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Support vector machine is a classi	er, based on the structured risk minimization principle. �e performance of the SVM depends
on di
erent parameters such as penalty factor,�, and the kernel factor, �. Also choosing an appropriate kernel function can improve
the recognition score and lower the amount of computation. Furthermore, selecting the useful features among several features in
dataset not only increases the performance of the SVM, but also reduces the computational time and complexity. So this is an
optimization problem which can be solved by heuristic algorithm. In some cases besides the recognition score, the reliability of the
classi	er’s output is important. So in such cases a multiobjective optimization algorithm is needed. In this paper we have got the
MOPSO algorithm to optimize the parameters of the SVM, choose appropriate kernel function, and select the best feature subset
simultaneously in order to optimize the recognition score and the reliability of the SVM concurrently. Nine di
erent datasets, from
UCI machine learning repository, are used to evaluate the power and the e
ectiveness of the proposed method (MOPSO-SVM).
�e results of the proposed method are compared to those which are achieved by single SVM, RBF, and MLP neural networks.

1. Introduction

A pattern recognition system consists of di
erent parts. One
of the most important parts of such a system is classifying,
which is done by di
erent classi	ers at the end of the process.
Obviously, having a powerful classi	er with high accuracy
is critical in a pattern recognition system, since the output
accuracy of the system is highly a
ected by the accuracy
of the classi	er. So an accurate pattern recognition system
which can be used in di
erent applications strongly needs a
high performance classi	er.One of the powerful classi	cation
techniques is support vector machine, brie�y called SVM
[1]. SVM is a supervised learning method that constructs
a classi	cation model using training data. SVM minimizes
the generalization error andmaximizes the geometricmargin
between two classes. �is classi	er uses a kernel function to
map the input data into a high-dimensional feature space
in order to 	nd an optimal hyperplane to separate the two-
class data. �e performance of the SVM depends on the
amount of kernel parameter, �, and the amount of penalty

factor, �. Also choosing an appropriate kernel function is
important. Furthermore, selecting the useful features among
several features in the training dataset to train SVM plays
an important role in improving the performance of the
SVM. So, before training the SVM, the user should select a
suitable kernel function and also optimal amounts for kernel
parameter and penalty factor. Besides that, as mentioned
before, feature selection is important for improving the
performance and reducing the complexity. To solve this
problem di
erent methods based on heuristic algorithms
have been proposed. For example, Huang and Wang have
used GA to optimize the SVM’s parameters and also per-
forming feature selection simultaneously in order to increase
the classi	cation accuracy [2]. �ey used RBF kernel in
all experiments. Samanta et al. have proposed a GA-SVM
method for bearing fault detection in rotating machines
[3]. �ey had genetic algorithm, optimize the parameters
of SVM, and also perform feature selection to improve the
SVM ability in recognizing the vibration signals. Wu et al.
proposed a method, based on GA and SVM, for predicting
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bankruptcy [4]. �ey have used GA only to optimize the
classi	er’s parameters without feature selection. Like GA,
other optimization algorithms such as PSO and SA have
been used to promote the SVM’s performance in di
erent
practical 	elds like Biomedical [5–7] and Face Recognition
[8]. Another important point that is not considered in the
mentioned researches is the reliability of the classi	er, which
means the validation of the classi	er’s output. �is is a very
critical point that should be considered in selecting a classi	er
for di
erent applications such as military and medicine. In
all mentioned researches, the researchers have used only one
	tness function to evaluate their methods. But, in addition to
recognition score, calculating the reliability of the classi	er’s
output is a good way to evaluate the performance of the
classi	er. Reliability means the validation of the classi	er’s
output, for an unknown sample. In some problems, although
the recognition score of a class is high, the corresponding
reliability of that class may be low, and vice versa. Figure 1
shows this concept. According to Figure 1 the recognition
score of the hollow circles is 100% but the corresponding
reliability is (5/6) 83%.�ese numbers for dark circles are 80%
and 100%, respectively.

In this studymultiobjective form of PSO has been used to
	nd optimal hyperplanes for two objective functions: recog-
nition score and reliability. �e remainder of this paper is
organized as follows. In Section 2, SVM is brie�y introduced.
In Section 3, PSO and MOPSO algorithms are reviewed.
In Section 4, two forms of arti	cial neural networks are
reviewed as powerful methods in classi	cation. In Section 5,
the proposed method has been introduced. Section 6 shows
the experimental results and the 	nal section is devoted to
conclusion.

