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Abstract. This paper presents a novel generalized framework for optimal sensor placement design
for structural health monitoring (SHM) applications using Bayes risk as the objective function.
Bayes risk considers the costs of consequences associated with making decisions and design selec-
tion (extrinsic cost) in the monitoring process, as well as intrinsic costs (e.g., sensor deployment
and maintenance costs), which suggests that it is a natural choice for an SHM design objective
function. The framework is intended to be sufficiently generalized to be applicable to any optimal
sensor placement design used for SHM. To demonstrate the effectiveness and comprehensiveness
of the proposed framework, it is applied to an example problem concerning the state detection of
the boundary of a beam modeled by springs. We discuss in-depth the specific formulation of Bayes
risk for this demonstration problem and detail multiple approaches to evaluate it. This paper ad-
dresses the challenges encountered in optimal sensor design problem due to the computationally
expensive physics-based model, and it considers various uncertainties through the investigation and
integration of Bayesian inference methods, uncertainty quantification, and optimization strategies.
The effect of the initial design assumption and the technique used to approximate the Bayes risk on
the final optimal sensor design is discussed.

1 Introduction
Structural health monitoring (SHM) may be generally defined as the process of making an

assessment, based on appropriate analyses of in-situ measured data, about the current ability of
a structural component or system to perform its intended design function(s) successfully. When
coupled with future predictive capabilities, a successful SHM strategy may enable significant
ownership cost reduction through maintenance optimization, performance maximization during
operation, and unscheduled downtime minimization, and/or enable significant life safety advantage
through catastrophic failure mitigation. Such an SHM strategy inevitably must, for a sufficiently
well-defined application, include in-situ data acquisition, feature extraction from the acquired
data, statistical modeling of the features, and subsequent hypothesis-based synthesis of the feature
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probabilistic models to make informed decisions about what to do with the structural component or
system. Clearly, an important underlying enabler for an SHM strategy is the design of the sensor
system, since data acquisition is the initiator of this multi-part paradigm [1, 2]. As no widely
accepted sensing strategy in SHM has been adopted for use, this paper will propose and demonstrate
the implementation of minimal Bayes risk as a natural target objective for SHM system design.

The application case that will be used in this paper is taken from the inland waterways
infrastructure. The locks and dams that comprise the inland waterways infrastructure require an
effective SHM system to prevent their unexpected failure and continuous monitoring in order to
prevent huge economic losses [3, 4]. The United States Army Corps of Engineers (USACE) spends
billions of dollars in maintaining and operating this infrastructure, where unscheduled shutdown of
these assets and dewatering for inspection or repair is very costly [5, 6, 7, 8]. The need for SHM to
help facilitate maintenance and operations appears strong, but highly constrained budgets suggest
SHM system allocation efforts must be optimized to meet risk-based goals. Within the navigation
lock systems, miter gates are one of the most common locking gates used; their most common
failure mechanisms include long-term corrosion and loss of load-transferring contact in the quoin
block (boundary related damage) [9]. As many of these structures have been operational for over 50
years, many are presently potentially operating in a higher-risk profile without engineers knowing
their real structural capability [10]; current practice involves engineering elicitation via inspection,
followed by lock closures if the inspection so warrants. Since this process is based on the varied
experience and interpretation of field engineers, it bears high uncertainties and variability [11]. The
use of SHM could potentially reduce those uncertainties, but the value of information obtained
depends upon its design [12]. In general terms, the first step of the SHM system design is to decide
what suitable sensors (e.g., strain-gauges, accelerators, etc.) provide measurements from which the
extracted features are correlated to the type of damage or state to be inferred. The second step is
then to obtain a sensor network design (e.g., number of sensors, location/placement, duty cycle, etc.)
that provides the most valuable information at a minimal cost [13, 14, 15].

Numerous seminal contributions have been made in optimal sensor placement design for a
wide class of SHM applications [16, 17, 18]. The overall goal of choosing the best sensor design
is to let the monitoring system gather the most effective information from in-situ monitoring to
detect the target state [19]. During the optimization process, an optimality criterion or an objective
function is used to evaluate the effectiveness of the design. The best sensor design for a considered
application, therefore, depends on the optimality criterion or objective function chosen. Thus,
engineers from different fields may have different criteria for defining this to obtain the best design
that leads to the most effective information use. In other words, the engineers look for the best
objective function that is in line with the primary goal of the monitoring system, and it evaluates the
value of that information in some way. Some classic such objective functions include the probability
of detection (POD), and the probability of classification [20]. For instance, in the aviation sector,
engineers maximize the probability of detection because the cost of life is assumed invaluable [21].
Papadimitriou et al. [22] have proposed sensor placement design by minimizing entropy focusing
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on the applications of structural model updating. Similarly, Udwadia [23] and Basseville [24] have
used the Fisher information matrix to maximize the parameter identification through SHM.

In many SHM systems used for large civil infrastructure such as the application area considered
in this paper, the primary goal of the SHM system is to minimize the long-term monitoring and
maintenance costs [5]. In this context, optimal sensor design is tied to the rate of incorrect decisions
(e.g., the probability of false alarms for a binary decision case) and the costs/consequences associated
with those wrong decisions. Flynn and Todd [25, 26] first introduced Bayesian experimental design
[27] by minimizing expected loss or risk (also termed as Bayes risk) as a consequence of making
the decision (choosing optimal design in their case). They demonstrated it in an ultrasonic guided
wave sensor design problem. Bayes risk is proposed as a suitable choice of the objective function
because it considers the costs of consequences associated with making decisions (parameterized by
design selections in the monitoring process)–known as extrinsic costs, as well the cost of sensors
system design, deployment, and maintenance–known as intrinsic costs. The optimal sensor design
essentially demands arriving at the sensor network design that minimizes the expected losses as a
consequence of making a decision, or equivalently, that minimizes the losses in an average sense
(the idea adapted from Bayesian experiment design and Bayesian decision theory). Because the
monitoring process is subject to many sources of noise and variability, structural state determination
is inherently stochastic. Thus, the goal is to arrive at a sensor network design that considers all
the uncertainties and the consequences of inferring the structural state using the data gathered by
the design of interest. The prediction of the structural state bears a cost/risk. For example, if the
predicted structural state is not the same as the true state (unknown), there will be an associated
penalty in the form of planned or unplanned maintenance costs, operational availability losses, or
even structural failure costs. The design that leads to the least expected loss/risk as a consequence
of making structural state decisions is the optimal design. Since we are operating in an uncertain
domain, arriving at an optimal design that minimizes Bayes risk is the best one can do. In this paper,
Bayes risk will be used as an objective function in a strain-based measurement sensor optimization
problem; however, we note that the framework proposed herein can also be applied to any SHM by
formulating an appropriate form of Bayes risk constrained to that particular problem.

A common approach to function optimization includes iteratively evaluating the optimal value
of the function locally guided by the steepest gradient descent. This approach has been used in
machine-learning [28] and in developing an optimal sensor network [29]. Akbarzadeh [19] used
a gradient descent algorithm in sensor optimization by deriving derivatives at each step, which
requires less computational effort. However, in many problems, the exact analytical derivatives are
not available. Agarwal [30] used the greedy algorithm to find a minimum number of sensors for
covering a 2-dimensional space. The main shortcoming of the greedy algorithm is that it chooses
the “current best” at each step so that it can easily converge to a local optimum instead of a global
optimum. Heuristic algorithms are also widely used in the existing literature; for example, Jin
[31] used a genetic algorithm to minimize the communication distance of sensors, while Yi et
al. [32] utilized a genetic algorithm to obtain optimal sensor placement for a high-rise building



4

monitoring system. However, the main drawback of these optimization strategies is that they must
run many samples, and hence are computationally expensive to arrive at the global optimal value of
the objective function. In complex large-scale civil structures SHM applications, the sensor design
space is potentially colossal. This coupled with the fact that obtaining and evaluating Bayes risk is
computationally expensive and we do not have its derivatives, Bayesian optimization is the most
suitable technique to apply. Bayesian optimization can optimize objective functions parameterized
by high-dimensional design spaces with relatively low computational effort [33, 34, 35]. This
paper details a general Bayesian optimization framework for obtaining the optimal sensor network
design for SHM applications by using Bayes risk as the objective function. We address three
implementation-based challenges: (1) Bayesian calibration of the discrete parameters defining the
damage state; (2) the expensive evaluation of Bayes risk; and (3) the global optimization of an
extremely high-dimensional design space informing Bayes risk.

After laying the theoretical foundation of Bayes risk and Bayesian optimization, we detail the
general framework. We believe that the best possible way to demonstrate our sensor optimization
framework is through an example that by itself doesn’t pose tremendous uninformative challenges,
is relatively simple to conceive, and has all the essential elements to utilize and showcase the
optimization framework presented. To this end, we apply it to an example problem concerning the
boundary condition detection state of a beam structure. This example was considered because it
covers a broader spectrum of detection and inference-type problems that are common in SHM. One
instance of a resembling but slightly different problem is that of contact loss detection between
the quoin blocks of the miter gate. Moreover, the demonstration example is sufficiently complex
to highlight the sensor optimization framework and the associated challenges while not inducing
computational complexities and costs associated with more complex structural scenarios.

The rest of the paper is arranged as follows. Section 2 briefs the concepts of the Bayes risk
functional and explains the four steps of the general sensor optimization framework. Section 3
describes the demonstration problem and details the associated Bayes risk functional, followed by
Section 4 that investigates three different approaches to evaluate the Bayes risk. Section 5 discusses
the optimal sensor placement design using Bayesian optimization in detail and presents the algorithm
used. After a general discussion on Bayesian optimization, the remaining part of Section 5 discusses
the effect of the initial design assumption and the approaches used to evaluate the Bayes risk on the
final optimal sensor design for the demonstration problem. We present three methods to evaluate
the Bayes risk functional: a sampling-based method, mean-value approximation, and univariate
dimensional reduction with Gauss-Hermite quadrature. The sampling-based method yields the
most accurate Bayes risk if large sample size is considered. Consequently, the sampling-based
method suffers from a high computational cost. This drawback makes the sampling-based method
unsuitable for sensor placement optimization. Secondly, as is the inherent case with any Monte-
Carlo based approach, the values of Bayes risk obtained from the sampling-based technique change
as a different set of samples are chosen. The other two methods overcome these challenges and
disadvantages. However, the mean-value approximation of the Bayes risk does not yield accurate
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values. The univariate dimensional reduction with Gauss-Hermite quadrature is fairly accurate and
has acceptable computational speed. Therefore, we use this third approach to evaluate Bayes risk,
and then Bayesian optimization follows. Finally, Section 6 concludes the paper and lists ongoing
research directions.

