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Abstract—In this paper we investigate the problem of spec-
ulative processing in a replicated transactional system layered
on top of an optimistic atomic broadcast service. We consider
a realistic model in which transactions’ read/write sets are not
known a-priori, and transactions’ data access patterns may vary
depending on the observed snapshot. We formalize a set of
correctness and optimality properties aimed at ensuring that
transactions are not activated on inconsistent snapshots, as well
as the minimality and completeness of the set of explored
serialization orders. Finally, an optimal speculative transaction
replication protocol is presented.

I. INTRODUCTION

Active Replication (AR) is a fundamental approach for
achieving fault-tolerance and high availability [1]. When ap-
plied to transactional systems, it requires that replicas agree
on a common total order for the execution of the transactions.
This is typically achieved by relying on some form of non-
blocking distributed consensus, such as Atomic Broadcast [2]
(AB), before activating a transaction [3], [4].

Given that the latency of AB can seriously penalize the
performance of a replicated system, it is important to design
strategies to mitigate its impact. One of such strategies is to
overlap local processing and replica coordination [5]. This
can be achieved using an Optimistic Atomic Broadcast (OAB)
service, that provides an “early” (though potentially erroneous)
guessing of the final outcome of the coordination phase
[6]. Exploiting optimistic message delivery, each site may
immediately start the (optimistic) processing of transactional
requests without waiting for the completion of the coordination
phase.

Clearly, this strategy pays off only if the final total order
does not contradict the initial guess. Otherwise optimistically
activated transactions may access inconsistent snapshots and
be forced to rollback. Further, existing OAB-based solutions
only permit the parallel activation of optimistically delivered
transactions that are known not to conflict with each other
[5], [7]. Such a choice simplifies the management of local
processing activities, sparing from the risks of propagating
the results generated by optimistically delivered transactions.
On the other hand, it can constrain the achievable degree
of parallelism in the processing of optimistically delivered
transactions. Furthermore, existing approaches rely on the a-
priori knowledge of both read and write sets associated with
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incoming transactions in order to associate transactions with
conflict classes at the time of their optimistic delivery, i.e. prior
to their execution. This requirement raises the non-trivial prob-
lem of systematically predicting data access patterns, which
may force to significant over-estimations of the likelihood
of transaction conflicts (compared to actual ones), with an
obvious negative impact on concurrency, especially in case of
transactions exhibiting non-deterministic data access patterns.

The above drawbacks are exacerbated in a number of
realistic scenarios such as large scale geographical replication,
where guessing the final order can be very challenging [8],
or in systems where the ratio between the communication
delay and the computation granularity is very large, such as
Transactional Memories [9]. In this paper, we address these
challenges by exploring the use of speculative transaction
processing, motivated by the widespread use of multi-core
parallel machines whose computational power can be fully
unleashed using such an approach.

We investigate, from a theoretical perspective, the issues
related to the adoption of a speculative approach to repli-
cation of transactional systems, which we call Speculative
Transactional Replication (STR). The idea underlying STR
is rather simple: exploring multiple serialization orders for
the optimistically delivered transactions, letting them observe
the snapshots generated by conflicting transactions, rather than
pessimistically blocking them waiting for the outcome of the
coordination phase.

We frame the problem in a (desirable) model in which we
do not assume the availability of any a-priori information on
the set of data items to be accessed by the transactions (in
either read or write mode), and in which we allow data access
patterns to be influenced by the state observed during the exe-
cution. Next, we formalize a set of correctness and optimality
criteria for the speculative exploration of the permutations of
the optimistically delivered transactions, demanding the on-
line identification of all and only the transaction serialization
orders that would cause the optimistically executed transac-
tions to exhibit distinct outcomes.

Finally, we present an STR protocol relying on a novel
graph-based construct, named Speculative Polygraph (SP),
which encodes information on the conflict relations developed
during the speculative execution of transactions. SPs are
designed to exactly identify what subsets of the speculatively
available data item versions would be visible in any view-
serializable execution, thus ensuring optimality of the STR
protocol, in terms of completeness and non-redundancy of the
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Fig. 1. Software Architecture of Each Process

set of explored speculative serialization orders.
The remainder of this paper is structured as follows. In

Section II we discuss related work. Section III illustrates the
system model. In Section IV we formalize correctness and
optimality properties for STR. Section V presents an optimal
STR protocol. Finally, Section VI concludes the paper.

II. RELATED WORK

Atomic Broadcast (AB) based replication protocols for
transactional systems [3], [4], [5], [11] achieve a global
transaction serialization order (across all the replicas), in a
non-blocking fashion, without incurring the scalability prob-
lems affecting classical eager replication mechanisms based
on distributed locking and atomic commit protocols [12].
Our STR protocol builds on Optimistic Atomic Broadcast
(OAB) [5], [6] and, compared with the aforementioned results,
takes a more aggressive optimistic approach by speculatively
exploring the minimum set of serialization orders in which
optimistically delivered transactions observe distinct snapshots
of the transactional system’s state. Further, unlike schemes
such as [5], STR does not rely on the assumption of a-priori
knowledge of the data items to be accessed by transactions,
and makes use of optimistic transaction scheduling to favor
concurrency.

To the best of our knowledge the idea of exploiting
speculation in transaction processing environments has been
investigated in [13] and [14]. The work in [13] targets non-
replicated real-time databases and shows the benefits, in
terms of transaction timeliness, by speculatively forking, upon
detection of a conflict, a copy of the current transaction that
remains idle and serves as a save-point to reduce the rollback
cost. On the other hand, STR addresses speculation in the
context of OAB-based replication of transactional systems, and
permits to concurrently process multiple instances of a same
transaction in different speculative orders. The solution in [14]
targets distributed databases relying on distributed locking and
atomic commit for transaction validation. Further, it restrains
the transaction execution model, making the assumption that
each data item can be written by a transaction at most once.

