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AN OPTIMAL STOPPING PROBLEM FOR SUMS OF
DICHOTOMOUS RANDOM VARIABLES!

By H. CHERNOFF AND A.J. PETKAU

Massachusetts Institute of Technology

Let Y; be a stochastic process starting at y which changes by i.i.d. di-
chotomous incréments X; with mean 0 and variance 1. The cost of proceed-
ing one step is one and the payoff is zero unless # steps are taken and the
final value ¥ of ¥, is negative in which case the payoff is Y2 The optimal
procedure consists of stopping as soon as ¥; > j» where m is the number of
steps left to be taken. The limit of j, as m — oo is desired as a function of
p = P(X; <0). This limit y is evaluated for p rational and proved to be
continuous in p. One can use j to relate the solution of optimal stopping
problems involving a Wiener process to those involving certain discrete-
time discrete-process stopping problems. Thus j is useful in calculating
simple numerical approximations to solutions of various stopping problems.

1. Introduction. The limiting behavior of the solution of the following pro-
blem can be used to relate the solution of a class of continuous time stopping
problems involving a Wiener process to certain discrete time, discrete process,
stopping problems. This relationship can be used to estimate the error of a rela-
tively simple computational approximation to the solutions of stopping problems.
In the last section we elaborate on this paragraph and relate it to a problem in
sequential analysis.

A stochastic process {Y,, t = —n, —n + 1, ..., 0} starting at Y_, = y is ob-
served for at most n successive times. At each time Y, changes by either a or &
so that the change has mean O and variance 1. To observe a new value of Y,
involves a cost of one unit. The observer receives a reward only if he has ob-
served all n steps and the final value Y, is negative in which case he receives the
square of the final value.

Clearly it pays to continue observing if Y, is highly negative and to stop if
Y, is highly positive. In Section 3 we shall prove that an optimal procedure
consists of continuing as long as Y, stays below y_, where —¢ is the remaining
number of steps to be observed and that y_, converges to y as —¢ — oo. In Sec-
tion 4 an expression for y is obtained in terms of a contour integral for the
case of rational /b and in Section § it is shown that y is continuous in a/b. In
Section 6 some related results are presented.

2. Notation. The process {Y,,t = —n, —n 41, ...} starts at Y_, = y and
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can be expressed as
Yiu=Y, + X

where {X,,t =0, +1, 42, ...} are independently and identically distributed
according to

PlX,=a}=p
PIX,=b}=1—p

where 0 < p <1 and @ and b are such that EX, = 0 and EX;? = 1 which is
equivalent to

pa+(1—pb=0
pat+ (1 —ppr = 1.
We shall take

a=—((1—plpy and b= (p(1 —p)t.

Note that a/b = —(1 — p)/p is rational if and only if p is.

The stopping problem consists of finding a stopping rule which stops after
N steps in order to maximize the expected gain designated by v(y, n). Here N
is possibly random. Then the gain consists of the payoff Y if ¥, < 0 and
N = n steps are observed minus a cost of Nif Nsteps are observed. In the event
that N < n, there is no payoff. We shall designate the optimal expected gain
by ¥((p, n). Associated with an arbitrary stopping rule we are concerned with
N, and T = —n + N, the value of the subscript upon termination, and Yy=v,
the value of Y, upon termination. The event

F,={N=n,¥ <0}

and its complement E, are of importance. Note that N, T, ?, and the proba-
bility measure depend implicitly upon the initial point (y, —n) as well as the
stopping rule.

3. Monotonicity and continuity properties and bounds. In this section we
show that an optimal strategy consists of stopping when Y, > y_, where p, is
negative and decreases monotonically as n — co to some number y = —b/2.
Also #(y, n) converges monotonically to #(y) as n — co where ¥(y) is continuous
and satisfies a simple functional equatation.

