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Abstract We present an optimal-time algorithm for computing (an implicit repre-
sentation of) the shortest-path map from a fixed source s on the surface of a convex
polytope P in three dimensions. Our algorithm runs in O (nlogn) time and requires
O (nlogn) space, where n is the number of edges of P. The algorithm is based on the
O (nlogn) algorithm of Hershberger and Suri for shortest paths in the plane (Hersh-
berger, J., Suri, S. in SIAM J. Comput. 28(6):2215-2256, 1999), and similarly follows
the continuous Dijkstra paradigm, which propagates a “wavefront” from s along 9 P.
This is effected by generalizing the concept of conforming subdivision of the free
space introduced by Hershberger and Suri and by adapting it for the case of a con-
vex polytope in R?, allowing the algorithm to accomplish the propagation in discrete
steps, between the “transparent” edges of the subdivision. The algorithm constructs a
dynamic version of Mount’s data structure (Mount, D.M. in Discrete Comput. Geom.
2:153-174, 1987) that implicitly encodes the shortest paths from s to all other points
of the surface. This structure allows us to answer single-source shortest-path queries,
where the length of the path, as well as its combinatorial type, can be reported in
O (logn) time; the actual path can be reported in additional O (k) time, where k is the
number of polytope edges crossed by the path.
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The algorithm generalizes to the case of m source points to yield an implicit
representation of the geodesic Voronoi diagram of m sites on the surface of P, in
time O ((n + m)log(n + m)), so that the site closest to a query point can be reported
in time O (log(n + m)).

Keywords Continuous Dijkstra - Geodesics - Polytope surface - Shortest path -
Shortest path map - Unfolding - Wavefront

1 Introduction
1.1 Background

The problem of determining the Euclidean shortest path on the surface of a convex
polytope in R? between two points, or, more generally, computing a compact rep-
resentation of all such paths that emanate from a fixed source point s, is a classical
problem in geometric optimization, first studied by Sharir and Schorr [36]. Their al-
gorithm, whose running time is O (n3 logn), constructs a planar layout of the shortest
path map, and then the length and combinatorial type of the shortest path from s to
any given query point ¢ can be found in O (logn) time; the path itself can be reported
in O (k) additional time, where k is the number of edges of P that are traversed by the
shortest path from s to ¢. Soon afterwards, Mount [27] gave an improved algorithm
for convex polytopes with running time O (n?logn). Moreover, in [28], Mount has
shown that the problem of storing shortest path information can be treated separately
from the problem of computing it, presenting a data structure of O(nlogn) space
that supports O (log n)-time shortest-path queries. However, the question whether this
data structure can be constructed in subquadratic time, has been left open.

For a general, possibly nonconvex polyhedron P, O’Rourke et al. [31] gave an
O (n’)-time algorithm for the single source shortest path problem. Subsequently,
Mitchell et al. [26] presented an O(n>logn) algorithm, extending the technique
of [27]. All algorithms in [26, 27, 36] use the same general approach, called “con-
tinuous Dijkstra”, first formalized in [26]. The technique keeps track of all the points
on the surface whose shortest path distance to the source s has the same value ¢,
and maintains this “wavefront” as ¢ increases. The approach treats certain elements
of 0 P (vertices, edges, or other elements) as nodes in a graph, and follows Dijkstra’s
algorithm to extract the unprocessed element currently closest to s and to propagate
from it, in a continuous manner, shortest paths to other elements. The same general
approach is also used in our algorithm.

Chen and Han [8] use a rather different approach (for a not necessarily convex
polyhedral surface). Their algorithm builds a shortest path sequence tree, using an
observation that they call “one angle one split” to bound the number of branches,
maintaining only O (n) nodes in the tree in O (n?) total running time. The algorithm
of [8] also constructs a planar layout of the shortest path map (which is “dual” to the
layout of [36]), which can be used similarly for answering shortest path queries in
O (logn) time (or O (k+logn) time for path reporting). (Their algorithm is somewhat
simpler for the case of a convex polytope P, relying on the property, established by
Aronov and O’Rourke [6], that this layout of P does not overlap itself.) In [9], Chen
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and Han follow the general idea of Mount [28] to solve the problem of storing short-
est path information separately, for a general, possibly nonconvex polyhedral surface.
They obtain a tradeoff between query time O(dlogn/logd) and space complex-
ity O(nlogn/logd), where d is an adjustable parameter. Again, the question whether
this data structure can be constructed in subquadratic time, has been left open.

The problem has been more or less “stuck” after Chen and Han’s paper, and the
quadratic-time barrier seemed very difficult to break. For this and other reasons, sev-
eral works [2—4, 16, 17, 19, 24, 25, 38] presented approximate algorithms for the
3-dimensional shortest path problem. Nevertheless, the major problem of obtain-
ing a subquadratic, or even near-linear, exact algorithm remained open. In 1999,
Kapoor [21] announced such an algorithm for the shortest path problem on an ar-
bitrary polyhedral surface P (see also a review of the algorithm in O’Rourke’s col-
umn [29]). The algorithm follows the continuous Dijkstra paradigm, and claims to be
able to compute a shortest path berween two given points in O (nlog”n) time (so it
does not preprocess the surface for answering shortest path queries). However, as far
as we know, the details of Kapoor’s algorithm have not yet been published.

The Algorithm of Hershberger and Suri for Polygonal Domains A dramatic break-
through on a loosely related problem took place in 1995,! when Hershberger and
Suri [18] obtained an O (nlogn)-time algorithm for computing shortest paths in the
plane in the presence of polygonal obstacles (where n is the number of obstacle ver-
tices). The algorithm actually computes a shortest path map from a fixed source point
to all other (non-obstacle) points of the plane, which can be used to answer single-
source shortest path queries in O (logn) time.

Our algorithm uses (adapted variants of) many of the ingredients of [18], includ-
ing the continuous Dijkstra method—in [18], the wavefront is propagated amid the
obstacles, where each wave emanates from some obstacle vertex already covered by
the wavefront; see Fig. 1(a).

The key new ingredient in [18] is a quad-tree-style subdivision of the plane, of
size O(n), on the vertices of the obstacles (temporarily ignoring the obstacle edges).
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Fig. 1 The planar case: (a) The wavefront propagated from s, at some fixed time 7. (b) The conforming
subdivision of the free space

N preliminary (symposium) version has appeared in 1993; the last version was published in 1999.
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See Fig. 1(b) for an illustration. Each cell of this conforming subdivision is bounded
by O (1) axis-parallel straight line edges (called transparent edges), contains at most
one obstacle vertex, and satisfies the following crucial “conforming” property: For
any transparent edge e of the subdivision, there are only O(1) cells within distance
2|e| of e. Then the obstacle edges are inserted into the subdivision, while maintain-
ing both the linear size of the subdivision and its conforming property—except that
now a transparent edge e has the property that there are O(1) cells within short-
est path distance 2|e| of e. These transparent edges form the elements on which the
Dijkstra-style propagation is performed—at each step, the wavefront is ascertained
to (completely) cover some transparent edge, and is then advanced into O (1) nearby
cells and edges. Since each cell is “simple,” the wavefront propagation inside a cell
can be implemented efficiently. The conforming nature of the subdivision guarantees
the crucial property that each transparent edge e needs to be processed only once, in
the sense that no path that reaches e after the simulation time at which it is processed
can be a shortest path, so the Dijkstra style of propagation works correctly for the
transparent edges.

1.2 An Overview of Our Algorithm

As in [18], we construct a conforming subdivision of d P to control the wavefront
propagation. We first construct an oct-tree-like 3-dimensional axis-parallel subdivi-
sion S3p, only on the vertices of d P. Then we intersect S3p with d P, to obtain a
conforming surface subdivision S. (We use the term “facet” when referring to a tri-
angle of d P, and we use the term “face” when referring to the square faces of the
3-dimensional cells of S3p. Furthermore, each such face is subdivided into square
“subfaces”.) In our case, a transparent edge e may traverse many facets of P, but
we still want to treat it as a single simple entity. To this end, we first replace each
actual intersection & of a subface of S3p with d P by the shortest path on d P that
connects the endpoints of £ and traverses the same facet sequence of d P as &, and
make those paths our transparent edges. We associate with each such transparent
edge e the polytope edge sequence that it crosses, which is stored in compact form
and is used to unfold e to a straight segment. To compute the unfolding efficiently, we
preprocess d P into a surface unfolding data structure that allows us to process any
such unfolding query in O (logn) time. This is a nontrivial addition to the machinery
of [18] (where the transparent edges are simply straight segments, which are trivial
to represent and to manipulate).

However, in order to propagate the wavefront along the surface of P, we have
to overcome another difficulty. On top of the main problem that a surface cell may
intersect many (up to ®(n)) facets of P, it can in general be unfolded in more than
one way, and such an unfolding may overlap itself (see [11]). To overcome this, we
introduce a Riemann structure that efficiently represents the unfolded regions of the
polytope surface that the algorithm processes. This representation subdivides each
surface cell into O (1) simple building blocks that have the property that a planar un-
folding of such a block (a) is unique, and (b) is a simply connected polygon bounded
by O(1) straight line segments (and does not overlap itself). A global unfolding is a
concatenation of unfolded images of a sequence, or more generally a tree, of certain
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blocks. It may overlap itself, but we ignore these overlaps, treating them as different
layers of a Riemann surface.

We maintain two one-sided wavefronts instead of one exact wavefront at each
transparent edge e, so that, for any point p € e, the true shortest path distance from s
to p is the smaller of the two distances to p encoded in the two one-sided wavefronts.
At each step of the wavefront propagation phase, the algorithm picks up a transpar-
ent edge e, constructs each of the one-sided wavefronts at e by merging the wave-
fronts that have already reached e from a fixed side, and propagates from e each of its
two one-sided wavefronts to O (1) nearby transparent edges f, following the general
scheme of [18]. Each propagation that reaches f from e proceeds along a fixed se-
quence of building blocks that connect e to f. For a fixed edge e, there are only O (1)
successor transparent edges f and only O (1) block sequences for any of those f’s.

A key difference from [18] is that in our case shortest paths “fold” over d P, and
need to be unfolded onto some plane (on which they look like straight segments). We
cannot afford to perform all these unfoldings explicitly—this would by itself degrade
the storage and running time to quadratic in the worst case. Instead we maintain par-
tial unfolding transformations at the nodes of our structure, composing them on the
fly (as rigid transformations of 3-space) to perform the actual unfoldings whenever
needed.

During each propagation, we keep track of combinatorial changes that occur
within the wavefront: At each of these events, we either split a wave into two waves
when it hits a vertex, or eliminate a wave when it is “overtaken” by its two neigh-
bors. Following a modified variant of the analysis of [18], we show that the algorithm
encounters a total of only O(n) “events,” and processes each event in O (logn) time.

After the wavefront propagation phase, we perform further preprocessing to facil-
itate efficient processing of shortest path queries. This phase is rather different from
the shortest path map construction in [18], since we do not provide, nor know how
to construct, an explicit representation of the shortest path map on P in o(n?) time.?
However, our implicit representation of all the shortest paths from the source suffices
for answering any shortest path query in O(logn) time. The query “identifies” the
path combinatorially. It can immediately produce the length of the path (assuming
the real RAM model of computation), and the direction at which it leaves s to reach
the query point. An explicit representation of the path takes O (k) additional time to
compute, where k is the number of polytope edges crossed by the path.

To aid readers familiar with [18], the structure of our paper closely follows that
of [18], although each part that corresponds to a part of [18] is quite different in
technical details. Section 2 provides some preliminary definitions and describes the
construction of the conforming surface subdivision using an already constructed con-
forming 3D-subdivision S3p, while the construction of S3p, which is slightly more
involved, is deferred to Sect. 6 (it is nevertheless very similar to its counterpart in [18],
and we only describe the differences between the two procedures). The construction
in Sect. 2 is new and involves many ingredients that cater to the spatial structure of
convex polytopes. Section 3 also has no parallel in [18]—it presents the Riemann
structure, which represents the unfolding of the polytope surface, as needed for the

2An explicit representation is tricky in any case, because the map, in its folded form, has quadratic com-
plexity in the worst case.
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implementation of the wavefront propagation phase. Section 4 describes the wave-
front propagation phase itself. The data structures and the implementation details of
the algorithm, as well as the final phase of the preprocessing for shortest path queries,
are presented in Sect. 5. We close in Sect. 7 with a discussion, which includes the ex-
tension to the construction of geodesic Voronoi diagrams on 9 P, and with several
open problems.