2. Support Vector Machine

SVM is a two-class classi	er described as follows [9]. Let(��, ��), 1 < � < �, indicate a set of data containing �
training samples. Each sample must conform to the criteria�� ∈ 	�. �� demonstrates the class of corresponding sample,��. So �� ∈ {−1, 1} and 
 indicates the number of dimensions
of input data. �e separating hyperplane can be derived as in

� ⋅ �� +  = 0, 1 ≤ � ≤ �. (1)

If such a hyperplane exists, then linear separation is obtained.
�e samples which are nearest ones to the separating hyper-
plane are called support vectors. In boundaries (support
vectors), (1) is reformed as

� ⋅ �� +  = ±1. (2)

According to (2) for each sample (3) is true:

�� ⋅ (� ⋅ �� + ) ≥ 1. (3)

So the problem is 	nding � and . �ere are numerous
hyperplanes which can separate the two-class data but SVM
produces the optimal hyperplane as indicated in Figure 2.
�is hyperplane has the maximum distance to support
vectors.�emargin of a separating hyperplane is 2/‖�‖. So if

Hyperplane

Figure 1: �e recognition scores for the hollow circles and dark cir-
cles are 100% and 80%, respectively. �e corresponding reliabilities
are 83% and 100%, respectively.

M
ar

gi
n

H
yp

er
pla

nes

O
ptim

al
 h

yp
er

pla
ne

w
· x

+
b
=
0

w
· x

+
b
=
−1

w
· x

+
b
=
1

Figure 2: Optimal hyperplane.

we want to 	nd the optimal hyperplane, we should minimize‖�‖. For simplicity we can substitute (1/2)‖�‖2 with ‖�‖. So
we are dealing with an optimization problem. It means that

we have to minimize (1/2)‖�‖2 subjected to (3).
In Figure 2 the samples are linearly separable, but in

most cases they cannot be separated as easy as indicated in
Figure 2. For nonlinear problems positive slack variables ��
are introduced. So the problem changed into

Min
12 ‖�‖2 + � ⋅ �∑

�=1
��

s.t �� ⋅ (� ⋅ �� + ) ≥ 1 − ��,
�� ≥ 0,
1 ≤ � ≤ �.

(4)
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In (4) � is called penalty factor. It is introduced to control
the tradeo
 between margin maximization and error mini-
mization. �is problem can be solved by means of Lagrange
multipliers.�us the classi	cation decision function becomes

� (�) = sign( �∑
�=1

�� ⋅ �� ⋅ � (��, ��) + ) , (5)

where �� is the Lagrange multiplier. �(��, ��) = �(��) ⋅ �(��)
is kernel function through some another mapping function,�(�). QP solver is used to 	nd ��. A�er that � and  can be
achieved by

� = �∑
�=0

�� ⋅ �� ⋅ � (��) , (6)

 = 1�SV

∑
�
(�� − ∑

�
�� ⋅ �� ⋅ � (��, �)) . (7)

In (7)�SV is the number of support vectors and � is the input
unknown sample.

Some common kernel functions are

linear: �(�, �) = � ⋅ � + 1,
polynomial: �(�, �) = (� ⋅ � + 1)�,
RBF: �(�, �) = exp(−‖� − �‖/(2 ⋅ �2)),
quadratic: 1 − ‖� − �‖2/(‖� − �‖ + �),
in all of these functions � should be optimally tuned
with �.

3. Particle Swarm Optimization Method

3.1. Single-Objective PSO. Particle swarm optimization algo-
rithm is 	rst suggested by Kennedy and Eberhart in 1995 [10].
�is algorithm is produced by inspiration of birds �ocking
and 	shes grouping. In fact they used themechanism of birds
�ocking to solve optimization problems. Itmeans that a group
of particles search the solution space for the best solution.
Each particle has a position, velocity, and a memory to save
its best position from the beginning of the process. In each
iteration the particlewhich has the best position is regarded as
the leader and the other particles tend to reach its position. So
their movement is a
ected by two factors: their best position
from the 	rst iteration to current iteration and the leader’s
position. Equations (8) and (9) describe how particles move
through iterations:

V
�+1
�� = � ⋅ V��� +  1 ⋅ rand ⋅ (!�	
�� − ����) +  2

⋅ rand (!��	
�� − ����) , (8)

��+1�� = ���� + V
�
��. (9)

In the above equations, V�� is the
th dimension of the velocity
of the �th particle, � denotes the position of the particle, " is
the number of iterations,  1 and  2 are learning factors, rand
is a positive random number between 0 and 1 under normal
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Figure 3: Pareto optimal front.

distribution, � is the inertia weight coe�cient, !	
�� is the
best position of the particle from the beginning to current
iteration, and !�	
�� shows the position of the leader in each
iteration.