Comparing the expected gains of taking an observation and stopping, and
applying backward induction it is easy to see that

3.1 U(y, n) = max {0, p¥(y + a,n — 1) + (1 — pYW(y + b,n — 1) — 1},
n>0
with #(y, 0) = y* for y < 0 and ¥(y,0) = 0 for y > 0. It is also apparent that

an optimal policy consists of stopping after observing Y, =y, if ¥(y, —r) = 0.
This describes the optimal policy in terms of a stopping set of points (y, t) at
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which it pays to stop or the complementary continuation set on which ¥(y,
—1) > 0. This set does not depend on the initial value » specified in the problem
and thus our solution is simultaneously applicable for all initial points (y, —n),
n>0.

LemMa 3.1. ©(y, n) is monotonic decreasing in n.

Proor. We observe that
PO +a+ A —py+by—1=)".
Hence, if y + 6 £ 0,
PPy +a,0) + (1 —po(y + 5,0 — 1 =),
but if y + 5> 0 = y + a, the left-hand side of the above equality becomes
p(y 4+ af — 1 <y, Tt easily follows from (3.1) that
vy, 1) =)* for y< —b
0<¥y, H<y for —b<y< —a—ptgo
by, 1)=20 for y= —a — pt,
and hence ¥(y, 1) < #(y, 0).
For n > 0, #(y, n + 1) can be considered the optimal expected gain of an n

step stopping problem with terminal payoff function ¥(y, 1) < #(y, 0). This
problem is less favorable than our initial problem and hence #(y,n + 1) <

U(y,n). 00

This proof incidentally demonstrates that for r = —1, the stopping points are
{(9, =1): y =y, = —a — pt} where y, < 0. Hence applying Lemma 3.1,
(y,n) =0 fory = g,.

LeMMA 3.2. ¥(y, n) is monotonic decreasing in y.

Proor. For a given initial point (y, —n), the optimal procedure can be des-
cribed in terms of the X_,, X_,.,, - - -, which lead to stopping. Apply this same
rule for the initial point (y — ¢, —n) with ¢ > 0. (Here this rule is possibly
suboptimal.) Then

By — o) — By, n) = §p, [(P — & — P]dP = 0

where we recall that F, = {N = n, ¥ < 0} and P is the probability distribution
induced by the optimal procedure with initial point (y, —n). []

Theorem 3.1 follows immediately from Lemmas 3.1 and 3.2.
THEOREM 3.1. The optimal stopping set can be described as
{(yp —m):iyzjmnz=l}

where {§,} is a monotonic decreasing negative sequence. Furthermore ¥(y, n) = 0 for

Y Z Vae
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We may now define

(3.2) 5 =lim,..p,
and
(3.3) (y) = lim,_., ¥(y, n) .

LemMMA 3.3. y* > ¥(y,n) = y* — /4 fory < 0, and 3, = —b/2.

Proor. Since (W, =7Y2,,, —i,i=0,1,2,...}isa martingale, the optimal
stopping theorem ([5], page 300) yields
(3.4) ' = E(f* — N)

for any stopping procedure. Then
(3.5) v(y,n) = E(f* — N) — §, P*dP

where E, = {(N<norN=n,¥ = 0}.
Let y < 0 and consider the special possibly suboptimal procedure which con-
sists of continuing as long as Y, < ¢ < 0. Then

v(y, n) = y* — max[c?, (c + b)].

Taking ¢ = —b/2 we have ¥(y, n) = v(y, n) = y* — */4. Thus ¥(y, n) > 0 for
y < —b/2and y, = —b/2. []

Some useful continuity properties are included in

THEOREM 3.2. U(y, n) and U(y) are continuous and for y > 0, their derivative
numbers are bounded between 2(y — b) and min [0, 2(y — 7)].