The full version of the paper [34] is even longer than this journal version—it builds
upon the already long paper [18], and adds many new technical steps in full detail.
This shorter journal version contains most of its ingredients, but omits certain steps,
such as those sufficiently similar to their counterparts in [18].

2 A Conforming Surface Subdivision

A key ingredient of the algorithm is a special subdivision S of d P, which we con-
struct in two steps. The first step, sketched in Sect. 6, builds a rectilinear oct-tree-like
subdivision S3p of R3 by taking into account only the vertices of P (see [34, Sect. 6]
for details). In the present section, we only state the properties that S3p should satisfy,
assume that it is already available, and describe the second step, which constructs S
from S3p. We start with some preliminary definitions.

2.1 Preliminaries

Without loss of generality, we assume that s is a vertex of P, that all facets of P are
triangles, and that no edge of P is axis-parallel. Our model of computation is the real
RAM.

We borrow some definitions from [26, 35, 36]. A geodesic path 7 is a simple path
along 9 P so that, for any two sufficiently close points p, g € , the portion of 7 be-
tween p and ¢ is the unique shortest path that connects them on d P. Such a path &
is always piecewise linear; its length is denoted as | |. For any two points a,b € 9 P,
a shortest geodesic path between them is denoted by m(a, b). Generally, 7 (a, b) is
unique, but there are degenerate placements of a and b for which there exist several
geodesic shortest paths that connect them. For convenience, the word “geodesic” is
omitted in the rest of the paper. For any two points a, b € d P, at least one shortest path
m(a, b) exists [26]. We use the notation I1 (a, b) to denote the set of all shortest paths
connecting a and b. The length of any path in I71(a, b) is the shortest path distance
between a and b, and is denoted as ds(a, b). We occasionally use ds(X, Y) to denote
the shortest path distance between two compact sets of points X, Y € 9 P, which is
the minimum dg(x, y),overall x € X and y € Y. We use d3p(x, y) (resp., dso(x, ¥))
to denote the Euclidean (resp., the L) distance in R3 between X, y; when consider-
ing points x, y on a plane, we sometimes denote d3p(x, y) by d(x, y).

If facets f and f’ share a common edge yx, the unfolding of f’ onto (the plane
containing) f is the rigid transformation that maps f’ into the plane containing f,
effected by an appropriate rotation about the line through yx, so that f and the image
of f’ lie on opposite sides of that line. Let F = (fo, f1,..., fx) be a sequence of
distinct facets such that f;_; and f; have a common edge y;, fori =1, ..., k. We say
that F is the corresponding facet sequence of the edge sequence € = (x1, X2, -+ Xk)
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(and that £ is the corresponding edge sequence of F). The unfolding transformation
Ug is the transformation of 3-space that represents the rigid motion that maps fj to
the plane of f;, through a sequence of unfoldings at the edges xi, x2, ..., xx. That
is, for i = 1,...,k, let ¢; be the rigid transformation of 3-space that unfolds f;_;
to the plane of f; about y;. The unfolding Ug is then the composed transformation
DPg =@ o@r—10---o@;. (The unfolding of an empty edge sequence is the identity
transformation.) However, in what follows, we will also use Ug to denote the collec-
tion of all partial unfoldings @3 = gy o gk_1o...o@;, fori =1,... k. Thus @¢ is
the unfolding of f;_; onto the plane of fi. The domain of Ug is then defined as the
union of all points in fy, f1, ..., fk, and the plane of the last facet f; is denoted as the
destination plane of Ug . Since each rigid transformation in R? can be represented as a
4 x 4 matrix [32] (see [34] for details), the entire sequence ®¢ = @((51), dﬁ‘(gz), e, dbék)
can be computed in O (k) time.

The unfolding Ug (F) of the facet sequence F is the union Uf:o @g +1)( fi) of
the unfoldings of each of the facets f; € F, in the destination plane of Ug (here
the unfolding transformation for f; is the identity).? The unfolding Ug (;r) of a path
7 C dP that traverses the edge sequence &, is the path consisting of the unfolded
images of all the points of 7 in the destination plane of Ug.

The following properties of shortest paths are proved in [8, 26, 35, 36]: (i) The
intersection of a shortest path & with any facet f of dP is a (possibly empty) line
segment. (ii) If v traverses the edge sequence &, then the unfolded image Ug () is a
straight line segment. (iii) A shortest path 7 never crosses a vertex of P (but it may
start or end at a vertex). (iv) Two shortest paths from the same source point s, so that
none of them is an extension of the other, cannot intersect each other except at s and,
if they have the same destination point, possibly at that point too.

The Elements of the Shortest Path Map We consider the problem of computing
shortest paths from a fixed source point s € 9 P to all points of 9 P. A point z € 9 P is
called a ridge point if there exist at least two distinct shortest paths from s to z. The
shortest path map with respect to s, denoted SPM(s), is a subdivision of d P into at
most n connected regions, called peels, whose interiors are vertex-free and contain
neither ridge points nor points belonging to shortest paths from s to vertices of P,
and such that for each such peel @, there is only one shortest path 7 (s, p) € I1(s, p)
to any p € @, which also satisfies 7 (s, p) C ®.

There are two types of intrinsic vertices of SPM(s) (excluding intersections of peel
boundaries with edges of P): ridge points that are incident to three or more peels, and
vertices of P (including s). The boundaries of the peels form the edges of SPM(s).
There are two types of edges (see Fig. 2): (i) shortest paths from s to a vertex of P,
and (ii) bisectors, each being a maximal connected polygonal path of ridge points
between two vertices of SPM(s) that does not contain any vertex of SPM(s).

It is proved in [36] that: (1) A shortest path from s to any point in d P cannot cross
a bisector. (2) SPM(s) has only O(n) vertices and (folded) edges, each of which is a
union of O (n) straight segments.

30ur definition of unfolding is asymmetric, in the sense that we could equally unfold into the plane of
any of the other facets of 7. We sometimes ignore the exact choice of the destination plane, since the
appropriate rigid transformation that moves between these planes is easy to compute.

@ Springer



Discrete Comput Geom (2008) 39: 500-579 507

Denote by &; the maximal polytope edge sequence crossed by a shortest path
from s to a vertex of a peel @; inside @; (&; is unique, since @; does not contain
polytope vertices in its interior). Denote by s; the unfolded source image Ug, (s); for
the sake of simplicity, we also denote by s; the unfolded source image U, gl (s), where
&! is some prefix of &. A bisector between two adjacent peels @;, ®@; is denoted
by b(s;, s;). It is the locus of points g equidistant from s; and s; (on some com-
mon plane), so that there are at least two shortest paths in I1 (s, g)—one, completely
contained in @;, traverses a prefix of the polytope edge sequence &;, and the other,
completely contained in @, traverses a prefix of the polytope edge sequence £;. Note
that for two maximal polytope edge sequences &;, £}, the bisector h(s;, s;) between
the source images s; = Ug, (s) and s; = Ug, (s) satisfies both the following proper-
ties: Ug, (b(s;,sj)) C Ug, (F;), and Ugj (b(si,sj)) C Ugj (F;), where F;, F; are the
respective corresponding facet sequences of &;, &;.

2.2 The 3-Dimensional Subdivision and Its Properties

We begin by introducing the subdivision S3p of R3, whose construction is sketched
in Sect. 6. The subdivision is composed of 3D-cells, each of which is an axis-parallel
cube, either whole, or perforated by a single axis-parallel cube-shaped hole;* see
Fig. 3. The boundary face of each 3D-cell is divided into either 16 x 16 or 64 x 64
square subfaces with axis-parallel sides.

Let I(h) denote the edge length of a square subface A.

The crucial property of S3p is the well-covering of its subfaces. Specifically, a
subface & of S3p is said to be well-covered if the following three conditions hold:

Fig. 2 Peels are bounded by
thick lines (dashed and solid).

The bisectors (the set of all the \‘ /’
ridge points) are the thick solid A \ /l ’
lines, while the dashed solid \ ‘\ ;
lines are the shortest paths * N )
from s to the vertices of P A T~ eSe=A0
Ao FTS
RV v ~

Fig. 3 Two types of a 3D-cell:
a whole cube (where the
subdivision of three of its faces
is shown), and a perforated cube
(it is not shown here that each of
its inner and outer faces is
subdivided into subfaces)

4The 3D-subdivision S3p is similar to a (compressed) oct-tree in that all its faces are axis-parallel and
their sizes grow by factors of 4. However, the cells of S3p may be nonconvex and the union of the surfaces
of the 3D-subdivision itself may be disconnected.
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Fig. 4 The well-covering region of the darkly shaded face h contains, in this example, a total of 39
3D-cells (nine transparent large cells on the back, five lightly shaded large cells on the front, and 25 small
cells, also on the front). Each face of the boundary of each 3D-cell in this figure is further subdivided into
subfaces (not shown). The well-covering region of each of the subfaces of & coincides with R(h)

(W1) There exists a set of O(1) cells C(h) C S3p such that & lies in the interior
of their union R(h) = UceC(h) c. The region R(h) is called the well-covering
region of h (see Fig. 4).

(W2) The total complexity of the subdivisions of the boundaries of all the cells
in C(h)is O(1).

(W3) If g is a subface on d R(h), then d3p(h, g) > 16 max{l(h),1(g)}.

A subface £ is strongly well-covered if the stronger condition (W3') holds:’

(W3') For any subface g so that & and g are portions of nonadjacent (undivided)
faces of the subdivision, dzp(h, g) > 16 max{l/(h),l(g)}.

Let V denote the set of vertices of the polytope (including the source vertex s).
A 3D-subdivision S3p is called a (strongly) conforming 3D-subdivision for V if the
following three conditions hold.

(C1) Each cell of S3p contains at most one point of V in its closure.

(C2) Each subface of S3p is (strongly) well-covered.

(C3) The well-covering region of every subface of S3p contains at most one vertex
of V.

S3p also has the following minimum vertex clearance property:
(MVC) For any point v € V and for any subface &, d3p (v, h) > 41(h).
As mentioned, the algorithm for computing a strongly conforming 3D-subdivision

of V is sketched in Sect. 6. We state the main result shown there.©

Theorem 2.1 (Conforming 3D-subdivision Theorem) Every set of n points in R3
admits a strongly conforming 3D-subdivision S3p of O (n) size that also satisfies the

5The wavefront propagation algorithm described in Sects. 4 and 5 requires the subfaces of S3p only to be
well-covered, but not necessarily strongly well-covered. The stronger condition (W3') of subfaces of S3p
is needed only in the construction of the surface subdivision S.

6Note that we do not assume that the points of V are in convex position.
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minimum vertex clearance property. In addition, each input point is contained in the
interior of a distinct whole cube cell. Such a 3D-subdivision can be constructed in
O (nlogn) time.

2.3 Computing the Surface Subdivision

Transparent Edges We intersect the subfaces of S3p with d P. Each maximal con-
nected portion & of the intersection of a subface 4 of S3p with d P induces a surface-
subdivision (transparent) edge e of S with the same pair of endpoints. (We textitasize
here that e # &. The precise construction of e is detailed below.) A single subface &
can therefore induce up to four transparent edges (since P is convex and 4 is a square,
and the construction of S3p ensures that none of its edges is incident to a polytope
edge; see Fig. 5). If £ is a closed cycle fully contained in the interior of /&, we break
it at its x-rightmost and x-leftmost points (or y-rightmost and y-leftmost points, if
is perpendicular to the x-axis). These two points are regarded as two new endpoints
of transparent edges. These endpoints, as well as the endpoints of the open connected
intersection portions &, are referred to as transparent endpoints.