3.2. Multiobjective PSO. In a multiobjective optimization
problem obviously, there is more than one objective function,
to be optimized, so a multiobjective optimization problem
can be de	ned as follows [11]:

Minimize � (�) = [$1 (�) , $2 (�) , . . . , $ (�)]
s.t &� (�) < 0,

ℎ� (�) = 0,
(10)

where � = (�1, �2, . . . , ��) is a solution, $�, � = 1, . . . , �, are
objective functions, and &�, ℎ� are constraints of the problem.
Contrary to single-objective case, here we cannot 	nd a
single solution which is the best for all objective functions.
Instead we are looking for a set of solutions. Actually there
is a tradeo
 between di
erent objective functions. So the
de	nition of the optimality is di
erent in this case. We call� an optimal solution if another solution, like *, cannot be
found which has better 	tness in all objective functions. Such
a solution is a member of Pareto optimal front [12]. We say�1 is dominated by �2, if �2 is better than �1 in all objective
functions. But if �1 is better just in one objective function
than �2, it is nondominated. So in multiobjective form we
have a set of solutions that contains nondominated particles.
It means that the members of this set cannot dominate
each other. Figure 3 shows Pareto optimal front for a two-
objective function problem. According to this picture the
solutions in the Pareto front dominate the other solutions
but cannot dominate each other. In MOPSO each particle
has a set of leaders and has to select one of them through a
mechanism.Usually this set is called External Archive [13, 14].
External Archive contains nondominated particles from the
	rst iteration.

In fact External Archive preserves outputs of the algo-
rithm. Up to now di
erent versions of MOPSO are intro-
duced. In this study we have used the one introduced in [15]
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because of its speed and rapid convergence. In this form to
select a leader for each particle, the solution space is divided
into numerous hypercubes and di
erent solutions from the
External Archive exist in these hypercubes.

�ey are placed in hypercubes according to their coordi-
nation calculated by objective functions. Each hypercube is
evaluated through dividing the number of its solutions into
a constant number. A�er evaluating each hypercube, roulette
wheel mechanism will select one of these hypercubes. And
	nally a solution, placed in the selected hypercube, will be
selected randomly as the leader for the particle. MOPSO
process is described as follows:

(1) Initializing the position and the velocity of each
particle.

(2) Evaluating the particles.

(3) Saving nondominated particles in a repository.

(4) Producing hypercubes to cover the solution space.

(5) Initializing the memory of each particle

!	
�� [�] = position [�] . (11)

(6) Main loop

(a) Calculating the velocity of each particle by (8)

(but in this form !��	
�� should be replaced by-3![ℎ]).
(b) Updating the position of the particles through

(9).

(c) Evaluating the particles.

(d) Updating the repository.

(e) Updating !	
�� for each particle.

(7) End of the main loop.

4. Artificial Neural Networks

Arti	cial neural network is introduced in 1974 [16]. �e aim
of this network is to extract logical results from received
information by simulating the activity of the brain using
a similar structure. In fact, arti	cial neural networks are
organized in such a way that the relationships between inputs
and outputs (which can be complex or nonlinear) are saved
in a network structure and are therefore capable of assigning
the related output to each of the inputs. A�er determining the
structural components of these networks, the components of
this structure are modi	ed based on numerous comparisons
between the output of the network and the desired output, so
that the di
erence between these two values approaches zero
over consecutive comparisons. In this sense, a neural network
can be considered as a blindmodel that is able to perform the
mapping (not necessarily linear) from input (vector) space to
output (vector) space. In this paper we have used two of the
most widely used arti	cial neural networks, the multilayer
perceptron neural network (MLP) and radial basis function
neural network (RBF), and totally compared capability of
them with optimal support vector machine.

Hidden layer

X1

X2

Xn

...
...

...
...

Input layer Output layer

Figure 4: A multilayer perceptron neural network.