2 Bayes risk and general optimization framework
We first present some preliminary definitions and notations. The real number space is repre-

sented by ℝ. A random variable 𝑋 is a real-valued function defined on a discrete or a continuous
sample space 𝑆𝑋 and the measurement space Ω𝑋 , such that 𝑋 ∶ 𝑆𝑋 ⟶ Ω𝑋 ⊂ ℝ. Let 𝑥 represent
the realization of the random variable 𝑋, such that 𝑥 ∈ Ω𝑋 . The probability density function and
the cumulative density function is represented by 𝑓𝑋(𝑥 ∈ Ω𝑋) and 𝐹𝑋(𝑥 ∈ Ω𝑋). The expected
value of a function 𝑔(𝑥) is denoted by 𝐸𝑋 [𝑔(𝑥)]. Lastly, a random variable 𝑋 following Gaussian
distribution, with the mean 𝜇𝑥 and standard deviation 𝜎𝑥 is denoted by:

𝑓𝑋(𝑥) =
1
𝜎𝑥

𝜙
(

𝑥 − 𝜇𝑥

𝜎𝑥

)

;

𝐹𝑋(𝑥) = Φ
(

𝑥 − 𝜇𝑥

𝜎𝑥

)

;

𝑋 ∼ 𝑁(𝜇𝑥, 𝜎𝑥).

(1)

2.1 Bayes risk for decision-making
Generally speaking, for a problem concerning Bayesian decision-making, the goal is to arrive

at a decision that minimizes the expected risk (also referred to as Bayes risk in this paper) or expected
loss. The idea is that we have information about the system in the form of observable measured
data. The goal is to learn the behavior of the system from the data (called training) and then use
the learned model to predict the outcome. Primarily, the outcomes can be categorized by detection,
classification, and regression. For instance, detecting if the structure is damaged or not damaged
given the measured strain gauge data is an example of detection; grouping the raw grades of the
class into the letter grades is an example of classification; developing a digital twin/surrogate of a
non-linear system is an example of regression. The goal is to make a decision that minimizes the
expected loss or risk that arises as a consequence of making a decision (every action/decision has a
consequence). Therefore, the optimality criterion used in this paper is the expected loss/risk, which
is also referred to as Bayes risk functional and is a problem-dependent quantity. The strong similarity
of Bayes risk with the action functional in variational structural mechanics is not surprising.

We focus on the classification type problem of which detection is a special case. Let Ω𝑋

represents the measurement space, Ω𝑌 represents the true state (or outcome) space with 𝑀 classes
(for detection as defined above, 𝑀 = 2), such that the feature/measurement/observable is 𝑥 ∈ Ω𝑋 ,
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true outcome (or decision) is 𝑦 ∈ Ω𝑌 = {𝑦0, 𝑦1, ..., 𝑦(𝑀−1)}, and the predicted outcome (or decision)
is 𝑔(𝑥) ∈ Ω𝐺 = {𝑔0, 𝑔1, ..., 𝑔(𝑀−1)}, where 𝑖 = {0, 1, ..., (𝑀 − 1)}. Let 𝑋, 𝑌 , and 𝐺 represent
the random variables corresponding to the uncertain measurement space, the true outcome, and
the predicted outcome respectively. Note that Ω𝐺 ≡ Ω𝑌 , and the two representations of outcome
space is to distinguish between the true (but unknown) and the predicted states. In fact, 𝑔(𝑥)
represents the trained model. For instance, in the case of a simple detection problem, 𝑦0 denotes
a true damaged state; and 𝑔0 is a prediction of a damaged state. Bayes risk is designed such
that it minimizes the effects of incorrect decisions. This is done by incorporating a loss function
𝐿(𝑔(𝑥), 𝑦) ∶ Ω𝐺 × Ω𝑌 ⟶ ℝ. It defines the consequence-cost of deciding the outcome to be 𝑔(𝑥)
when 𝑦 is the true outcome. Since our goal is to minimize losses incurred as a consequence of making
a data-informed decision that could be possibly incorrect, the Bayes risk (objective functional) is
defined as the expected loss, averaged over all possible (noisy) measurements and the true state
𝑦𝑖. Since the goal in this section is to estimate the state 𝑔(𝑥) when the true state is 𝑦 using the
measurement 𝑥, the Bayes risk Ψstate is a function of the predicted outcome/state 𝑔(𝑥) which in turn
is a function of newly acquired data 𝑥 ∈ Ω𝑋 . The Bayes risk is then defined as:

Ψstate (𝑔(𝑥)) = 𝐸𝑋𝑌 [𝐿(𝑔(𝑥), 𝑦)] =
𝑀−1
∑

𝑖=0
∫Ω𝑋

𝑓𝑋𝑌 (𝑥, 𝑦𝑖)𝐿(𝑔(𝑥), 𝑦𝑖) d𝑥

=
𝑀−1
∑

𝑖=0
∫Ω𝑋

𝐿(𝑔(𝑥), 𝑦𝑖)𝑃𝑋|𝑌 (𝑥|𝑦𝑖)𝑃𝑌 (𝑦𝑖) d𝑥.

(2)

Bayes risk can also be written in terms of conditional risk 𝑅state (𝑔(𝑥)), conditioned on measurement
𝑥, as:

Ψstate (𝑔(𝑥)) = 𝐸𝑋
[

𝑅state (𝑔(𝑥))
]

= ∫Ω𝑋

𝑓𝑋(𝑥)𝑅state (𝑔(𝑥)) d𝑥, where, (3a)

𝑅state (𝑔(𝑥)) =
𝑀−1
∑

𝑖=0
𝐿(𝑔(𝑥), 𝑦𝑖)𝑓𝑌 |𝑋(𝑦𝑖|𝑥). (3b)

The conditional risk is defined as the expected loss averaged over all possible true states and
considering (or conditioned on) fixed measurement 𝑥. The optimal decision is the one that minimizes
the expected loss, or,

𝔤(𝑥) = argmin
𝑔(𝑥)

𝑅state(𝑔(𝑥)) ∈ Ω𝐺. (4)

The Bayes risk Ψstate (𝑔(𝑥)) defined in this section is an objective functional that is used to optimally
predict the most likely state 𝑔(𝑥) given the measurement 𝑥 (hence the subscript state in Ψstate and
𝑅state). However, among possible choices of an SHM system design, every design will predict a
unique state for a given set of measurements (obtained by (4)). Inversely, the predicted outcome is
dependent on the sensor design. In the next section, we consider the problem of design selection
that would warrant a different Bayes risk functional. The goal is to pick the design that leads to the
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least erroneous state estimation (the optimality criterion is defined in the next section). Unlike the
problem of state-estimation, where Bayes risk was a function of the estimated state 𝑔(𝑥), the Bayes
risk for the design selection, represented by Ψdesign (𝑒), will be a function of design 𝑒.

2.2 Bayes risk for design selection and optimal sensing framework
The primary goal of this paper is to arrive at an optimal sensing design, and Bayes risk

can accommodate this notion. Let Ω𝐸 represent the design/experiment space, such that 𝑒 ∈ Ω𝐸

represents a design realization. Every design 𝑒 yields different measurement data 𝑥𝑒 ∈ Ω𝑋𝑒
, and

corresponding likelihoods 𝑓𝑋𝑒|𝑌 (𝑥𝑒|𝑦). Here, Ω𝑋𝑒
represents the measurement space for the design 𝑒,

and 𝑋𝑒 denotes the corresponding random variable. Let 𝔤(𝑥𝑒; 𝑒) represents the optimally estimated
state obtained using Eq. (4) for the measurement 𝑥𝑒 corresponding to the design 𝑒 ∈ Ω𝐸 . Therefore,
the decision 𝔤(𝑥𝑒; 𝑒) is also design-dependent. In other words, we now care about choosing the
design with the least error/deviation in the decision 𝔤(𝑥𝑒; 𝑒) relative to the true value 𝑦. Equation
(4) can be used to arrive at the optimal state 𝔤(𝑥𝑒; 𝑒) for a given design 𝑒; or equivalently, for each
design 𝑒, a threshold (or a classifier) can be established using Eq. (4) in the measurement space
Ω𝑋𝑒

that helps classify each realization of measurement 𝑥𝑒 into the optimal state 𝔤(𝑥𝑒; 𝑒). Therefore,
Eq. (4) establishes a mapping between the continuous measurement parameter 𝑥𝑒 and the decision
(discrete in case of detection problem) 𝔤(𝑥𝑒; 𝑒). This allows us to write the Bayes risk for each
design 𝑒 focusing on minimizing the deviation of the predicted outcome 𝔤(𝑥𝑒; 𝑒) relative to the true
outcome 𝑦 as:

Ψdesign(𝑒) = 𝐸𝐺𝑌
[

𝐿(𝔤(𝑥𝑒; 𝑒), 𝑦)
]

=
𝑀−1
∑

𝑖,𝑗=0
𝐿(𝑔𝑖, 𝑦𝑗)𝑓𝐺|𝑌 (𝔤(𝑥𝑒; 𝑒) = 𝑔𝑖|𝑦𝑗)𝑓𝑌 (𝑦𝑗), where, (5a)

𝑓𝐺|𝑌
(

𝔤(𝑥𝑒; 𝑒)|𝑦
)

= ∫Ω𝑋𝑒

𝑓𝐺|𝑋𝑒

(

𝔤(𝑥𝑒; 𝑒)|𝑥𝑒
)

𝑓𝑋𝑒|𝑌 (𝑥𝑒|𝑦) d𝑥𝑒. (5b)

For a design 𝑒, the true state 𝑦, and the observed measurement 𝑥𝑒, the estimated state 𝔤(𝑥𝑒; 𝑒) is one
of the states in the set Ω𝐺. Equivalently, for a design 𝑒, the true state 𝑦, and the measurement 𝑥𝑒,
every state 𝑔𝑖 ∈ Ω𝐺 has a likelihood probability of 𝑓𝐺|𝑌 (𝔤(𝑥𝑒; 𝑒) = 𝑔𝑖|𝑦) to be selected as the optimal
estimated state 𝔤(𝑥𝑒; 𝑒). The Bayes risk functional Ψdesign(𝑒) defined in Eq. (5a) calculates the
expected value of loss (or risk) considering all the possibilities of the estimated states 𝔤(𝑥𝑒; 𝑒) ∈ Ω𝐺

and considering all the possible true states 𝑦 ∈ Ω𝑌 . Minimizing this function yields a design that
leads to the best prediction of the state. We will adapt the Bayes risk defined in Eq. (5a) focusing
on a detection-type problems common in SHM. The following paragraphs detail the generalized
step-by-step procedure for the proposed optimal sensor framework.
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Step 1: Problem description

The first step involves a well-defined problem description. We need to decide our decision and
the true space (Ω𝐺,Ω𝑌 ), or what needs to be detected, and what is its true condition/state, respectively.
Both, the decision and the true space refer to the state of the structure defined accordingly. A discrete
decision space in SHM answers the question “Is a structure critically damaged or not?”, e.g., whether
a bolted assembly is at design torque or not; a continuous decision space, such as where regression
may be utilized, might be to infer crack length. In this paper, we focus on discrete decision spaces,
but at the same time note that the framework can easily be extended to the continuous case. In theory,
that would essentially replace the summation over the decision space in Eq. (5a) by an integral. In
practice, the continuous decision space can be discretized by identifying the mutually exclusive and
exhaustive subsets with a decision state. For instance, a corroded surface area < 10% of a bridge
girder might be classified as not damaged, 10% − 30% can be identified as moderately damaged,
and > 30% can be considered as severely damaged. Secondly, we need to define the measurement
of the observable quantity using which the structural state is inferred. The features used to infer
the structural state can be extracted from the measured quantity, although the measured data itself
can be the feature. The measurement space Ω𝑋𝑒

essentially is the space from which the decision is
directly inferred; therefore, in current content, the measurement space is the feature space. Once we
know what needs to be measured (for example, strain values), the design space Ω𝐸 follows (e.g., all
the possible arrangements of a strain gauge network). Therefore, the problem description consists of
defining the decision space, the true state space, the measurement (or feature) space, and the design
space.