Let &£(a, b) be a maximal connected portion of the intersection of a subface h of
S3p with 9 P, bounded by two transparent endpoints a, b. Let £ = &, 5 denote the
sequence of polytope edges that £ (a, b) crosses from a to b, and let 7 = F, ;, denote
the facet sequence corresponding to £. We define the transparent edge e, as the
shortest path from a to b within the union of F (a priori, Ug (e, p) is not necessarily
a straight segment, but we will shortly show that it is); see Fig. 6. We say that e, p,
originates from the cut &(a, b). Obviously, its length |e, ;| is equal to |Ug(eq.p)| <
|€(a, b)|. (This initial collection of transparent edges may contain crossing pairs, and

Fig. 5 A subface i and three P

maximal connected portions é’ 1 é‘?\

&1, &, &3 that constitute the / :
intersection 2 N 9 P ‘ oP

Fig. 6 The cuts of the boundaries of the 3D-cells ¢y, ¢ with d P are denoted by thin solid lines, and the
dashed lines denote polytope edges. The transparent edge e, 5, that originates from the cut &(a, b) is bold.
(To simplify the illustration, this figure ignores the fact that the faces of S3p are actually subdivided into
smaller subfaces)
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each initial transparent edge will be split into sub-edges at the points where other
edges cross it—see below.)

Lemma 2.2 No polytope vertex can be incident to transparent edges. That is, for
each transparent edge e, 1, the unfolded path Ug (e, p) is a straight segment.

Proof By (MVC), for any subface & of S3p and for any v € V, we have d3p (&, v) >
41(h). Let e, p be a transparent edge originating from &(a, b) C hNaP. Then |e, p| <
|€(a, b)|, by definition of transparent edges, and |&(a, b)| < 4l(h), since £(a,b) C h
is convex, and 4 is a square of side length /(%). Therefore dip(a, v) > |e4 p|, Which
shows that e, 5 cannot reach any vertex v of P. O

Lemma 2.3 A transparent endpoint is incident to at least two and at most O (1)
transparent edges.

Proof Easy, and omitted; it follows from the structure of S3p. O

Lemma 2.4 Each transparent edge that originates from some face ¢ of S3p, meets
at most O (1) other transparent edges that originate from faces of S3p adjacent to ¢
(or from ¢ itself), and does not cross any other transparent edges (which originate
from faces of S3p not adjacent to ¢).

Proof Let e, 5 be a transparent edge originating from the cut &(a, b), and let e, 4 be
a transparent edge originating from the cut £(c, d). Let h, g be the subfaces of S3p
that contain &£ (a, b) and &(c, d), respectively. Since a, b € h, we have dip(eq . h) <
Neap| < $1E(a, b)| < 21(h). Similarly, dap(ec.q, g) < 2I(g). Recall that Sip is a
strongly conforming 3D-subdivision. Therefore, if &, g are incident to non-adjacent
faces of Ssp, then, by (W3'), dsp(h, g) > 16 max{I(h),(g)}, hence e, ; does not in-
tersect e 4. Since are only O (1) faces of S3p that are adjacent to the face of %, and
each of them contains O(1) subfaces g, there are at most O (1) possible choices of g
for each h. O

Splitting Intersecting Transparent Edges Crossing transparent edges are illustrated
in Fig. 7. We first show how to compute the intersection points; then, each intersection
point is regarded as a new transparent endpoint, splitting each of the two intersecting
edges into sub-edges.

Lemma 2.5 A maximal contiguous facet subsequence that is traversed by a pair
of intersecting transparent edges e, e’ contains either none or only one intersection
point of e N €. In the latter case, it contains an endpoint of e or ¢’ (see Fig. 8).

Proof Consider some maximal common facet subsequence F=( fos---, fx) thatis
traversed by e and ¢, so that the union R of the facets in F contains an intersection
point of e N ¢’. Since F is maximal, no edge of dR is crossed by both e and ¢’; in
particular, F cannot be a single triangle, so k > 1. Since e and ¢’ are shortest paths
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Fig.7 Subfaces are bounded by
dotted lines, polytope edges are
dashed, the cuts of 9 P N S3p
are thin solid lines, and the two
transparent edges e p, ec ¢ are
drawn as thick solid lines. The
edges eq p, ec 4 intersect each
other at the point x € d P; the
shaded region of 9 P (including
the point x on its boundary) lies
in this illustration beyond the
plane that contains the
cut&(c,d)

Fig. 8 Two examples of intersecting transparent edges e, ¢’ (thin solid lines); the corresponding original
cuts (thick solid lines) never intersect each other. The maximal contiguous facet subsequences that are
traversed by both e, ¢’ and contain an intersection point of e N ¢’ are shaded. In the second example, the
“hole” of 3 P between the facet sequence traversed by e and the facet sequence traversed by ¢’ is hatched

“ho Ry
TR —

5/

(a)

Fig. 9 (a) ¢’ divides R into two regions, one of which, R’ (shaded), contains neither u nor v. (b) If R’
contains v but not u, £ (crossing the same edge sequence as e’) intersects £ (which must cross the bold
dashed edges, since R is maximal)

within R, they cannot cross each other (within R) more than once, which proves the
first part of the lemma.

To prove the second claim, assume the contrary — that is, R does not contain any
endpoint of e and of ¢’. Denote by u (resp., v) the vertex of fy (resp., fi) that is not
incident to fi (resp., fx—1). We claim that ¢’ divides R into two regions, one of which
contains both u and v, and the other, which we denote by R’, contains neither u nor v.
Indeed, if each of the two subregions contained exactly one point from {u, v} then, by
maximality of F, e and ¢’ would have to traverse facet sequences that “cross” each
other, which would have forced the corresponding original cuts &, &’ also to cross
each other, contrary to the construction; see Fig. 9. The transparent edge e intersects
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d R in exactly two points that are not incident to R’. Since e intersects ¢’ in R, e must
intersect R’ N ¢’ in two points—a contradiction. O

By Lemma 2.4, each transparent edge e has at most O (1) candidate edges that can
intersect it (at most four times, as follows from Lemma 2.5). For each such candidate
edge ¢’, we can find each of the four possible intersection points, using Lemma 2.5, as
follows. First, we check for each of the extreme facets in the facet sequence traversed
by e, whether it is also traversed by ¢’, and vice versa (if all the four tests are negative,
then e and ¢’ do not intersect each other). We describe in the proof of Lemma 2.11
below how to perform these tests efficiently. For each positive test—when a facet f
that is extreme in the facet sequence traversed by one of ¢, ¢/, is present in the facet
sequence traversed by the other—we unfold both e, ¢’ to the plane of f, and find the
(image in the plane of f of the) intersection point of e N e’ that is closest to f (among
the two possible intersection points).

Surface Cells  After splitting the intersecting transparent edges, the resulting trans-
parent edges are pairwise openly disjoint and subdivide d P into connected (albeit
not necessarily simply connected) regions bounded by cycles of transparent edges, as
follows from Lemma 2.3. These regions, which we call surface cells, form a planar
(or, rather, spherical) map S on d P, which is referred to as the surface subdivision
of P. Each surface cell is bounded by a set of cycles of transparent edges that are
induced by some 3D-cell c3p, and possibly also by a set of other 3D-cells adjacent
to c3p whose originally induced transparent edges split the edges originally induced
by c3p.

Corollary 2.6 Each 3D-cell induces at most O (1) (split) transparent edges.

Proof Follows immediately from the property that the boundary of each 3D-cell con-
sists of only O (1) subfaces, from the fact that each subface induces up to four trans-
parent edges, and from Lemmas 2.4 and 2.5. ]

Corollary 2.7 For each surface cell c, all transparent edges on dc are induced by
O(1) 3D-cells.

Proof Follows immediately from Lemma 2.4. (|
Corollary 2.8 Each surface cell is bounded by O (1) transparent edges.
Proof Follows immediately from Corollaries 2.6 and 2.7. U

Well-Covering  We require that all transparent edges be well-covered in the surface
subdivision S (compare to the well-covering property of the subfaces of S3p), in the
following modified sense.

(W1gs) For each transparent edge e of S, there exists a set C(e) of O(1) cells of S
such that e lies in the interior of their union R(e) = J ¢, ¢, Which is called
the well-covering region of e.
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(W2s) The total number of transparent edges in all the cells in C(e) is O(1).
(W3s) Let e and ey be two transparent edges of S such that e, lies on the boundary
of the well-covering region R(e1). Then dg(eq, e2) > 2max{|eq], |ez|}.

As the next theorem shows, our surface subdivision S is a conforming surface
subdivision for P, in the sense that the following three properties hold.

(Clg) Each cell of S is a region on d P that contains at most one vertex of P in its
closure.

(C2g) Each edge of S is well-covered.

(C35) The well-covering region of every edge of S contains at most one vertex of P.

Theorem 2.9 (Conforming Surface-Subdivision Theorem) Each convex polytope P
with n vertices admits a conforming surface subdivision S into O(n) transparent
edges and surface cells, constructed as described above.

Proof The properties (Clg), (C3s) follow from the properties (C1), (C3) of S3p,
respectively, and from the fact that each cycle C of transparent edges that forms a
connected component of the boundary of some cell of S traverses the same polytope
edge sequence as the original intersections of S3p with d P that induce C.

To show well-covering of edges of S (property (C25)), consider an original trans-
parent edge e, , (before the splitting of intersecting edges). The endpoints a, b are
incident to some subface i that is well-covered in S3p, by a region R(h) con-
sisting of O(1) 3D-cells. We define the well-covering region R(e) of every edge
e, obtained from e, by splitting, as the connected component containing e, of
the union of the surface cells that originate from the 3D-cells of R(%k). There are
clearly O (1) surface cells in R(e), since each 3D-cell of S3p induces at most O (1)
(transparent edges that bound at most O(1)) surface cells. R(e) is not empty and
it contains e in its interior, since all the surface cells that are incident to e orig-
inate from 3D-cells that are incident to /& and therefore are in R(h). For each
transparent edge ¢’ originating from a subface g that lies on the boundary of (or
outside) R(h), ds(h, g) > dsp(h, g) > 16max{l(h),l(g)}. The length of e satisfies
le| < leq.»| <|&(a, b)| <4l(h), and, similarly, |e’| < 4I(g). Therefore, for each p € e
we have dsp(p, h) < 2[(h), and for each g € ¢’ we have dsp(q, g) < 2I(g). Hence,
for cach p € ¢, ¢ € ¢, we have ds(p, q) = dsp(p, q) = (16 — 4y max{l(h), [(g)}, and
therefore ds (e, ¢') > 2 max{|e|, |¢'|}. O

We next simplify S by deleting (all the transparent edges of) each group of surface
cells whose union completely covers exactly one hole of a single surface cell ¢ and
contains no vertices of P, thereby eliminating the hole and making it part of c; see
Fig. 10. (This optimization clearly does not violate any of the properties of S proved
above.) After the optimization, each hole of a surface cell of S must contain a vertex.

The following lemma sharpens a simple property of S that is used later in Sect. 3.

Lemma 2.10 A transparent edge e intersects any polytope edge in at most one point.

Proof A polytope edge x can intersect e at most once, since e is a shortest path
(within the union of a facet sequence); since we assume that no edge of P is axis-
parallel, e N x cannot be a nontrivial segment. (]
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Fig. 10 Simplifying the subdivision (dashed edges denote polytope edges, and solid edges denote trans-
parent edges). (a) None of the cells is discarded, since, although the shaded cells are completely contained
inside a single hole of another cell, one of them contains a vertex of P. (b) All the shaded cells are dis-
carded, and become part of the containing cell

2.4 The Surface Unfolding Data Structure

In this subsection we present the surface unfolding data structure, which we define
and use to efficiently construct the surface subdivision. This data structure is also
used in Sect. 3 to construct more complex data structures for wavefront propagation
and in Sect. 5 by the wavefront propagation algorithm.

Sort the vertices of P in ascending z-order, and sweep a horizontal plane ¢ up-
wards through P. At each height z of ¢, the cross section P(z) = ¢ N P is a convex
polygon, whose vertices are intersections of some polytope edges with ¢. The cross-
section remains combinatorially unchanged, and each of its edges retains a fixed ori-
entation, as long as ¢ does not pass through a vertex of P. When ¢ crosses a vertex
v, the polytope edges incident to v and pointing downwards are deleted (as vertices)
from P (z), and those that leave v upwards are added to P (z).

