
Research Article

An Optimal Seed Based Compression Algorithm for
DNA Sequences

Pamela Vinitha Eric,1 Gopakumar Gopalakrishnan,2 and Muralikrishnan Karunakaran2

1Department of Information Science and Engineering, Rajiv Gandhi Institute of Technology, Bangalore 560032, India
2Department of Computer Science and Engineering, National Institute of Technology Calicut, Kerala 673601, India

Correspondence should be addressed to Pamela Vinitha Eric; pamela.vinitha@gmail.com

Received 28 November 2015; Revised 9 May 2016; Accepted 19 June 2016

Academic Editor: Frank M. You

Copyright © 2016 Pamela Vinitha Eric et al. 	is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

	is paper proposes a seed based lossless compression algorithm to compress a DNA sequence which uses a substitution method
that is similar to the LempelZiv compression scheme. 	e proposed method exploits the repetition structures that are inherent in
DNA sequences by creating an o
ine dictionary which contains all such repeats along with the details of mismatches. By ensuring
that only promising mismatches are allowed, the method achieves a compression ratio that is at par or better than the existing
lossless DNA sequence compression algorithms.

1. Introduction

	ere is an exponential increase in the amount of DNA being
sequenced, thus leading to problems in storage, comprehen-
sion, and transmission.	e cost of storage has been reducing
dramatically in the past few years, but the exponential growth
in the amount of DNA being sequenced leads to tremendous
increase in the amount of data that needs to be stored online
thereby making storage one of the biggest cost elements.
Another challenge faced is how to make sense out of this
huge mass of data. With whole genomes, we now have to
deal with millions or billions of base pairs. When we have
a database of such genomes, as is typically the case, the
problem becomes even more compounding. 	us, new and
more e�ective techniques are needed for the compression of
biological sequence data, particularly DNA sequences.

DNA sequences are expected to be nonrandom and hence
it is possible to remove redundancy, resulting in compression.
It is estimated that more than 50% of the human genome
is repeat DNA [1]. Compression will solve the issues related
to storage and also improve the understanding of these
sequences. Chen et al. [2] showed that compressibility is a
goodmeasurement of relatedness between sequences and can
be e�ectively used in sequence alignment and evolutionary
tree construction. According to Allison et al. [3] compression

of DNA sequences also results in the intelligent analysis of
these sequences. Compression also plays an important role
in ecient sequence classi�cation [4].

DNA sequences consist of four nucleotide bases, A (ade-
nine), C (cytosine), G (guanine), and T (thymine), and two
bits are sucient to represent each of these nucleotide bases.
Moreover the repeats found inDNA sequences are not always
exact; they can be of di�erent types like approximate, reverse,
complementary, reverse complementary, and tandem. Also
these repeats are long and less frequent. Traditional text
compression algorithms are only e�ective in capturing short
and frequent repeats; hence using them to compress DNA
sequences o�en results in expansion of the same. 	erefore
�nding all the di�erent types of repeats in a DNA sequence
and encoding them in order to achieve a good compression
ratio is a challenging task.

	is paper proposes a seed based algorithm which uses
a substitution method that is in line with the LempelZiv
[5, 6] compression scheme to compress DNA sequences.
	e proposed algorithm captures all the various types of
repeats like exact, tandem, approximate, reverse, comple-
mented, and reverse complemented and stores them onto
an o
ine dictionary. 	ese repeats are then removed from
the original sequence to form the �nal parsed sequence.
	e o
ine dictionary along with the �nal parsed sequence

Hindawi Publishing Corporation
Advances in Bioinformatics
Volume 2016, Article ID 3528406, 7 pages
http://dx.doi.org/10.1155/2016/3528406



2 Advances in Bioinformatics

forms the compressed sequence. Mismatches that give good
compression gain are tolerated and recorded along with the
repeat substrings in the o
ine dictionary.

	is paper is organized as follows. Section 2 reviews the
various DNA compression algorithms. Section 3 describes
the proposed method and Section 4 analyzes the results
obtained. 	is is followed by conclusion in Section 5.

