asymptotic (as n is

fixed) optimality of the retrospective CUSUM test is problematic. (We note, however, that,

Moustakides (1986) has shown a non-asymptotical optimality of the sequential change point

detection procedure based on the CUSUM statistic.) James et al. (1987) have conjectured

that, in the context of the retrospective change point problem, there is no uniformly most

powerful test.

Because of the martingale property of the optimal test statistic Λn(ν, θ0, θ1), it is natural

to require that any variation of the detection scheme due to the estimation of ν should

preserve this martingale structure (e.g., Broström, 1997).

In the field of sequential change point detections, professor Pollak and his co-authors have

proposed and examined optimal procedures in which a quasi-Bayesian approach to dealing

with Shiryayev-Roberts statistics has been applied (e.g., Pollak, 1985). In the context of

retrospective detections of changes in complicated models, Vexler (2006) has proposed the

Shiryayev-Roberts approach to fix the significance levels of decision rules. The Shiryayev-

Roberts (SR) statistic has the form of

Rn(θ0, θ1) =
n∑

k=1

Λn(k, θ0, θ1), Rn(θ0, θ1) =
f1(Xn; θ1)
f0(Xn; θ0)

(Rn−1(θ0, θ1) + 1) . (5)

Under H0, definition (5) provides En+1

(
Rn

∣∣∣X1, . . . , Xn−1

)
−n = Rn−1− (n−1). Therefore,

the Rn−n statistic is an H0-martingale. Thus, we can intuitively assume that the retrospec-

tive test based on the SR statistic has a significance level that is comparable with the type

I error of the likelihood ratio test. Hence, an optimality of the SR test can be shown. Here

the expression ”optimality” corresponds to the most powerful testing in a variety of contexts.

For example, in the next section we demonstrate that the test based on (5) is optimal with

respect to the average power (via ν = 1, . . . , n) of change point procedures. In this paper,

we use the term ”optimality” in a manner similar to Lorden’s (1967) usage of the term for
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sequential testing.

The main goal of the paper is to present non-asymptotic optimal tests based on the SR

statistic for the change point detection. We consider complicated cases of the change point

detection where the baseline parameter and post-change parameter are unknown. In the

cases where Xs are stated in terms of a regression model or Xs are dependent, the proposed

approach can be easily extended with support for the optimality of the change point test. A

Monte Carlo study confirms that the proposed change point detection policies, in many cases,

have power properties that are superior to those of the commonly used CUSUM procedures.

2 Pre-and-post-change parameters are known

We begin with the case where parameters θ0 and θ1 are known. (Throughout this paper,

ν is unknown.) Although this case is simple, the situations where baseline and post-change

parameters are known, can be associated with real-data problems (e.g., Gurevich & Vexler,

2005). Here, the analysis is relatively clear, and it has the basic ingredients for more general

cases.

The test is given by the following statement: reject H0 if and only if

Rn(θ0, θ1) > C, (6)

where Rn(θ0, θ1) is the SR statistic (5) and the threshold C > 0.

Proposition 1 For the test (6) the following holds:

(i) (6) is the average most powerful change point detection, i.e.

1
n

n∑

k=1

Pk {Rn(θ0, θ1) > C} − C

n
Pn+1 {Rn(θ0, θ1) > C}

≥ 1
n

n∑

k=1

Pk {δ rejects H0} − C

n
Pn+1 {δ rejects H0} ,

where δ = 0, 1 is any decision rule based on {X1, . . . , Xn};
(ii) Under H0, Rn(θ0, θ1) →dist

n→∞ γ, where γ =
∑∞

k=1

∏k
i=1

f1(Xi;θ1)
f0(Xi;θ0) is a.s. a finite-

valued random variable.

Proof. The expectation under Pn+1 applied to the inequality (2) with A = Rn(θ0, θ1) and
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B = C leads to the inequality
n∑

k=1

En+1 (Λn(k, θ0, θ1)I {Rn(θ0, θ1) > C})− CPn+1 {Rn(θ0, θ1) > C} ≥
n∑

k=1

En+1 (Λn(k, θ0, θ1)I {δ rejects H0})− CPn+1 {δ rejects H0} .

Now, by virtue of equation (3), proposition (i) follows.

Lemma 3 of Pollak (1985, p. 210) directly proves statement (ii).

In accordance with Proposition 1, if some test δ(X1, . . . , Xn) has type I error Pn+1{δ(
X1, . . . , Xn) rejects H0} = α, then for the fixed threshold Cα : Pn+1 {Rn(θ0, θ1) > Cα} = α,

we have

1
n

n∑

k=1

Pk {Rn(θ0, θ1) > Cα} ≥ 1
n

n∑

k=1

Pk {δ rejects H0} .

Therefore, test (6) has an average power which is greater than that of δ(X1, . . . , Xn).