Step 2: Definition of the design dependent Bayes risk functional

For a simple classification problem, Eq. (5) represents the Bayes risk functional. However,
as the complexity of the problem evolves, suitable adjustments to the Bayes risk should be made.
For instance, in our demonstration problem described in detail later, where we are focusing on the
problem of multiple load path changes through boundary connections, the space of collective true
states of the springs (denoted by Ω𝐴) becomes important. Second, in the case of collective decision-
making problems, some decisions are more preferred or weighed than others. To incorporate such
situations, we can assign weights to each of these decisions. Third, unlike the Bayes risk expression
in Eq. (5) that incorporates the cost of making a decision or extrinsic cost only, the intrinsic costs
(like the sensor deployment and maintenance costs) must be included in SHM applications. All
these considerations lead to Bayes risk Ψdesign(𝑒) to bear a form defined in Eq. (9), with the extrinsic
cost defined in Eq. (10) of Section 3.2.

Step 3: Evaluation of the design-dependent Bayes risk functional

For a Bayes risk of a simple classification or detection type problems represented in Eq. (5a),
the first challenge is to evaluate the three probabilities present in Eq. (5): 𝑓𝑌 (𝑦𝑗), 𝑓𝑋𝑒|𝑌 (𝑥𝑒|𝑦), and
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𝑓𝐺|𝑋𝑒
(𝔤(𝑥𝑒; 𝑒)|𝑥𝑒). The quantity 𝑓𝑌 (𝑦𝑗) represents the prior probability of the true state, and in

absence of any information can be assumed as 0.5 for a detection type problem. The likelihood
𝑓𝑋𝑒|𝑌 (𝑥𝑒|𝑦) is obtained using either a physics-based model or a digital twin. The posterior of
the decision given the measurement 𝑓𝐺|𝑋𝑒

(𝔤(𝑥𝑒; 𝑒)|𝑥𝑒) is more involved to evaluate. For a binary
detection problem it can be written using the law of total probability as:

𝑓𝐺|𝑋𝑒
(𝑔𝑖|𝑥𝑒) =

2
∑

𝑗=1
𝑓𝐺|𝑌 (𝑔𝑖|𝑦𝑗)𝑓𝑌 |𝑋𝑒

(𝑦𝑗|𝑥𝑒). (6)

The probability of making a decision given the true state 𝑓𝐺|𝑌 (𝑔𝑖|𝑦𝑗) depends on the detection
threshold evaluated for each design case using Eq. (4). The quantity 𝑓𝑌 |𝑋𝑒

(𝑦𝑗|𝑥𝑒) is anti-causal and
can be evaluated using Bayes theorem as:

𝑓𝑌 |𝑋𝑒
(𝑦𝑗|𝑥𝑒) =

𝑓𝑋𝑒|𝑌 (𝑥𝑒|𝑦𝑗)𝑓𝑌 (𝑦𝑗)
𝑓𝑋𝑒

(𝑥𝑒)
. (7)

The second difficulty in obtaining Bayes risk is to evaluate the integral in Eq. (5b). To approximate
the integral, we first change the variable of the integral from the measurement space to the uncertain
input space. For instance, in our demonstration problem, the load, its location, and the noise in the
strain values are uncertain, causing randomness in the strain measurement. We realize that a unique
value of the load, its location, and the noise in the strain gauge give a unique realization of the strain
measurement. This allows us to change the variables of integration as defined in Eq. (17). The
integral can then be numerically approximated. We discuss three different approaches to evaluate
the integral in Section 4.4.

Step 4: Obtaining the optimal sensor design using Bayesian optimization

Once the problem is well defined (step 1) and the associated Bayes risk is obtainable (steps 2-3),
the question that we intend to answer for optimal sensor design is: “Given Ω𝐺, Ω𝑌 , Ω𝑋𝑒

, and Ω𝐸 ,
and given an assumed initial design 𝑒0, what is the design 𝑒∗ ∈ Ω𝐸 that minimizes the Bayes risk
Ψdesign(𝑒)?”

We very briefly detail the sensor optimization algorithm, which will be explained in great
depth in Section 5. We start with an initial design 𝑒0 consisting of 𝑁0 number of sensors. To obtain
the optimal design 𝑒1 with (𝑁0 + 1) sensors, we search the entire design space for the (𝑁0 + 1)th

sensor location. The (𝑁0 + 1)th sensor location that maximizes the acquisition function constitutes
the next additional sensor. In this paper, we use expected improvement [36, 37] as the acquisition
function. Similarly, we repeat the optimization process to arrive at the optimal design 𝑒𝑛as

consisting
of 𝑁0 + 𝑛as sensors (or 𝑛as number of additional sensors relatively to the initially assumed design
𝑒0). Finally, we pick 𝑒∗ = argmin𝑒𝑛as

Ψdesign(𝑒𝑛as
) as the most optimal design, where Ψdesign(𝑒𝑛as

)
represents the Bayes risk associated with the design 𝑒𝑛as

. Figure 1 illustrates the pipeline of the
proposed Bayesian optimization framework. Section 3 deals with the description of a demonstration
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Figure 1: Bayesian optimization framework for optimal sensor network design

problem and derives the associated Bayes risk (steps 1 and 2). Section 4 discusses the approaches to
evaluate the Bayes risk pertaining to the demonstration problem (step 3). Finally, Section 5 details
the Bayesian optimization algorithm for optimal sensor placement 1 for general detection-type
problems and discusses the results concerning the demonstration problem.

3 Demonstration problem description and the associated Bayes
risk
As we mentioned in the introduction, our primary motivation for choosing the following

example problem as a case study to demonstrate this framework is that it resembles in behavioral
characteristics a typical detection-type problem in SHM that has a discrete decision space: the loss of
contact in the quoin block of a miter gate. As discussed in Section 2.2, even the continuous decision
space can be reasonably broken down into a rather more convenient discrete decision space. Hence,
the presented framework is also suitable for problems involving crack propagation, corrosion, weld
defect growth, etc. To demonstrate the framework, we consider a beam modeled by 2D shell elements
and focus on detecting the state of the boundary modeled using connecting springs. This problem is
complicated enough to highlight the Bayesian optimization framework for sensor placement and
undemanding enough to implement our algorithms with a lower computational cost. The figure
below shows similar types of problems in SHM where the presented sensor-design framework can
be extended (although each specific problem would require it’s own carefully considered Bayes risk
functional).

3.1 Demonstration problem description
The demonstration problem consists of a cantilever beam supported by a roller on the left end

and a free boundary on the right end. The Young’s modulus of the beam is 2.1 × 109𝑁𝑚−2. There
exist 11 wall-to-beam springs with the stiffness 107𝑁𝑚−1 connected to the left side of the 2D shell
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Figure 2: Design optimization problems in SHM similar to the demonstration example presented in
this paper

element providing structural stability as shown in Fig. 3. The finite element model for the beam was
build in OpenSees [38] with quadrilateral meshing. The entire beam was meshed finely to 22500
elements to capture accurate strain responses, particularly at the left edge of the beam, where the
springs are attached. The horizontal axial strain of the element is considered to be the strain gauge
measurement. Therefore, there are 22500 possible strain gauges (with horizontal orientation). In
the general case, the strain gauge may be discrete or continuous and can have any orientation [39].

Our problem statement is as follows: we aim to arrive at the best possible sensor placement
design 𝑒 ∈ Ω𝐸 , where Ω𝐸 is the design space, such that the existence of the springs on the left of
the beam can be most optimally predicted (“detected”), given that the magnitude of the load 𝑝 and
its location 𝑝loc ∈ [0, 10] are uncertain. We also assume that the strain gauge readings are noisy. By
sensor placement design, we mean the arrangement of the strain gauges (including the number used
and their locations). To simplify the problem further, we fix the top six springs. Hence, we need not
predict their existence. Our goal is, therefore, to predict the existence of the remaining five springs
𝑠1, 𝑠2, 𝑠3, 𝑠4, and 𝑠5.
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Figure 3: Schematic diagram of the 2D beam modeled by 2D shell elements

3.2 Bayes risk for the optimal sensor placement
As discussed before, for each spring, our predicted decision space Ω𝐺 and the true outcome

space Ω𝑌 consist of two possible outcomes, such that Ω𝐺 = {𝑔0, 𝑔1} and Ω𝑌 = {𝑦0, 𝑦1}, where

𝑔0 ∶ Prediction is that the spring exists;
𝑔1 ∶ Prediction is that the spring does not exists;
𝑦0 ∶ True state is that the spring exists;
𝑦1 ∶ True state is that the spring does not exists.

(8)

Recall that we have 5 critical springs 𝑠𝑛, with 𝑛 ∈ {1, 2, 3, 4, 5}. For 𝑛th spring, we denote the
predicted state by 𝑔𝑖|𝑛thspring = 𝑔𝑛𝑖, and the true state by 𝑦𝑗|𝑛thspring = 𝑦𝑛𝑗 , with 𝑖, 𝑗 ∈ {0, 1}, such that
𝑔𝑛𝑖 ∈ Ω𝐺 and 𝑦𝑛𝑗 ∈ Ω𝑌 . Since there are five springs, with each of them existing in the either of
two possible states {𝑦0, 𝑦1}, there are 25 possibles states of the springs collectively. We define the
collective true state of the five springs by a set of vectors Ω𝐴, such that 𝐴𝑘 = [�̄�1, �̄�2, �̄�3, �̄�4, �̄�5] ∈ Ω𝐴

and �̄�𝑛 ∈ {𝑦𝑛0, 𝑦𝑛1} = Ω𝑌 , with 𝑘 ∈ {1, 2, 3, ..., 25}, and 𝑓𝐴(𝐴𝑘) = 2−5 ,∀ 𝑘. Similarly, we
define the collective prediction state of the five springs by a set of vectors Ω𝑆 , such that 𝑆𝑘 =
[�̄�1, �̄�2, �̄�3, �̄�4, �̄�5] ∈ Ω𝑆 and �̄�𝑛 ∈ {𝑔𝑛0, 𝑔𝑛1} = Ω𝐺, with 𝑘 ∈ {1, 2, 3, ..., 25}. We define 𝐴 and 𝑆
as the random variables corresponding to the space Ω𝐴 and Ω𝑆 respectively, such that, 𝐴𝑘 and 𝑆𝑘

represents the realizations of 𝐴 and 𝑆 respectively.
For the considered sensor placement design 𝑒, the Bayes risk specific to this problem consists

of intrinsic and extrinsic costs. The intrinsic cost Ψdesign-in(𝑒) includes the expenses associated
with the sensor installation and maintenance. On the other hand, the extrinsic cost Ψdesign-ex(𝑒)
accounts for the cost of making a decision and the design selection. It resembles the form of Eq. (5).
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Therefore, the total Bayes risk is defined as:

Ψdesign(𝑒) = Ψdesign-in(𝑒) + Ψdesign-ex(𝑒). (9)