III. SYSTEM MODEL

We consider a classical asynchronous distributed system
model [15] consisting of a set of processes Π = {p1, . . . , pn}

communicating via message passing, which can fail according
to the fail-stop (crash) model. We assume that the number
of correct processes (i.e. processes that do not fail) and the
system synchrony level suffice to implement an OAB service
(1) providing the following interface: TO-broadcast(m), which
allows broadcasting messages to all the processes in Π; Opt-
deliver(m), which delivers message m to a process in Π in a
tentative, also called optimistic, order; TO-deliver(m), which
delivers a message m to a process in Π in a so called final
order that is the same for all the processes in Π. For conve-
nience of exposition, we also assume that the OAB service
provides two additional primitives TO-DeliveredMsgs() and
Opt-DeliveredMsgs(), returning the totally ordered sequences
of TO-delivered and Opt-delivered messages, respectively. The
OAB service adheres to the following properties [6]:

• Termination - If a correct process TO-broadcasts m, it
eventually Opt-delivers m;

• Global Agreement - If a process Opt-delivers m, every
correct process eventually Opt-delivers m;

• Local Agreement - If a correct process Opt-delivers m,
it eventually TO-delivers m;

• Global Order - If two processes pi and pj TO-deliver
messages m and m′, they do so in the same order;

• Local Order- If a process TO-delivers m, it does this
only after it Opt-delivers m.

The diagram in Figure 1 shows the software architecture
of each process pi ∈ Π. Applications generate transactions
by calling the invoke method of the local Speculative
Transaction Manager (SXM), specifying the business logic to
be executed (e.g. the name of a DBMS stored procedure or
of a method in a transactional memory) and the correspond-
ing input parameters (if any). The SXM is responsible of
(i) propagating (through the OAB service) the transactional
request across the set of replicated processes, (ii) executing the
transactional logic on the underlying Speculative Transactional
Store (STS), and (iii) returning the corresponding result to the
user-level application.

We assume that each data item X maintained by the STS
is associated with a set of versions {X1, . . . , Xn}, where
each version Xi stores (i) the data item value and (ii) the
identity of the creating transaction. A single version of X can
be committed at any time. Uncommitted versions residing in
STS are reflections of speculative computations, and are used
to propagate updates along chains of speculated serialization
orders. The STS layer abstracts low level storage mechanisms,
which may encompass RAM-only memory accesses (as for
the case of transactional memories) and logging on persistent
storage to ensure transaction durability (as for the case of
conventional DBMSs).

As depicted in Figure 1, the interactions between the SXM
and the STS are mediated by the Speculative Concurrency
Control (SCC) layer, which externalizes a classical interface

1To this end, for instance, it is enough to assume the availability of
an eventually perfect failure detector and the correctness of a majority of
processes [15].



to trigger read/write operations on the data items, as well
as to commit/abort transactions. The SCC can additionally
trigger the re-spawn and the forking of a (not yet com-
mitted) transaction T, in order to cope with the speculative
construction of alternative serialization orders in which T
observes different states of the transactional system. In order to
univocally identify multiple, speculatively executed, instances
of a same transaction Ti, the SCC relies on an additional
identifier referred to as specId. For the sake of brevity, we
will use the notation T ji to refer to the instance of a transaction
Ti having specId = j, and will refer speculative instances of
a same transaction (say T ji and T ki ) to as sibling.

In the following we shall consider only update transactions,
and delay the discussion on how to extend the proposed STR
protocol to account for read-only transactions in Section V-D.
Accordingly, we adopt a classical model where a transaction
T consists of a sequence of operations, each one being either
a read or a write operation on a data item. We assume that
neither the sequence of operations to be executed within a
transaction, nor the data items to be accessed are a-priori
known. Conversely, we assume that the transaction data ac-
cess pattern can vary depending on the current state of the
underlying transactional store. More precisely, we assume that
the transactional business logic is snapshot deterministic in the
sense that if a same transaction is activated multiple times, the
sequence of read/write operations it executes does not change
unless the return value of any of its reads changes. In other
words, if whichever instance of a transaction T always sees
a snapshot S, defined as the set of values returned by all its
read operations, then it behaves deterministically by always
executing a same set of read/write operations. On the other
hand, if instances of a transaction T are activated several times
on different snapshots, they may generate different sequences
of operations.

With no loss of generality, we assume the existence of a
method complete(), used for explicitly notifying the SCC
about the completion of a transaction’s execution. Also, we
assume that the SXM can retrieve the result generated by a
transaction through the method getResult().

The manipulation of the versions of a data item oc-
curs via the following methods provided by the STS:
addSVersions(T ji ), which makes the write set of a
completed transaction T ji visible; removeSVersions(T ji ),
which removes from the STS the write set of T ji ;
commitSVersions(T ji ), which commits the write set of
transaction T ji by replacing the corresponding existing com-
mitted version of any data item.

IV. PROBLEM FORMALIZATION

From the perspective of the replicated transactional system
as a whole, our target correctness criteria is classic 1-copy
serializability [16], which ensures that a transaction execution
history H across the whole set of replicated processes Π is
equivalent to a serial transaction execution history on a non-
replicated system. More specifically, we are interested in view
serializability [16], [17] defined as a property of H such

that, for any prefix H′ of H, its committed projection C(H′)
(obtained from H′ by deleting all operations not belonging to
transactions committed inH′) is view equivalent to some serial
history. Roughly speaking, view equivalence of two histories
H1 and H2 is defined as the property by which, for any data
item X: (i) if Ti reads X from Tj in H1, then Ti reads X from
Tj also in H2 and (ii) for each data item X, if Xw is the final
written value of X by Ti in H1, then it is also the final written
value of X by Ti in H2.