Since the stated problem is parametric, the significance level of (6) can be evaluated by

Monte Carlo simulations. Alternatively, Proposition 1 can be applied to evaluate asymptoti-

cally (as n →∞) the type I error of the test (6).

Remark. The proof scheme of statement (i) of Proposition 1 provides the next issue. A

generalized form of the test (6) can be presented as follows. For qk ≥ 0, we reject H0 if

Rq
n(θ0, θ1) =

n∑

k=1

qkΛn(k, θ0, θ1) > C. (7)

In other words, we can take into account a sequence of weights, {qk}, that can be considered as

a prior distribution of the change point, i.e., qk = PH1(ν = k). Following the proof of Propo-

sition 1, for all decision rules δ (X1, . . . , Xn) = 0, 1 with Pn+1{δ(X1, . . . , Xn) rejects H0} = α,

we conclude that
n∑

k=1

qkPk {Rq
n(θ0, θ1) > Cq

α} ≥
n∑

k=1

qkPk {δ rejects H0} , (8)

Cq
α : Pn+1 {Rq

n(θ0, θ1) > Cq
α} = α.

(The test (7) is the average most powerful change point detection with respect to the weights

qk, k = 1, . . . , n.) Hence, when the qk, k = 1, . . . , n are not fixed (frequently, in Bayesian

cases, qk, k = 1, . . . , n can be pre-specified), these weights can be chosen with respect to a

special area of change point occurrence, where the maximum of the test’s power is desired

corresponding to the interests that belong to a tester.
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3 Post-change parameter is unknown

Let θ0 be known, and suppose θ1 is unknown. This case has been dealt with extensively in the

literature, and it corresponds to a control problem where the baseline in-control distribution

is known and the post-change out-of-control distribution is not. One application of this

problem is found in epidemiological studies where it is often assumed that observations have

zero expectation prior to a certain unknown change point. (In several situations, when the

baseline parameter of an observed sample is unknown, observations can be transformed in

order to set a baseline parameter of the transformed sample to a known value, e.g. Brown et

al. (1975) as well as Yakir (1998).)

The unknown post-change parameter is usually estimated. To preserve the H0-martingale

structure of the test statistics, the post-change parameter’s estimation has to be adapted

with a loss of efficiency (e.g., Lai, 2001 (p. 398), Lorden & Pollak, 2004 and Gurevich &

Vexler, 2005). (In a general context, Vexler (2008) proposed an approach to obtain H0-

martingale type test-statistics with improved power properties.) Alternatively, the literature

on sequential change point detection (e.g., Krieger et al., 2003) introduces mixture type tests.

To present the SR statistic when θ1 is not known, we introduce a mixing measure H(θ)

and define

Rn(θ0) =
n∑

k=1

∫
Λn(k, θ0, θ)dH(θ). (9)

(Here we can pretend that θ1 ∼ H, but this assumption is not vital for the execution of the

change point detection.) To formulate the next proposition, we point out that the notation

Pk


L(X1, . . . , Xn) < u

∣∣∣∣∣∣
Xi ∼





f0(x; θ0), i < k

f1(x; θ), i ≥ k
, i = 1, . . . , n




means a probability distribution function (depending on k and θ) of a statistic L based on

Xi ∼ f0(x; θ0)I{i < k} +f1(x; θ)I{i ≥ k}, 1 ≤ i ≤ n.

Proposition 2 For the test based on (9) the following hold:

(i) The statistic Rn(θ0) − n is an H0-martingale with respect to the σ-algebra generated

by X1, . . . , Xn;

(ii) (9) denotes the average integrated most powerful change point detection with respect
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to H(θ), i.e.

1
n

n∑

k=1

∫
Pk


Rn(θ0) > C

∣∣∣∣∣∣
Xi ∼





f0(x; θ0), i < k

f1(x; θ), i ≥ k
, i = 1, . . . , n


 dH(θ)

−C

n
Pn+1 {Rn(θ0) > C}

≥ 1
n

n∑

k=1

∫
Pk


δ rejects H0

∣∣∣∣∣∣
Xi ∼





f0(x; θ0), i < k

f1(x; θ), i ≥ k
, i = 1, . . . , n


 dH(θ)

−C

n
Pn+1 {δ rejects H0} ,

where δ = 0, 1 is any decision rule based on {X1, . . . , Xn}.