We now focus on constructing the extrinsic cost Ψex-design(𝑒). We denote the cost 𝐿
(

𝑔𝑛𝑖, 𝐴𝑘
)

∶
Ω𝐺 × Ω𝐴 ⟶ ℝ, defining the regret of making the decision 𝑔𝑖 for the strain gauge 𝑛, when the true
collective state is 𝐴𝑘. We further define the cost function: 𝐶𝑛𝑖𝑗 = 𝐿

(

𝑔𝑛𝑖, 𝐴𝑘(𝑛) = 𝑦𝑛𝑗
)

, and assume
that it is independent of the selected design 𝑒. For the fixed spring 𝑛, the cost 𝐶𝑛𝑖𝑗 = 𝐶𝑖𝑗 is defined
as:

True State
𝑦0 𝑦1

Predicted
State

𝑔0 𝐶00 𝐶01
𝑔1 𝐶10 𝐶11

Table 1: Cost function

The cost values 𝐶𝑖𝑗 assign penalty/losses to each predicted state 𝑔𝑖 when the true state is 𝑦𝑗 . Consider
the case where the spring exists in reality, i.e. the state 𝑦0. If the prediction is correct, i.e. 𝑔0, there is
no loss since no action is warranted, or 𝐶00 = 0. On the contrary, if the prediction is 𝑔1 (spring not
existing), then the engineers would decide to perform unnecessary inspection and service leading
to a loss of 𝐶10. However, as a consequence of this incorrect decision, there would be no major
failure since the spring exists in reality. Similarly, consider the case where the spring does not exist,
represented by 𝑦1 (the boundary is actually damaged). If we estimate (from strain gauge data) that
spring does not exist (correct decision), then there will be cost (denoted by 𝐶11) incurred to inspect
and repair the spring (or the boundary). However, if the spring is predicted to exist, when it is
non-existent (incorrect decision), it can lead to the most expensive mistake since the structure can
potentially fail if appropriate actions are not taken. This leads to the maximum cost of 𝐶01. For
simplicity, we assume 𝐶01 = 200 dollars and assume other costs to be fraction of 𝐶01, such that
𝐶10 = 0.1𝐶01 and 𝐶11 = 0.25𝐶01. Individual costs 𝐶𝑖𝑗 are defined in Table 2.

Cost Definition Breakdown Assumed Dollars
𝐶00 True positive cost Zero cost, as no action is needed 0
𝐶10 False positive cost Cost due to service and inspection 20
𝐶01 False negative cost Cost due to service, failure, and replacement 200
𝐶11 True negative cost Cost due to service and repair 50

Table 2: Assumed cost function values

In cases of problems involving multiple decisions, there may be instances where the conse-
quences of making some decisions are more important or weighed for some cases than the others
(like some springs being more important than the others). To incorporate these kind of situations,
we assume that the top two springs (𝑠4, 𝑠5) are more important than the bottom three (𝑠1, 𝑠2, 𝑠3). We
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incorporate this assumption by assigning weights to each of these springs as 𝑤 = [1, 1, 1, 1.5, 1.5].
Our goal is to define the extrinsic Bayes risk functional, considering the importance of the conse-
quence of decisions associated with each spring, as a quantity that minimizes itself with the most
optimal sensor arrangement 𝑒. Along the similar lines of Eq. (5), the extrinsic Bayes Risk is defined
as:

Ψdesign-ex(𝑒) =
5
∑

𝑛=1
𝑤𝑛𝐸𝐺𝐴

(

𝐿
(

𝑔𝑛𝑖, 𝐴𝑘
))

=
5
∑

𝑛=1
𝑤𝑛

32
∑

𝑘=1

1
∑

𝑖=0
𝐿
(

𝑔𝑛𝑖, 𝐴𝑘
)

𝑓𝐺|𝐴(𝑔𝑛𝑖|𝐴𝑘)𝑓𝐴(𝐴𝑘). (10)

In the equation above, 𝑓𝐴(𝐴𝑘) = 2−5 is the prior probability of the collective state of springs
being 𝐴𝑘. Secondly, 𝑥𝑒 ∈ Ω𝑋𝑒

represents the measured/observed data. For instance, 𝑥𝑒 can be
strain measurements for any design 𝑒. For the 𝑛th spring, the quantity 𝑓𝐺|𝐴(𝑔𝑛𝑖|𝐴𝑘) represents the
probability of predicting the state 𝑔𝑖 for the spring 𝑛, when the true collective state is 𝐴𝑘. This is a
difficult bit to evaluate, and like Eq. (5b) can be broken down into more manageable pieces:

𝑓𝐺|𝐴(𝑔𝑛𝑖|𝐴𝑘) = ∫Ω𝑋𝑒

𝑓𝐺|𝑋𝑒
(𝑔𝑛𝑖|𝑥𝑒).𝑓𝑋𝑒|𝐴(𝑥𝑒|𝐴𝑘) d𝑥𝑒. (11)

The likelihood 𝑓𝐺|𝑋𝑒
(𝑔𝑛𝑖|𝑥𝑒) depicts our belief of deciding the state of the spring 𝑛 to be 𝑔𝑖 for a

given measurement 𝑥𝑒 ∈ Ω𝑋𝑒
. We obtain the likelihood using Bayesian inference (detailed in next

section).

4 Evaluating Bayes risk for a fixed design
To perform Bayes optimization that yields the most optimal sensor placement design, we will

have to start with a design that evolves/improves with every iteration of the optimization process.
At every iteration, for a suggested design 𝑒, we need to obtain the Bayes risk defined in Eq. (10).
Therefore, in this Section, we detail on calculating the Bayes risk for a design 𝑒 consisting of 30
sensors, the arrangement of which was obtained using Latin Hypercubic Sampling (LHS) technique
[40]. The first step of the process is to evaluate the likelihood of making a decision given the
measurement, 𝑓𝐺|𝑋𝑒

(𝑔𝑛𝑖|𝑥𝑒).

4.1 Analytical formulation to obtain the likelihood
The goal is to obtain 𝑓𝐺|𝑋𝑒

(𝑔𝑛𝑖|𝑥𝑒). Recall that 𝑆𝑘 ∈ Ω𝑆 defines the collective prediction state
of the springs. We can therefore write:

𝑓𝐺|𝑋𝑒
(𝑔𝑛𝑖|𝑥𝑒) =

32
∑

𝑘=1
𝑓𝐺|𝑆(𝑔𝑛𝑖|𝑆𝑘).𝑓𝑆|𝑋𝑒

(𝑆𝑘|𝑥𝑒). (12)
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We note that:

𝑓𝐺|𝑆(𝑔𝑛𝑖|𝑆𝑘) =

{

1 if 𝑆𝑘(𝑛) = 𝑔𝑛𝑖;
0 otherwise.

(13)

To evaluate the distribution 𝑓𝑆|𝑋𝑒
(𝑆𝑘|𝑥𝑒) in Eq. (12), we assume that to make a decision given

the measurement data, we have a non-conflicting threshold or boundary to make a prediction
of the spring state, such that 𝑓𝑌 |𝑋𝑒

(𝑦𝑛0|𝑥𝑒) and 𝑓𝑌 |𝑋𝑒
(𝑦𝑛1|𝑥𝑒) do not intersect. This also implies

𝑓𝐺|𝑋𝑒
(𝑔𝑛𝑖|𝑥𝑒) = 𝑓𝑌 |𝑋𝑒

(𝑦𝑛𝑖|𝑥𝑒). With this assumption, we have 𝑓𝑆|𝑋𝑒
(𝑆𝑘|𝑥𝑒) = 𝑓𝐴|𝑋𝑒

(𝐴𝑘|𝑥𝑒).
We note that the quantity 𝑓𝐴|𝑋𝑒

(𝐴𝑘|𝑥𝑒) is anti-causal, as it is asking for the true state of the
springs when the measurement 𝑥𝑒 is given. We use Bayes theorem to write it in a more desirable
and causal form:

𝑓𝐴|𝑋𝑒
(𝐴𝑘|𝑥𝑒) =

𝑓𝑋𝑒|𝐴(𝑥𝑒|𝐴𝑘).𝑓𝐴(𝐴𝑘)
∑32

𝑙=1 𝑓𝑋𝑒|𝐴(𝑥𝑒|𝐴𝑙).𝑓𝐴(𝐴𝑙)
=

𝑓𝑋𝑒|𝐴(𝑥𝑒|𝐴𝑘)
∑32

𝑙=1 𝑓𝑋𝑒|𝐴(𝑥𝑒|𝐴𝑙)
. (14)

The likelihood 𝑓𝑋𝑒|𝐴(𝑥𝑒|𝐴𝑘) remains to be evaluated for all 𝑘. For a fixed collective spring state
𝐴𝑘, and a design 𝑒 with 𝑁sg(𝑒) number of strain gauges, 𝑓𝑋𝑒|𝐴(𝑥𝑒|𝐴𝑘) is the joint distribution of the
𝑁sg(𝑒) strain measurements.

Although the true strain values of different strain-gauges are related due to the underlying
physics, the noise in strain gauge measurements is taken to be statistically independent. We also
assume (for modeling purposes) that the randomness in the strain gauge readings, primarily due to
noise and uncertainties in loading, follows a Gaussian distribution. Let 𝑥𝑒𝑛 represent the observed
strain measurement in 𝑛-th strain-gauge of the design 𝑒, such that 𝑥𝑒 = {𝑥𝑒𝑛} with 𝑛 ≤ 𝑁sg(𝑒). For
the selected spring state 𝐴𝑘 and the design 𝑒, if 𝑥𝑒𝑛, 𝜇𝑒𝑛, and 𝜎𝑒𝑛 represent the measurement of the
strain gauge 𝑛 (a random variable), its mean value, and the standard deviation respectively, we can
write the following:

𝑓𝑋𝑒|𝐴(𝑥𝑒|𝐴𝑘) =
𝑁sg(𝑒)
∏

𝑛=1

1
√

2𝜋𝜎2
𝑒𝑛

exp

(

−1
2

(

𝑥𝑒𝑛 − 𝜇𝑒𝑛

𝜎𝑒𝑛

)2
)

=
𝑁sg(𝑒)
∏

𝑛=1

1
𝜎𝑒𝑛

𝜙
(

𝑥𝑒𝑛 − 𝜇𝑒𝑛

𝜎𝑒𝑛

)

. (15)

This gives us all the pieces to obtain 𝑓𝐺|𝑋𝑒
(𝑔𝑛𝑖|𝑥𝑒). We obtain the measurement data 𝑥𝑒 using Finite

Element Model (FEM) developed using OpenSees [38] or using a surrogate model developed using
Gaussian Process Regression (GPR) [35].

We note that obtaining the likelihood 𝑓𝑋𝑒|𝐴(𝑥𝑒|𝐴𝑘) and the posterior 𝑓𝐴|𝑋𝑒
(𝐴𝑘|𝑥𝑒) is not

complicated for the chosen demonstration problem. Since our emphasis is more on the optimization
framework, for simplicity we have assumed strain values to be uncorrelated and evaluation of the
posterior can be done analytically as the decision space is discrete. However, for more complicated
problems with correlated measurement values and continuous decision space, evaluation of the
likelihood and the posterior will be more involved. For instance, in such cases, we use numerical
techniques like Markov Chain Monte Carlo (MCMC), Sequential Monte Carlo (SMC) (refer to
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[41]), or other methods to evaluate posterior.