Proor. First we note that {Y,, —n < r < 0} is a martingale and hence the
optimal stopping theorem yields
(3.6) yzEY:SEnYdP-}-SFnYdP
for any stopping procedure. Let us restrict ourselves to procedures which stop

if Y, > 0 and do not stop before ¢+ = 0 if ¥, < y,. These include all optimal
procedures. Then if y < O,

y_b§SFn?dP§y_yn-

Applying the argument of Lemma 3.2, we have, for ¢ > 0, ¥(y — ¢, n) —
¥(y,m) = —2¢\,, YdP + ¢, dP = —2¢(y — y,). The same argument yields

Ty +en—0y,n= $z, [(Y + e)? — ?2] dpP — § 7,7 +e>0) (Y + )’ dP
= 2e(y — b) — €.

These bounds and the previous results imply our Theorem 3.2. 0

Let n — oo in Equation 3.1. With the help of the previous results it is easy
to see that
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THEOREM 3.3.

0=y5=—b2
vy =y -b4,  for y<0
and
(3.7 =Py +a+1—-ppy+b—1 for y<yp

Fy) =0 for y=7.
Note that the two equations of (3.7) imply p¥(y + a) + (1 — p)o(y + &) —
1=0.

4. The case of rational p. Suppose p = r/m where r and m are relatively
prime integers with0 < r < m. Lets=m —r > 0. Thena = —shand b = rh
where & = (rs)~%. In this case the possible values of X, are commensurate, i.e.,
integral multiples of 4, and the possible values of Y, are restricted to a lattice
of values y + ih, i = 0, £1, +2, . ... For convenience we represent this set
asf{c+ih:i=0, £1, 2, ...} where c is selected so that y — 2 < ¢ < 7.

For each value of ¢, equation (3.7) becomes a classical mth order linear dif-
ference equation and ¥(y) is a solution of

(4.1) )= oy = sh)+ = oy +rm)—1  y=3

(4.2) v(y) =0 yzy
A particular solution of (4.1) is given by v(y) = y*. The general solution of
(4.1) can be expressed in terms of the roots x; of the algebraic equation

(4.3) mx* =r 4 sx™

" which is easily seen to have a double root at x = 1 and no other double root.
Then the general solution of (4.1) is

(4.4) V(y) =5 + do + dy + TI5dyx

Then the bound on #(y) in Theorem 3.3 implies that for #(y), d = Oand d, = 0
for all i for which |x,| < 1. The fact that #(y) = 0 for y > y implies

(4.5) Fe+ih)=0 for i=1,2,--.,r

which imposes » condition on the remaining d;. (The fact that #(y) = 0 fory >
¢ + rh is not useful since equation (4.1) applies only for y < y or equivalently
Y4+ rhLyp+4+rh<c+ (r+ 1)h) Thus to determine the coefficients d, it is
desirable to have r — 1 roots x, for which |x,| > 1. In the following lemma we
establish this property and use it to derive an expression for j in terms of a con-
tour integral.

LEMMA 4.1 The equation mx* = r 4 sx™ has one double root at x =1, r — 1
distinct roots for which |x;| > 1, and s — 1 distinct roots for which |x,| < 1.
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Proor. 3ince the x,~! satisfy the same equation with » and s interchanged, it
suffices to show that there are s — 1 roots inside the unit circle. Let

(4.6) Ax) = x7B(x) = x4+ Zxr — 1.
m m

Consider the path C which follows the unit circle counter clockwise in the
complex plane except for a short vertical line near x = 1 from (1 — ¢) — iy to
(1 — ¢) + ip. The number of times A(x) circles the origin as x goes around C is
s less than the number of x; such that |x,| < 1. Our proof will be complete if we
show that this is —1, i.e., if there is one clockwise circuit.