We can represent P (z) by the circular sequence of its vertices, namely the circular
sequence of the corresponding polytope edges. We use a linear, rather than a circular,
sequence, starting with the x-rightmost vertex of P(z) and proceeding counterclock-
wise (when viewed from above) along 9 P(z). (It is easy to see that the rightmost
vertex of P(z) does not change as long as we do not sweep through a vertex of P.)
We use a persistent search tree 7, (with path-copying, as in [20], for reasons de-
tailed below) to represent the cross section. Since the total number of combinatorial
changes in P(z) is O (n), the total storage required by 7 is O (nlogn), and it can be
constructed in O (nlogn) time.

We can use T to perform the following type of query: Given a horizontal subface
h =la, b] x [c,d] x {z1} of S3p, compute efficiently the convex polygon P N A, and
represent its boundary in compact form (without computing P N & explicitly). We
access the value T,(z;) of T, at z = z; (which represents P(z1)), and compute the
intersection points of each of the four edges of 4 with P. It is easily seen that this can
be done in a total of O (logn) time. We obtain at most eight intersection points, which
partition d P(z1) into at most eight portions, and every other portion in the resulting
sequence is contained in 4. Since these are contiguous portions of d P(z1), each of
them can be represented as the disjoint union of O (logn) subtrees of T,(z1), where
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the endpoints of the portions (the intersection points of 94 with d P(z1)) do not appear
in the subtrees, but can be computed explicitly in additional O (1) time. Hence, we
can compute, in O (logn) time, the polytope edge sequence of the intersection P Nh,
and represent it as the disjoint concatenation of O (logn) canonical sequences, each
formed by the edges stored in some subtree of 7.

We can also use 7, for another (simpler) type of query: Given a facet f of d P and
some z = 71, locate the endpoints of f N P(z1) (which must be stored at two consec-
utive leaves in the cyclic order of leaves of the corresponding version of 77), or report
that f N P(z1) = @. As noted above, the slopes of the edges of P(z) do not change
when z varies, as long as P(z) does not change combinatorially. Moreover, these
slopes increase monotonically, as we traverse P(z1) in counterclockwise direction
from its x-leftmost vertex vy to its x-rightmost vertex vg, and then again from vg
to vy,. This allows us to locate f in the sequence of edges of P(z1), in O (logn) time,
by a binary search in the sequence of their slopes. To make binary search possible
in O(logn) time (as well as to enable a somewhat more involved search over T that
we use in the proof of Lemma 3.12), we store at each node of 7, a pair of pointers
to the rightmost and leftmost leaves of its subtree. These extra pointers can be easily
maintained during the insertions to and deletions from 73; it is also easy to see that
updating these pointers is coherent with the path-copying method.

However, the most important part of the structure is as follows. With each node v
of T, we precompute and store the unfolding U, of the sequence &, of polytope edges
stored at the leaves of the subtree of v, exploiting the following obvious observation.
Denote by F, the corresponding facet sequence of &,. If vy, vy are the left and the
right children of v, respectively, then the last facet in F,, coincides with the first
facet of F,,. Hence U, = U,, o U,,, from which the bottom-up construction of all the
unfoldings U, is straightforward. Each node stores exactly one rigid transformation,
and each combinatorial change in P(z) requires O(logn) transformation updates,
along the path from the new leaf (or from the deleted leaf) to the root. (The rotations
that keep the tree balanced do not affect the asymptotic time complexity; maintaining
the unfolding information while rebalancing the tree can be performed in a manner
similar to that used in another related data structure, described in Sect. 5.1, with full,
and fairly routine, details given in [34].) Hence the total number of transformations
stored in 77 is O (nlogn) (for all z, including the nodes added to the persistent tree
with each path-copying), and they can all be constructed in O (nlogn) time.

Let F = (fo, fi1, ..., fr) denote the corresponding facet sequence of the sequence
of edges stored at the leaves of T, at some fixed z. We next show how to use the
tree T, to perform another type of query: Compute the unfolded image U (q) of some
point g € f; € F in the (destination) plane of some other facet f; € F (which is not
necessarily the last facet of ), and return the (implicit representation of) the corre-
sponding edge sequence &;; between f; and f;.If i = j, then &; =W and U(g) =gq.
Otherwise, we search for f; and f; in 7, (in O(logn) time, as described above).
Denote by U; (resp., U;) the unfolding transformation that maps the points of f;
(resp., f}) into the plane of f;. Then U(q) = U;lUi ().

We describe next the computation of U;, and U; is computed analogously. If f;
equals fi, then U; is the identity transformation. Otherwise, denote by v; the leaf
of T that stores the polytope edge f; N fi+1, and denote by r the root of 7,. We
traverse, bottom up, the path P from v; to r, and compose the transformations stored
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vy —
Us UVppro
14 2 — . T UV3
Tz 141 v2 — p7 >

fo:fl fi}ci+1 fk—:lfk Jo fi Jr
(a) (b)

Fig. 11 Constructing U; by traversing the path from the polytope edge succeeding the facet f; to the
root r of T;. (a) The nodes vy, v3 are the left turns, and the nodes vy, v4 are the right turns in this example.
(b) Composing the corresponding transformations stored at vy, ..., v4 and at r

at the nodes of P, initializing U; as the identity transformation and proceeding as
follows. We define a node v of P to be a left turn (resp., right turn) if we reach v
from its left (resp., right) child and proceed to its parent v’ so that v is the right (resp.,
left) child of v'. When we reach a left (resp., right) turn v that stores U,,, we update
U; :=U,U; (resp., U; := U‘jl U;). If we reach r from its right child, we do nothing;
otherwise we update U; := U, U;, where U, is the transformation stored at r. See
Fig. 11 for an illustration. Thus, U; (and U}) can be computed in O (logn) time, and
soU(q) = U;l U;(q) can be computed in O (logn) time.

We construct, in a completely symmetric fashion, two additional persistent search
trees Ty and Ty, by sweeping P with planes orthogonal to the x-axis and to the y-axis,
respectively.

Hence we can compute, in O(logn) time, the image of any point ¢ € 9 P in any
unfolding formed by a contiguous sequence of polytope edges crossed by an axis-
parallel plane that intersects the facet of ¢. The surface unfolding data structure that
answers these queries requires O (nlogn) space and O (nlogn) preprocessing time.

Lemma 2.11 Given the 3D-subdivision S3p, the conforming surface subdivision S
can be constructed in O (nlogn) time and space.

Proof First, we construct the surface unfolding data structure (the enhanced persis-
tent trees T, Ty, and T;) in O (nlogn) time, as described above. Then, for each sub-
face h of S3p, we use the data structure to find P N4 in O(logn) time. If P N A is
a single component, we split it at its rightmost and leftmost points into two portions
as described in the beginning of Sect. 2.3—it takes O (logn) time to locate the split
points using a binary search.

To split the intersecting transparent edges, we check each pair of edges (e, ¢’) that
might intersect, as follows. First, we find, in the surface unfolding data structure, the
edge sequences £ and &’ traversed by e and €', respectively (by locating the cross
sections P N h, P N K, where h, h’ are the respective subfaces of S3p that induce
e, ¢'). Denote by F = (fo, ..., fi) (resp., 7' = (fg. ..., fi,)) the corresponding facet
sequence of £ (resp., £'). We search for fj in F’, using the unfolding data structure.
If it is found, that is, both e and ¢’ intersect fy, we unfold both edges to the plane of f;
and check whether they intersect each other within fy. We search in the same manner
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for fi in 7', and for fj and f/, in . This yields up to four possible intersections
between e and ¢’ (if all searches fail, e does not cross ¢’), by Lemma 2.5. Each of
these steps takes O (logn) time. As follows from Lemma 2.4, there are only O (n)
candidate pairs of transparent edges, which can be found in a total of O(n) time;
hence the whole process of splitting transparent edges takes O (nlogn) time.

Once the transparent edges are split, we combine their pieces to form the boundary
cycles of the cells of the surface subdivision. This can easily be done in time O (n).
The optimization that deletes each group of surface cells whose union completely
covers exactly one hole of a single surface cell and contains no vertices of P also
takes O (n) time (using, e.g., DFS on the adjacency graph of the surface cells), since,
during the computation of the cell boundaries, we have all the needed information to
find the transparent edges to be deleted. (|

3 Surface Unfoldings and Shortest Paths

In this section we show how to unfold the surface cells of S and how to represent these
unfoldings for the wavefront propagation algorithm (described in Sects. 4 and 5)
as Riemann structures. Informally, this representation consists of unfolded “flaps,”
which we call building blocks, all lying in a common plane of unfolding. We glue
them together locally without overlapping, but they may globally have some over-
laps, which however are ignored, since we consider the corresponding flaps to lie at
different “layers” of the unfolding.

3.1 Building Blocks and Contact Intervals

Maximal Connecting Common Subsequences Let e and ¢’ be two transparent edges,
and let £ = (x1, x2, ..., xx) and & = (x{, x5, - -, x;,) be the respective polytope

edge sequences that they cross. We say that a common (contiguous) subsequence g
of £ and &’ is connecting if none of its edges x is intersected by a transparent edge
between ¥ Ne and ¥ Neé’; see Fig. 12(a). We define G(e, €’) to be the collection of
all maximal connecting common subsequences of £ and £’.

Let ¢ and £ be as above, and let v be a vertex of P. Denote by & =
(X1 X3+ - - -» X;,) the cyclic sequence of polytope edges that are incident to v, in their
counterclockwise order about v. We regard £’ as an infinite cyclic sequence, and we
define G (e, v) to be the collection of maximal connecting common subsequences
of £ and &', similarly to the definition of G (e, ¢’). See Fig. 12(b).

In either case, the elements of such a collection G (x, y) do not share any polytope
edge. We say that a subsequence in G(x, y) connects x and y.

The Building Blocks Let ¢ be a cell of the surface subdivision S. Denote by E(c)
the set of all the transparent edges on dc. Denote by V(c) the set of (zero or one)
vertices of P inside c (recall the properties of §). Define G(c) to be the union of
all collections G(x, y) so that x, y are distinct elements of E(c) U V(c). Fix such
a pair of distinct elements x, y € E(c) U V(c). Let &,y = (ep, e1,...,e) € G(x, y)
be a maximal subsequence that connects x and y, and let F = (fo, f1,..., fx) be
its corresponding facet sequence. Define the shortened facet sequence of &, , to be
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Fig. 12 Maximal connecting common subsequences of polytope edges (drawn as thin solid lines)
in (a) G(e, ¢'), and (b) G(e, v). The transparent edges are drawn thick, and the interiors of the transparent
boundary edge cycles that separate £1 and &; are shaded

€ /o
ol eZ*
(e)

Fig. 13 Building blocks (shaded): (a), (b), (c) of types I, II and III, respectively, and (d), (e) of type IV

F\ {fo, fi} (so that the extreme edges ep, ex of &£, , are on the boundary of its
union), and note that the shortened sequence can be empty (when k = 1). We define
the following four types of building blocks of c.

Type I: Let f be a facet of 9 P. Any connected component of the intersection region
cN f that meets the interior of f and has an endpoint of some transparent edge of dc
in its closure is a building block of type I of c. See Fig. 13(a) for an illustration.

Type II: Let v be the unique vertex in V (c) (assuming it exists), e a transparent edge
in dc, and &, ,, € G(e, v) a maximal subsequence connecting e and v. Then the region
B, between e and v in the shortened facet sequence of &, 4, if nonempty, is a building
block of type II of c; see Fig. 13(b).

Type III: Let e, ¢’ be two distinct transparent edges in dc, and let £, » € G(c) be a
maximal connecting subsequence between ¢ and ¢’. The region B between e and ¢’
in the shortened facet sequence of &, ., if nonempty, is a building block of type 111
of ¢; see Fig. 13(c).

Type IV: Let f be a facet of dP. Any connected component of the region ¢ N f
that meets the interior of f, does not contain endpoints of any transparent edge, and
whose boundary contains a portion of each of the three edges of f, is a building block
of type IV of c. See Fig. 13(d), (e).