We now introduce the notion of optimality for a spec-
ulatively replicated transactional system. This is done by
formalizing a set of properties jointly ensuring the consistency
of speculative transactions, as well as the exploration of all
and only the speculative serialization orders in which the
transactions observe distinct states of the transactional store.
Let Σ = {T1, . . . , Tn} be the set of Opt-delivered, but
not yet TO-delivered, transactions, and denote with Σ′ =
{T 1

1 , . . . , T
k
1 , . . . , T

1
n , . . . , T

m
n } the set of the corresponding

speculative transactions that have run to completion, namely
that have fully executed their sequence of read and write
operations but have not been committed yet. We say that
a Speculative Transactional Replication (STR) protocol is
optimal if it guarantees the following properties:
• Consistency: the history of execution of each speculative

transaction is view serializable.
• Non-redundancy: no two sibling transactions observe

the same snapshot.
• Completeness: if the system is quiescent, i.e. if the OAB

service stops Opt-delivering and TO-delivering transac-
tions, then for any possible permutation of Σ, say π(Σ),
there eventually exists a speculative transaction T ji ∈ Σ′

that has executed on (i.e. observed) the same snapshot
that would have been produced by sequentially executing
all the transactions Tk preceding Ti in π(Σ).

The non-redundancy property of an STR protocol filters
out trivial solutions based on the exhaustive enumeration of
every possible permutation of the Opt-delivered transactions
for the construction of plausible serialization orders. Such
an approach would certainly enumerate the permutation that
will be eventually established by the final TO-deliver order,
thus providing completeness. On the other hand, denoting
with n the number of Opt-delivered but not yet TO-delivered
messages, this approach would always require executing∑
i=1...n

n!
(n−i)! = Θ(n!) speculative transactions (i.e. the

number of nodes of a permutation tree for a set of cardinality
n), independently of the conflict relations actually developed
by the corresponding transactions. This would likely cause
the useless exploration of a (possibly very large) number of
redundant serialization orders in which transactions execute
along identical trajectories, thus observing the same snapshots
and externalizing the same results to the application.

V. AN OPTIMAL STR PROTOCOL

In our STR protocol, each replica immediately starts pro-
cessing transactions as soon as these are optimistically deliv-
ered by the OAB service. The issue of generating a speculated



set of different serialization orders is tackled by the SCC layer,
which dynamically tracks the dependencies developed during
the execution of the transactions through a novel graph based
construct which we name Speculative Polygraph (SP). SPs can
be viewed as an extension of Papadimitriou’s polygraphs [17],
which were introduced to determine the view-serializability
of (non-speculative) transaction histories. More in detail, the
SCC exploits knowledge on conflict dependencies tracked by a
SP associated with each transaction T ji in order to determine
which subset V (X) of the currently available versions of a
data item X can T ji return upon its n-th read operation (on
data item X) without violating view-serializability and given
the history of execution of its former n−1 read operations. By
forking from T ji a number of |V (X)|−1 sibling transactions,
and delivering to each forked transaction, and to the parent, a
different value of X in the set V (X), SCC completely covers
all the distinct execution trajectories that T ji could undertake
by letting the read operation return a different value (though
representative of some view-serializable execution history)
among those already available for X.

This read-triggered forking mechanism is however insuf-
ficient to ensure the complete exploration of the alternative
transactions’ speculative serialization orders. In fact, new
versions of a data item X can become available after the
execution of the read on X by transaction T ji . This happens
if some transaction writes on X after T ji carries out its
read on X. To tackle these situations, the SCC relies on
an additional a-posteriori transaction re-spawning mechanism.
The re-spawning of transaction T ji , which leads to the re-
start of a new transaction, say, T ki , is triggered as soon as a
transaction T completes its execution and makes available a
new version of a data item X, which could have been visible by
T ji at the time of its read on X, in some legal sequential history.
The SCC responds to all the reads issued by the re-spawned
transaction, T ki , up to the read on data item X, by returning
the same values already observed by transaction T ji . Since we
are assuming the snapshot determinism of transactions, this
implies that T ki will “clone” the execution of T ji up to the
read on X, which, conversely, will return the version created
by transaction T .

As hinted in the system model section, we made the choice
to make visible the data item versions written by a transaction
only when the transaction completes its execution, rather than
as soon as the write operation is completed. In the re-spawning
mechanism, this avoids scenarios in which a transaction that
writes multiple times the same data item causes the activation
of new speculative transactions that observe “intermediate”
values that would have never been visible in any view-
serializable history. Such a phenomenon would in fact lead
to violations of the Consistency property.