Proof. Since

En+1

(
Rn(θ0)

∣∣∣X1, . . . , Xn−1

)
− n =

n−1∑

k=1

∫ n−1∏

i=k

f1(Xi; θ)
f0(Xi; θ0)

En+1

(
f1(Xn; θ)
f0(Xn; θ0)

)
dH(θ)

+
∫

En+1

(
f1(Xn; θ)
f0(Xn; θ0)

)
dH(θ)− n

=
n−1∑

k=1

∫ n−1∏

i=k

f1(Xi; θ)
f0(Xi; θ0)

(∫
f1(x; θ)
f0(x; θ0)

f0(x; θ0)dx

)
dH(θ)

+
∫ (∫

f1(x; θ)
f0(x; θ0)

f0(x; θ0)dx

)
dH(θ)− n = Rn−1(θ0)− (n− 1),

the definition (9) preserves the H0-martingale property of the test statistic. It is clear that,

in a similar manner to the proof scheme of Proposition 1.(i), one can show that, for any test

δ(X1, . . . , Xn) with significance level Pn+1 {δ rejects H0} = α,

1
n

n∑

k=1

∫
Pk


Rn(θ0) > Cα(H)

∣∣∣∣∣∣
Xi ∼





f0(x; θ0), i < k

f1(x; θ), i ≥ k
, i = 1, . . . , n


 dH(θ)

≥ 1
n

n∑

k=1

∫
Pk


δ rejects H0

∣∣∣∣∣∣
Xi ∼





f0(x; θ0), i < k

f1(x; θ), i ≥ k
, i = 1, . . . , n


 dH(θ),

where the threshold Cα(H) preserves the significance level α of the test based on (9), i.e.

Cα(H) is such that Pn+1 {Rn(θ0) > Cα(H)} = α.
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3.1 Choosing a prior H(θ)

In the context of sequential change point detection, Krieger et al. (2003) have proposed

several forms of a prior H(θ). The method of Krieger et al. (2003) can be adapted for the

problem stated in this paper. For example,

H(θ) = Φ
(µ

σ

)−1
(

Φ
(

θ − µ

σ

)
− Φ

(
−µ

σ

))+

(10)

if we suspect that the observations after the possible change have a distribution that differs

greatly from the distribution of the observations before the change (Φ is the standard normal

distribution function); a somewhat broader prior is

H(θ) =
1
2

(
Φ

(
θ − µ

σ

)
+ Φ

(
θ + µ

σ

))
. (11)

Note that the parameters µ and σ > 0 of the distributions H(θ) can be chosen arbitrarily,

e.g., Krieger et al. (2003) have recommended µ = 0, and σ = 1 so that (10) and (11) are

simplified. Marden (2000) has reviewed the Bayesian approach applied to hypothesis testing.

The function H can be defined in accordance with rules mentioned in the literature cited in

Section 3 of Marden’s paper.

Consider, e.g., for a fixed σ,

H ∈ Θ =
{

1
2

(
Φ

(
θ − µ

σ

)
+ Φ

(
θ + µ

σ

))
, µ ∈ (µlower, µupper)

}
(12)

(here Θ is a set of distribution functions). In this case, the definition (9) provides

Ra
n(θ0) =

1
2

n∑

k=1

∫
Λn(k, θ0, θ)

∂
(
Φ

(
θ−a
σ

)
+ Φ

(
θ+a
σ

))

∂θ
dθ. (13)

Let f0 and f1 be normal densities with standard deviation 1 and means θ0 = 0 and θ1,

respectively. Then the test statistic Ra
n(θ0) has the form of

Ra
n(0) =

n∑

k=1

1
2(σ2(n− k + 1) + 1)1/2

exp
{
− a2

2σ2

}

×
[
exp

{
σ2

(∑n
i=k Xi + a/σ2

)2

2(σ2(n− k + 1) + 1)

}
+ exp

{
σ2

(∑n
i=k Xi − a/σ2

)2

2(σ2(n− k + 1) + 1)

}]

(this form is the average integrated most powerful statistic with respect to the distribution

function (11), where µ = a). Hence, we represent the average integrated power of Ra
n(0) in
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the form of

U(a) =
n∑

v=1

1
2

2∑

j=1

pv j , pv j = P

{
n∑

k=1

1
2(σ2(n− k + 1) + 1)1/2

exp
{
− a2

2σ2

}
(14)

×
[
exp

{
σ2

(∑n
i=k εi + ξj(n− k + 1)I{k ≥ v}+ ξj(n− v + 1)I{k < v}+ a/σ2

)2

2(σ2(n− k + 1) + 1)

}

+exp

{
σ2

(∑n
i=k εi + ξj(n− k + 1)I{k ≥ v}+ ξj(n− v + 1)I{k < v} − a/σ2

)2

2(σ2(n− k + 1) + 1)

}]

> Cα(a)
}

, Cα(a) : Pn+1 {Ra
n(0) > Cα(a)} = α, εi ∼ iid N(0, 1),

ξj ∼ N(aI{j = 1} − aI{j = 2}, σ2), Eεiξj = 0.

To depict the function U(a) from (14), we define α = 0.05 and n = 20 for different values of σ.