We associate with each building block one or two edge sequences along which it
can be unfolded. For blocks B contained in a single facet, we associate with B the
empty sequence. For other blocks B (which must be of type II or III), the maximal
connecting edge sequence £ = (x1, ..., xx) that defines B contains at least two poly-
tope edges. Then we associate with B the two shortened (possibly empty) sequences
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Et=2, s Xk=1) €2 = (Xk—1, - - - » x2). Note that neither £; nor & is cyclic, and
that the unfolded images Ug¢, (B), Ug, (B) are congruent.

We say that two distinct points p, g € 9 P overlap in the unfolding Ug of some
edge sequence &, if Ug(p) = Ug(q). We say that two sets of surface points X, Y C
d P overlap in Ug, if there are at least two points x € X and y € Y so that Ug(x) =
Ug(y). The following lemma states an important property of building blocks (which
easily follows from their definition).

Lemma 3.1 Let ¢ be a surface cell of S, and let B be a building block of c. Let £ be
an edge sequence associated with B. Then no two points p,q € B overlap in Ug.

Proof Easy, and omitted. O

Lemma 3.2 Let B be a building block of type IV of a surface cell c, and let f be
the facet that contains B. Then either (a) B is a convex pentagon, bounded by por-
tions of the three edges of f, a vertex of f, and portions of two transparent edges
(see Fig. 13(d)), or (b) B is a convex hexagon, whose boundary alternates between
portions of the edges of f and portions of transparent edges (see Fig. 13(e)). In the
latter case, B contains no vertices of P (i.e., of f).

Proof Easy, and omitted. U

Corollary 3.3 Let B be a building block of type I, III, or IV, and let £ be an edge
sequence associated with B. Then Ug (B) is convex.

Proof If B is of type 11, then Ug (B) is a triangle, by construction. If B is of type IV,
then by Lemma 3.2, Ug (B) = B is a convex pentagon or hexagon. If B is of type III,
then Ug (B) is a convex quadrilateral, by construction. O

Corollary 3.4 There are no holes in building blocks.

Proof ITmmediate for blocks of type II, III, IV, and follows for blocks of type I from
the optimization procedure described after the proof of Theorem 2.9. U

Lemma 3.5 Any surface cell ¢ has only O (1) building blocks.

Proof There are O(1) transparent edges in ¢ (by construction of §), and therefore
O (1) transparent endpoints, and each endpoint x can be incident to at most one build-
ing block of ¢ of type I (or to at most two such blocks, if our general position as-
sumption is not strong enough—in that case x may be incident to an edge, but not to
a vertex, of P).

There are O (1) transparent edges and at most one vertex of P in ¢, by construction
of S. Therefore there are at most O (1) pairs (¢’, v) in ¢ so that ¢’ is a transparent edge
and v is a vertex of P. Since there are at most O (1) transparent edge cycles in dc
that intersect polytope edges delimited by v and crossed by ¢’, and since each such
cycle can split the connecting sequence of polytope edges between ¢’ and v at most
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Fig. 14 The triple, of (a) two transparent edges and a vertex of P, or (b) three transparent edges, con-
tributes to two building blocks By, B;. The corresponding graphs K3 7 are illustrated by dotted lines. If the
triple contributed to three building blocks, we would have obtained an impossible plane drawing of K3 3

once, there are at most O (1) maximal connecting common subsequences in G(¢’, v).
Hence, there are O(1) building blocks of type II of c.

Similarly, there are O(1) pairs of transparent edges (¢/,e¢”) in c. There are at
most O(1) other transparent edges and at most one vertex of P in ¢ that can lie
between ¢’ and ¢”, resulting in at most O (1) maximal connecting common subse-
quences in G (¢, ¢’’). Hence, there are O(1) building blocks of type III of c.

By Lemma 3.2, the boundary of a building block B of type IV contains either two
transparent edge segments and a polytope vertex or three transparent edge segments.
In either case, we say that this triple of elements (either two transparent edges and a
vertex of P, or three transparent edges) contributes to B. We claim that one triple can
contribute to at most two building blocks of type IV (see Fig. 14). Indeed, if a triple,
say, (e1, ez, €3), contributed to three type IV blocks Bj, B>, B3, we could construct
from this configuration a plane drawing of the graph K3 3 (as is implied in Fig. 14),
which is impossible. There are O(1) transparent edges and at most one vertex of P
in ¢, by construction of S; therefore there are at most O (1) triples that contribute to
at most O(1) building blocks of type IV of c. O

Lemma 3.6 The interiors of the building blocks of a surface cell ¢ are pairwise
disjoint.

Proof The polytope edges subdivide ¢ into pairwise disjoint components (each con-
tained in a single facet of P). Each building block of type I or IV contains (and
coincides with) exactly one such component, by definition. Each building block of
type II or III contains one or more such components, and each component is fully
contained in the block. Hence it suffices to show that no two distinct blocks can share
a component; the proof of this claim is easy, and omitted. (|

Let B be a building block of a surface cell c. A contact interval of B is a maximal
straight segment of d B that is incident to one polytope edge x C 9B and is not in-
tersected by transparent edges, except at its endpoints. See Fig. 13 for an illustration
(contact intervals are drawn as dashed segments on the boundary of the respective
building blocks). Our propagation algorithm considers portions of shortest paths that
traverse a surface cell ¢ from one transparent edge bounding ¢ to another such edge.
Such a path, if not contained in a single building block, traverses a sequence of such
blocks, and crosses from one such block to the next through a common contact inter-
val.
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Lemma 3.7 Let ¢ be a surface cell, and let B be one of its building blocks. Then B
has at most O (1) contact intervals. If B is of type II or IlI, then it has exactly two
contact intervals, and if B is of type 1V, it has exactly three contact intervals.

Proof If B is of type I, then B is a (simply connected) polygon contained in a single
facet f, so that every segment of 9 B is either a transparent edge segment or a segment
of a polytope edge bounding f (transparent edges cannot overlap polytope edges,
by Lemma 2.10). Every transparent edge of ¢ can generate at most one boundary
segment of B, since it intersects df at most twice. There are O (1) transparent edges,
and at most one vertex of P in ¢, by construction of S. Since each contact interval of
B is bounded either by two transparent edges or by a transparent edge and a vertex
of P, it follows that B has at most O (1) contact intervals.

If B is of type I, 11, or IV, the claim is immediate. O

Corollary 3.8 Let I} # I be two contact intervals of any pair of building blocks.
Then either Iy and I are disjoint, or their intersection is a common endpoint.

Proof By definition. t

Lemma 3.9 Let ¢ be a surface cell. Then each point of c¢ that is not incident to a
contact interval of any building block of c, is contained in (exactly) one building
block of c.

Proof Fix a point p € ¢, and denote by f the facet that contains p. Denote by Q the
connected component of ¢ N f that contains p. If O contains in its closure at least
one endpoint of some transparent edge of dc, then p is in a building block of type I,
by definition.

Otherwise, Q must be a convex polygon, bounded by portions of transparent edges
and by portions of edges of f; the boundary edges alternate between transparent
edges and polytope edges, with the possible exception of a single pair of consecutive
polytope edges that meet at the unique vertex v of f that lies in c. Thus only the
following cases are possible: (1) Q is a triangle bounded by the two edges x1, x2 of f
that meet at v and by a transparent edge e. See Fig. 15(a). The subsequence (x1, x2)
connects e and v, hence p is in a building block of type II (f clearly lies in the
shortened facet sequence). (2) Q is a quadrilateral bounded by the two edges x1, x2
of f and by two transparent edges eg, ep. See Fig. 15(b). Then (x1, x2) connects

F/U » v ~
FARN s\ 1 AN 9 /\\
X140 A X “er Xio X e
A\ N / Y
1// \ 2 / 61\ / \ / A
y A\ P I\ / Y / \
/ ' X
, e AN X1, X2 / AR L N
// \ 7‘\\ / \ ; AN
L AN &) N/l N 2] .
AN AN ) [N o RN
X3

(a) (b) (c) ()

Fig. 15 If Q (shaded) does not contain a transparent endpoint, it must be either a portion of a building
block of (a) type II or (b) type III, or (¢), (d) a building block of type IV

@ Springer



522 Discrete Comput Geom (2008) 39: 500-579

e1 and ey, hence p is in a building block of type III (again, f lies in the shortened
facet sequence). (3) Q is a pentagon bounded by the two edges xi, x2 of f incident
to v, by two transparent edges, and by the third edge x3 of f. See Fig. 15(c). Then
p lies in a building block of type IV. (4) Q is a hexagon bounded by all three edges
of f and by three transparent edges. See Fig. 15(d). Again, by definition, p lies in a
building block of type I'V. This (and the disjointness of building blocks established in
Lemma 3.6) completes the proof of the lemma. (]

The following two auxiliary lemmas are used in the proof of Lemma 3.12, which
gives an efficient algorithm for computing (the boundaries of) all the building blocks
of a single surface cell.

Lemma 3.10 Let ¢ be a surface cell. We can compute the boundaries of all the build-
ing blocks of ¢ of type I in O (logn) total time.

Proof We compute the boundary of each such block by a straightforward iterative
process that starts at a transparent endpoint a lying in some facet f of P, and traces
the block boundary from a along an alternating sequence of transparent edges and
edges of f (with the possible exception of traversing, once, two consecutive edges of
f through a common vertex), until we get back to a.

Since, by Corollary 3.4, there are no holes inside building blocks, after each
boundary tracing step we compute one building block of type I of c. Hence, by
Lemma 3.5, there are O (1) iterations. In each iteration we process O (1) segments of
the current building block boundary. Processing each segment takes O (logn) time,
since it involves unfolding O (1) transparent edges in O (logn) time, using the sur-
face unfolding data structure. (Although we work in a single facet f, each transpar-
ent edge that we process is represented relative to its destination plane, which might
be incident to another facet of P. Thus we need to unfold it to obtain its portion
within f.) O

Lemma 3.11 We can compute the boundaries of all the building blocks that are
incident to vertices of P in total O (nlogn) time.

Proof Let ¢ be a surface cell that contains some (unique) vertex v of P in its in-
terior. Denote by F, the cyclic sequence of facets that are incident to v. Compute
all the building blocks of type I of ¢ in O(logn) time, applying the algorithm of
Lemma 3.10. Denote by H the set of facets in F, that contain building blocks of
c of type I that are incident to v. Denote by ) the set of maximal contiguous sub-
sequences that constitute F, \ H. To compute ), we locate each facet of H in F,,
and then extract the contiguous portions of F, between those facets. To traverse F,
around each vertex v of P takes a total of O (n) time (since we traverse each facet of
P exactly three times).

We process ) iteratively. Each step picks a nonempty sequence F € ) and tra-
verses it, until a building block of type II or IV is found and extracted from F.

Let F be a sequence in ). Since there are no cyclic transparent edges, by con-
struction, it easily follows that H N F,, # @, and therefore F is not cyclic. Denote the
facets of F by f1, ..., fx, with k > 1. Denote by (xi, ..., xx—1) the corresponding
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Fig. 16 Extracting from F building blocks (drawn shaded) of type II (cases (a), (b)) or IV (case (c¢))

polytope edge sequence of F (if k = 1, it is an empty sequence). If k > 1, denote by
xo the edge of fi that is incident to v and does not bound f>, and denote by xj the
edge of f thatis incident to v and does not bound f;_;. Otherwise (k = 1), denote by
X0, X1 the polytope edges of f] that are incident to v. Among all the O (1) transparent
edges of dc, find the transparent edge e that intersects xo closest to v (by unfolding
all these edges and finding their intersections with xo). We traverse F either until it
ends, or until we find a facet f; € F so that e intersects y;—; but does not intersect x;
(that is, e intersects the polytope edge x C df; that is opposite to v). Note that F
cannot be interrupted by a hole in c, since the endpoints of the transparent edges of
such a hole lie in blocks of type I, which belong to H.