A. Speculative Transaction Manager

The pseudo-code of the SXM is reported in Figure 2.
The SXM relies on three data structures, namely the Acti-
vatedXacts, CompletedXacts and CommittedXacts sets, which
contain references to the transactions T ji in the corresponding

Set<Transaction> ActivatedXacts;
Set<Transaction> CompletedXacts; // CompletedXacts ⊆ ActivatedXacts
Set<Transaction> CommittedXacts;

Result invoke(TransactionalLogic T, inputParams p) do
Transaction Ti = new Transaction(T, p, getNewXactID());
OAB.TO-broadcast(Ti);
wait ∃T j

i ∈ CommittedXacts
return T j

i .getResult();

upon Opt-Deliver(Transaction Ti) do
startSXact(Ti);

upon TO-Deliver(Transaction Ti) do
if (∃T j

i ∈CompletedXacts s.t. T j
i .validateTransaction())

T j
i .commit(); //the commit method aborts any sibling transaction of T j

i
else
∀T j

i ∈ CompletedXacts do
T j
i .abort(); //any completed T j

i is invalid
if (@Tk

i ∈ ActivatedXacts)
if ((∀Tr s.t. (Tr → Ti)∈OAB.TO-DeliveredMsgs() ∃T s

r ∈CommittedXacts))
startNonSXact(Ti);

else
startSXact(Ti);

Fig. 2. Pseudo-code for the Speculative Transaction Manager

execution stage. To simplify the pseudo-code, we assume that
whenever a transaction is started, or forked or respawned, it is
inserted in the ActivatedXacts set, and that it is inserted in the
CompletedXacts when its completed() method is invoked.
Also, whenever a transaction is aborted, it is removed from
the ActivatedXacts and CompletedXacts set and when it is
committed, it is removed from the CompletedXacts set and
added to the CommittedXacts set.

When the application calls the invoke() method of the
SXM, the latter marshals a message containing the input
parameters specified by the application, generates a unique
transaction identifier through the getNewXactID() primi-
tive (which we denote with i in the pseudo-code) and TO-
broadcasts the transaction through the OAB service. Next it
waits for a transaction T ji to be committed in order to return
the associated result (retrieved through the getResult()
primitive) to the local application.

The activities of the SXM are triggered by two additional
events, namely the Opt-Deliver and the TO-Deliver of a
transaction Ti. In the former case, the SXM invokes the
startSXact primitive with Ti as input in order to start a
new transaction T ji which will be executed in speculative mode
(more details on the difference between speculative and non-
speculative mode of execution of transactions will be provided
in Section V-B) and will be added to the ActivatedXacts set.

Upon a TO-deliver for transaction Ti, on the other hand,
the SXM checks whether there exists an already completed
transaction T ji that successfully passes the validation phase,
which is meant to verify whether T ji accessed a snapshot con-
sistent with the one produced by sequentially executing all the
transactions that precede Ti in the final order (see Section V-B
for details). If at least a transaction T ji is successfully vali-
dated, this is simply committed, causing the abort of any of its
other sibling transactions, see Figure 5. Otherwise, whichever
completed transaction T ji is aborted, causing the cascading



abort of any other transaction exhibiting (a possibly indirect)
read-from dependency (see Section V-B for further details).
Next the SXM checks whether there is no other transaction
T ji currently active. In such a case, a new transaction T ki
needs to be activated through either the startNonSXact,
or the startSXact primitives depending on whether the
transactions that precede Ti according to the final order have
all been committed or not. In such a case, in fact, the freshly
activated transaction can safely read the current committed
snapshot. On the other hand, if there is any transaction
preceding Ti in the final order that has not been committed yet,
the SXM, rather than waiting for their commitment, activates
T ki in speculative mode. This choice reflects the optimistic
assumption of absence of conflicts among T ki and any other
not yet committed transactions preceding T ki in the final order.

B. Speculative Concurrency Control

Speculative Polygraphs. To determine the set of speculative
serialization orders in which transactions need to be executed,
the SCC relies on a novel graph-based construct, which
we call Speculative Polygraphs (SP). SPs are inspired by
Papadimitriou’s polygraphs, which, as previously hinted, were
introduced in [17] to test the view-serializability of a non-
speculative history H and whose definition we briefly recall
in the following.

A polygraph P = (N,A,B) is a direct graph (N,A), whose
nodes are defined by the set N and whose arcs are defined
by the set A, augmented with a set B of so called bipaths.
Each bipath is a pair of arcs < (T ′′ → T ′), (T ′ → T ) >
(where (T → T ′′) ∈ A), not necessarily present in A. De-
facto, a polygraph is a compact representation of a family
of direct graphs (digraphs) D(N,A,B). A digraph (N,A′) is
in D(N,A,B) if and only if A ⊆ A′, and, for each bipath
(a1, a2) ∈ B, A′ contains at least one of the arcs a1 and a2.

Polygraphs capture partial order relations in a history of
transactions, and the polygraph P (H) associated with a history
H is constructed according to the following two rules: (i)
whenever a transaction T reads some data item X from
transaction T ′, the arc (T ′ → T ) is added in A; (ii) if
a third transaction T ′′ also writes X, then the bipath <
(T → T ′′), (T ′′ → T ′) > is added to B. In other words,
each arc (T ′, T ) in A keeps track of the direct read-from
relation between transactions T and T ′, whereas a bipath
< (T → T ′′), (T ′′ → T ′) > means that since also T ′′ writes
X, it can not be between T ′ and T , but must either precede
T ′ or follow T .

Based on the above definition of polygraph, Papadimitriou
defines a polygraph as acyclic iff there is at least an acyclic
digraph in D(N,A,B) and proves that a history H is view
serializable iff its polygraph P (H) is acyclic [17]. We show
in Figure 3.a and 3.b the polygraphs associated with, re-
spectively, the following two sequential transaction histories
H1={T1, T2, T 0

3 } and H2={T2, T1, T 1
3 }, where T1 writes on

data items X and Y , T2 writes on data items Y and Z,
whereas T 0

3 and T 1
3 read the same data items, namely X ,

Y and Z (returning different values for Y given that H1 and

H2 serialize in a different order transactions T1 and T2). As
in [17], in Figure 3 a bipath is denoted by adding a circular
edge on its common node. It can be easily verified that the
only acyclic digraph associated with the polygraph in Figure
3.a is obtained by selecting the edge (T1 → T2) of the bipath
centered on T1, whereas the only acyclic digraph associated
with the polygraph in Figure 3.b is obtained by selecting the
edge (T2 → T1) of the bipath centered on T2.