Near x = 1, A(x) =~ rs(x — 1)*/2 and along the line segment, A(x) moves from
a point in the second quadrant clockwise about 0 to a point in the third quadrant.
Along the circular part of C, A(x) is a weighted average of points on the unit
circle —1, and is confined to the half plane where the real part is negative. The
lemma follows. []

Let x, =1, x,, x,, - -+, x,_, be the r — 1 distinct roots of (4.3) outside the unit
circle and x,, x,,,, - -+, X,,_, be the distinct roots inside the unit circle. Let
1 x, - x,,
4.7) p=| b Mo
1 xreext_,

which is nonsingular, and let
d’ = (do, dla ft s dr—l)

and let i/ be the column vector whose jth element is i/, 1 < i < r, with 1 = {i°.
Then condition (4.5) translates to

(4.8) Dd = —(c’1 + 2chi 4 Ai?).
Hence,
4.9) Fle) =1'd + ¢ = (1 — 1'D™'1) — 2¢hV DY — BPUVD'i2,
The following theorem “evaluates” ¥(c) and y.
THEOREM 4.1. For some positive constant k (independent of c)
(4.10)  B(e) = —2kh{c + A} + Tpos (1 — %)) for p—h<ec=y
and '
(4.11) y=—lF+ D (1 —x)7]k.
Proor. Let E(x) = 1'D™'x — 1 where x’ = (x, x% ---, x"). Since D7'x,_, is

the ith column of the identity matrix E(x,_;) =0 for i=1,2, ..., r. Since
E(0) # 0, E is a nondegenerate rth degree polynomial in x and it follows that

E(x) =k 1550 (x — xy)
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where k, = 0. Moreover,
E(1l)=1D"1—-1=0,
EW)y=1D"=k [[51(1 —x)=+0,
E'(1) = VD — i) = 28(1) Bzt (1 — %)™
and applying (4.9)
U(c) = —2chE'(1) — K[E"(1) + E'(1)].
Equation (4.10) follows with k = E’(1). Since ¥(c) = 0, and is decreasing in ¢

for ¢ < y, it follows that E’(1)>0. Equation (4.11) is an immediate consequence
of the fact that #(y) = 0. [J

To obtain an expression for § in terms of a contour integral, we establish two
lemmas. The second expresses }),,,.; (1 — x;)* in terms of a contour integral
and the first obtains a simple expression for 3, ., (1 — x;)7%

LemMa 4.2. The expansion of B'(x)[B(x) about x = 1 is of the form

B(x)/B(x) = 2(x — 1)~ + Li%?:i’
(x—1) 4 :_ 1
+——_18 [ +rs+rF—125s — 6r + 15] + ---
and
T (1 — x) = #:ﬁi

PrOOF. Since B(x) = (s/m) [L,« (x — x;)-(x — 1), it is easy to see that
B'(x)/B(x) = d[log B(x)]/dx = 2(x — 1)™* 4 3, .. (x — x;)”", and the constant
in the expansion of B'(x)/B(x) about x = 1is 3], ., (1 — x,)~*. Expanding B'(x)
and B(x) about x = 1 and dividing yields the expansion above. []

LeMMA 4.3.

lei|<1 (1 - xi)_l
1 o [ ms(e’”? — 1)ete—? 2 4 25 — 3] e do
27 ° L'r 4 se™® — met’ e — 1 3 1 — e

ProoF. By virtue of the expansion of Lemma 4.2,
[Br(x) ~2(x_1)_1_r+2s—3] 1

B(x) 3 (1 —x)

which has poles of magnitude (I — x;)~* at each x; = 1, isregular at x = 1. Our
result follows by taking the contour integral about the unit circle. []

Combining Theorem 4.1 with the last two lemmas we can write

. 1 r—|—2sjl
(4.12) 7 [+2 :

where S is the right-hand side of the statement of Lemma 4.3.
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It should be remarked that the cases where p = 1/m and p = (m — 1)/m are
simple to handle without using the contour integral. When p = 1/m,r = 1 and
there are no roots of (4.3) outside the unit circle. Then j = —£/2 = —5p/2 =
—(m—1)"42. Whenp = (m —1)/m,r = m—1, s = 1 and except for the double
root at x = 1, all the roots are outside the unit circle. Then D1 (1 — x)7t =
(r+2s—3)3=(m—2)/3 and y = —h(2m — 1)/6, where h = (m — 1)~* =
—a. Since b = (m — 1)k, =~ —5/3 in that case.