In the former case (see Fig. 16(a)), mark the region of d P between e, xo, and yy as
a building block of type 11, delete F from ), and terminate this iteration of the loop. In
the latter case, there are two possible cases. If i > 1 (see Fig. 16(b)), mark the region
of d P between e, xo, and x;_1 as a building block of type II, delete f1, f2,..., fi—1
from F, and terminate this iteration of the loop. Otherwise (f; = f1), denote by x the
intersection point e N x, and denote by x’ the portion of x whose endpoint is incident
to x1. Among all transparent edges of dc, find the transparent edge e’ that intersects
x closest to x (such an edge must exist, or else ¢ would contain two vertices of P).
The edge ¢’ must intersect x;, since otherwise f; would contain a building block of
type I incident to v, and thus would belong to H. See Fig. 16(c) for an illustration.
Mark the region bounded by o, x1, X, ¢, € as a building block of type IV, and delete
f1 from F.

At each iteration we compute a single building block of ¢, hence there are only
O (1) iterations. We traverse the facet sequence around v twice (once to compute ),
and once during the extraction of building blocks), which takes O (n) total time for
all vertices of P. At each iteration we perform O(1) unfoldings (as well as other
constant-time operations), hence the total time of the procedure for all the cells of .S
is O(nlogn). U

Lemma 3.12 We can compute (the boundaries of) all the building blocks of all the
surface cells of S in total O(nlogn) time.

Proof Let c be a surface cell. Compute the boundaries of all the (unfoldings of the)
building blocks of ¢ of types I and II, and the building blocks of type IV that contain
the single vertex v of P in ¢, applying the algorithms of Lemmas 3.10 and 3.11.
Denote the set of all these building blocks by H. (Note that H cannot be empty,
because dc contains at least two transparent edges, which have at least two endpoints
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that are contained in at least one building block of type I.) Construct the list L of
the contact intervals of all the building blocks in H. For each contact interval / that
appears in L twice, remove both instances of I from L. If L becomes (or was initially)
empty, then H contains all the building blocks of c. Otherwise, each interval in L is
delimited by two transparent edges, since all building blocks that contain v are in H.
Each contact interval in L bounds two building blocks of ¢, one of which is in H (it is
either of type I or contains a vertex of P in its closure), and the other is not in H and
is either of type III or a convex hexagon of type IV. The union of all building blocks
of ¢ that are not in H consists of several connected components. Since there are no
blocks of H among the blocks in a component, neither transparent edges nor polytope
edges terminate inside it; therefore such a component is not punctured (by boundary
cycles of transparent edges or by a vertex of P), and its boundary alternates between
contact intervals in L and portions of transparent edges. For each contact interval /
in L, denote by limits(I) the pair of transparent edges that delimit it.

Denote by ) the partition of contact intervals in L into cyclic sequences, so
that each sequence bounds a different component, and so that each pair of consec-
utive intervals in the same sequence are separated by a single transparent edge. By
construction, each contact interval in ) appears in a unique cycle. Since there are
only O(1) building blocks of ¢, we can compute the sequences of ) in constant
time. Let Y = ({1, I», ..., Ix) be a cyclic sequence in Y (with I;;4; = I;, for any
I=1,...,kandany z € Z). Then, for every pair of consecutive intervals I, I; 11 € Y,
limits(1;) N limits(Ij41) is nonempty, and consists of one or two transparent edges
(two if the cyclic sequence at hand is a doubleton). Obviously, any cyclic sequence
in ) contains two or more contact intervals. As argued above, the portion of d P
bounded by these contact intervals and by their connecting transparent edges is a
portion of ¢ which consists of only building blocks of types III and IV. In particular,
it does not contain in its interior any vertex of P, nor any transparent edge.

We process ) iteratively. Each step picks a sequence Y € ), and, if necessary,
splits it into subsequences, each time extracting a single building block of type III
or IV, as follows.

If Y contains exactly two contact intervals, they must bound a single build-
ing block of type III, which we can easily compute, and then discard Y. Other-
wise, let 11,1, 11 be three consecutive contact intervals in Y, and denote by
Xj—1, Xj» Xj+1 the (distinct) polytope edges that contain /;_1, I; and I;1, respec-
tively. Define the common bounding edge e; = limits(1;) N limits(1 1) (there is only
one such edge, since |Y| > 2), and denote by &; the polytope edge sequence inter-
sected by e;. Similarly, define £;_; as the polytope edge sequence traversed by the
transparent edge e;_1 = limits(I;_1) N limits(I;). Without loss of generality, assume
that both £;_| and &; are directed from x;, to x;—1 and to x;,1, respectively. See
Fig. 17.

We claim that £ = & j—1 N &j is a contiguous subsequence of both sequences.
Indeed, assume to the contrary that £ contains at least two subsequences &1, &, and
there is an edge x between them that belongs to only one of the sequences £;_1, &;.
Then the region R of 9P between the last edge of 6_'1, the first edge of 6_’2, ej—1
and e; is contained in the region bounded by the contact intervals of ¥ and by their
connecting transparent edges, and ¥ must have an endpoint in R, contradicting the
fact that this region does not contain any vertex of P. We can therefore use a binary
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(a) Xj+1

Fig. 17 There are two possible cases: (a) There is more than one edge in £, hence a building block of
type III (whose unfolded image is shown shaded) can be extracted. (b) |€] =1 (that s, x; = x), therefore
there must be a building block of type IV (whose image is shown shaded) that can be extracted

search to find the last polytope edge x in £, by traversing the unfolding data structure
tree T that contains £;_1 from the root r to the leaf that stores . To facilitate this
search, we first search for &;, which is the first edge of &. We then trace the search
path P bottom-up. For each node © on the path for which the path continues via its
left child, we go to the right child v, and test whether the edges stored at its leftmost
leaf and rightmost leaf belong to the portion of £; between y; and x+1; for the sake
of simplicity, we refer to this portion as £;. (As we will shortly argue, each of these
tests can be performed in O(1) time.) If both edges belong to £;, we continue up P.
If neither of them is in £;, then x is stored at the rightmost leaf of the left child of .
If only one of them (namely, the one at the leftmost leaf) is in £;, we go to v, and start
tracing a path from v to the leaf that stores x. At each step, we go to the left (resp.,
right) child if its rightmost leaf stores an edge that belongs (resp., does not belong)
to&;.

Tjo test, in O(1) time, whether an edge x* of P belongs to £;, we first recall that,
by construction, all the edges of &; intersect the original subface /; of S3p from
which e; originates, and so they appear as a contiguous subsequence of the sequence
of edges of P stored at the surface unfolding data structure at the appropriate x-,
y-, or z-coordinate of 4 ;. Moreover, the slopes of the segments that connect them in
the corresponding cross-section of P (which are the cross-sections of the connecting
facets) are sorted in increasing order.

We thus test whether x* intersects /2;. We then test whether the slope of the cross-
section of the facet that precedes x* lies within the range of slopes of the facets
between the edges x; and ;1. Clearly, x* belongs to £; if and only if both tests are
positive. Since each of these tests takes O (1) time, the claim follows. Hence, we can
construct £ in O (logn) time.

If x # x;, then we find the unfoldings Ug(e;) and Ug(e;—1) and compute a new
contact interval j/ that is the portion of x bounded by ¢; and e;_1. See Fig. 17(a).
The quadrilateral bounded by Ug(e;), Ug(e;—1), Ug-(I}) and Ug(1;) is the unfolded
image of a building block of type III. Delete /; from Y and replace it by / j’

Otherwise, x = x;. See Fig. 17(b). Denote by x’ (resp., x”) the second edge in
Ej_1 (resp., &;); clearly, x" # x”. Since all blocks that contain either a vertex of P
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Fig. 18 (a) Before the extraction of B, Y contains five (bold dashed) contact intervals. (b) After the
extraction of B, Y has been split into two new (cyclic) sequences Y’, Y’ containing the respective contact
intervals I’, I”. I is no longer contained in any sequence in )

or a transparent edge endpoint are in , the edges x;, x’, x” bound a single facet,
and there is a transparent edge that intersects both x’, x” (otherwise the block of
type IV that we are extracting would be bounded by at least four polytope edges—
a contradiction). Denote by e the transparent edge that intersects both x’, x” nearest
to x; or, rather, nearest to e¢;_1 and to e;, respectively (in Fig. 17(b) we have e =
e;j—2). The region bounded by x;, x', x” and ej_1,ej, eis ahexagonal building block
of type IV. Compute its two contact intervals that are contained in x’ and x”, and
insert them into Y instead of /;. If x’ contains /;_; and x” contains /;;, ¥ is
exhausted, and we terminate its processing. If x’ contains /;_; and x” does not
contain /; 1, we remove /; and /;_; from Y and replace them by the portion of x”
between e and e;. Symmetric actions are taken when x” contains /;,1 and x’ does
not contain /;_;. Finally, if x" does not contain /;_1, nor does x” contain /;41, we
split ¥ into two new cyclic subsequences, as shown in Fig. 18, and insert them into
Yinstead of Y.

In each iteration we compute the boundary of a single building block of type III
or IV, hence there are O(1) iterations; each performs O (1) unfoldings, O (1) binary
searches, and O (1) operations on constant-length lists, hence the time bound fol-
lows. U

3.2 Block Trees and Riemann Structures

In this section we combine the building blocks of a single surface cell into more
complex structures.

Let e be a transparent edge on the boundary of some surface cell ¢, and let B be a
building block of ¢ so that e appears on its boundary. The block tree Tp(e) is a rooted
tree whose nodes are building blocks of ¢ that is defined recursively as follows. The
root of Tg(e) is B. Let B’ be a node in Tg(e). Then its children are the blocks B”
that satisfy the three following conditions.

(1) B’ and B” are adjacent through a common contact interval;

(2) B” does not appear as a node on the path in Tg(e) from the root to B’, except
possibly as the root itself (that is, we allow B” = B if the rest of the conditions
are satisfied);
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Fig. 19 (a) A surface cell ¢ containing a single vertex of P and bounded by four transparent edges (solid
lines) is partitioned in this example into ten building blocks (whose shadings alternate): By, B3, B7, Bg
are of type I, B, By, By, Bg are of type II, Bg of type III and Bjs of type IV. Adjacent building blocks are
separated by contact intervals (dashed lines; other polytope edges are also drawn dashed). (b) The tree
T'g (e) of building blocks of ¢, where e is the (thick) transparent edge that bounds the building block B

(3) if B” = B, then (a) it is of type II or III (that is, if a root is a building block of
type I or IV, it cannot appear as another node of the tree), and (b) it is a leaf of
the tree.

Note that a block may appear more than once in T (e), but no more than once
on each path from the root to a leaf, except possibly for the root B, which may also
appear at leaves of Tpg(e) if it is of type II or IIIl. However, B cannot appear in any
other internal node of Tp(e)—see Fig. 19.

Remark Here is a motivation for the somewhat peculiar way of defining T (e) (re-
flected in properties (2) and (3)). Since each building block is either contained in a
single facet (and a single facet is never traversed by a shortest path in more than one
connected segment), or has exactly two contact intervals (and a single contact inter-
val is never crossed by a shortest path more than once), a shortest path (s, g) to a
point g in a building block B may traverse B through its contact intervals in no more
than two connected segments. Moreover, B may be traversed (through its contact in-
tervals) in two such segments only if the following conditions hold: (i) 7 (s, ¢) must
enter B through a point p on a transparent edge on dc, (ii) B consists of components
of at least two facets, and p and ¢ are contained in two distinct facets, relatively “far"
from each other in B, and (iii) 7 (p, ¢) exits B through one contact interval and then
re-enters B through another (before reaching ¢). See Fig. 20 for an illustration. This
shows that the initial block B through which a shortest path from s enters a cell ¢
may be traversed a second time, but only if it is of type II or III. After the second
time, the path must exit c right away, or end inside B.
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Fig. 20 The shortest path

7 (s, q) enters the (shaded)
building block B through the
transparent edge e at the point p,
leaves B through the contact
interval /1, and then reenters B
through the contact interval I

We denote by 7 (e) the set of all block trees T (e) of e (constructed from the
building blocks of both cells containing e on their boundaries). Note that each block
tree in 7 (e) contains only building blocks of one cell. We call 7 (e) the Riemann sur-
face structure of e; it will be used in Sect. 5 for wavefront propagation block-by-block
from e in all directions (this is why we include in it block trees of both surface cells
that share e on their boundaries). This structure is indeed similar to standard Riemann
surfaces (see, e.g., [39]); its main purpose is to handle effectively (i) the possibility of
overlap between distinct portions of d P when unfolded onto some plane, and (ii) the
possibility that shortest paths may traverse a cell ¢ in “homotopically inequivalent”
ways (e.g., by going around a vertex or a hole of ¢ in two different ways—see below).