2. Related Work

Compression of biological sequences can be either hori-
zontal or vertical as proposed by Grumbach and Tahi [7,
8]. Horizontal mode compresses a biological sequence by
making use of information containedwithin it, like references
to the substrings, whereas vertical mode takes a set of
biological sequences and compresses each sequence based
on the information derived from this set. Horizontal mode
is of interest for the reduction of storage and transmission
costs [9] and uses compression techniques like substitution,
statistical, or a combination of these two [10]. Statistical
compression uses a statistical model of the data, comprised of
variable sized codes, and the quality of compression obtained
depends on the data model [11]. Substitution or dictionary
based method selects several strings of symbols that occur
frequently and encodes each string as a token which is a
pointer to the string in a dictionary. 	e dictionary itself can
be static or dynamic. Compression algorithms based on LZ
method use online dictionary whereas in case of methods
using o
ine dictionary compression occurs in two passes: the
�rst pass identi�es all repeats and stores them in a dictionary
and the second pass encodes these repeats as pointers
to the dictionary [5, 6]. A third category of compression
is the hybrid technique which makes use of a combina-
tion of substitution and statistical techniques to compress
data.

Most of the compressionmethods available for compress-
ing biological sequences like [2, 7, 8, 12] use substitution
methods. 	e earliest special purpose DNA compression
algorithm found in the literature is Biocompress developed
by Grumbach and Tahi [7, 8]. 	ey proposed Biocompress
and Biocompress 2 which detects repeats of substrings that
occurred earlier in the sequence and encodes them as length
of repeat and position of previous occurrence. 	ey also
employ order 2 arithmetic coding to encode nonrepeat
regions. Chen et al. [12] developed DNACompress that uses
the so�ware utility Pattern Hunter [13] to identify signi�cant
approximate repeat regions and then encodes these repeat
regions by a pointer to their earlier occurrence.	enonrepeat
regions are also encoded using arithmetic coding.	e o
ine
approach by Apostolico and Lonardi [14] iteratively selects
repeated substrings for which encoding would gain maxi-
mum compression. A similar substitution approach is used
in GenCompress by Chen et al. [2] where they concentrate on
�nding an optimal pre�x that can be encoded economically.
Here approximate repeats are exploited. Adjeroh et al. [15, 16]
create an o
ine dictionary of short repeats and code all
occurrences of a given repeat with reference to the position
of that repeat in the dictionary. Cfact developed by Rivals et
al. [17] constructs a sux tree in the �rst pass and uses this

data structure to search for the longest exact matching repeat
in the second pass.

A few methods like XM, CDNA, and ARM employ
statistical techniques. Expert model (XM) proposed by Cao
et al. [18] uses an order 2 Markov expert and a copy expert
to predict the probability of occurrence of a symbol. It also
employs adaptive coding for correct or incorrect predictions.
	e CDNA algorithm by Loewenstern and Yianilos [19] is a
pure statistical algorithm, where the probability distribution
of each symbol is obtained by approximate partial matches
from history. Each approximate match is with a previous
subsequence having a small Hamming distance to the context
preceding the symbol to be encoded. 	e latter ARM algo-
rithm by Allison et al. [3] is also a pure statistical algorithm
that forms the probability of a subsequence by summing the
probabilities over all explanations as to how the subsequence
is generated.

Amethod that employs hybrid technique was introduced
by Korodi and Tabus [20, 21] where encoding is done by
using a simple normalized maximum likelihood model for
discrete regression, through reference to preceding approx-
imate matching blocks and encoding them by a �rst-order
context coding. In its improvement, GeNML by Korodi and
Tabus [20, 21], the DNA sequence is split into �xed size
blocks. 	e bit mask is encoded using a probability distri-
bution estimated by the normalized maximum likelihood of
similarity between the regressor and the block. Matsumoto
et al. [22] use a combination of LZ [5, 6] and CTW [23].
	ey �rst identify approximate repeat regions using hash and
dynamic programming and then replace these repeat regions
with an o�set and length. Edit operations are encoded using
arithmetic coding and nonrepeat areas by an order 32 context
tree weighting.

3. Optimal Seed Based Compression Algorithm
for DNA Sequences

	e proposed method consists of a seed based algorithm that
identi�es potentially good matches. 	e matching substrings
so identi�ed are later extended in both the directions, that is,
to the le� and right.