Remark 1: We note that the true strain values of different strain gauges are correlated (or func-
tionally related) by the underlying physics of the problem. That is, each of the strain gauge readings
embeds some information about the state of the structure. In this paper, we use the Finite Element
Model (FEM) as the ground truth (discussed more in the next section). This implies that the strain
values obtained from the FEM are treated as the actual/true strain measurement that is impossible
to be known since there will always be noise in observed strain readings. For a given load condition,
we have a deterministic prediction of the mean value of the strain reading using the FEM model
(or the respective digital surrogate constructed using strain data obtained from the FEM) which
is considered to be the ground truth. However, the noise in the various strain gauge reading is
statistically independent since the noise pertains to a given strain gauge itself. In this paper, we have
assumed a Gaussian structure to the noise.

4.2 Finite element and Surrogate model
Section 3 details the finite element model of the structure of interest built using shell elements.

We consider that the loading in the beam is uncertain, such that, the concentrated load 𝑝 ∈ Ω𝑃 and
its locations 𝑝loc ∈ Ω𝑃loc

is represented by the random variables 𝑃 and 𝑃loc respectively. We run
the FE model for 5000 samples of random input data consisting of seven quantities: the true state
of the springs 𝐴𝑘 ∈ 𝐴 (consisting of states of 5 springs), the magnitude of the load 𝑃 ∼ 𝑁(𝜇𝑝 =
1000 newton, 𝜎𝑝 = 100 newton), and the location of the load 𝑃loc ∼ 𝐻𝑁(𝜇loc = 10 𝑚, 𝜎loc = 1 𝑚).
Here, 𝐻𝑁(⋅, ⋅) represents the half normal distribution. For each input sample, we obtain 22,500
strain responses. From here on Ω𝑍 represent the space of input sample, such that 𝑧 ∈ Ω𝑍 .

We would like to note that in many machine learning problems, physics-based models are
unavailable, and the engineers must rely on fitting a numerical model using the data obtained from
the experiments. In our case, we obtain the data from the finite element model, which we consider as
“ground truth”. Although we have the luxury of utilizing the finite element model, the computational
cost is restrictive, and therefore, not the best option with which to carry out Bayesian optimization.
For Bayesian calibration, metamodels or surrogate models are preferable, e.g., Support Vector
Regression (SVR) [42], Gaussian Process Regression (GPR) [42, 35], Neural Network [43], and
Polynomial Chaos Expansion (PCE) [44]. Models like PCE and SVR yield a point prediction
of the output. Therefore, they are computationally cheaper than approaches like GPR that also
predicts the uncertainties in the output. We use GPR to build our surrogate model which turns
out to be 5000 times faster than the FEM model. The output of the surrogate model usually has a
very large dimension. We overcome the issue of high-dimensional output space using the Single
Value Decomposition (SVD) technique that reduces the high-dimensional correlated output space to
low-dimensional uncorrelated features. We transform the strain response from 22500 dimensions
to lower 28-dimensional latent space using SVD. These 28 important features cover 99.2% of the
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total information of the data. These 28 features can be inverted to obtain the complete strain gauge
response. We have built the surrogate model for each of these 28 features using GPR. One-third of
the 5000 data points were used for training the GPR, whereas, the remaining Two-third was used for
validation to verify the accuracy of the surrogate. Fig. 4 illustrates the discussion carried out so far.

Figure 4: Flowchart describing strain data generation using FEM, and prediction using GPR surrogate
model

The Figures 5a and 5b show the nearly identical strain field obtained for FEM and the surrogate
model for a random input sample. Fig. 6a shows the error in the prediction of the strain values using
the FEM and GPR model for the bottom 100 strain gauge locations at the left boundary of the beam.
Overall, the absolute prediction error is of the order 10−7, and the relative error is of the order 10−3.
However, a relatively high prediction error is observed at the locations of springs. Similarly, Fig. 6b
shows the distribution of the absolute prediction error across the beam for a random input sample.
Once again, relatively higher errors are observed at the spring locations and the location where the
concentrated load acts.
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(a) Strain field obtained using FEM (b) Strain field obtained using GPR model
Figure 5: Comparison of the strain fields obtained using FEM and GPR model

(a) Error in the 100 strain values at the left boundary of
the beam

(b) Error in the strain values for a random input
sample

Figure 6: Error in the strain values obtained using FEM and GPR model

4.3 Revisiting Bayes risk
As seen in Section 4.2, the measurement 𝑥𝑒 ∈ Ω𝑋𝑒

depends on the load 𝑝 ∈ Ω𝑃 , its location
𝑝loc ∈ Ω𝑃loc

. The randomness in the strain values (observations) 𝑥𝑒 ∈ Ω𝑋𝑒
are primarily due to the

noise in strain gauge, uncertainties in the concentrated load, and its location. We assume a zero
mean Gaussian noise structure 𝜁 ∼ 𝑁(𝜇𝜀 = 0, 𝜎𝜀 = 5 × 10−7). Let 𝜀 represent the realization of
noise and Ω𝜁 represent the noise space, such that 𝜀 ∈ Ω𝜁 .

Consider a design 𝑒 with 𝑁sg(𝑒) number of strain measurement locations. Let 𝜁𝑖 represent
the random variable for the noise in the 𝑖th strain location. It is reasonable to assume that the
(

𝑁sg(𝑒) + 2
)

random variables 𝑃 , 𝑃loc, 𝜁𝑖,⋯ , 𝜁𝑁sg(𝑒) are statistically independent. We define a
design dependent product space Ω𝜉𝑒 = Ω𝑃 × Ω𝑃loc

× Ω𝜁1 × Ω𝜁2 ×⋯ × Ω𝜁𝑁sg(𝑒)
. The random vector 𝜉𝑒

consists of the realizations of the random variables 𝑃 , 𝑃loc, 𝜁𝑖,⋯ , 𝜁𝑁sg(𝑒). The joint density function
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is then written as:

𝑓𝜉𝑒(𝛽) = 𝑓𝑃 (𝑝).𝑓𝑃loc
(𝑝loc).

𝑁sg(𝑒)
∏

𝑖=1
𝑓𝜁𝑖(𝜀𝑖), where,

𝛽 =
(

𝑝 ∈ Ω𝑃 , 𝑝loc ∈ Ω𝑃loc
, 𝜀1 ∈ Ω𝜁1 , 𝜀2 ∈ Ω𝜁2 ,⋯ , 𝜀𝑁sg(𝑒) ∈ Ω𝜁𝑁sg(𝑒)

)

∈ Ω𝜉𝑒 .

(16)

Noting that the randomness in the measurement space Ω𝑋𝑒
is by virtue of the uncertainty in Ω𝜉𝑒

space, we rewrite Eq. (11) as follows,

𝑓𝐺|𝐴(𝑔𝑛𝑖|𝐴𝑘) = ∫Ω𝜉𝑒

𝑓𝐺|𝜉𝑒(𝑔𝑛𝑖|𝛽, 𝐴𝑘).𝑓𝜉𝑒(𝛽) d𝛽 where, (17a)

𝑓𝐺|𝜉𝑒(𝑔𝑛𝑖|𝛽, 𝐴𝑘) = 𝑓𝐺|𝑋𝑒
(𝑔𝑛𝑖|𝑥). (17b)

The second equation holds because a fixed input sample 𝑧, and noise value, yields a determinate and
unique value of the measurement 𝑥 ∈ Ω𝑋𝑒

. Substituting Eq. (17) into Eq. (10) yields:

Ψdesign-ex(𝑒) = ∫Ω𝜉𝑒

32
∑

𝑘=1
ℒ (𝛽, 𝐴𝑘; 𝑒)𝑓𝐴(𝐴𝑘)𝑓𝜉𝑒(𝛽)𝑑𝛽, where, (18a)

ℒ (𝛽, 𝐴𝑘; 𝑒) =
5
∑

𝑛=1

1
∑

𝑖=0
𝑤𝑛𝐿

(

𝑔𝑛𝑖, 𝐴𝑘
)

𝑓𝐺|𝜉𝑒(𝑔𝑛𝑖|𝛽, 𝐴𝑘). (18b)

We note that these random variables constituting 𝛽 can follow a generic distribution. We can always
transform them to a standard normal random variables. Therefore, in an attempt to generalize,
we transform the load 𝑃 , its location 𝑃loc, and the noise 𝜁𝑖 into their respective standard normal
forms. Since the load and the noise for the 𝑖th strain gauge is Gaussian in our case, their standard
normal forms can be written as 𝒰 (standard normal counterpart of 𝑃 ), and 𝒱𝑖 (standard normal
counterpart of 𝜁𝑖), such that 𝑝 = 𝑢𝜎𝑝 + 𝜇𝑝, and 𝜀𝑖 = 𝑣𝑖𝜎𝜀 + 𝜇𝜀, where 𝑢 and 𝑣𝑖 are the realizations of
𝒰 , and 𝒱𝑖 respectively. We transform 𝑓𝑃loc

(𝑝loc) from Half Normal to a Standard Normal random
variable 𝒰loc, such that the cumulative density functions are equal: 𝐹𝑃loc

(𝑝loc) = 𝐹𝒰loc
(𝑢loc), and

𝜇𝑝loc
= 𝐹 −1

𝑃loc

(

𝐹𝒰loc
(𝜇𝑢loc

)
)

. This transforms 𝜉𝑒 into a joint standard normal random variable ℬ𝑒 (with
a realization 𝒷, where 𝒷 ∈ Ωℬ𝑒

), such that

𝑓ℬ𝑒
(𝒷) = 𝑓𝒰 (𝑢).𝑓𝒰loc

(𝑢loc).
𝑁sg(𝑒)
∏

𝑖=1
𝑓𝒱𝑖

(𝑣𝑖), where,

𝒷 =
(

𝑢, 𝑢loc, 𝑣1, 𝑣2,⋯ , 𝑣𝑁sg(𝑒)

)

.

(19)
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We can now rewrite Eq. (18) as:

Ψdesign-ex(𝑒) = ∫Ωℬ𝑒

32
∑

𝑘=1
𝜆(𝒷, 𝐴𝑘; 𝑒)𝑓𝐴(𝐴𝑘)𝑓ℬ𝑒

(𝒷)d𝒷, where, (20a)

𝜆(𝒷 = (𝑢, 𝑢loc, 𝑣𝑖), 𝐴𝑘; 𝑒) = ℒ
(

𝛽 =
(

𝑢𝜎𝑝 + 𝜇𝑝, 𝐹
−1
𝑃loc

(

𝐹𝒰loc
(𝑢loc)

)

, 𝑣𝑖𝜎𝜀 + 𝜇𝜀, 𝐴𝑘; 𝑒
))

. (20b)

Section 4.4 deals with evaluating the Bayes risk discussed in this section. To maintain generality,
we present the formula for Bayes risk as an approximation of both, Eq. (18a), and Eq. (20a).