Incidentally, in the case p = 1/m, application of (4.4) and (4.8) yields

) =)y'—(c+ b for y<y= —b/2

where ¢ is the remainder, —35/2 < ¢ < —5b/2, after a suitable multiple of b is
added to y. The term (¢ 4 b)* can also be expressed as

inf, (y + jb)*,
i.e., the square of the distance from y to the closest multiple of 5, and varies
from 0 to b*/4.

5. Continuity in p. In Section 4, the functional equation (3.7) reduced to a
difference equation which was used to derive expressions for y and #(y) for the
case where p is rational. In the irrational case that technique is not directly ap-
plicable. However, we shall show that y and 9(y) are continuous in p and thus
their values in the irrational case can be approximated by replacing p by a nearby
rational.

We shall find it expedient to introduce another stopping problem which is
equivalent to the original problem. That consists of minimizing

u(y, ny =y, Prdp

and has minimizing value 4(y, n). To compare the cases for two values p and
po we shall use the subscript O to represent the case of p,. Thus dy(y, n), ¥, Vo
?,, etc. all correspond to the case of p,.

Lemma 5.1 implies the equivalence of the original problem and the minimi-
zation problem and the fact that as n — oo, @(y, n) — 4(y) = y* — ¥(y).

LeMMA 5.1, For any stopping rule, v(y, n) = y* — u(y, n).

Proor. This result is an immediate consequence of equations (3.4) and
(3.5). O

It should be remarked that there are some conveniences to be gained from
the equivalence of these two problems. The original problem made certain
monotonicity properties easy to obtain. The new problem permits us to deal
with ¥ on E, where ¥ is bounded between —b/2 and b.

Our overall plan consists of using a bound on P(E,) to bound ¥(y) — ¥(y, n).
This with the bound on the derivative numbers of #( y, ) (of Theorem 3.2) leads
to a bound on y — y,. Finally a bound on ¥(y, n) — ¥(y, n) leads to a bound
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on j, — y,, which combines with two applications of the previous result to bound
V=T

LeEMMA 5.2. If y is in a bounded interval and p is in a closed subinterval of (0, 1),
there is a constant K such that P(F,) < Kn~* when the optimal procedure is applied.

Proor. Let y < O since the case y = 0 is trivial. Note that P(F,) <
P{(max,cpe, 20 X;) < —y} = P{N = n} where N is the first integer m for which
S, = 2m X, = —y. My() = E[exp(4X,)] be the moment generating function
(m.g.f.) of X, and let 2> 0. The sequence {exp[4S, — mlog M ()], m =
1,2, ...} is a martingale with mean 1. Because EX, = 0, u = —log M, (1) < 0.
By optional stopping,

1 = E(ezs‘wzvu) < eZ(—y+b)MN(u)
where M, is the m.g.f. of N. But
Myu) <1 — P{N = n} + e"P{N = n}

and also
1 — e~ H—wth
(5.1) PNzmp <!
— e
Now let 2 = n~t. Then M,(A) = 1 + 14* 4 0(4%) and it is easy to see that the
right-hand side of (5.1) is asymptotically equivalent to (—y + b)(1 — e"#)"'n 1.
A more detailed calculation yields our desired result. []
The above lemma is basically a result on the distribution of the maximum of
sums of i.i.d. random variables and is a consequence of a general result of

Spitzer [7]. The bound obtained using that result involves the solution of a
Wiener-Hopf equation.

LEmMA 5.3. If y is in a bounded interval and p is in a closed subinterval of (0, 1)
there is a constant K such that
B(y, m) 2 F(p) Z ¥y, n) — bKn?
and
yn _'.7 é bKin~# .

Proor. For the stopping problem with initial point (y, —n,), with n, > n,
apply the optimal procedure for initial point (y, —n). More precisely stop if
Y, Z Puen—e for —ny <t <n—n,. Fort=n—nstopif Y, =z —b/2 or when
t = 0. This suboptimal procedure leads to u(y, n,) where

a(y, m) = u(y, m) < a(y, n) + BP(F,) .