The unfeasibility of conventional polygraphs to reason on
the the view serializability of a speculative transaction his-
tory appears manifest if one considers that the simultaneous
coexistence within a polygraph of two sibling transactions,
representative of inconciliable serialization orders (such as
transactions T 0

3 and T 1
3 in Figure 3), can corrupt the polygraph

by introducing cycles that might render it useless. An example
of such a problem is shown in Figure 3.c, which shows
the polygraph obtained by merging the polygraphs in Figure
3.a and 3.b. It is straightforward to verify that every direct
graph associated with this polygraph is cyclic. This is of no
surprise considering that the polygraph keeps track of every
partial order relation in a history that contains transactions that
assume opposite serialization orders for T1 and T2.

Speculative Polygraphs address exactly these problems. Un-
like Papadimitriou’s polygraphs, which are representative of a
whole, and non-speculative, history, speculative polygraphs are
designed to keep into account the history of execution as per-
ceived by each speculative transaction. Roughly speaking, the
SP of a transaction T ji is dynamically generated by selectively
merging only the polygraphs of those speculative transactions
T ∗ that i) conflict, either directly or indirectly, with T ji , and ii)
such that exists at least a (non speculative) serialization order
which allows both T ∗ and T ji to coexist. More formally, we
define the speculative polygraph of transaction T ji , denoted as
SP(T ji ), as a triple (N,A,B) where:

• N is a set of nodes, each one representative of some
speculative transaction.

• A is a set of, so called, merging edges denoted as
(T sr~ → T ji ), with T sr , T

j
i ∈N, and where the notation

T sr~ means that we are not just adding an edge between
T sr and T ji , but also merging SP(T sr ) with SP(T ji ), and
linking them via a (plain) edge from T sr to T ji .

• B is a set of, so called, asymmetric bipaths, denoted as
< (T vu~ → T sr ), (T ji → T vu ) >, with T sr , T

j
i ∈N, where

the first of the two arcs is a merging edge linking SP(T vu )
with SP(T ji ) through the plain edge (T vu → T sr ), and the

Fig. 3. Polygraphs Associated with Histories H1 and H2



second one, namely (T ji → T vu ), is a plain edge between
the nodes T ji and T vu .

A speculative polygraph SP(T ji )=(N,A,B) generates a
family of direct graphs D(SP (T ji )), where each direct graph
δ ∈ D(SP (T ji )) is obtained by (1) recursively replacing
any merging arc, say (T sr~ → Tut ), of A and B with the
speculative polygraph SP(T sr )∪(T sr → Tut ), and (2) for each
asymmetric bypath < a1, b1 > present after the previous
“merging phase”, selecting either a1 or b1.

A speculative polygraph SP(T ji ) is initialized, at transaction
creation time (see Figure 4), by serializing T ji after the most
recently committed transaction (according to the TO-deliver
order), say T dc , through a merging edge. This has the effect
of setting a barrier, in terms of minimum logical time, for the
visibility of data item versions observable by the reads of T ji .

The speculative polygraph of a transaction T ji is then used
to determine whether the k-th read operation of T ji can return
a given version Xs (possibly created by a not yet committed
transaction). Indeed, letting the k-th read of T ji return a
version Xs, rather than any other available one, corresponds to
speculating on a set of possible serialization orders for T ji . In
order to ensure the consistency of the k-th read of a transaction
with its current execution history it is however necessary that
at least one of the speculative serialization orders associated
with the reading of version Xs results “compatible” with
those already determined by having executed the preceding
k-1 reads. In this case we say that Xs is speculatively visible
to T ji . To determine if T ji may speculatively view a data
item version Xs based on its current execution history, its
Speculative Polygraph, SP(T ji ), is updated by:

(R.1) adding a merging edge from the creator of version
Xs to T ji , namely (Xs.creator~→ T ji )

(R.2) adding, for each other available version Xs′ ,
an asymmetric bipath: < (Xs′ .creator~ →
Xs.creator), (T ji → Xs′ .creator) >.

Version Xs is considered speculatively visible iff there
exists at least one direct graph δ ∈ D(SP(T ji )) such that:

(C.1) δ is acyclic, and
(C.2) δ does not contain two sibling transactions T ra , T

q
a

both serialized before T ji , or, formally, @T ra , T qa ∈ δ
such that (T ra → T ji ) ∈ δ∗ and (T ra → T ji ) ∈ δ∗,
where with δ∗ we denote the transitive closure of δ.

If for a δ ∈ D(SP(T ji )) both conditions (C.1) and (C.2) hold,
we also say that δ is valid.

The rationale underlying the above rules is to ensure that,
whenever a transaction T qp is serialized before T ji , the specu-
lative polygraphs of both transactions are recursively merged.
This ensures that the resulting SP(T ji ) keeps fully track of
any conflict relation among the transactions that generated the
snapshot seen by T ji . On the other hand, whenever T ji issues a
read operation on a data item for which exists a version created
by a transaction Tut , whose SP(T tu) cannot be merged with
SP(T ij ) without generating cycles in any δ ∈ D(SP(T ij ))(2),

2This may happen for instance if the polygraphs have two transactions in
common, but ordered in an opposite manner.

rule R.2 allows to serialize Tut after T ji through a plain edge
without requiring to merge the polygraph of Tut . This prevents
corrupting SP(T ji ) by blindly incorporating into it the history
of transactions associated with incompatible speculative seri-
alization orders, and whose writes shall never result visible to
T ji . On the other hand, by serializing Tut after T ji through the
plain edge of an asymmetric bipath, we can still detect cyclic
dependencies involving transactions not serializable before T ji
in SP(T ji ). Finally, condition C.2 avoids reading inconsistent
snapshots generated by an execution history which serializes
(at least) a pair of different sibling transactions T ra , T qa before
T ji , as clearly, in any serial history a transaction Ta can be
committed in a single serialization order.