Let � be the DNA sequence to be compressed and � the
length of the DNA sequence. �� represents the �th symbol
of the given DNA sequence, where 1 ≤ � ≤ � and ��,� is a
substring of � of length � where � = � − � + 1. 	e seed
��,� is also a substring of � of length �. 	e initial seed is
�1,� and the �rst substring (��,�) to be matched is ��+1,�+�.
	e values of (�, �) are incremented until a repeat substring is
identi�ed such that ��,� = ��,�. If no such matching substring
is encountered, (�, 	) are incremented and the search is
continued until ��,� = ��,� for some [(�, 	), (�, �)], where �
ranges from 	 + 1 to � − � and � from 	 + � to �. Now the
length of the match 
0 is initialized to � and �, the number
of mismatches, is initialized to 0.

	e repeat substring ��,� and the seed ��,� are extended
and compared.	e extension is done �rst to the le� and then
to the right. 	e length of the match 
0 is incremented for
each symbol matched. If a mismatch occurs while extend-
ing the repeat substring and the seed, decision regarding



Advances in Bioinformatics 3

Table 1: Structure of the o
ine dictionary.

Extended seed Type of repeat Position of repeat Length Mismatch details

AATAACTTG
Approx 5 9

Reverse 20 9 (1 10 01, 8 10 00)

AACTTG
Reverse 36 6

Approx 73 7 (4 01 10)

permitting this mismatch is made, based on the total number
of mismatches until then and whether permitting this mis-
match would result in a compression gain. If� is greater than
the threshold, repeat extension in the direction in which the
mismatch occurred is temporarily terminated. Extension to
the le� is also stopped whenever there is an overlap between
the extended seed and the extended repeat substring.

Assume that the substrings ��,� and �	,
 are the extended
repeat and the extended seed so obtained. An o
ine dic-
tionary, as shown in Table 1, stores the extended seed �	,
,
position of occurrence of repeat �, length of the repeat 
0, type
of repeat, and the details of mismatches that have occurred if
any. ��,� is then removed from � and the remaining symbols of
� are concatenated to form the next sequence ��. 	e process
is repeated on sequence �� until all approximate repeats of
�	,
 are identi�ed and stored in the o
ine dictionary. 	is
o
ine dictionary is similar to the one created by Adjeroh et
al. [15, 16, 25].

Finally the extended seed �	,
 is removed from �� and
the remaining symbols of �� are concatenated to form the
new sequence �. 	e position of the extended seed �	,
, , is
recorded as the last entry under that seed.

	e above process is repeated on the new sequence �
until all the exact and approximate repeats are identi�ed and
removed from the sequence and the remaining nonrepeat
regions of the sequence are concatenated to form the �nal
parsed sequence. 	is process along with an example is
depicted in Figure 1. 	e o
ine dictionary along with the
�nal parsed sequence (the original sequence from which all
seeds and repeats have been removed) forms the compressed
sequence. 	e �nal parsed sequence is further compressed
using adaptive arithmetic coding. 	e extended seed entries
in the o
ine dictionary are also encoded using arithmetic
coding.

3.1. Encoding of Mismatches. 	eproposedmethod identi�es
all signi�cant approximate repeats in the DNA sequence
and stores them onto an o
ine dictionary. All approximate
repeats havemismatches which are encoded andwritten onto
the o
ine dictionary. Mismatches occur due tomutation and
can be de�ned by any of the edit operations like insertion,
deletion, or substitution of some base. 	e mismatch details
are recorded in the table as a triple (�, �, �), where � is
the position of mismatch within the extended seed, � the
type of edit operation, and � the symbol to be inserted or
substituted. When the edit operation is deletion, the last �eld
of the triple may be omitted. 	e same representation is also
used in DNACompress [12] and GenCompress [2]. 	e edit
operations are encoded as 00 insertion, 01 deletion, and 10
substitution and the bases A, C, G, and T are encoded as
00, 01, 10, and 11, respectively. Suppose that the seed is the

substring GCACTTACT and the approximate repeat found
is GCACTTTCT. Here the symbol A which occurs at the 7th
position in the seed has been substituted with the symbol T in
the repeat. 	is is represented by a triple of 7 bits as (1111011).