Let n, — oo and apply Lemmas 5.1 and 5.2 and the first part of the result follows.
Now let y = y = —5/2 and hence

07, 1) — 0(Pus n).= 0(p, n) < B*P(F,) .
But, the proof of Theorem 3.2 implies that ¥(y, n) — ¥(p,, n) = (¥, — §)*. [
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Lemma 5.4. Ify <0
Bo(ys 1) Z By, 1) — (ab® + 2663, + ch)

where &, = n|p — p,| and &,, = nmax (|ja — a,|, |b — by|).

Proor. We shall apply the optimal stopping rule for (y, n, p) to (y, n, p,) Where
that rule will be interpreted in terms of the “history” of positive and negative
values of X, which lead to stopping. It is convenient to think of X, and X, as
being formed by generating a random variable Z, uniform on (0, 1) and letting
X, = aif Z, < p and b otherwise. The same Z, can serve to generate X, and also
X, corresponding to p,. Thus we see that in n steps, the “histories” of positive
and negative steps for X, and X;, will differ only if some Z, is between p and
Po» an event with probability no larger than ¢,,. To help define our stopping rule,
let X,* = a when X,, = q, (i.e., when Z, < p,) and let X,* = b when X, = b,.
Our rule consists of stopping the Y,, process when Y,* = y_,.

If the histories don’t differ, then * = ¥ and |? — P)| < &,. Let H,* be the
event of common histories and H,~ be its complement. Then

Uy, 1) = Sutn,n,, P2dpP + Sufr, PirdP + $uy x5y, Y2 dP
and
a(y,n) = \p, Prdp = Suite,m, P2 ap.
OnH,*E,E,,, ¥ < ¥* 4 2be,, + ¢&,. On H,*F,E,,, N=N,=nand ¥ < 0but
P, = 0 and hence P < ¢2,. Finally on E,, |f, — P*| < ¢, and |[F*| < b and
hence ¥? < (b + &,)*. Hence
4y, n) < uy(y, n) < @(y, n) + 2be,, + &, + €,0" . i
LEMMA 5.5. If §, > ,, then
P = Jou = (150 + 2bey, + &3,)1 .
PRroOOF.
0 = Ty(Pons 1) = V(Pon» 1) — (120" + 2bey, + €3,) -
Using the proof of Theorem 3.2
(Fons 1) = V(Fons 1) — U(Ps 1) 2 (P — Juu)* - U
THEOREM 5.1. § is continuous in p.

Proor. From Lemma 5.3 we have bounds for y, — y and 3, — y,. From
Lemma 5.5 we have a bound on 3, — #,, if , > ¥,, and a similar bound if y, <
Jos- These combine to give a bound on |y — J,|. Given an interval containing
p and p,, then a, b, a, and b, are bounded, and a constant K (from Lemma 5.3)
is determined. For n sufficiently large the bounds for y, — y and y,, — 7, derived
from Lemma 5.3 can be made arbitrarily small. Given that value of n, ¢,, and ¢,,
can be made sufficiently small by taking p — p, small enough so that the bound
on |y, — ¥, is arbitrarily small. Hence |y — J,| can be made arbitrarily small. []
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Theorem 5.1 permits us to approximate ¥, for irrational po by computing y for
nearby rational p. Moreover the derivation carries implicitly in it a method of
estimating the error of this approximation.

In Figure 1, we present the values of y determined from (4.12) by numerical
integration for a finite sequence of rational values of p. This figure suggests the
conjecture that y is not differentiable in p.

p .
00 Oi | Oi2 O.'3 Oi4 05 06 0.7
T I T
\
\
-0l _\ V(I-p)=7(p)—[‘\/(l—p)/p —\/p/(l-p)] /3
-02}- .
-031- T
¥(p) T
-04}- .,
-051 ..
,
-06 S
FiG. 1.