Transaction’s Data Structures. Each speculative transaction
Tji is associated with an instance of the Transaction class
which keeps track of the following state information (see
Figure 4): i) id and specId, which are set, respectively, to the
values i and j when the Transaction object associated with Tji
is created; ii) SP , which stores the speculative polygraph of
Tji ; iii) RS, namely Tji ’s read set, which is organized as an
array whose n-th entry records the identity X of the data item
read during the n-th read operation, the version of X read,
and a copy of Tji ’s Speculative Polygraph right before the
read took place; iv) WS, Tji ’s write set; v) two boolean vari-
ables, speculative and respawned, reflecting, respectively,
the transaction was activated speculatively, and whether it was
respawned; vi) readOpCounter, namely a counter that keeps
track of how many read operations have been issued up to
date by the transaction; vii) generatingRead, which stores a
value different from 0 only if Tji has been activated through
the fork/spawn of some sibling transaction Tji , in which case
it keeps track of the Tki ’s read operation that has triggered the
forking/spawing of Tji .

Write/Read Operations. The logic for the management of
write operations (see the write() method in Figure 4) is
extremely simple: the transaction simply logs the identity of
the target data item, as well as its new value, into its local
WS variable, which can be seen as the transaction’s “private
workspace”.

Concerning the read operations (see the read() method
in Figure 4), the SCC first checks whether the transaction has
already written the same data item for which it’s issuing the
read. In the positive case, it just returns the corresponding
value stored in its write set. Next, it verifies whether the
transaction has been activated in non-speculative mode. As
anticipated in Section V-A, T ji is activated in non-speculative
mode only if Ti has already been TO-delivered and if all
the transactions preceding Ti in the final order have already
committed. Hence, any read executed by a non-speculative
transaction can safely return the most recently committed
version. On the other hand, if the read operation is issued
by a speculative transaction, the SCC determines, through
the getAllVisibleVersions() method, what subset of
the available versions is speculatively visible by the reading



class Transaction {
int id, specId;
Transaction Td

c =max{Ta ∈ OAB.TO-deliveredMsgs() s.t. ∃T b
a ∈CommittedXacts}

SpeculativePolygraph SP = ( Td
c ~→ T specId

id )
List<DataItemID, DataItemVersion, SpeculativePolygraph> RS;
Set<DataItemID,Value> WS;
boolean speculative, respawned;
int readOpCounter=0, generatingRead=0;

void write(DataItemID X,Value v)
WS.store(X,v); // if X already exists in WS it gets over-ridden

Value read(DataItemID X)
readOpCounter++;
if (< X, v >∈WS) return v;
if (¬speculative)
return X.mostRecentCommitted();

if (respawned ∧ readOpCounter≤generatingRead)
return RS[readOpCounter].getValue();

Set<DataItemVersion, SpeculativePolygraph> versions = getAllVisibleVersions(X);
[Xi, newSP ] = versions.pop();
∀ <DataItemVersion Xj , SpeculativePolygraph SP’>∈versions do
forkSibling();
if (I am the just forked transaction)

RS[readOpCounter] = <X,Xj ,SP>;
SP = SP’;
generatingRead = readOpCounter;
return Xj ;

RS[readOpCounter] = <X,Xi,SP>;
SP = newSP;
return Xi;

void completed() // invoked when the transaction logic terminates its execution
if (Tid /∈OAB.TO-DeliveredMsgs())

STS.addSVersions(T specId
id );

handleWriteAfterReadConflicts();
else
if (∀Tr s.t. (Tr → Tid)∈OAB.TO-DeliveredMsgs() : ∃T s

r ∈CommittedXacts)
if (¬speculative ∨ validateTransaction())
commit();
Transaction Tj = min{Ta ∈ OAB.TO-deliveredMsgs() s.t. (Tid → Tj )}
do
if (∃Tk

j ∈CompletedXacts s.t. (¬Tk
j .speculative ∨ Tk

j .validateTransaction()))
Tk
j .commit();

else
∀Tk

j ∈CompletedXacts do
Tk
j .abort();

break;
while(Tj = Tj .nextOAB.TO−deliveredMsgs())

else
abort();
if (@T ·id ∈ ActivatedXacts)
startNonSXact(T specId

id );
. . .
}

Fig. 4. Pseudo-code for the Speculative Concurrency Control (1)

transaction based on its execution history. The isVisible()
method returns either a ⊥ value if the target data item version
is not speculatively visible. Otherwise, it returns the SP of
the reading transaction T ji updated to reflect the outcome
of the read. Next, the transaction picks one of the selected
visible versions, say Xs, to use it as a return value for the
on-going read, logs it, together with its current SP, in its read
set, and only then replaces its SP with the one updated by the
isVisible() method. Finally, before returning Xs, T ji forks,
for each other visible version Xt, a sibling transaction whose
execution will proceed in parallel with T ji , after returning
Xt for the ongoing read (and after having correspondingly
updated its read set and SP).
Transaction’s Completion. When T ji completes its execution,

class Transaction {
. . .
void handleWriteAfterReadConflicts()
∀Tk

j ∈ ActivatedXacts s.t. (Tk
j .RS ∩WS 6= ∅) do

let r be the min index s.t. Tk
j .RS[r].DataItemId ∈ WS;