4.1. �e Multilayer Perceptron Neural Network (MLP). �e
simplest perceptron neural network consists of three (input,
hidden, and output) layers as shown in Figure 4.�e numbers
of neurons in each layer are determined using the trial and
error method. �e initial weights of this neural network are
determined randomly. �e backpropagation error algorithm
is used for training the neural network in which the weights
of the network change in a supervised manner based on the
di
erence between the neural network output and desired
output, so, for the every input, the output can be generated
by the neural network. �e input and output patterns are
	rst normalized by a normalizing factor in order to equalize
the e
ect of training process in changing the weights of the
network in the training process. For the!th input pattern, the
squared error in all neurons is calculated using the following
equation:

4� = 12 (
� − ��)2 = 12
��∑
�=1

(
�� − ��� )2 , (12)

where 
�� and ��� are, respectively, the values for desired

output and calculated output in the 5th neuron for pattern!. Total squared error for all patterns can also be calculated
using the following equation:

4 = �∑
�=1

4� = 12
��∑
�=1

��∑
�=1

(
�� − ��� ) . (13)

In the following equations���("+1) represents currentweight,���(") represents previous weight, 6 represents learning coef-
	cient, and � represents momentary coe�cient:

���(�+1) = ��� (") + 6
Δ��� (") + �Δ��� (" + 1) ,
Δ��� = −( 94�9��� (")) . (14)

In this method weights are updated repeatedly for all
learning patterns. �e training process stops when the total
error value for all patterns reaches a value lower than
the determined critical point or when the whole learning
period reaches the 	nal point. It is noteworthy that the
trainingmethodmentioned here is an error backpropagation
method with momentary term, which lowers the possibility
of coordination at local minima compared with the error
backpropagation method.
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Figure 5: A radial basis function neural network.

4.2. Radial Basis Function (RBF) Neural Network. RBF is a
popular supervised neural network learning algorithm. It is
a speci	c kind of MLP network [17]. �e RBF network is
constituted by only the following three layers as shown in
Figure 5:

Input Layer. It broadcasts the inputs without distor-
tion.

RBF Layer. Hidden layer contains the RBF.

Output Layer. Simple layer contains a linear function.

Basis functions normally take the form ; = ‖�⃗� − ?⃗�‖.
�e function depends on the distance (usually taken to be
Euclidean) between the input vector �⃗ and a vector ?⃗�. �e
most common form of basis function used is the Gaussian
function

; = exp

@@@@�⃗� − ?⃗�@@@@2�2� , (15)

where ?⃗� determines the center of basis function and �� is
a width parameter that controls how the curve is spread.
Generally, these centers are selected by using some fuzzy or
nonfuzzy clustering algorithms. In this work, we have used
the �-means algorithm to select the initial cluster centers in
the 	rst stage and then these centers are further 	ne-tuned
by using point symmetry distance measure. �e number
of neurons in the output layer is equal to the number of
classes of the classi	cation problem. Each output layer neuron
computes a linear weighted sum of the outputs of the hidden
layer neurons as follows:

�� (�) = �∑
�=1

;� (A) ⋅ ��. (16)

�e weight vectors are determined by minimizing the mean
squared di
erences between the classi	er outputs:

� = �∑
�=0

�,�B�. (17)

· · ·C Kn � F1 Fn

Figure 6: Construction of particles.

And target values " are as follows:
4 = 12

�∑
=1

(� − ")2 . (18)

�e parameters (Δ�, Δ?, Δ�) are given by (for more explica-
tion, see [17])

C4C�� =
C4C�

C�C�� (19)

or

C4C� = (" − �) . (20)

�us

C4C�� = − (" − �) B�. (21)

A�er computation, we obtain

C4C?�� = ∑


C4C�
C�CB�

CB�C?��
= B��2� (�� − ?��)∑

�=1
(" − �) ��,

C4C��� = ∑


C4C�
C�CB�

CB�C��� =
2B��� log B�∑

�=1
(" − �) ��.

(22)

5. Proposed Method

In this paper we have used MOPSO to optimize penalty
factor, choose adequate kernel function, tune the selected
kernel’s parameter, and feature selection for two objective
functions, recognition score and reliability, and its perfor-
mance is compared with RBF andMLP neural networks.�e
construction of particles is indicated in Figure 6.

�e 	rst variable, �, is for tuning penalty factor. �� is
for selecting kernel functions. �e amount of this variable
can be 1, 2, 3, or 4 to choose one kernel among the four
kernels introduced in Section 2. � is for selecting the selected
kernel’s parameter (except linear). �e rest of the particle is
for feature selection. For a dataset with D number of features,�1, �2, . . . , �� are between 0 and 1. If they are less than or equal
to 0.5, the corresponding feature is not selected. Conversely if
they are bigger than 0.5, the corresponding feature is selected.