6. Related results. An alternative proof was developed for the continuity of
¥ as a function of p. The proof in Section 5 has the advantage that it provides
a means of computing bounds on |y — ,|. The alternative proof involves several
results of intrinsic interest in themselves and we shall present these here.

Where Section 5 basically involves a bound on the probability distribution of
the time of first passage above a constant of a sum of i.i.d. (dichotomous) random
variables, the alternative uses

(6.1) Wiy) = E(X2)
where ¥, is the value of Y, at the first time where Y, > c. We also define
(6.2) w. (y) = E(¥,*?)

where ?,* is the value of Y, at the first time Y, > ¢. We omit the subscript ¢
when ¢ = §. Note that these definitions (6.1) and (6.2) are independent of the
t coordinate of the initial point (y, ).
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In this section we shall prove that y, > y for all n and use this to prove that

w(y) = a(y) = w*(y) -
A corollary is that ¢ = y minimizes w,(y) and w,*(y). The result that w(y) =
w,*(y) for ¢ = y is not trivial. It is not true for general c; and its proof, which
invokes the fact that $, > 9, seems to be tied to the smoothness imposed by the
fact that ¢ = y is the solution of an optimization problem.

LemMmaA 6.1. 7, > 7.

Proor. Direct computation in the proof of Lemma 3.1 shows that ¥(y, 1) <
¥(y, 0), for —b < y < 0. If(y, —n — 1) is an initial point such that there exists
a possible path Y, which leads to (y;, —1) with —b4 < y, < 0 without stopping
under the optimal procedure, then,

(6.3) Uy, n+ 1) <¥(y,n)
since ¥(y, n + 1) can be considered as the optimal expected gain of an n-step
problem with terminal payoff #(y, 1). In particular if y =3, (§ = —5/2 by
Theorem 3.3) and n, is designated, such a path is easily constructed for some y,
between —b and y, and for some n > n,.

Hence, for arbitrary n, > 0, there is an n > n,, so that

0, ) 2 0(p,n) >9(F,n+1) 20
using monotonicity, (6.3), and the nonnegativity of ¥, and thus
P < Fuy- 0

LeEMMA 6.2. w(y) = d(y).

Proor. Let ¥, T and N correspond to the suboptimal rule of stopping when
Y, > 7, and let ¥, N and T correspond to the optimal rule. Then by Lemma
6.1, N< Nand
(6.4) Ay, 1) = §ioyenm L2 AP + S, @Y, —T) dP
where C is the complement of {N = N < n/2}. Thus on C either N = n/2 or
N< nj2and N< N. Asn— oo, P[N = n/2} — 0. On the set where N < n/2
and N< N, 9 < P < om—p and (P, —T) — P =5(F, —T) < 35|F —
Ptaml — O where the last inequality derives from Theorem 3.2 and the fact that
y > —b/2. Hence

@y, 1) — Siwanm Y2 dP — 0.
The first term converges to #(y). The second term converges to w(y). [I

THEOREM 6.1. w(y) = @(y) = w*(y).

ProoF. Let P*, T*, and N* correspond to the rule of stopping when Y, = y.
While the proof of Lemma 6.2 required Lemma 6.1 to infer N < N the fact that
N* < N follows from the definition. The remainder of the proof of Lemma 6.2
applies to w*(y) directly. []
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Note that if ¢ is a possible value of Y,, the distribution of ¥, and ¥,* are quite
different and w,(y) is not in general equal to w,*(y).

CoRrOLLARY 1. w/(y) = w(y) and w,*(y) = w*(y).
Proor. The suboptimal strategy of stopping when Y, > c leads to

u(y, n) = § yem Y2 dP + Yv=n.tPz0) P2dP = d(y, n) .