3.2. Determining the 	reshold. Mismatches are allowed
while extending the repeats in both directions but the number
of such mismatches should not exceed a predetermined
threshold. When the predetermined threshold is exceeded
temporarily suspend extension of seed and repeat in that
direction until the length of the repeat and seed has increased
to such an extent that extension of repeat in the suspended
direction becomes feasible again. But any mismatch is
tolerated if and only if allowing such a mismatch results
in a compression gain. 	e threshold value is determined
dynamically with respect to the length of the extended
repeat. Experimental results show that the total number of
mismatches allowed at any instance should never exceed
log2(
0); here (
0) is the length of the extended repeat.

3.3. Calculation of Compression Ratio. It takes at the most 2
bits to encode each symbol of a DNA sequence.	e objective
of DNA compression is to bring down the bits needed to
represent each base to less than 2. In the proposed method
the output comprises the o
ine dictionary along with the
�nal parsed sequence and the compression ratio speci�es the
bits per symbol (bps) and can be calculated by the following
formula [16]:

Compression ratio = (Cost of output sequence)(Length of input sequence)

= (Cost of dictionary + Cost of parsed sequence)
(Length of input sequence) .

(1)

	e cost of a variable is the number of bits required
to represent it. 	e term vocabulary refers to the identi�ed
repeats without reference to their speci�c locations in the
sequence. 	e size of the dictionary denoted as 
 gives the
number of distinct repetitions in the dictionary.	e length of
the �th seed is denoted by �(�) and the number of repetitions
of �th seed by �(�). If the position of the �th occurrence of
repeat pattern � is given as �(�, �) and mismatch in the �th
occurrence of repeat pattern � as�(�, �), then cost of positions
and mismatch details can be given as

�
∑
�=1

�(�)
∑
�=1
[log (��,�)] +

�
∑
�=1

�(�)
∑
�=1
��,� +

�
∑
�=1

�(�)
∑
�=1

log (� (�))

+
�
∑
�=1

�(�)
∑
�=1
2.

(2)



4 Advances in Bioinformatics

No

No

Yes

Yes

No

Start

Repeat 

exists?

Extend repeat 

and seed

Does mismatch result in 
compression gain?

Add repeat details to 

dictionary

Stop

Seed analysis
over?

 Any more
seeds? 

No

Yes

Yes

of length k

Select seed as 
Sa+1,b+1

Remove seed

Add seed
details to 
dictionary

to form Sp

Remove repeat to form Sp

Check for
repeats

Seed: ATAAC and TGAGT

A�er extension:

Parsed sequence: AGACTTACTTAAAC

O�ine dictionary:

Extended seed Length Type of repeat Position Mismatch details

AATAACTTGA 10 Approx 31
7

(1,10,01; 8,10,00)

TGAGTAAGGT 10 Exact 42
20

—

—

—

AGACTTAATAACTTGAACTTGAGTAAGGTTCATAACTAGTATGAGTAAGGTAAC

AGACTTAATAACTTGAACTTGAGTAAGGTTCATAACTAGTATGAGTAAGGTAAC

←S1 → ←S2→ ← R1 → ←R2→

← ES1 → ← ES2 → ← → ← →ER2ER1

S1 and S2 are seeds, R1 and R2 are repeats, ES1 and ES2 are extended seeds, and

ER1 and ER2 are extended repeats.

Select seed Sa,b

Figure 1: 	e process �ow of the seed based compression method followed by an example sequence.

Here log(�(�)) is the number of bits required to represent
�(�) and the last term gives the number of bits needed to
represent the type of repetition of each repeat.

	e cost of dictionary is the sum of the cost of vocabulary
and cost of positions and mismatch details:

Cost of vocabulary

= 2 ∗ (Sum of length of extended seeds)

= 2 ∗
�
∑
�=1
� (�) .

(3)



Advances in Bioinformatics 5

Table 2: Comparison of compression ratios of the proposed method against existing methods [2, 8, 12, 18, 19, 21, 22, 24].