4.4 Evaluating the expected cost considering uncertainties in load and noise
in the observed strains

4.4.1 Obtaining the cost ℒ for a given input sample 𝑧 and noise structure

Once we have the GPR models, we can obtain 𝑓𝑋𝑒|𝐴(𝑥𝑒|𝐴𝑘), and hence evaluate 𝑓𝐺|𝑋𝑒
(𝑔𝑛𝑖|𝑥𝑒)

using Eq. (14). To demonstrate a simple case of the evaluation of posterior probability of spring
existence, we ignore the uncertainties due to load and its location by fixing the load as: 𝑝 ∈ Ω𝑃

and 𝑝loc ∈ Ω𝑃loc
. We consider a design with 𝑁sg(𝑒) strain gauges, picked randomly using Latin

Hypercubic Sampling. Assuming that the true state of the springs is 𝐴, we consider the input sample
as 𝑧 = (𝐴; 𝑝; 𝑝loc) ∈ Ω𝑍 . For the chosen design 𝑒 and the input sample 𝑧, we run multiple surrogate
runs over different noise values in the Monte Carlo sense. The posterior can then be obtained using
Eq. (15). Similarly, for the same fixed load and its location, the likelihood 𝑓𝑋𝑒|𝐴(𝑥𝑒|𝐴𝑘) for all
possible spring states can be obtained, yielding 𝑓𝐴|𝑋𝑒

(𝐴𝑘|𝑥𝑒) using Eq. (16). Finally, we can obtain
𝑓𝐺|𝑋𝑒

(𝑔𝑛𝑖|𝑥𝑒) using equations(12) and (13). Equations (17b) and (18b) yields ℒ (𝛽, 𝐴𝑘; 𝑒). Fig. 7
illustrates the discussion so far.

For this special example with a fixed load and its location, and that we have assumed a well
defined noise structure with zero mean 𝜁 ∼ 𝑁(0, 5×10−7), we can obtain the likelihood 𝑓𝑋𝑒|𝐴(𝑥𝑒|𝐴𝑘)
without numerous surrogate runs. For the fixed input sample 𝑧, let �̄�𝑒𝑖 represent the strain values at
the 𝑛-th sensor locations obtained using either a forward FEM or a surrogate model. The closed
form likelihood for such case can then be written as 𝑓𝑋𝑒|𝐴(𝑥𝑒|𝐴𝑘) =

∏𝑁sg(𝑒)
𝑛=1

1
5×10−7

𝜙
(

𝑥𝑒𝑛−�̄�𝑒𝑛
5×10−7

)

.
We need to incorporate the cumulative uncertainties due to all the aforementioned entities

into evaluating the Bayes risk. Evaluating Ψdesign-ex(𝑒) and calculating the associated integral in
Eq. (18a) is computationally expensive and not so trivial. We do this by using three techniques
discussed in the next section: a sampling-based approach, mean value approximation, and univariate
dimension reduction with Gauss-Hermite quadrature.
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Figure 7: Flowchart describing the approach to obtain the cost ℒ for a given design 𝑒 and input
sample 𝑧

4.4.2 Approach 1: Sampling-based method

This is a Monte Carlo based approach, where we generate large number of random samples
of 𝐴𝑖 ∈ Ω𝐴, and 𝛽𝑖 ∈ Ω𝜉𝑒 , with 𝑖 ∈ {1, 2, 3,⋯ , 𝑁mcs}. Here, 𝑁mcs denotes the number of Monte
Carlo samples. For the design 𝑒, we can obtain the cost ℒ (𝛽𝑖, 𝐴𝑖; 𝑒) for each 𝐴𝑖 and 𝛽𝑖 similar to
the procedure detailed in previous Section 4.4.1. The Bayes risk is then approximated as:

Ψdesign-ex(𝑒) ≈
1

𝑁mcs

𝑁mcs
∑

𝑖=1
ℒ (𝛽𝑖, 𝐴𝑖; 𝑒) (21a)

Ψdesign-ex(𝑒) ≈
1

𝑁mcs

𝑁mcs
∑

𝑖=1
𝜆(𝒷𝑖, 𝐴𝑖; 𝑒). (21b)

The approximated Bayes risk depicted in the above equations is also called empirical risk. We
recall here that Eq. (21a) and (21b) represents the approximated Bayes risk corresponding to Eq.
(18), and Eq. (20) respectively. Fig. 8 illustrates a convergence plot for the sampling-based method
obtained for a design 𝑒, with 𝑁sg(𝑒) = 30 strain gauges. The expected cost converges to 327.2
(showed by the red line) around 𝑁mcs = 10000 samples with the average noise of 0.71. However, the
evaluation of Bayes risk for 10000 samples takes 265 seconds. The optimization process demands
an evaluation of the cost function around ten thousand times. Therefore, the sampling-based method
is computationally expensive.
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Figure 8: Convergence plot of Bayes risk obtained using sampling-based method

4.4.3 Approach 2: Mean value approximation

Here, we evaluate the Bayes risk as the cost ℒ (𝛽, 𝐴𝑘; 𝑒) evaluated for all the spring states 𝐴𝑘

at the mean value of the load, its location, and noise, weighted over by the probability 𝑓𝐴(𝐴𝑘), such
that:

Ψdesign-ex(𝑒) ≈
32
∑

𝑘=1
ℒ

(

𝛽 =
(

𝜇𝑝, 𝜇𝑝loc
, 𝜇𝜀1 , 𝜇𝜀2 ,⋯ , 𝜇𝜀𝑁sg(𝑒)

)

, 𝐴𝑘; 𝑒
)

𝑓𝐴(𝐴𝑘); (22a)

Ψdesign-ex(𝑒) ≈
32
∑

𝑘=1
𝜆
(

𝒷 =
(

𝜇𝑢, 𝜇𝑢loc
, 𝜇𝑣1 , 𝜇𝑣2 ,⋯ , 𝜇𝑣𝑁sg

)

, 𝐴𝑘; 𝑒
)

𝑓𝐴(𝐴𝑘). (22b)

Since, 𝒰 , 𝒰loc, and 𝒱𝑖 are standard normal random variables, we have 𝜇𝑢 = 0; 𝜇𝑢loc
= 0; 𝜇𝑣𝑖 = 0,

∀𝑖 ≤ 𝑁sg(𝑒).

4.4.4 Approach 3: Univariate dimensional reduction with Gauss-Hermite quadrature

Approach 1 is computationally expensive as it involves considering a large sample size,
whereas approach 2 is feasible but not very accurate when there is large variability. We tackle these
limitations using the current approach to evaluate Bayes risk.

We assume a design 𝑒, with 𝑁sg(𝑒) number of strain gauges. We start by redefining Bayes risk
in Eq. (20) as:

Ψdesign-ex(𝑒) = ∫Ωℬ𝑒

ℎ(𝒷; 𝑒)𝑓ℬ𝑒
(𝒷)d𝒷, where, (23a)

ℎ(𝒷; 𝑒) =
32
∑

𝑘=1
𝜆(𝒷, 𝐴𝑘; 𝑒)𝑓𝐴(𝐴𝑘). (23b)

Recall, that the vector 𝒷 = (𝑢, 𝑢loc, 𝑣1, 𝑣2,⋯ , 𝑣𝑁sg
(𝑒)) consist of

(

𝑁sg(𝑒) + 2
)

variables. We now
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define the following vectors consisting of
(

𝑁sg(𝑒) + 2
)

elements:

𝑏0 = (0, 0, 0, 0,⋯ , 0);
𝑏1 = (𝑢, 0, 0, 0,⋯ , 0);
𝑏2 = (0, 𝑢loc, 0, 0,⋯ , 0);
𝑏3 = (0, 0, 𝑣1, 0,⋯ , 0);
𝑏4 = (0, 0, 0, 𝑣2,⋯ , 0);
⋮

𝑏(𝑁sg(𝑒)+2) = (0, 0, 0, 0,⋯ , 𝑣𝑁sg(𝑒)).

(24)

Using the definitions above and univariate dimensional reduction (refer to [45]), we approximate
the function ℎ(𝒷; 𝑒) as:

ℎ(𝒷; 𝑒) ≈ −
(

𝑁sg(𝑒) + 1
)

𝜆(𝑏0, 𝐴𝑘; 𝑒) +
(𝑁sg(𝑒)+2)
∑

𝑖=1
𝜆(𝑏𝑖, 𝐴𝑘; 𝑒). (25)

Substituting Eq. (25) into Eq. (23), we get,

Ψdesign-ex(𝑒) ≈
32
∑

𝑘=1

⎛

⎜

⎜

⎝

−
(

𝑁sg(𝑒) + 1
)

𝜆(𝑏0, 𝐴𝑘; 𝑒) +
(𝑁sg(𝑒)+2)
∑

𝑖=1
∫Ωℬ𝑒

𝜆(𝑏𝑖, 𝐴𝑘; 𝑒)𝑓ℬ𝑒
(𝒷)d𝒷

⎞

⎟

⎟

⎠

𝑓𝐴(𝐴𝑘).

(26)
To simplify the expression above, firstly, we realize that 𝑓ℬ𝑒

(𝒷) is the joint probability density
function of statistically-independent standard normal random variables. Therefore,

𝑓ℬ𝑒
(𝒷) = 𝜙(𝑢).𝜙(𝑢loc).

𝑁sg(𝑒)
∏

𝑖=1
𝜙(𝑣𝑖) =

𝑁sg(𝑒)+2
∏

𝑖=1
𝜙(𝒷𝑖) =

𝑁sg(𝑒)+2
∏

𝑖=1

(

1
√

2𝜋
𝑒−

1
2𝒷

2
𝑖

)

. (27)

In the equation above, 𝒷1 = 𝑢, 𝒷2 = 𝑢loc, and 𝒷𝑗+2 = 𝑣𝑗 , for 𝑗 ∈ (1, 2,⋯ , 𝑁sg(𝑒)). Secondly, we
note that for any function of the form 𝑔(𝑥, 𝑦), 𝐸𝑋𝑌 (𝑔(𝑥, 0)) = 𝐸𝑋(𝑔(𝑥, 0)), provided 𝑋 and 𝑌 are
statistically-independent random variables. This allows us to simplify the integral in Eq. (26) as:

∫Ωℬ𝑒

𝜆(𝑏𝑖, 𝐴𝑘; 𝑒)𝑓ℬ𝑒
(𝒷)d𝒷 = 1

√

2𝜋 ∫𝒷𝑖

𝜆(𝑏𝑖, 𝐴𝑘; 𝑒)𝑒
− 1

2𝒷
2
𝑖 d𝒷𝑖. (28)

We realize that the Gauss-Hermite quadrature is a natural choice for approximating integral in the
equation above. This is because Gauss-Hermite quadrature is meant to estimate integrals of form
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∫ 𝑔(𝑥)𝑒−𝑥2 d𝑥, for any function g(x). Therefore, the integral above is approximated as:

∫𝒷
𝜆(𝑏𝑖, 𝐴𝑘; 𝑒)𝑓ℬ𝑒

(𝒷)dΩℬ𝑒
≈ 1

√

𝜋

∑

𝑛
𝓌𝑛𝜆(𝑞𝑖,𝑛, 𝐴𝑘; 𝑒);

𝑞𝑖,𝑛(𝑗) =

{

𝑏𝑖(𝑗) = 0 𝑖 ≠ 𝑗;
√

2𝛼𝑛 𝑖 = 𝑗.