For each a and C, the probability Pn+1 {Ra
n(0) > C} was Monte Carlo-estimated via 50000

repetitions of sample X1, . . . , Xn ∼ N(0, 1). In this way, the approximate values of the roots

C0.05(a) were obtained. Similarly, for each a, v = 1, . . . , n and j = 1, 2, the probability pv j

by (14) was estimated by Monte Carlo simulation based on 50000 repetitions of the sample

{εi, ξj , i = 1, . . . , n, j = 1, 2}.
Figure 1

Thus, in these cases, if we pretend that θ1 ∼ Θ (were Θ is given by (12)) then

H(θ) =
1
2

(
Φ

(
θ − µ

σ

)
+ Φ

(
θ + µ

σ

))
, µ = arg max

a=µlower, µupper

U(a)

can be suggested to maximize the average integrated power U(a), when µlower, µupper are

fixed corresponding to practical meanings of the testing-statement of problem.

4 Pre-and-post-change parameters are unknown

Assume that θ0 and θ1 are unknown. Let θ̂0 denote an estimator of θ0 based on X1, . . . , Xn,

e.g. θ̂0 = arg maxa
∏n

i=1 f0(Xi; a). Obviously, given an estimation method of θ0, an asymp-

totic (as n →∞) closeness of

Rn(θ̂0) =
n∑

k=1

∫
Λn(k, θ̂0, θ)dH(θ)
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to the optimal test statistic (9) can be obtained and evaluated. However, in this paper, since

we would like to present non-asymptotically optimal procedures, we define

Rn =
n∑

k=1

∫ k−1∏

i=1

f0(Xi; θ0)

f0(Xi; θ̂0)
Λn(k, θ̂0, θ1)dH(θ0, θ1), (15)

where the likelihood ratios Λj(.) are denoted by (1) and we pretend that (θ0, θ1) ∼ H.

Denoting the estimate of the type I error Pn+1 {δ rejects H0} in the form of

P̂
{

δ rejects H0

∣∣∣X1, . . . , Xn ∼ f0(x; θ̂0)
}

(16)

:=
∫ n∏

i=1

f0

(
xi; θ̂0(x1, . . . , xn)

)
I {δ(x1, . . . , xn) rejects H0}

n∏

i=1

dxi = α

(here P̂ = Pn+1, if θ̂0 ≡ θ0), we formulate the next result.

Proposition 3 Let the estimation method of the unknown baseline parameter be fixed and

let θ̂0(X1, . . . , Xn) be the estimate of θ0. Then, for all decision rules {δ(X1, . . . , Xn) ∈ [0, 1]}
with

P̂
{

δ rejects H0

∣∣∣X1, . . . , Xn ∼ f0(x; θ̂0)
}

= α (α is pre-specified),

the change point detection based on the statistic (15) is average integrated most powerful with

respect to the function H.

Proof. Since (Rn − C)(I{Rn > C} − δ) ≥ 0, we have

n∑

k=1

∫ k−1∏

i=1

f0(Xi; θ0)
f0(Xi; θ0)

n∏

i=k

f1(Xi; θ1)
f0(Xi; θ0)

I{Rn > C}dH(θ0, θ1)− C
n∏

i=1

f0(Xi; θ̂0)
f0(Xi; θ0)

I{Rn > C}

≥
n∑

k=1

∫ k−1∏

i=1

f0(Xi; θ0)
f0(Xi; θ0)

n∏

i=k

f1(Xi; θ1)
f0(Xi; θ0)

δdH(θ0, θ1)− C
n∏

i=1

f0(Xi; θ̂0)
f0(Xi; θ0)

δ. (17)

Similar to the proof scheme of the previous propositions, it is clear that deriving En+1 of (17)

completes the proof of Proposition 3.

Thus, (15) is the optimal test-statistic in any set of test-statistics in which the estimation

method θ̂0 is applied.

Remark 1. The notation P̂
{

δ rejects H0

∣∣∣X1, . . . , Xn ∼ f0(x; θ̂0)
}

is not the classical type

I error Pn+1 {δ rejects H0} (P̂ is the estimate of Pn+1 given the method θ̂0). When θ̂0 =
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arg maxa
∏n

i=1 f0(Xi; a) (the maximum likelihood estimator), however, any test, which satis-

fies the conditions of Proposition 3, has the type I error that is in classical control

sup
θ0

Pn+1 {δ rejects H0} ≤ α, since

α =
∫ n∏

i=1

f0

(
xi; θ̂0(x1, . . . , xn)

)
I {δ(x1, . . . , xn) rejects H0}

n∏

i=1

dxi

≥
∫ n∏

i=1

f0 (xi; θ0) I {δ(x1, . . . , xn) rejects H0}
n∏

i=1

dxi, for all θ0.