Sequence Length CDNA GeMNL Bioc CTW + LZ GenC DNAC DNAP XM Proposed seed based method

HUMDYSTROP 38,770 1.93 1.9085 1.9262 1.9175 1.9231 1.9116 1.9088 1.9031 1.8624

HUMGHCSA 66,496 0.95 1.0089 1.3072 1.0972 1.0969 1.0272 1.639 0.9828 1.0156

HUMHBB 73,308 1.77 — 1.8800 1.8082 1.8204 1.7897 1.7771 1.7513 1.7364

HUMHDABCD 58,863 1.67 1.7059 1.8770 1.8218 1.8192 1.7951 1.7394 1.6671 1.6237

HUMHPRTB 56,832 1.72 1.7639 1.9066 1.8433 1.8466 1.8165 1.7886 1.7361 1.688

MPOMTCG 1,86,609 1.87 1.8822 1.9378 1.9000 1.9058 1.8920 1.8932 1.8768 1.763

VACCG 1,91,735 1.81 1.7644 1.7614 1.7616 1.7614 1.7580 1.7583 1.6749 1.6434

	erefore

Cost of dictionary = 2 ∗
�
∑
�=1
� (�) +

�
∑
�=1

�(�)
∑
�=1
[log (��,�)]

+
�
∑
�=1

�(�)
∑
�=1
��,� +

�
∑
�=1

�(�)
∑
�=1

log (� (�))

+
�
∑
�=1

�(�)
∑
�=1
2.

(4)

	e �nal parsed sequence ��nal is the sequence from
which all the repeats have been removed. 	e number of bits
to represent ��nal is 2 ∗ �(��nal). 	erefore

Compression ratio

=
2 ∗ ∑��=1 � (�) + ∑

�
�=1∑
�(�)
�=1 [log (��,�)] + ∑

�
�=1∑
�(�)
�=1��,� + ∑

�
�=1∑
�(�)
�=1 log (� (�)) + ∑

�
�=1∑
�(�)
�=1 2 + 2 ∗ � (��nal)

(Length of input sequence) .
(5)

4. Results

	e seed based compression algorithm was experimen-
tally veri�ed on a set of DNA sequences in FASTA for-
mat as the input. 	e method was tested on the same
standard benchmark data used in [2, 7, 12, 18, 22].
	ese standard sequences include human growth hormone
(HUMGHCSA), human DNA sequence (HUMHDABCD),
vaccinia virus Copenhagen complete genome (VACCG),
Marchantia polymorpha mitochondrion complete genome
(MPOMTCG), human beta globin region on chromosome
11 (HUMHBB), Homo sapiens dystrophin gene (HUMDYS-
TROP), and human hypoxanthine phosphoribosyltrans-
ferase gene (HUMHPRTB).

	e algorithm was tested on this data set for various
seed lengths “�,” to decide upon an optimum “�” value
for the compression. 	e seed length “�” was varied from
5 to 11 on various runs of the data set and the best “�”
value was inferred to be 8 as this gives better compression
ratio than smaller “�” values. BLAST [26], being another
bioinformatics local alignment search tool, also uses 11 as
the standard seed length whereas SENSEI [27] uses 8 as
the seed length. Also, it was noticed that even though
time complexity increases when � was incremented further
a substantial improvement in compression ratio does not
occur to warrant such an increase. 	us the “�” value was
inferred to be 8. A graph comparing compression ratios
against varying � values for di�erent sequences is shown in
Figure 2.

Any mismatch is tolerated if and only if allowing such a
mismatch results in a compression gain. To ensure compres-
sion gain amismatch is allowed only if the next few characters
are an exact match. 	e results of testing for di�erent values
showed that ensuring the next three characters are exact
matches gives good compression ratio.	e permitted thresh-
old for the number of mismatches allowed was varied from
log2� to log2log2� and it was found that log2� gives better
compression. 	e graph depicting the compression ratio
achieved when the threshold for the number of mismatches
allowed is log2� and log2log2� is shown in Figure 3.

	e tabulated result of comparison of compression ratios
of the proposed seed based method against other existing
algorithms is shown in Table 2.

	e execution time taken by few of the reviewedmethods
for the benchmark sequences was determined a�er executing
them on amachine with a quad core processor having a clock
speed of 2.60GHz, 8GB RAM, and 64-bit operating system.
	e execution time taken by the reviewed methods is given
in Table 3.

Decompression. Algorithm 1 was implemented and the result
of decompression was veri�ed to ensure that the compression
method proposed is indeed lossless.

5. Conclusion

A substitutional compression algorithm for DNA sequence is
proposed. On extensive testing, the optimum seed length for



6 Advances in Bioinformatics

Table 3: Time taken for execution.