(29)

In the equation above, 𝑛 represents quadrature order, 𝓌𝑛 gives the weights, and 𝛼𝑛 gives the point
of evaluation of the function. For our calculations, we use 𝑛 = 2, for which 𝓌𝑛 = 0.5

√

𝜋, and
𝛼𝑛 = ± 1

√

2
. The approximated Bayes risk can now be written as:

Ψdesign-ex(𝑒) ≈
32
∑

𝑘=1

⎛

⎜

⎜

⎝

−
(

𝑁sg(𝑒) + 1
)

𝜆(𝑏0, 𝐴𝑘; 𝑒) +
(𝑁sg(𝑒)+2)
∑

𝑖=1

∑

𝑛
𝓌𝑛𝜆(𝑞𝑖,𝑛, 𝐴𝑘; 𝑒)

⎞

⎟

⎟

⎠

𝑓𝐴(𝐴𝑘). (30)

The advantage of Bayes risk expressed in the form of Eq. (20) is clear from the discussion carried
out so far. The expression of Bayes Risk in Eq. (30) can easily be extended to obtain Bayes risk in
the form of Eq. (18).

The table below compares the value of Bayes risk and the run time for various approaches
discussed in this section. The sampling-based method is the most accurate when a large sample size
is considered. However, it is computationally expensive. Secondly, irrespective of the sample size,
the Bayes risk approximated using approach 1 changes with the new sample even with the same
sample size, hence, is random and non-unique. Approach 2 is the most feasible but not so accurate.
Approach 3 enjoys acceptable accuracy and computational speed.

Bayes risk Ψdesign-ex(𝑒) Run time in seconds
Approach 1 (104 samples) 327.32 229.97
Approach 2 309.81 0.82
Approach 3 321.35 46.53

Table 3: Comparison of various approaches in evaluating Bayes risk for a design 𝑒 with 𝑁sg(𝑒) = 30

The discussion in the paper so far was about evaluating the Bayes risk for a given design 𝑒.
The next section focus on the problem of optimal sensor placement using Bayesian optimization.
We use approach 3 to evaluate the extrinsic Bayes risk Ψdesign-ex(𝑒) and assume an intrinsic cost of
unity per additional sensor.
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5 Bayesian optimization: Optimal sensor placement design

5.1 Optimal sensor placement design algorithm
Our primary objective is to obtain the optimal sensor placement design 𝑒∗ that minimizes the

Bayes risk functional discussed in the previous sections. Mathematically,

𝑒∗ = argmin
𝑒

Ψdesign(𝑒) ∈ Ω𝐸 . (31)

In absolute terms, obtaining 𝑒∗ involves looking at every possible design combination, and picking
the one with the least Bayes risk. In our case, if 𝑛 = 22500, this would be picking 𝑒∗ from the
∑𝑛

𝑟=1
𝑛!

𝑟!(𝑛−𝑟)!
= (2𝑛 − 1) possible combinations of sensor locations. Clearly, sampling the entire

design space Ω𝐸 , which consists of (222500 − 1) ≈ 106773 number of possible designs, is daunting
even for this modest problem. The main motivation of using Bayesian optimization is to arrive at the
optimal solution 𝑒∗ by minimizing the sampling points to fasten the optimization process. Bayesian
optimization looks for the global optimum in a minimum number of steps.

Unlike gradient-based optimization methods, Bayesian optimization is a global optimization
technique that does not require the derivative of the objective function. Having a black-box model
(like a surrogate function) of the objective function suffices to perform the optimization. It involves
two primary elements. The first element is developing surrogate function using Gaussian process
regression (GPR) of the objective function using randomly evaluated sample. Consider, for example
in our case, we assume an initial design 𝑒0 ∈ Ω𝐸 , with 3 strain locations. To obtain the next optimal
design with 4 strain gauges, we randomly sample, for instance, 20 locations to be the candidate for
the 4th sensor. These locations yield 20 design samples 𝑒(𝑘), ∀ 𝑘 ≤ 20 each with four sensors. We
obtain the exact cost Ψdesign(𝑒(𝑘)), ∀ 𝑘 ≤ 20 using approach 3 discussed in previous section. Using
the 20 set input data of the fourth sensor location 𝒹 = (𝑥1, 𝑥2), and the output data of the exact
cost, we train our surrogate function Ψ̂design(𝒹) ∼ 𝑁(𝜇𝒹, 𝜎𝒹). It provides a posterior probability
that describes possible values for the cost at a candidate fourth location 𝒹, with the mean value
𝜇𝒹, and the standard deviation 𝜎𝒹. The second component is the acquisition function that helps us
locate the next most valuable candidate for the fourth location based on the current posterior over
the cost. We use Expected Improvement EI as our acquisition function.

𝐸𝐼(𝒹) =
(

𝜇𝒹 − Ψ∗
design

)

Φ

(

𝜇𝒹 − Ψ∗
design

𝜎𝒹

)

+ 𝜎𝒹𝜙

(

𝜇𝒹 − Ψ∗
design

𝜎𝒹

)

. (32)

Here, Ψ∗
design = min𝑒(𝑘) Ψdesign(𝑒(𝑘)) is the current best values of the objective function. For all the

remaining (22500 − 20 − 3) = 22477 possible fourth location candidates, we evaluate 𝐸𝐼(𝒹). The
candidate with maximum EI is the next most valuable location. Once we locate the next most
valuable fourth location candidate, we get 21st design sample. We re-train the GPR with 21 data
points, and keep adding the next most valuable location until the maximum EI is less than a tolerance
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value 𝜀. For detailed understanding of Bayesian optimization, readers are recommended to refer to
[33] and [35].

To generalize our optimization algorithm, we define the initial sensor design as 𝑒0 ∈ Ω𝐸 ,
with 𝑁0 = 𝑁sg(𝑒0) number of strain gauges. If 𝒹(𝑖) = (𝑥(𝑖)

1 , 𝑥
(𝑖)
2 ) represents the location of 𝑖th

strain gauge (𝑥(𝑖)
1 and 𝑥(𝑖)

2 denote the horizontal and vertical coordinates of the sensor 𝑖), we have
𝑒0 =

(

𝒹(1),𝒹(2),⋯ ,𝒹(𝑁0)
)

. Let 𝑁as represent number of additional sensors that will be added one
by one to 𝑁0 during the optimization process. Let 𝑒𝑛as

represent the optimized sensor design with
(

𝑁0 + 𝑛as
)

sensors, such that 𝑛as ≤ 𝑁as, and 𝑒∗ = argmin𝑒𝑛as
Ψdesign(𝑒𝑛as

). Finally, 𝑁total = 22500
represents total number of strain gauge locations. Fig. 9 details the flowchart of the optimization
algorithm 1 developed for obtaining optimal sensor placement. In Yang et al. [46], this algorithm
was deployed to obtain a sensor placement design of a more complex real-world miter gate structure
that had a different type of damage (unlike the detection type of problem here) and a different
Bayes risk functional (quantifying the net relative gain in information). It shows the generality and
applicability of the proposed algorithm.
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Algorithm 1: Bayesian optimization for sensor placement
1 Initialize 𝑒0 =

(

𝒹(1),𝒹(2),⋯ ,𝒹(𝑁0)
)

;
2 for 𝑛as = 1 to 𝑁as do
3 Using LHS, randomly select 𝛼 locations to be candidates for the (𝑁0 + 𝑛as) sensor

location, with coordinates 𝒳 =
(

𝒹(1),𝒹(2),⋯ ,𝒹(𝛼)
)

;
4 Obtain 𝛼 number of possible designs: 𝑒𝑘 = concatenate

(

𝑒(𝑛as+1),𝒹
(𝑘)
)

, for all 𝑘 ≤ 𝛼;
5 Obtain the exact cost of all the 𝛼 designs:

Ξ =
(

Ψdesign(𝑒1),Ψdesign(𝑒2),⋯ ,Ψdesign(𝑒𝛼)
)

;
6 while 𝑖 = 1 or maxEI < 𝜀 do
7 Construct the GPR model for Ψ̂design (⋅) trained using (𝑋,Ξ);
8 For all the remaining strain locations 𝑍 =

(

𝒹(1),𝒹(2),⋯ ,𝒹(𝛽)
)

, where
𝛽 =

(

𝑁total −
(

𝑁0 + 𝑛as − 1
)

− 𝛼
)

, obtain 𝛽 number of possible designs:
𝑒𝑚 = concatenate

(

𝑒(𝑛as+1),𝒹
(𝑚)
)

, for all 𝑚 ≤ 𝛽;
9 Obtain the cost Ψ̂design

(

𝒹(𝑚)
)

for all 𝑚 ≤ 𝛽 designs using GPR developed before;
10 Obtain the currrent best Ψ∗

design = minΞ;
11 Obtain the Expected Improvement for all the 𝛽 designs using:

𝐸𝐼(𝒹(𝑚)) =
(

𝜇𝒹(𝑚) − Ψ∗
design

)

Φ

(

𝜇𝒹(𝑚) − Ψ∗
design

𝜎𝒹(𝑚)

)

+ 𝜎𝒹(𝑚)𝜙

(

𝜇𝒹(𝑚) − Ψ∗
design

𝜎𝒹(𝑚)

)

, where 𝑚 ≤ 𝛽;
12 Obtain:

𝑚𝑎𝑥𝐸𝐼 = max
𝒹(𝑚)

(

𝐸𝐼(𝒹(𝑚))
)

𝒹 = argmax
𝒹(𝑚)

(

𝐸𝐼(𝒹(𝑚))
)

𝑒 = concatenate
(

𝑒(𝑛as+1),𝒹
)

Evaluate the exact cost 𝔈(𝑒);
13 Update:

𝒳 = concatenate
(

𝒳 ,𝒹
)

𝑒(𝛼+𝑖) = 𝑒

Ξ = concatenate
(

Ξ,Ψdesign(𝑒)
)

𝑖 = 𝑖 + 1;
14 end
15 Update the sensor design: 𝑒𝑛as

= concatenate(𝑒𝑛as−1,𝒹);
16 end
17 Obtain: 𝑒∗ = argmin

𝑒𝑘
Ψdesign(𝑒𝑘), where, 𝑘 ≤ 𝑁as;
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Figure 9: Flowchart of Bayesian optimization algorithm for optimal sensor placement design

5.2 Results and discussion

5.2.1 Comparison of a Bayesian optimized sensor placement design with randomly-chosen
designs

To numerically implement the optimization algorithm discussed in Section 5.1, we consider
an initial design 𝑒0 with 𝑁0 = 3, with sensors picked randomly, and consider 𝑁as = 10 additional
sensors. We fix 𝛼 = 20. Fig. 10a below shows the sensors constituting 𝑒0 by blue dots and the
additional sensor location by red dots placed on the strain contour (for a random input sample) of
the beam. For instance, the design 𝑒1 consists of all the three initially considered sensors along with
the fourth sensor in red (marked by number 4). Fig. 10a also shows the strain field for a realization
of load and its location. Fig. 10b illustrates Bayes risk for the designs 𝑒𝑛as

. We observe that the
Bayes risk converges with 4 additional sensor, i.e., 𝑒4 can be considered as the optimal design. We
also observe that almost all these additional sensors are concentrated close to the boundary where
the springs are present. We observe in all the following convergence plots (Figures 10b, 13b- 17b)
that the Bayes risk increases after the minimum value is attained because every additional sensor
bears an intrinsic cost, which in this case was assumed to be unity per additional sensor.