Note that, if θ0 is unknown, comparing decision rules from the set

{δ : supθ0
Pn+1(δ rejects H0) ≤ α} (where α is fixed) is a very complex problem. Suppose

we have two tests, (A) and (B), for hypothesis H ′
0 versus H ′

1, given by

(A) : reject H ′
0 if statistic L > CL; and (B) : reject H ′

0 if statistic D > CD,

where L, D are based on observations {Zi, i = 1, . . . , m ≥ 1}, and CL, CD are both thresh-

olds. We would like to compare (A) with (B), when the parameters under H ′
0 (say, η0) and

parameters under H ′
1 are unknown. The suggestion of fixing the type I errors of (A) and (B)

as α and then contrasting the powers of these tests is problematic. First, in general, we can-

not easily choose CL
α , CD

α such that supη0
PH′

0
{L > CL

α} and supη0
PH′

0
{D > CD

α } ≤ α. Since

Monte Carlo evaluations of supη0
PH′

0
are usually complex and biased, analytical presenta-

tions of PH′
0
{L > C} and PH′

0
{D > C} are often required to derive CL

α and CD
α . Second,

assuming that CL
α and CD

α are known or evaluated, then comparing PH′
1
{L > CL

α} with

PH′
1
{D > CD

α } is an arduous task (PH′
1
{.} depends on unknown parameters). Alternatively,

we suggest fixing H ′
0-parameters’ estimates (say, η̂0(Z1, . . . , Zm)) as well as

P̂H′
0
{H ′

0 is rejected
∣∣∣η̂0} :=

∫
ψ(z1; η̂0(z1, . . . , zm)) · · ·ψ(zm; η̂0(z1, . . . , zm))

×I{H ′
0 is rejected}dz1 · · · dzm = α

(where ψ(z; η0) is a density function of Z under H ′
0), and then evaluating integrated powers

of (A) and (B). (When the η̂0 is equal to true parameters under H ′
0, the denoted P̂H′

0
is

the significance level.) For example, Proposition 3 provides a method for comparing the test

statistic (15) with the CUSUM statistic max1≤k≤n maxa Λn(k, θ̂0, a) under the condition, θ̂0

= arg maxa
∏n

i=1 f0(Xi; a) (see Section 5). Obviously, thresholds CL
α , CD

α : P̂H′
0
{L > CL

α

∣∣∣η̂0}
= P̂H′

0
{D > CD

α

∣∣∣η̂0} = α can be easily obtained by Monte Carlo methods. (We consider

calculation α-relevant test-thresholds in Section 5.)
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Remark 2. For the test based on (15), we have

α = P̂
{

Rn > C
∣∣∣X1, . . . , Xn ∼ f0(x; θ̂0)

}
=

∫ n∏

i=1

f0

(
xi; θ̂0(x1, . . . , xn)

)

×I

{
n∏

i=1

f0(xi; θ̂0) ≤ 1
C

n∑

k=1

∫ k−1∏

i=1

f0(Xi; θ0)
n∏

i=k

f1(xi; θ1)dH(θ0, θ1)

}
n∏

i=1

dxi

≤ n

C
.

That is, we have the upper bound (that is independent of different conditions on the distri-

bution of X1, . . . , Xn) for α. If θ̂0 is the maximum likelihood estimator, then

sup
θ0

Pn+1 {Rn > C} ≤ P̂
{

Rn > C
∣∣∣X1, . . . , Xn ∼ f0(x; θ̂0)

}
≤ n

C
.

Thus, selecting C = n/α determines a test with the level of significance that does not exceed

α and ensures a p-value of the test. In accordance with the inequality α ≤ n/C, theoretically,

values of α can be chosen as small as desired. For example, the following test statistics have

the same non-asymptotic distribution-free upper bounds for the significance levels:

SR:
n∑

k=1

k−1∏

i=1

f0(Xi; θ̂
(1,i−1)
0 )

f0(Xi; θ̂0)

n∏

i=k

f1(Xi; θ̂
(k,i−1)
1 )

f0(Xi; θ̂0)
;

CUSUM: max
1≤k≤n

k−1∏

i=1

f0(Xi; θ̂
(1,i−1)
0 )

f0(Xi; θ̂0)

n∏

i=k

f1(Xi; θ̂
(k,i−1)
1 )

f0(Xi; θ̂0)
;

CUSUM: max
1≤k≤n

∫ k−1∏

i=1

f0(Xi; θ0)

f0(Xi; θ̂0)
Λn(k, θ̂0, θ1)dH(θ0, θ1),

where θ̂(r,m) is any estimator (e.g., the MLE) of θ based on {Xr . . . , Xm}.

5 Monte Carlo simulations

Often in the change point literature, the CUSUM tests have been referred to as the best change

point detection policy, particularly in the cases where observations have normal distributions.

Thus, we expect good properties of the CUSUM test, when Xi has the density function

(2π)−0.5e−x2I{i<ν}/2−(x−θ1)2I{i≥ν}/2, i = 1, . . . , n (θ0 = 0). (18)

In this section, we present simulations to compare the power of the proposed tests with

the power of the respective CUSUM detection schemes. To this end, when we estimate the

probability of an event A, based on X1, . . . , Xn, we repeat sampling from (18) 50000 times.