Sequence Length DNACompress (sec) GenCompress (sec) Time taken by seed based method (sec)

HUMDYSTROP 38,770 0.125 0:00:45 1.5

HUMGHCSA 66,496 0.094 874 2.5

HUMHBB 73,308 0.125 NA 2.8

HUMHDABCD 58,863 0.125 104 2.2

HUMHPRTB 56,832 0.124 90 2

MPOMTCG 1,86,609 0.124 781 3.5

VACCG 1,91,735 0.219 1239 4

Begin
Read number of seeds (
�) from table.
While ((
�) > 0) do
Begin

Read the ��� at 
� along with the 
 (no. of repeats) for that seed.
Store ��� as Extended seed.
Read the position of seed that is the last entry under that seed taken as ������.
Insert the ��� into sequence at ������.
Decrement (
) by 1
While ((
) > 0) do
Begin

Extended seed = seed
Read position and type of repeat at (
)
Read the corresponding mismatch details.
Make necessary changes to the extended seed, based on type of repeat and mismatch details.
Insert this modi�ed extended seed into the sequence at the position speci�ed.
Decrement (
) by 1

End
Decrement (
�) by 1

End
Output decompressed sequence.

End

Algorithm 1: Decompression algorithm.

HUMDYSTROP HUMGHCSA

VACCG HUMHBB

HUMHDABCD MPOMTCG

HUMHPRTB

6 7 8 9 10 11 125
1

1.5

2

2.5

Figure 2: Graph comparing compression ratios against var-
ying � values for di�erent sequences; �-axis : “�” value; �-
axis : compression ratio.

the method was decided to be 8. As seen from the results,
it is observed that the proposed method performs with
compression ratios comparable to the existing algorithms and

6 7 8 9 10 11 125
1.8
1.9

2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3

log k

log log k

Figure 3: Graph comparing compression ratios of HUMDYSTROP
against varying � values and the threshold for the number of
mismatches allowed being log � and log log �. �-axis : “�” value; �-
axis : compression ratio.

even better for a few standard sequences. Further the speed
of execution can be improved by incorporating any known
methods of string comparison like sux trees or bitwise XOR



Advances in Bioinformatics 7

operation as used in SENSEI [27] in the initial phase while
looking for exact seed matches.

Competing Interests

	e authors declare that they have no competing interests.

References

[1] E. S. Lander, L. M. Linton, B. Birren et al., “Initial sequencing
and analysis of the human genome,” Nature, vol. 409, no. 6822,
pp. 860–921, 2001.

[2] X. Chen, S. Kwong, and M. Li, “Compression algorithm for
DNA sequences and its applications in genome comparison,”
in Proceedings of the 4th Annual International Conference on
Computational Molecular Biology (RECOMB ’00), p. 107, ACM,
Tokyo, Japan, April 2000.

[3] L. Allison, L. Stern, T. Edgoose, and T. I. Dix, “Sequence
complexity for biological sequence analysis,” Computers and
Chemistry, vol. 24, no. 1, pp. 43–55, 2000.

[4] E. Keogh, S. Lonardi, and C. A. Ratanamahatana, “Towards
parameter-free data mining,” in Proceedings of the 10th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 206–215, August 2004.

[5] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Transactions on Information	eory, vol. 23,
no. 3, pp. 337–343, 1977.

[6] J. Ziv and A. Lempel, “Compression of individual sequences via
variable-rate coding,” IEEE Transactions on Information	eory,
vol. 24, no. 5, pp. 530–536, 1978.

[7] S. Grumbach and F. Tahi, “Compression of DNA sequences,” in
Proceedings of the IEEE Symposium on Data Compression, pp.
340–350, Snowbird, Utah, USA, 1993.

[8] S. Grumbach and F. Tahi, “A new challenge for compression
algorithms: genetic sequences,” Information Processing and
Management, vol. 30, no. 6, pp. 875–886, 1994.

[9] R. Giancarlo, D. Scaturro, and F. Utro, “Textual data compres-
sion in computational biology: a synopsis,” Bioinformatics, vol.
25, no. 13, pp. 1575–1586, 2009.

[10] T. M. Cover and J. A. 	omas, Elements of Information 	eory,
John Wiley & Sons, New York, NY, USA, 2012.

[11] D. Salomon, Data Compression: 	e Complete Reference,
Springer Science and Business Media, 2004.