Remark Concerning (i), note that without the Riemann structure, unfolding an arbi-
trary portion of d P may result in a self-overlapping planar region (making it difficult
to apply the propagation algorithm)—see [11] for a discussion of this topic. However,
there exist schemes of cutting a polytope along lines other than its edges that produce
a non-overlapping unfolding—see [1, 6, 8, 36]. It is plausible to conjecture that in the
special case of surface cells of S, the unfolding of such a cell does not overlap itself,
since S is induced by intersecting d P with S3p (which is contained in an arrangement
of three sets of parallel planes); however, related results [5, 30] do not suffice in our
case, and we have not succeeded to prove this conjecture, which we leave for further
research.

A block sequence B = (By, B, ..., By) is a sequence of building blocks of
a surface cell ¢, so that for every pair of consecutive blocks B;, Bjy+1 € B,
we have B; # Bjt1, and their boundaries share a common contact interval.
We define &g, the edge sequence associated with B, to be the concatenation
ENONEN I - [|(—1)11E, where, for each i, x; is the polytope edge con-
taining the contact interval that connects B; with B; 1, and &; is the edge sequence
associated with B; that can be extended into (x;—1)||&;||(x;) (recall that there may
be two oppositely oriented edge sequences associated with each B;). Note that, given
a sequence B of at least two blocks, £z is unique.

For each block tree Tg(e) in 7 (e), each path in Tg(e) defines a block sequence
consisting of the blocks stored at its nodes. Conversely, every block sequence of ¢
that consists of distinct blocks, with the possible exception of coincidence between
its first and last blocks (where this block is of type II or III), appears as the sequence of
blocks stored along some path of some block tree in 7 (¢). We extend these important
properties further in the following lemmas.
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Lemma 3.13 Let e, ¢ and B be as above; then Tg(e) has at most O (1) nodes.

Proof The construction of Tp(e) is completed, when no path in Tp(e) can be ex-
tended without violating conditions (1-3). In particular, each path of T (e) consists
of distinct blocks (except possibly for its leaf). Each building block of ¢ contains
at most O (1) contact intervals and O(1) transparent edge segments in its boundary,
hence the degree of every node in Tg(e) is O(1). There are O(1) building blocks
of ¢, by Lemma 3.5, and this completes the proof of the lemma. O

Note that Lemma 3.13 implies that each building block is stored in at most O (1)
nodes of Tg(e).

Lemma 3.14 Let e, c and B be as above. Then each building block of c is stored in
at least one node of Tg(e).

Proof Easy, and omitted. U

The following two lemmas summarize the discussion and justify the use of block
trees. (Lemma 3.15 establishes rigorously the informal argument given right after the
block tree definition.)

Lemma 3.15 Let B be a building block of a surface cell ¢, and let £ be an edge
sequence associated with B. Let p, q be two points in c, so that there exists a shortest
path 7 (p, q) that is contained in ¢ and crosses dB in at least two different points.
Then Ug((p, q) N B) consists of either one or two disjoint straight segments, and
the latter case is only possible if p, q lie in B.

Proof Since m(p, q) is a shortest path, every connected portion of Ug (7w (p, g) N B)
is a straight segment.

Suppose first that p, g € B, and assume to the contrary that Ug (7 (p, ¢) N B) con-
sists of three or more distinct segments (the assumption in the lemma excludes the
case of a single segment). Then at least one of these segments is bounded by two
points x, y € d B and is incident to neither p nor ¢. Neither x nor y is incident to a
transparent edge, since 7 (p, g) C c. Hence x, y are incident to two different respec-
tive contact intervals Iy, I, on d B. The segment of Ug (7 (p, g) N B) that is incident
to p is also delimited by a point of intersection with a contact interval, by similar
arguments. Denote this contact interval by /,, and define I, similarly. Obviously, the
contact intervals I, Iy, I, I, are all distinct. Since only building blocks of type I
might have four contact intervals on their boundary (by Lemma 3.7), B must be of
type 1. But then B is contained in a single facet f, and m(p, g) must be a straight
segment contained in f, and thus cannot cross df at all.

Suppose next that at least one of the points p, g, say p, is outside B. Assume
that Ug (7 (p, g) N B) consists of two or more distinct segments. Then at least one of
these segments is bounded by two points x, y of B (and is not incident to p). By
the same arguments as above, x and y are incident to two different respective contact
intervals I, and /. The other segment of Ug (7w (p, ¢) N B) is delimited by at least one
point of intersection with some contact interval I, by similar arguments. Obviously,
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the three contact intervals I, Iy, I, are all distinct. In this case, B is either of type I
or of type IV. In the former case, arguing as above, 7 (p, g) N B is a single straight
segment. In the latter case, B may have three contact intervals, but no straight line
can meet all of them. Once again we reach a contradiction, which completes the proof
of the lemma. O

Lemma 3.16 Let e be a transparent edge bounding a surface cell c, and let B be a
building block of c so that e appears on its boundary. Then, for each pair of points
D,q,sothat p € eNdB and q € c, if the shortest path w(p, q) is contained in c, then
w(p, q) is contained in the union of building blocks that form a single path in Tp(e)
(which starts from the root).

Proof Let p € eNdB and g € ¢ be two points as above, and denote by B’ the building
block that contains ¢. Denote by B the building block sequence crossed by 7 (p, ).
No building block appears in B more than once, except possibly B if B = B’ (by
Lemma 3.15). Hence, the elements of B form a path in Tp(e) from the root node
(which stores B) to a node that stores B’, as asserted. [l

Corollary 3.17 Let e be a transparent edge bounding a surface cell ¢, and let g be a
point in c, such that the shortest path 1 (s, q) intersects e, and the portion 7 (s, q) of
(s, q) between e and q is contained in c. Then 7 (s, q) is contained in the union of
building blocks that define a single path in some tree of T (e).

Proof Follows from Lemma 3.16. O

Lemma 3.18 (a) Let e be a transparent edge; then there are only O(1) different
paths from a root to a leaf in all trees in T (e). (b) It takes O (nlogn) total time to
construct the Riemann structures T (e) of all transparent edges e.

Proof Let Tg(e) be ablock tree in 7 (e). There are O(1) different paths from the root
node to a leaf of Tz (e) (see the proof of Lemma 3.13). There are two surface cells that
bound e, and there are O (1) building blocks of each surface cell, by Lemma 3.5. By
Lemma 3.12, we can compute all the boundaries of all the building blocks in overall
O (nlogn) time. Hence the claim follows. U

For the surface cell ¢ that contains s, we similarly define the set of block
trees 7 (s), so that the root B of each block tree Tg(s) € 7 (s) contains s on its
boundary (recall that s is also regarded as a vertex of P). It is easy to see that Corol-
lary 3.17 applies also to the Riemann structure 7 (s), in the sense that if g is a point
in ¢, such that the shortest path 7 (s, ¢) is contained in c, then 7 (s, ¢) is contained in
the union of building blocks that define a single path in some tree of 7 (s). It is also
easy to see that Lemma 3.18 applies to 7 (s) as well.

3.3 Homotopy Classes

In this subsection we introduce certain topological constructs that will be used in the
analysis of the shortest path algorithm in Sects. 4 and 5.
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Let R be a region of 0 P. We say that R is punctured if either R is not simply
connected, so its boundary consists of more than one cycle, or R contains a vertex of
P in its interior; in the latter case, we remove any such vertex from R, and regard it
as a new artificial singleton hole of R. We call these vertices of P and/or the holes
of R the islands of R. Let X, Y be two disjoint connected sets of points in such a
punctured region R, let x1,x2 € X and yi, y» € Y, and let w(xq, y1), w(x2, y2) be
two geodesic paths that connect x; to y; and x; to y», respectively, inside R. We
say that 7 (x1, y1) and 7 (x32, y2) are homotopic in R with respect to X and Y , if one
path can be continuously deformed into the other within R, while their corresponding
endpoints remain in X and Y, respectively. (In particular, none of the deformed paths
pass through a vertex of P.) When R is punctured, the geodesic paths that connect,
within R, points in X to points in Y, may fall into several different homotopy classes,
depending on the way in which these paths navigate around the islands of R. If R
is not punctured, all the geodesic paths that connect, within R, points in X to points
in Y, fall into a single homotopy class. In the analysis of the algorithm in Sects. 4
and 5, we only encounter homotopy classes of simple geodesic subpaths from one
transparent edge e to another transparent edge f, inside a region R that is either a
well-covering region of one of these edges or a single surface cell that contains both
edges on its boundary. (We call these paths subpaths, since the full paths to f start
from s.)

Since the algorithm only considers shortest paths, we can make the following
useful observation. Consider the latter case (where the region R is a single surface
cell ¢), and let B be a path in some block tree Tp(e) within ¢ that connects e to f.
Then all the shortest paths that reach f from e via the building blocks in B belong to
the same homotopy class. Similarly, in the former case (where R is a well-covering
region consisting of O (1) surface cells), all the shortest paths that connect e to f via
a fixed sequence of building blocks, which itself is necessarily the concatenation of
O (1) sequences along paths in separate block trees (joined at points where the paths
cross transparent edges between cells), belong to the same homotopy class.

4 The Shortest Path Algorithm

This section describes the wavefront propagation phase of the shortest path algorithm.
Since this is the core of the algorithm, we present it here in detail, although its high-
level description is very similar to the algorithm of [18]. Most of the problem-specific
implementation details of the algorithm (which are quite different from those in [18]),
as well as the final phase of the preprocessing for shortest path queries, are presented
in Sect. 5.

The algorithm simulates a unit-speed (true) wavefront W expanding from s, and
spreading along the surface of P. At simulation time t, W consists of points whose
shortest path distance to s along d P is t. The true wavefront is a set of closed cycles;
each cycle is a sequence of (folded) circular arcs (of equal radii), called waves. Each
wave w; of W at time ¢ (denoted also as w; (¢)) is the locus of endpoints of a collection
I1;(t) of shortest paths of length ¢ from s that satisfy the following condition: There
is a fixed polytope edge sequence &; crossed by some path 7 € IT;(¢), so that the
polytope edge sequence crossed by any other 7" € IT;(¢) is a prefix of &;. The wave
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S6- -S4
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Fig. 21 The true wavefront W at some fixed time 7, generated by eight source images s1, ..., sg. The

surface of the box P (see the 3D illustration in Fig. 22) is unfolded in this illustration onto the plane of the
last facet that W reaches; note that some facets of P are unfolded in more than one way (in particular, the
facet that contains s is unfolded into eight distinct locations). The dashed lines are the bisectors between
the current waves of W, and the dotted lines are the shortest paths to the vertices of P that are already
reached by W

w; is centered, in the destination plane of Ug,, at the source image s; = Ug, (s), called
the generator of w;. When w; reaches, at some time ¢ during the simulation, a point
p € 0P, so that no other wave has reached p prior to time ¢, we say that s; claims p,
and put claimer(p) := s;. We say that &; is the maximal polytope edge sequence of s;
at time t. For each p € w; (¢) there exists a unique shortest path (s, p) € I1;(¢) that
intersects all the edges in the corresponding prefix of £;, and we denote it as 7w (s;, p).

See Fig. 21.
The wave w; has at most two neighbors w;_1, w;+1 in W, each of which shares a
single common point with w; (if w;_1 = w;41, it shares two common points with w;).

As t increases and W expands accordingly (as well as the edge sequences &; of its
waves), each of the meeting points of w; with its adjacent waves traces a bisector,
which is the locus of points equidistant from the generators of the two corresponding
waves; see Fig. 22. The bisector of the two consecutive generators s;, s;4+1 in W is
denoted by b(s;, si+1), and its unfolded image is a straight line.