If we consider the two classes as “positive” and “negative,“
then the predicted test samples can be divided into four
groups:

(1) Samples which are “positive” and correctly predicted
as “positive” (TP).
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Class 1

Class 2 Class 3

Figure 7: Classifying of a 3-class dataset with one-versus-all
method.

(2) Samples which are “positive” but classi	ed as “nega-
tive” (FN).

(3) Samples which are “negative” and correctly classi	ed
as “negative” (TN).

(4) Samples which are “negative” but predicted as “posi-
tive” (FP).

According to this categorization, recognition score is
calculated by

Recognition Score = TP + TN

TP + TN + FN + FP
(23)

and the reliability for each class equals

Pos-reliability = TP

TP + FN
,

Neg-reliability = TN

TN + FP
. (24)

�e termination criteria are that the iteration number reaches
200. To calculate the 	tness functions, for each particle,
SVM should be trained by the determined parameters, kernel
function, and selected features and then recognition score
and reliability for each class can be achieved by (23) to
(24). For multiclass classi	cation we have used one-versus-all
method. In this method for each class of the dataset we found
the optimal hyperplane, which separates the corresponding
class from the others. �us the input sample is labeled
according to the opinion of the obtained hyperplanes about
that sample. Figure 7 shows this method for a 3-class dataset.

6. Experimental Results

�e suggested method applied to nine di
erent datasets
from UCI machine learning repository [18]. In Table 1 the
characteristics of these datasets are shown. Table 2 shows the
experimental results on these datasets, Table 3 contains the

Table 1: Characteristics of used datasets.

Dataset
Number of
classes

Number of
samples

Number of
features

Glass 6 214 9

Iris 3 150 4

Wine 3 175 13

German 2 1000 20

Ionosphere 2 351 33

Sonar 2 208 60

Hepatitis 2 80 19

Bupa 2 345 6

Vowel 11 990 13

Heart 2 270 13

learning time for di
erent methods, and Table 4 shows the
results of proposed method in classifying di
erent datasets
with and without feature selection.

According to Table 2 it can be seen that MOPSO-SVM
gives comparable and also better results than MLP and RBF
neural networks for Glass, Iris, Wine, Ionosphere, Hepatitis,
and Vowel datasets. �e important point demonstrated in
Table 2 is the rates of reliabilities given for di
erent datasets.
As indicated in Table 2, the proposed method gives high
rates of reliabilities for most of the datasets, meaning that the
output of the promoted classi	er is strongly reliable.

In fact since the hyperplanes obtained byMOPSOhave an
amount of errors in classifying of the test samples (unknown
samples), some samples exist that more than one hyperplane
assigns them to their corresponding classes. Also there may
be some samples that none of the hyperplanes assign them to
their corresponding classes. Such samples are considered as
error samples, at which their classes cannot be distinguished.
Figure 8 illustrates this concept. Another point that is obvi-
ously seen fromTable 2 is thatMOPSO-SVMoutperforms the
original SVM in most of the experiments. It means that the
proposed method is an expert classi	er which automatically
	nds the optimal SVM parameters and best feature subset for
classifying di
erent datasets. It should be noted that in all the
experiments di
erent kernel functions were chosen for single
SVM and the amounts of the recognition score and reliability
reported for single SVM written in Table 2 are the average
results of di
erent SVM with di
erent kernel functions.

Analyzing the numbers seen in Table 2, we can conclude
that MOPSO-SVM is a powerful and e
ective classi	er, due
to rates of reliabilities and recognition scores achieved by
this method for di
erent datasets. �ese numbers show that
MOPSO-SVM is a reliable classi	er which means that this
promoted classi	er can act perfectly in special applications
such as military and medicine which strongly require a
high-reliable classi	er. Table 3 contains the learning time for
di
erent algorithms. Comparing to single SVM, MOPSO-
SVM requires less learning time in most experiments. �is
is the result of feature selection. In fact removing redun-
dant features from datasets results in reduction of learning
time. Also proposed method has less learning time than
MLP and RBF neural networks. In Table 4 the results of
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Table 2: Percentage of recognition score and reliability.