(X, ·, SP ′) = Tk
j .RS[r];

let Xi be the value of X written by the current transaction;
if (r > generatingRead)
SpeculativePolygraph newSP = isVisible(X, Xi, SP ′, Tk

j );
if (newSP6=⊥)
∀Tk

j .RS[s] =< ·, ·, SP
′′ > s.t.s > r do

Tk
j .RS[s] =< ·, ·, SP

′′∪ <(T specId
id ~→ Xs.creator),

(Tk
j →T

specId
id )>>;

ReadSet newRS;
∀ 1 < t < r do
newRS[t] = Tk

j .RS[t];
newRS[r] = <X,Xi,newSP>;
spawnSibling(Tj ,newSP,newRS,r);

Set<DataItemVersion,SpeculativePolygraph> getAllVisibleVersions(DataItem X)
Set<DataItemVersion,SpeculativePolygraph> VisibleVersions;
∀Xi ∈ X .getAllVersions() do
SpeculativePolygraph newSP = isVisible(X, Xi, SP, T specId

id );
if (newSP6=⊥)
VisibleVersions = VisibleVersions ∪ < Xi, newSG >;

return VisibleVersions;

SpeculativePolygraph isVisible(DataItem X,
DataItemVersion Xi, SpeculativePolygraph currentSP, Transaction T)

SpeculativePolygraph newSP = (Xi.creator~→T)∪currentSP;
∀(Xj 6= Xi) ∈ STS.getAllVersions(X) do
newSP = newSP ∪ < (Xj .creator~→ Xi.creator) , (T→ Xj .creator)>;

if ( ∃δ ∈ D(newSP) s.t. isValid(δ, T))
return newSP;

else return ⊥;

void abort()
STS.removeSVersions(T specId

id );
∀Tm

l ∈ ActivatedXacts do
∀δ ∈ D(Tm

l .SP ) s.t. isValid(δ,Tm
l ) do

if ((Tid → Tm
l ) ∈ δ∗)

Tm
l .abort();

ActivatedXacts = ActivatedXacts \ {T specId
id };

CompletedXacts = CompletedXacts \ {T specId
id };

void commit()
STS.commitSVersions(T specId

id );
∀Tm

id ∈ ActivatedXacts do
Tm
id .abort(); // Abort sibling transactions

boolean isValid(DirectGraph δ, Transaction T)
return (δ is acyclic ∧ (@ (T j

i → T ), (Tk
i → T ) ∈ δ∗ with j 6= k));

boolean validateTransaction()
∀ <X,value,· > ∈ RS do
if (value 6= X.getCommittedVersion().getValue())
return false;

return true;
}

Fig. 5. Pseudo-code for the Speculative Concurrency Control (2)

it adds itself to the Completed set. Then, if Ti is already TO-
delivered and if exists some transaction Tp that precedes Ti in
the final order and has not yet committed, the completed()
method simply ends, delegating the task of attempting to
commit T ji to any T sp that will subsequently commit. Con-
versely, if all the transactions Tp preceding Ti in the final order
have already committed, and T ji is either non-speculative or
successfully passes the validation phase, T ji is committed and
attempts to commit any completed transaction Tml , such that
Tl follows Ti in the final order.

On the other hand, in case Ti has not yet



been TO-delivered, T ji makes available its versions
through addSVersions. Then it invokes the
handleWriteAfterReadConflicts() method to
determine whether there is any transaction T ba that has
read some data item also written by T ji , and whether the
version created by T ji was speculatively visible for T ba at
the time in which it executed the read. To this end, the
isVisible() method is invoked passing as input parameter
the SP (retrieved from T ba ’s read set) that T ba was storing at
the earliest time in which T ba read a data item, say its r−th
read, also written by T ji .

Note that by retrieving the SP of the first data item in T ba ’s
read set to have also been written by T ji , we detect the earliest
possible point in the execution trajectory of T ba that could
have been affected by a write of T ji . Recall that in a snapshot
deterministic model, if T ba had seen the version created by T ji ,
rather than the one returned in its execution, T ba might not
execute the same set of subsequent reads. Hence, to avoid vi-
olating the Non-redundancy property, the SCC respawns only
a single sibling of T ba , say T ca , even if there are multiple data
items in T ji .WS ∩ T ba .RS. T ca will re-execute (see the read()
method in Figure 4) the same set of reads already performed
by T ba , up to the read that caused its spawning. Such a read
will return the value created by T ji and, henceforth, T ca will
be free to evolve in its execution trajectory. To enforce such
a behavior, the first r-1 entries of the read set of the spawned
transaction are set equal to the corresponding ones of T ba , and
its r-th entry to reflect the read from T ji . Note that T ji also
updates, in the T ba ’s read set, every entry following the read
that caused the spawning, reflecting the fact that T ba did not
observe during the r-th read the data item version generated by
T ji . This guarantees the completeness of the information stored
by SP(T ba), which could be again queried in future from within
the handleWriteAfterReadConflicts() method.

In order not to incur in violations of the Non-redundancy
property, we take one additional measure: if T ji detects that
the conflict affects the r − th read of a transaction T ba and
T ba was activated due to a fork/respawn of some sibling
transaction T ca occured upon T ca ’s k-th read (i.e. the value
of generatingRead for T ba is k), where r < k, then T ji
avoids respawning T ba . In this case, in fact, since T ba and T ca
exhibit the same behavior up to the k − 1-th read, the sibling
transactions spawned by T ba and T ca to deal with a conflict
occuring at a read r < k would observe the same snapshot. It
is therefore sufficient to re-spawn exclusively T ca .