The type I error of the considered tests is fixed at α = 0.05.

12



The case when θ0 and θ1 are known. In this case, the proposed test has the form (6),

and the CUSUM statistic is max1≤k≤n exp{θ1
∑n

i=k Xi − (n − k + 1)θ2
1/2}. The results of

Table 1 are predicted by Proposition 1, i.e. for different θ1 and n:

1
n

n∑

k=1

Pk {Rn(θ0, θ1) > C0.05} >
1
n

n∑

k=1

Pk

{
max

1≤k≤n
eθ1

Pn
i=k Xi−(n−k+1)

θ2
1
2 > D0.05

}
.

Table 1

In this simulation study, we observed that the SR test was not only the more powerful on

average, but it was also a more powerful detection scheme than CUSUM policy was. As an

example we present Figure 2.

Figure 2

However, we doubt that

Pν {Rn(0, θ1) > C0.05} ≥ Pν

{
max

1≤k≤n
eθ1

Pn
i=k Xi−(n−k+1)

θ2
1
2 > D0.05

}

for all θ1, ν, and n. To demonstrate the asymptotic result presented in Proposition 1,

we define γ =
∑50000

k=1 exp{θ1
∑k

i=1 Xi − kθ2
1/2} and depict the empirical tail probabilities

Pn+1{Rn > u} and P∞{γ > u}, where θ1 = 0.5 and n = 20, 50, 75, 100. (100000 Monte Carlo

repetitions of Rn and γ were conducted.)

Figure 3

Figure 3 shows that when n = 20, the tail of the γ-distribution function cannot be approx-

imated by the distribution function of the SR statistic. However, when n > 50, the tail

probability of SR is close to that of γ.

The case when θ1 is unknown. Here we analyze the test statistic (9) with H(θ) =

Φ
(

θ−a
σ

)
, i.e.

Rn(0) =
n∑

k=1

1
(σ2(n− k + 1) + 1)1/2

exp

{
− a2

2σ2
+

σ2
(∑n

i=k Xi + a/σ2
)2

2(σ2(n− k + 1) + 1)

}
.

(In this case, H is a commonly used conjugate prior in the context of Bayes Factors methods.)

The CUSUM statistic has the form of max1≤k≤n exp
{
0.5(

∑n
i=k Xi)2 /(n− k + 1)}. Table 2

13



illustrates item (ii) of Proposition 2, where the equation

∫
Pk


δ rejects H0

∣∣∣∣∣∣
Xi ∼





f0(x; θ0), i < k

f1(x; θ), i ≥ k
, i = 1, . . . , n


 dH(θ)

= Pk


δ rejects H0

∣∣∣∣∣∣
Xi ∼





f0(x; θ0), i < k

f1(x; θ1), i ≥ k
, i = 1, . . . , n, θ1 ∼ N(a, 1)




is applied with σ2 = 1.

Table 2

However, in accordance with Table 3, the SR test is on average more powerful than the

CUSUM test, even when we smooth the unknown θ1 around θ0 = 0, which is known (i.e.

a = 0).

Table 3

Figure 4 shows that when a 6= θ0 = 0, the SR test is more powerful than the CUSUM test.

Figure 4

The case, where θ0 and θ1 are unknown. Let the function dH(θ0, θ1) in (15) have

the simple form of dH(θ0, θ1) = ϕ
(

θ0−a0
σ0

)
ϕ

(
θ1−a1

σ1

)
dθ0dθ1, where ϕ = dΦ. Under H0, the

maximum likelihood estimator of θ0 is θ̂0 =
∑n

i=1 Xi/n. Hence

Rn =
n∑

k=1

exp
{
−0.5 (

∑n
i=1 Xi)

2 /n− 0.5
(
a2

0/σ2
0 + a2

1/σ2
1

)}

(σ2
0(k − 1) + 1)1/2(σ2

1(n− k + 1) + 1)1/2

× exp





σ2
0

(∑k−1
i=1 Xi + a0/σ2

0

)2

2(σ2
0(k − 1) + 1)

+
σ2

1

(∑n
i=k Xi + a1/σ2

1

)2

2(σ2
1(n− k + 1) + 1)





, and

CUSUM = max
k=1,...,n

exp

{
(
∑n

i=k Xi)
2

2(n− k + 1)
+

(n− k + 1)
2

(∑n
i=1 Xi

n

)2

−
∑n

i=1 Xi
∑n

i=k Xi

n

}
.
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Let σ0 = σ1 = 1 and assume that θ0 = 0. Following Proposition 3 for the SR and CUSUM

tests, we fix θ̂0(X1, . . . , Xn) =
∑n

i=1 Xi/n and obtain test-thresholds C0.05 and D0.05 by

α = 0.05 =
∫ n∏

i=1

f0

(
xi; θ̂0(x1, . . . , xn) =

∑n
i=1 xi

n

)
I {δ rejects H0}

n∏

i=1

dxi

=
1

(2π)n/2

∫
e

(
Pn

i=1 xi)
2

2n I {δ rejects H0} e−
Pn

i=1 x2
i

2

n∏

i=1

dxi

= En+1

(
e

(
Pn

i=1 Xi)
2

2n I {δ(X1, . . . , Xn) rejects H0}
)

.