As n — oo the second term in the sum approaches 0 and the first approaches
w,(y). At the same time #(y, n) — d(y) = w(y). The same proof applies for
wc*(.y)' D

7. Background. In a series of papers[1,2, 3, 4], the sequential problem of test-
ing whether the mean of a normal distribution with known variance is positive
or negative was approximated by the continuous time problem of deciding the
sign of the drift of a Wiener process. The latter problem reduces to a stopping
problem involving a zero drift standard Wiener process Z(r). If stopping takes
place at (Z, T), there is a payoff g(Z, T). The continuous time problem has the
advantage that its solution is related to a problem in analysis, a free boundary
problem involving that heat equation. Moreover a numerical solution of the
continuous time problem can be approximated by applying backward induction
on a truncated version of the original discrete time problem.

This apparent circularity seems more embarrassing than is the case. First,
the continuous time problem allows us to derive valuable characteristics of the
solution including asymptotic approximations. Moreover there is an excellent
and simple approximate relation between the solutions of the discrete and con-
tinuous time problems which allows us to use a single backward induction to
approximate the solution of the continuous time problem and the solution of an
entire class of discrete time problems.

More specifically, a discrete time version of the above stopping problem is
obtained when one is permitted to stop only on a discrete set of possible values
of t, say {t, + nd,n=1,2, -..}. Then, between successive possible stopping
times Z changes by a normal deviate with mean 0 and variance 4. It is shown
in [4] that the difference between the optimal boundaries Z(¢) and Z,(f) of the two
problems is approximately given by

z, = z + .58246}

(the sign is determined so as to make the continuation region smaller). The
number .5824 comes from the limiting value of y in the solution of an associated
problem. That problem is the same as the one originally posed in this paper
except that the X, are normally distributed with mean 0 and variance 1.

The programming of the backward induction for the numerical calculation is
easier if the Wiener process is approximated, not by the sum of independent
normal random variables, but by the sum of dichotomous variables which take
on the values +4* with probability 1. In this case the above approximation is
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replaced by
Z, =2z =+ .50t

where .5 is limiting value y in the problem of this paper when p = }.

The last result would be adequate to approximate the solution of the con-
tinuous time stopping problems. However, in a recent case [6], the continuous
time problem was used to approximate a discrete time dichotomous problem
derived from an application to clinical trials described in more detail below.
There, the parameter of concern was the probability of success which could be
far from . Thus we can use the special p = { problem to correct the numerical
approximation to the solution of the continuous time problem. But now we
need y of the problem for general p for the approximation z, = z + ydt to relate
the solution of the continuous time problem to the dichotomous variable, dis-
crete time, clinical trials problem.

The application to clinical trials arises as follows: An experimental treatment
which is characterized by an unknown probability of success (denoted by p) is
to be compared with a standard treatment which is characterized by a known
probability of success (denoted by p,). A finite horizon of patients, each of whom
must be treated with one of the available treatments, is anticipated. Sampling
is initiated with the experimental treatment and is continued with this treatment
until a decision is made in favor of one of the treatments. The remaining patients
are then treated with the favored treatment. Costs are incurred for each patient
unsuccessfully treated and also for each patient treated prior to the time of
decision.

A normal version of this problem, obtained by replacing the dichotomous
random variables by normal random variables leads to the consideration of the
following Gaussian version of the problem: Observe a Wiener process X(¢) with
(unknown) drift # and (known) variance ¢* per unit time for + < N. One incurs
a constant cost of sampling per unit time and upon terminating sampling at time
t, one must choose either to accept the payoff X{(#) or to continue and receive
X(N). If p has a normal prior distribution, the Bayes solution (after normaliza-
tion) is the stopping problem in which one observes Y(s), a zero drift standard
Wiener process in the —s scale for s > 1, and where the stopping cost at (y, s)
is given by d(y, 5) = y/s — yfory > 0and y/s — y/sfor y < 0. In this problem,
Y represents the current estimate of p, s~ is its precision and y is a normalized
cost parameter. The values of y(p,) are then used in the manner described to
relate the solution of this continuous'time stopping problem to the solution of
the clinical trials problem.
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