Commit/Abort/Validation. A transaction is considered suc-
cessfully validated iff the values read by the transaction during
its execution, and stored in its RS variable, coincide with
the values currently stored by the committed version of the
corresponding data item (see validateTransaction() method
of Figure 5). The commit() method marks the data item
versions created by the committing transaction as the currently
committed versions, and then triggers the abort of any of its
sibling transactions through the abort() method. When this
latter method is invoked on transaction T ji , it first removes any

data items’ versions made available by T ji , and then triggers
the cascading abort of any other transaction, say Tml , having
a, possibly indirect, read-from dependency with the aborting
transaction. This is verified by checking if for every valid
δ ∈ D(SP(Tml )) there is a path from T ji to Tml .

Example Scenario. Let us consider an example scenario of
execution of the SCC associated with the following history:
H3= { BT0

1
, RT0

1
(X), WT0

1
(X), CT0

1
, BT0

2
, RT0

2
(X), FT1

2
,

WT0
2
(X), RT1

2
(X), WT1

2
(X)}

where we use the notation BT j
i

, RT j
i

, WT j
i

, CT j
i

and FT j
i

,
to denote, respectively, the begin, read, write, complete (and,
note, not the commit) and forking of a transaction T ji .

We shall assume that the only version for each data item
present in memory is the committed version, and denote with
C the identifier of the last committed transaction. In Figure 6.a
we show the state of SP(T 0

1 ) right after the execution of the
read operation on X. Note that, in order to refer to a merging
edge, and distinguish it from a plain edge, we use a dashed
arrow, which in Figure 6.a reflects the read-from dependency
from T 0

1 to C. Further, within the speculative graph of SP(T ji ),
we use the convention of drawing a double circle to refer to
transaction T ji

Figure 6.b shows the state of SP(T 0
2 ) after the execution of

the read on X, assuming that T 0
2 reads the committed version.

Since T 0
1 has already completed executing (but has not been

committed yet) at the time in which T 0
2 performs the read, T 0

2

finds also available the versions created by T 0
1 . Thus, SP(T 0

2 )
contains also the asymmetric bipath < (T 0

1~ → C), (T 0
2 →

T 0
1 ) >, which we denoted by adding a circular arc on the

common node. Figure 6.c and 6.d shows the two direct graphs
δ, δ′ ∈ D(SP(T 0

2 )). As it can be seen, the direct graph in Figure
6.c, associated with the merging edge (T 0

1~→ C) exhibits a
cycle, but since the direct graph in Figure 6.d is acyclic the
committed version of X results speculatively visible by T 0

2 .
In Figure 6.e we provide the speculative polygraph

of T 0
1 after the update performed during the

completion phase of T 0
2 (i.e. within the method

handleWriteAfterReadConflicts()), that adds
the asymmetric bipath b1 =< (T 0

2~ → C), (T 0
1 → T 0

2 ) >
to SP(T 0

1 ). In Figure 6.g, we show the only valid direct
graph in D(SP(T 0

1 )), which serializes T 0
1 before T 0

2 . In fact,
as shown in Figure 6.f, by considering the merging edge
(T 0

2~ → C) of b1, and merging SP(T 0
2 ) with SP(T 0

1 ), the
resulting speculative polygraph is necessarily cyclic.

Finally, we show in Figure 6.h the speculative graph of T 1
2 ,

namely the transaction forked by T 0
2 upon the read of data

item X, and which returns the version of X written by T 0
1 .

Figure 6.i shows the only direct graph in D(SP(T 1
2 )) to be

acyclic that permits the speculative visibility of the version
written by T 0

1 .

C. Correctness

For space constraints, we cannot report the formal proof of
protocol correctness. We remaind the interested readers to [20],
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Fig. 6. SCC Execution for History H3

where we prove how the protocol guarantees all the properties
specified by the problem statement in Section IV.

D. Dealing with Read-Only Transactions

As in other OAB-based transactional replication solutions,
when employing the STR protocol presented in this paper, read
only transactions can be processed locally by each replica. To
this end, a simple approach would consist in running read-only
transactions in a purely optimistic fashion, letting them always
read the most recently commit data items’ versions and relying
either on an a-posteriori (at commit time), rather than eager (at
each read) validation. This solution requires maintaining at any
time only a single committed version of the data items, albeit
at the cost of incurring in aborts of read-only transactions.

An alternative solution, exhibiting specular benefits and
drawbacks, would consist in ensuring that a read-only transac-
tion is always able to observe the snapshot created by the trans-
actions already committed when it started. This would shelter
read-only transactions from the chance of aborting, though
forcing the STS to maintain multiple committed versions of
each data item.

VI. CONCLUSIONS

In this paper we investigated the issues related with the
adoption of a speculative approach for the replication of
transactional systems, which we name STR (Speculative
Transactional Replication). STR exploits an OAB service and
maximizes the overlapping between communication and com-
putation by processing transactions in speculative serialization
orders, corresponding to distinct permutations of the set of
optimistically delivered messages. The challenge is to avoid
the exhaustive exploration of the set Π of permutations of the
optimistically delivered messages, something that is both in-
feasible and non-productive as, in practice, it is highly unlikely
that every transaction conflicts with every other one. Hence,
a (possibly large) portion of the set of the permutations in Π
would actually generate identical, redundant computations.

We formalized the problem in a realistic model where
transactions’ data access patterns are not known a-priori and
may vary depending on the snapshots they read. We defined a
set of correctness and optimality criteria that shelter transac-
tions from reading inconsistent snapshots and require the on-
line identification of the minimum set of serialization orders
generating every distinct transaction execution trajectories.

Finally, we presented an optimal STR protocol, which
relies on a novel graph-based construct, called Speculative
Polygraph (SP), to dynamically encode information on the

conflict relations developed during the speculative execution
of transactions.
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