(We numerically evaluated the corresponding classical type I error of the SR and CUSUM

procedures: Pn+1{SR rejects H0} ' Pn+1{CUSUM rejects H0} ' 0.02.)

Similar to Table 2 in the previous paragraph, Table 4 relates to Proposition 3.

Table 4

In the considered cases, Table 5 concludes that regardless of a prior distribution of the

unknown parameters, the SR test is on average more powerful than the CUSUM test. For

example, when we set n = 100, θ1 = 0.7, and dH(θ0, θ1) = ϕ
(
θ0

)
ϕ

(
θ1 − 1

)
dθ0dθ1, the

average power of the SR test is 0.5048 whereas the average power of the CUSUM test is

0.2389.

Table 5

On the level of the Pk-regime, the situations of {a0 = 0, a1 = 0}, {a0 = 0, a1 = 0.5}, {a0 =

0.5, a1 = 0}, and {a0 = 0, a1 = 1} are displayed in Figure 5.

Figure 5

Note that, certainly, the case {a0 = 0, a1 = 0} (both the pre-and-post change parameters

are expected to be around 0) is strange and the case {a0 = 0.5, a1 = 0} corresponds to

the misunderstanding of a physical process presented by an analyzed data set. (In this

situation, (10) or (11) type functions for H can be recommended because such functions

regard no information about θ0 < θ1.) Even in these cases, however, in most situations, the

SR procedure is still more powerful than the CUSUM procedure.

Thus, the results of the Monte Carlo simulations experimentally confirm the existence

of a practical meaning of the proposed tests. Although we did not utilize any technique to

choose priors for the unknown parameters, the Monte Carlo study showed that the proposed

change point detections are somewhat better than the well-known CUSUM-procedures.
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6 Remarks

1. Assume that θ0 and θ1 are multidimensional parameters. In this case, the proposed

change point detection method does not need to be changed. When the dimension of the

vector of unknown parameters is close to the number of observations, we suspect that the

proposed testing is very reasonable. Note that the proposed method can be easily adapted

to regression models. In several situations, biostatisticians deal with ”wide and short” data,

where the number of explanatory variables is close to the number of observations. In these

situations, applications of tests based on the estimation of unknown parameters are problem-

atic.

2. The proposed method can be modified if Xi, i ≥ 1 are non-independent random variables.

For example, in this case, we denote

Rn(θ0, θ1) =
n∑

k=1

n∏

i=k

f1(Xi|X1, . . . , Xi−1; θ1)
f0(Xi|X1, . . . , Xi−1; θ0)

.

Obviously, the modified tests have the optimal properties that are mentioned in the proposi-

tions of this paper.

3. Consider the problem of change-points with epidemic alternatives (e.g., Vexler, 2006,

2008), i.e., Xi has density f0I{i < ν1}+ f1I{ν1 ≤ i < ν2}+ f0I{i ≥ ν2}, where i = 1, . . . , n

and ν1 < ν2 are unknown. In order to test for ν1 > n versus ν1 ≤ n, the proposed method

can be easily extended, i.e.

Rn(θ0, θ1) =
n∑

k=1

k∑

r=1

k∏

i=r

f1(Xi; θ1)
f0(Xi; θ0)

.

4. In accordance with Remark of Section 2, Propositions 2 and 3 , weights {qk, k = 1, . . . , n}
and/or prior H can be chosen with respect to a special area of parameters ν, θ0, θ1, under the

alternative hypothesis, where the maximum of the test’s power is desired. Thus, the proposed

change point tests provide maximum integrated power in the area that can correspond to the

tester’s interests.
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Figure 1: The Monte Carlo estimator of the function U(a) from (14). The curves -a-, -b-,
-c-, -d-, -e-, -f- and -g- correspond to σ = 0.25, 0.5, 0.75, 1, 2, 2.5 and 4, respectively.

Table 1: The Monte Carlo estimators of the average powers
∑n

k=1 Pk{δ rejects H0}/n, where
the decision rules δ are the SR and CUSUM tests.