[12] X. Chen, M. Li, B. Ma, and J. Tromp, “DNACompress: fast and
e�ective DNA sequence compression,” Bioinformatics, vol. 18,
no. 12, pp. 1696–1698, 2002.

[13] B. Ma, J. Tromp, and M. Li, “PatternHunter: faster and more
sensitive homology search,” Bioinformatics, vol. 18, no. 3, pp.
440–445, 2002.

[14] A. Apostolico and S. Lonardi, “Compression of biological
sequences by greedy o�-line textual substitution,” inProceedings
of the Data Compression Conference (DDC ’00), pp. 143–152,
March 2000.

[15] D. Adjeroh and F. Nan, “On compressibility of protein
sequences,” in Proceedings of the Data Compression Conference
(DCC ’06), 10 pages, Snowbird, Utah, USA, March 2006.

[16] D. Adjeroh, Y. Zhang, A. Mukherjee, M. Powell, and T.
Bell, “DNA sequence compression using the Burrows-Wheeler
Transform,” in Proceedings of the IEEE Computer Society Bioin-
formatics Conference, Computer Society, vol. 1, pp. 303–313,
2002.

[17] É. Rivals, M. Dauchet, J. P. Delahaye, and O. Delgrange,
“Compression and genetic sequence analysis,” Biochimie, vol.
78, no. 5, pp. 315–322, 1996.

[18] M. D. Cao, T. I. Dix, L. Allison, and C. Mears, “A simple
statistical algorithm for biological sequence compression,” in
Proceedings of the Data Compression Conference (DCC ’07), pp.
43–52, IEEE, Snowbird, Utah, USA, March 2007.

[19] D. Loewenstern and P. N. Yianilos, “Signi�cantly lower entropy
estimates for naturalDNA sequences,” Journal of Computational
Biology, vol. 6, no. 1, pp. 125–142, 1999.

[20] G. Korodi and I. Tabus, “An ecient normalized maximum
likelihood algorithm for DMA sequence compression,” ACM
Transactions on Information Systems, vol. 23, no. 1, pp. 3–34,
2005.

[21] J. I. Myung, D. J. Navarro, and M. A. Pitt, “Model selection
by normalized maximum likelihood,” Journal of Mathematical
Psychology, vol. 50, no. 2, pp. 167–179, 2006.

[22] T. Matsumoto, K. Sadakane, and H. Imai, “Biological sequence
compression algorithms,” Genome Informatics, vol. 11, pp. 43–
52, 2000.

[23] F.M. J.Willems, Y.M. Shtarkov, and T. J. Tjalkens, “	e context-
tree weighting method: basic properties,” IEEE Transactions on
Information 	eory, vol. 41, no. 3, pp. 653–664, 1995.

[24] B. Behzadi and F. Le Fessant, “DNA compression challenge
revisited: a dynamic programming approach,” in Proceedings of
the Annual Symposium on Combinatorial Pattern Matching, pp.
190–200, Springer, Berlin, Germany, 2005.

[25] D. Adjeroh and J. Feng, “	e SCP and compressed domain
analysis of biological sequences,” in Proceedings of the IEEE
Bioinformatics Conference (CSB ’03), pp. 587–592, Stanford,
Calif, USA, August 2003.

[26] S. F. Altschul,W. Gish,W.Miller, E.W.Myers, and D. J. Lipman,
“Basic local alignment search tool,” Journal ofMolecular Biology,
vol. 215, no. 3, pp. 403–410, 1990.

[27] P. Agarwal, “Compact encoding strategies for DNA sequence
similarity search,” in Proceedings of the International Conference
on Intelligent Systems for Molecular Biology (ISMB ’95), vol. 4,
pp. 211–217, 1995.



Submit your manuscripts at

http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Anatomy 
Research International

Peptides
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 

http://www.hindawi.com

 International Journal of

Volume 2014

Zoology

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Molecular Biology 
International 

Genomics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Bioinformatics
Advances in

Marine Biology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Signal Transduction
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 

Research International

Evolutionary Biology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Biochemistry 
Research International

Archaea
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Genetics 

Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Virolog y

Hindawi Publishing Corporation
http://www.hindawi.com

Nucleic Acids
Journal of

Volume 2014

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Enzyme 
Research

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Microbiology