To demonstrate the fact that Bayesian optimization produces the optimal sensor placement
design, we consider a random design 𝑒𝑟, with 𝑁sg(𝑒𝑟) = 13. Figure 11a shows the arrangement of
the sensors for design 𝑒𝑟. Although design 𝑒𝑟 has 6 more sensors than design 𝑒4, the Bayes risk
for 𝑒𝑟 is much higher than that of the minimum Bayes risk for optimized design 𝑒𝑟. The reason is
that the new information acquired by adding the 5-th sensor or more does not add to the value of
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decision-making as much as it leads to the increase in the intrinsic cost due to the addition of more
sensors. This is clear from Fig. 11b.

We used approach 3 to evaluate Bayes risk while performing Bayesian optimization. Fig. 12a
and 12b, compare the expected cost obtained using the sampling-based method (approach 1, with
104 samples) and approach 3 for designs 𝑒4 and 𝑒𝑟 respectively. As expected, the results obtained
using approach 3 are very close to the sampling-based method (that can be assumed as ground truth).
The plots also show the Kernel Density Estimate (KDE) for the sampling-based method. Finally,
the deviation of Bayes risk in the case of random design 𝑒𝑟 as compared to the optimal design 𝑒4 is
noteworthy.

(a) Optimized sensor locations
(b) Bayes risk

Figure 10: Optimized sensor placement and the associated Bayes risk obtained using approach 3

(a) Optimized sensor design 𝑒𝑛as
and random design

𝑒𝑟
(b) Bayes risk Ψdesign(𝑒𝑛as

) and Ψdesign(𝑒𝑟)

Figure 11: Randomly selected sensor design 𝑒𝑟 and the associated Bayes risk obtained using approach
3



30

(a) For the optimized design 𝑒4 (b) For the random design 𝑒𝑟
Figure 12: Comparison of the Bayes risk evaluated using sample-based method (approach 1), and
univariate dimensional reduction technique (approach 3)

Remark 2: We note that obtaining new information (for example: strain gauge data) is conse-
quential in making a better decision (for example: detecting the existence of springs). However,
acquiring information through a mechanism 𝑒 bears cost, represented by Ψdesign-in(𝑒). Acquiring the
new information is meaningful and economical if and only if the additional cost required to gather
the information is outweighed by the reduction in the expected losses evaluated by considering the
additional information (see Chadha et al. [47]). Recall the expression of the Bayes risk Ψdesign(𝑒)
in Eq. (9). The Bayes risk is defined as the sum of intrinsic cost Ψdesign-in(𝑒) and extrinsic cost
Ψdesign-ex(𝑒). Increasing the number of sensors has the following effects:

1. Every addition of the sensor increases the cost due to the intrinsic cost of the sensor, cost
incurred to install and maintain the SHM system. Therefore, Ψdesign-in(𝑒) increases.

2. Every addition of the sensor also adds to the new information about the state of the structure
leading to better decision making. Therefore, with the increase in sensor count, Ψdesign-ex(𝑒)
decreases.

With the addition of a new sensor up to the optimal design 𝑒∗, the Ψdesign-ex(𝑒) decreases more than the
increase in Ψdesign-in(𝑒), leading Ψdesign(𝑒) to decrease overall. However, beyond the optimal design,
with any new addition of the sensors, Ψdesign-ex(𝑒) decreases less than the increase in Ψdesign-in(𝑒),
leading Ψdesign(𝑒) to increase overall. In other words, there comes a time when the benefit of the
additional information obtained by adding an additional sensor is dwarfed by the cost incurred due
to a sensor addition. This effect is observed in all the convergence plots presented in this section.

5.2.2 Comparison of a Bayesian optimized sensor placement design with Bayes risk evaluated
using various approaches

We now focus on the performance of various approaches detailed in Section 4.4 used in
evaluating the Bayes risk while performing Bayesian optimization. Figures 10, 13, and 14 illustrate
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optimized sensor placement and the associated Bayes risk obtained using approaches 3, 1, and
2, respectively. It is not surprising that the convergence rate depends on the approach picked to
evaluate the Bayes risk. Approach 2 (mean value approximation of Bayes risk) is not accurate, and
the sampling-based method, like any Monte-Carlo based approach, bears uncertainties because it
attempts to evaluate the integral in Bayes risk functional by sampling it. For a different sample
with the same sample size, the Bayes risk evaluated using approach 1 is different. This randomness
in the evaluation of Bayes risk using approach 1 leads the acquisition function to pick different
sensor locations. Unlike these approaches, approach 3 attempts to evaluate the integral, and rather
quickly and consistently (unlike sampling-based method), using Gaussian-Hermite quadrature.
These inherent advantages of approach 3 catalyze the optimization code to converge faster. It can be
observed that approach 3 finds the first 4 sensors to be well spread in the vertical direction. The first
four additional sensor locations obtained by using the Sampling-based technique are concentrated
to the bottom-left, and the code is forced to arrive at sensors 5 and 6 at the middle and the top left
of the beam, respectively. We also note that there are instances where the sampling-based method
converges faster than the other two approaches owing to the randomness in the prediction of Bayes
risk by its very inherent nature. However, we note a commonality in the prediction by all three
approaches. All the significant additional sensor locations (the first six additional sensors) are spread
across the vertical direction near the left boundary of the beam, which is suitable for the spring
detection problem.

(a) Optimized sensor locations (b) Bayes risk
Figure 13: Optimized sensor placement and the associated Bayes risk obtained using sampling-based
method (approach 1)
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(a) Optimized sensor locations (b) Bayes risk
Figure 14: Optimized sensor placement and the associated Bayes risk obtained using mean value
approximation (approach 2)

5.2.3 Comparison of a Bayesian optimized sensor placement design with different initial
designs

In this section, we compare the optimal sensor placement design evaluated using approach 3
for different initial designs 𝑒0. Fig. 10 shows the sensor designs obtained when the initial sensor
locations consist of well spread out strain-gauges across the beam. To demonstrate the effect of the
choice of initial sensor designs, we consider three extreme cases of 𝑒0 with the sensors concentrated
on the bottom-left, bottom-right, and top-right, as shown in figure 15, 16, and 17.

The Expected Improvement function defined in Eq. (32) guides the optimization algorithm to
exploit and explore the design space to pick for the next sample. The algorithm exploits the strain
locations at which the GP mean function is larger, and it explores the strain locations where the GP
standard deviation is larger. For instance, in Fig. 15, the algorithm obtains the first 4 additional
sensors by exploiting the strain locations with higher GP mean value, whereas in Fig. 16, with 𝑒0
consisting of concentrated bottom-right sensors, the algorithm obtains the additional sensors mostly
by exploring the region of high GP standard-deviation. Since it evaluates the additional sensors 2, 3,
4, and 5 concentrated at the top left, it is forced to obtain sensors 6, 7, and 8 in the middle of the left
end, leading to late convergence. Like the previous section, we do observe that irrespective of the
initial design, the algorithm arrives at a sensor design that consists of additional sensor locations
spread out across the left end.

We note that the beam is so finely meshed that there exists a correlation between the strain
values. Therefore, there are non-unique sensor locations that are sampled by the acquisition function,
leading to non-unique sensor design depending on different initial design 𝑒0.
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(a) Optimized sensor locations (b) Bayes risk
Figure 15: Optimized sensor placement and the associated Bayes risk obtained considering initial
sensor design with three sensors concentrated at the bottom-left

(a) Optimized sensor locations (b) Bayes risk
Figure 16: Optimized sensor placement and the associated Bayes risk obtained considering initial
sensor design with three sensors concentrated at the bottom-right
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(a) Optimized sensor locations (b) Bayes risk
Figure 17: Optimized sensor placement and the associated Bayes risk obtained considering initial
sensor design with three sensors concentrated at the top-right

5.2.4 Comparison of a Bayesian optimized sensor placement design for different noise level
in sensors

In this section, we compare the optimal sensor placement design evaluated using approach 3
and considering initial design 𝑒0 with 𝑁0 = 3 for different noise levels as depicted in Table 4. Case
1 to 4 represents various noise levels (standard deviation in the strain measurements) in ascending
order. It is observed that the number of sensors in the optimal sensor design increases with the
increase in noise level in the acquired data. This is an expected result since a large amount of data is
required to compensate for the increased uncertainty due to higher noise levels.

Cases Noise standard deviation
𝜎𝜀

Figure representing
the resulting design

Number of sensors
in optimal design

Case 1 5.0 × 10−7 Fig. 18 4
Case 2 1.0 × 10−6 Fig. 19 5
Case 3 2.5 × 10−6 Fig. 20 9
Case 4 5.0 × 10−6 Fig. 21 10

Table 4: Different cases of the noise level in strain gauges
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(a) Optimized sensor locations (b) Bayes risk
Figure 18: Optimized sensor placement and the associated Bayes risk obtained for case 1 of noise
level

(a) Optimized sensor locations (b) Bayes risk

Figure 19: Optimized sensor placement and the associated Bayes risk obtained for case 2 of noise
level
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(a) Optimized sensor locations (b) Bayes risk

Figure 20: Optimized sensor placement and the associated Bayes risk obtained for case 3 of noise
level

(a) Optimized sensor locations (b) Bayes risk

Figure 21: Optimized sensor placement and the associated Bayes risk obtained for case 4 of noise
level
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6 Summary and Conclusions
This paper details an optimal sensor design framework for structural health monitoring ap-

plications where detection of a critical state is of prime importance. The primary contribution of
the paper is to present a sensor optimization framework and an algorithm that obtains the optimal
sensor design yielding the least regrettable decision/inference of the state detection. The optimality
criterion or the objective function used for optimization is the expected loss (arising as a consequence
of decision making), the term also referred to as the Bayes risk. It is advantageous to use Bayes risk
as it helps us incorporate the consequence-cost/regret of making a decision (extrinsic cost), as well
as the intrinsic costs (e.g., sensor costs and their maintenance costs). A Bayes risk (or the expected
loss/risk) minimized design leads to a prediction of the state that minimizes losses in an average
sense.

The proposed optimal sensor placement design framework presented in this paper can be
summarized in four sequential steps as illustrated in Fig. 1. The optimization framework proposed
in this paper is demonstrated on an example problem, where the existence of the boundary springs is
in question (a binary decision problem). Noteworthy conclusions are: (1) Bayesian optimized sensor
design is better than the random design since it leads to less expected loss/regret as a consequence of
making a decision all the while using less number of sensors; (2) Generally, the Bayes risk functional
has a non-linear integrand and is a high dimensional integral that demands sophisticated numerical
approaches to evaluate it. Among the three approaches investigated, approach 3 (using univariate
dimensional reduction with Gauss-Hermite quadrature) is the most desirable; (3) Irrespective of the
initial sensor design, the proposed optimization algorithm arrives at a sensor design that is suitable
for desirable decision making. In the proposed example problem, irrespective of the initial design,
the optimal design consisted of additional sensor locations spread out across the left end close to the
springs; (4) It is observed that the number of sensors in the optimal sensor design increases with the
increase in noise level in the acquired data.
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