Glass Iris Wine German Ionosphere Sonar Hepatitis Bupa Vowel Heart

MOPSO-SVM

Recognition score 81.31 94.67 97.75 84.20 92.31 90.87 96.25 82.32 97.78 87.41

Reliability 92.94 97.93 100 89.89 93.99 90.85 92.095 82.06 99.89 87.3

SVM

Recognition score 61.21 82.33 90.45 78.35 92.59 83.41 92.5 73.04 97.17 83.88

Reliability 94.64 98.45 99.65 79.57 92.98 87 89.87 72.77 99.89 85.49

MLP

Recognition score 82.78 98.54 98.42 89.86 96.44 93.76 92.76 87.94 77.6 92.8

Reliability 73.088 98.68 98.438 88.35 96.35 93.97 86.51 87.59 78.30 92.82

RBF

Recognition score 81.76 96.92 81.58 91.5 90.02 94.72 94.78 88.12 99.12 83.7

Reliability 75.822 96.96 88.87 94.94 93.11 94.86 97.07 91.49 99.3 86.59

Table 3: Learning time for di
erent classi	ers (second).

Glass Iris Wine German Ionosphere Sonar Hepatitis Bupa Vowel Heart

MOPSO-SVM 0.64 0.204 0.224 0.635 0.184 0.084 0.0436 0.191 11.85 0.118

SVM 2.74 1.138 1.12 0.663 0.179 0.116 0.0423 0.148 8.60 0.135

MLP 22.17 2.14 2.06 37.84 2.24 3.43 2.12 4.93 38.13 2.33

RBF 5.27 3.55 4.08 21.17 11.28 5.98 3.005 3.78 18.9 6.21

Class 1

Class 2
Class 3

Figure 8: Samples which are considered as error samples.

proposed method with and without feature selection are
shown. According to this table, feature selection process has
improved the recognition score and reliability for most of
the datasets. It means that feature selection process is an
e�cient preprocessing technique which not only has the
ability to reduce the learning time of the classi	er but also
can improve its performance. �is is an important issue
especially in classifying or clustering high-dimensional data.
From the reported results, it is clear that using heuristic
algorithm to enhance the performance of the SVM for
two objective functions is a successful idea because 	nding
optimal parameters of SVM for di
erent datasets and also
reducing the dimension of the dataset are a hard task. For
example for Sonar samples, which have 60 features, there

exists 260 feature subset, so it is very di�cult to 	nd the best
feature subsets. Furthermore 	nding the optimal amounts of
the parameters in order to improve the performance of the
SVM is a di�cult task. In fact 	nding an optimal SVM with
optimal feature subset is an NP-hard problem which can be
solved with heuristic algorithm. According to the reported
results, MOPSO searches the solution space very e
ectively.

7. Conclusion

In this study multiobjective PSO has been used to tune
the parameters of SVM and also perform feature selection
for two objective functions and the performance of the
proposed method (MOPSO-SVM) has been compared with
single SVM, RBF, and MLP neural networks. According
to the reported results, it can be seen that the proposed
method gives reliabilities and recognition scores, comparable
with RBF and MLP neural networks, which have shown
their e
ectiveness in classifying overlapped datasets, and in
some cases even gives better reliabilities and/or recognition
scores than RBF and MLP, for example, for Glass, Iris, Wine,
Ionosphere, Hepatitis, and Vowel datasets. Also the proposed
method has less learning time in most of the experiments.
Furthermore according to Tables 3 and 4, feature selection is
an important preprocessing method which has positive e
ect
both on learning time and on the accuracy of the classi	er.

Actually the results shown in the previous section indicate
that using heuristic algorithm to convert SVM from a normal
classi	er into an expert one was successful. Furthermore
optimizing SVM in order to increase its reliability besides
its accuracy by using a multiobjective heuristic algorithm
is a successful idea according to the obtained results.
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Table 4: MOPSO-SVM with and without feature selection.

Glass Iris Wine German Ionosphere Sonar Hepatitis Bupa Vowel Heart

With feature selection

Recognition score 81.31 94.67 97.75 84.20 92.31 90.87 96.25 82.32 97.78 87.41

Reliability 92.94 97.93 100 89.89 93.99 90.85 92.095 82.06 99.89 87.3

Without feature selection

Recognition score 71.50 95.33 97.19 84.30 92.02 87.98 95 81.16 96.06 84.07

Reliability 84.5 96.68 98.41 90.84 94.12 88.81 90.815 80.64 99.68 83.89

�e reported results also show the power and e
ectiveness
of MOPSO in searching the solution space. In other words,
MOPSO is a powerful algorithm which can act very e
ec-
tively in solving multiobjective optimization problems.
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