θ1 = 0.1 θ1 = 0.2 θ1 = 0.3 θ1 = 0.5 θ1 = 0.7 θ1 = 1
n = 10 SR 0.0738 0.1076 0.1516 0.2708 0.4132 0.6217

CUSUM 0.0732 0.1067 0.1457 0.2651 0.4087 0.6123
n = 20 SR 0.0892 0.1551 0.2543 0.4292 0.5999 0.7898

CUSUM 0.0842 0.1356 0.2074 0.3953 0.5858 0.7758
n = 100 SR 0.1549 0.3503 0.5639 0.8230 0.9165 0.9591

CUSUM 0.1488 0.3343 0.5452 0.8042 0.9025 0.9544

Table 2: The Monte Carlo estimators of the average powers
∑n

k=1 Pk{δ rejects H0}/n, where
the decision rules δ are the SR and CUSUM tests and the unknown post-change parameter
θ1 is generated from normal distributions.

θ1 ∼ N(0, 1) ∼ N(0.5, 1) ∼ N(1, 1)
n = 20 SR 0.4883 0.5371 0.6352

CUSUM 0.4625 0.5027 0.6081
n = 100 SR 0.6997 0.7491 0.8332

CUSUM 0.6879 0.7178 0.7923

20



2 4 6 8 10 12 14 16 18 20
0

0.005

0.01

0.015

0.02

0.025

ν

D
iff

er
en

ce
 o

f P
ow

er
s

θ
1
=0.5

θ
1
=0.7

Figure 2: The Monte Carlo estimators of Pν{SR rejects H0} −Pν{CUSUM rejects H0},
where Pn+1{SR rejects H0} = Pn+1{CUSUM rejects H0} = 0.05 and n = 20.

Table 3: The Monte Carlo estimators of the average powers of the SR and CUSUM tests,
for different values of the post-change parameter θ1.

σ2 = 1 n = 20 n = 100
a = 0.0 a = 0.5 a = 1.0 a = 0.0 a = 0.5 a = 1.0

θ1 = 0.1 CUSUM 0.0598 0.0813
SR 0.0610 0.0699 0.0774 0.1009 0.1059 0.1233

θ1 = 0.5 CUSUM 0.2751 0.7127
SR 0.3071 0.3539 0.3741 0.7649 0.7798 0.8091

θ1 = 0.7 CUSUM 0.4707 0.8526
SR 0.4835 0.5509 0.5699 0.8696 0.8874 0.8959

Table 4: The Monte Carlo estimators of the average powers
∑n

k=1 Pk{δ rejects H0}/n, where
the zdecision rules δ are the SR and CUSUM tests and the unknown pre-post-change param-
eters θ0, θ1 are generated from normal distributions.

θj ∼ N(aj , 1), j = 0, 1 a0 = 0, a1 = 0 a0 = 0, a1 = .5 a0 = .5, a1 = .0 a0 = 0, a1 = 1
n = 20 RS 0.2824 0.3191 0.3129 0.3697

CUSUM 0.2173 0.2366 0.2359 0.2902
n = 100 RS 0.5534 0.5872 0.5854 0.6489

CUSUM 0.4524 0.4731 0.4724 0.5292
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Figure 3: The Monte Carlo probabilities Pn+1{Rn > u} and P∞{γ > u} are depicted by the
line types that are specified as ”dotted”, ”dotdash”, ”dashed” and ”longdash” corresponding
to n = 20, 50, 75 and n = 100, respectively. Here γ is denoted in Proposition 1 and θ1 = 0.5.
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Figure 4: The Monte Carlo estimators of Pν{SR rejects H0} −Pν{CUSUM rejects H0},
where Pn+1{SR rejects H0} = Pn+1{CUSUM rejects H0} = 0.05 and n = 20.
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Figure 5: The Monte Carlo estimators of Pν{SR rejects H0} −Pν{CUSUM rejects H0},
where P̂n+1{SR rejects H0} = P̂n+1{CUSUM rejects H0} = 0.05 and n = 20.

Table 5: The Monte Carlo estimators of the average powers of the SR and CUSUM tests, for
different values of the post-change parameter θ1 (the pre-change parameter θ0 ).

σ0 = σ1 = 1 a0 = 0, a1 = 0 a0 = 0, a1 = .5 a0 = .5, a1 = .0 a0 = 0, a1 = 1
n = 20 θ1 = 0.1 RS 0.0220 0.0200 0.0186 0.0254

CUSUM 0.0153
θ1 = 0.5 RS 0.0538 0.0632 0.0401 0.0864

CUSUM 0.0331
θ1 = 0.7 RS 0.0905 0.1104 0.0766 0.1460

CUSUM 0.0558
n = 100 θ1 = 0.1 RS 0.0169 0.0189 0.020 0.0239

CUSUM 0.0148
θ1 = 0.5 RS 0.1999 0.2289 0.2264 0.2451

CUSUM 0.0958
θ1 = 0.7 RS 0.4245 0.4689 0.4519 0.5048

CUSUM 0.2389
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