During the simulation, the combinatorial structure of W changes at certain critical
events, which may also change the topology of W. There are two kinds of critical
events:

(i) Vertex event, where W reaches either a vertex of P or some other boundary vertex
(an endpoint of a transparent edge) of the Riemann structure through which W is
propagated. As will be described in Sect. 5, the wave in W that reaches a vertex event
splits into two new waves after the event—see Fig. 23. These are the only events when
a new wave is added to W. Our algorithm detects and processes all vertex events.’

(i1) Bisector event, when an existing wave is eliminated by other waves—the bisectors
of all the involved generators meet at the event point. Our algorithm detects and

A split at a vertex of P is a “real” split, because the two new waves continue past v along two different
edge sequences. A split at a transparent endpoint is an artificial split, used to facilitate the propagation
procedure; see Sect. 5 for details.
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Fig. 22 W at different times 7:
(a) Before any critical event, it
consists of a single wave. (b),
(c) After the first four (resp.,
eight) vertex events W consists
of four (resp., eight) (folded)
waves. (d) After two additional S e |
critical events, which are @ . R
bisector events, two waves are
eliminated. Before the rest of the (a) ( )
waves are eliminated, and
immediately after (d),

W disconnects into two distinct ) 7 R 7
cycles / | /!

Fig. 23 Splitting the wavefront W at v (the triangles incident to v are unfoldings of its adjacent facets;
note that the sum of all the facet angles at v is less than 2m). The thick dashed line coincides with the
ray from s; through v; it replaces the true bisector between the two new wavefronts Wy, W;, which will
later be calculated by the merging process. Each of Wy, W5 is propagated separately after the event at v
(through a different unfolding of the facet sequence around v—see, e.g., the shaded facets, each of which
has a different image in (a) and (b))

processes only some of the bisector events, while others are not explicitly detected
(recall that we only compute an implicit representation of SPM(s)). See Sect. 4.3 for
further details.

4.1 The Propagation Algorithm

One-Sided Wavefronts The wavefront propagates between transparent edges across
the cells of the conforming surface subdivision S. Propagating the exact wavefront
explicitly appears to be inefficient (for reasons explained below), so at each transpar-
ent edge e we content ourselves with computing two one-sided wavefronts, passing
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Fig. 24 (a) Two wavefronts W, W’ are approaching e from two opposite directions, within R (e) (shaded).
(b) Two one-sided wavefronts W (e), W’ (e), computed at the simulation time when e is completely covered
by W, W', are propagated further within R(e). However, some of the waves in W (e), W’ (e) obviously do
not belong to the true wavefront, since there is another wave in the opposite one-sided wavefront that
claims the same points of e (before they do)

through e in opposite directions; together, these one-sided wavefronts carry all the
information needed to compute the exact wavefront at e (but they also carry some
superfluous information). Each spurious wave is the locus of endpoints of geodesic
paths that traverse the same maximal edge sequence, but they need not be shortest
paths. Still, our description of bisectors, maximal polytope edge sequences, and crit-
ical events that were defined for the true wavefront, also applies to the wavefront
propagated by our algorithm.

In more detail, a one-sided wavefront W (e) associated with a transparent edge e
(and a specific side of e, which we ignore in this notation), is a sequence of waves
(wi, ..., wy) generated by the respective source images sy, ..., sx (all unfolded to
a common plane that is the same plane in which we compute the unfolded image
of e), so that: (1) There exists a pairwise openly disjoint decomposition of e into k
nonempty intervals ey, ..., ex, appearing in this order along e, and (2) For each i =
1,...,k, for any point p € e;, the source image that claims p, among the generators
of waves that reach p from the fixed side of e, is s;. The algorithm maintains the
following crucial true distance invariant (see Fig. 24 for an illustration):

(TD) For any transparent edge e and any point p € e, the true distance dg(s, p) is
the minimum of the two distances to p from the two source images that claim
it in the two respective one-sided wavefronts for the opposite sides of e.

Remark For a fixed side of e, the corresponding one-sided wavefront W (e) (implic-
itly) records the times at which the wavefront reaches the points of e from that side;
note that W (e) does not represent a fixed time f—each point on e is reached by the
corresponding wave at a different time.

The Propagation Step The core of the algorithm is a method for computing a one-
sided wavefront at an edge e based on the one-sided wavefronts of nearby edges. The
set of these edges, denoted input(e), is the set of transparent edges that bound R(e),
the well-covering region of e (cf. Sect. 2.3). To compute a one-sided wavefront at e,
we propagate the one-sided wavefronts from each f € input(e) that has already been
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Fig. 25 The boundary of R(e) (shaded) consists of two separate cycles. The transparent edge e and all
the edges f in input(e) that have been covered by the wavefront before time covertime(e) are drawn as
thick lines. The wavefronts W ( f, e) that contribute to the one-sided wavefronts at e have been propagated
to e before time covertime(e); wavefronts from other edges of input(e) do not reach e either because of
visibility constraints or because they are not ascertained to be completely covered at time covertime(e) (in
either case they do not include shortest paths from s to any point on e)

processed by the algorithm, to e inside R(e), and then merge the results, separately
on each side of e, to get the two one-sided wavefronts that reach e from each of its
sides. See Fig. 25 for an illustration. The algorithm propagates the wavefronts inside
O (1) unfolded images of (portions of) R(e), using the Riemann structure defined in
Sect. 3.2. The wavefronts are propagated only to points that can be connected to the
appropriate generator by straight lines inside the appropriate unfolded portion of R(e)
(these points are “visible” from the generator); that is, the shortest paths within this
unfolded image, traversed by the wavefront as it expands from the unfolded image of
f € input(e) to the image of ¢, must not bend (cf. Sect. 2.1 and Sect. 3). Because the
image of the appropriate portion of R(e) is not necessarily convex, its reflex corners
may block portions of wavefronts from some edges of input(e) from reaching e. The
paths corresponding to blocked portions of wavefronts that exit R(e) may then re-
enter it through other edges of input(e). For any point p € e, the shortest path from s
to p passes through some f € input(e) (unless s € R(e)), so constraining the source
wavefronts to reach e directly from an edge in input(e), without leaving R(e), does
not lose any essential information.

We denote by output(e) the set of direct “successor” edges to which the one-sided
wavefronts of e should be propagated; specifically, output(e) = { f | e € input(f)}.

Lemma 4.1 For any transparent edge e, output(e) consists of a constant number of
edges.

Proof Since |R(f)| = O(1) forall f, and each R(f) is a connected set of cells of S,
no edge e can belong to input (f) for more than O(1) edges f (there are only O (1)
possible connected sets of O(1) cells that contain e on the boundary of their union),
and |input(f)| = O(1), by construction. O

Remark As a wavefront is propagated from an edge f € input(e) to e, it may cross
other intermediate transparent edges g (see Fig. 26). Such an edge g will be processed
at an interleaving step, when wavefronts from edges & € input(g) are propagated to g
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Fig. 26 Interleaving of the well-covering regions. The wavefront propagation from 2 C d R(g) to g passes
through f, and the propagation from f C dR(e) to e passes through g

(and some of the propagated waves may reach g by crossing f first). This “leap-frog”
behavior of the algorithm causes some overlap between propagations, but it affects
neither the correctness nor the asymptotic efficiency of the algorithm.

The Simulation Clock The simulation of the wavefront propagation is loosely syn-
chronized with the real “propagation clock” (which measures the distance from s).
The main purpose of the synchronization is to ensure that the only waves that are
propagated from a transparent edge e to edges in output(e) are those that have reached
e no later than |e| simulation time units after e has been completely covered. This,
and the well-covering property of e (which guarantees that at this time none of these
waves has yet reached any f € output(e)), allow us to propagate further all the short-
est paths that cross e by “processing” e only once, thereby making the algorithm
adhere to the continuous Dijkstra paradigm, and consequently be efficient.

For a transparent edge e, we define the control distance from s to e, denoted
by ds(s, e), as follows. If s € R(e), and e contains at least one point p that
is visible from s within at least one unfolded image U (R(e)), for some unfold-
ing U, then e is called directly reachable (from s), and dg(s, e) is defined to be
the distance from U(s) to U(p) within U(R(e)). The point p € e can be cho-
sen freely, unless U(s) and U (e) are collinear within U (R(e))—then p must be
taken as the endpoint of e whose unfolded image is closer to U(s). Otherwise
(s ¢ R(e) or e is completely hidden from s in every unfolded image of R(e)),
we define Js(s, e) =min{ds (s, a),ds(s, b)}, where a, b are the endpoints of e, and
ds(s,a),ds(s, b) refer to their exact values. Thus, c?s(s, e) is a rough estimate of
the real distance ds(s, e), since ds(s, e) < cfg(s,e) < ds(s, e) + |e|]. The distances
ds(s,a),ds(s, b) are computed exactly by the algorithm, by computing the distances
to a, b within each of the one-sided wavefronts from s to e, and by using the in-
variant (TD). We compute both one-sided wavefronts for e at the first time we can
ascertain that e has been completely covered by wavefronts from either the edges in
input(e), or directly from s if e is directly reachable. This time is ds(s,e) + le|, a
conservative yet “safe” upper bound of the real time max{ds(s, g) | ¢ € e} at which e
is completely run over by the true (not one-sided) wavefront.

The continuous Dijkstra propagation mechanism computes ds(s, )+ |e| on the fly
for each edge e, using a variable covertime(e). Initially, for every directly reachable e,
we calculate ds(s, ), by propagating the wavefront from s within the surface cell
which contains s, as described in Sect. 5, and put covertime(e) := ds(s, e) + |e|. For
all other edges e, we initialize covertime(e) := +00.
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The simulation maintains a time parameter ¢, called the simulation clock, which
the algorithm strictly increases in discrete steps during execution, and processes each
edge e when ¢ reaches the value covertime(e). A high-level description of the simu-
lation is as follows:

PROPAGATION ALGORITHM

Initialize covertime(e), for all transparent edges e, as described above. Store with
each directly reachable e the wavefronts that are propagated to e from s (without
crossing edges in input(e)).

while there are still unprocessed transparent edges do

1. Select the unprocessed edge e with minimum covertime(e), and set t :=
covertime(e).

2. Merge: Compute the one-sided wavefronts for both sides of e, by merging to-
gether, separately on each side of e, the wavefronts that reach e from that side,
either from all the already processed edges f € input(e) (these wavefronts are
propagated to e in Step 3 below), or directly from s (those wavefronts are stored
at e in the initialization step). Compute ds(s, v) exactly for each endpoint v of
e (the minimum of at most two distances to v provided by the two one-sided
wavefronts at e).

3. Propagate: For each edge g € output(e), compute the time f#., at
which one of the one-sided wavefronts from e first reaches an endpoint
of g, by propagating the relevant one-sided wavefront from e to g. Set
covertime(g) := min{covertime(g), f.,; + |g|}. Store with g the resulting wave-
front propagated from e, to prepare for the later merging step at g.

endwhile

The following lemma establishes the correctness of the algorithm. That is, it shows
that covertime() is correctly maintained and that the edges required for processing e
have already been processed by the time e is processed. The description of Step 2
appears in Sect. 4.2 as the wavefront merging procedure; the computation of 7, ¢ in
Step 3 is a byproduct of the propagation algorithm as described below and detailed
in Sect. 5. For the proof of the lemma we assume, for now, that the invariant (TD) is
correctly maintained—this crucial invariant will be proved later in Lemma 4.5.

Lemma 4.2 During the propagation, the following invariants hold for each trans-
parent edge e:

(a) The final value of covertime(e) (the time when e is processed) is ds(s, e)+lel: for
directly reachable edges, it is at most d s(s, e) + |e|. The variable covertime(e) is
set to this value by the algorithm before or at the time when the simulation clock
t reaches this value.

(b) The value of covertime(e) is updated only a constant number of times before it is
set to &5(5, e)+ lel.
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(c) If there exists a path w from s that belongs to a one-sided wavefront at e, so
that a prefix of w belongs to a one-sided wavefront at an edge f € input(e), then
ds(s, f)+1fl <ds(s,e) + el

Proof (a) For directly reachable edges, this holds by definition of the control distance;
for other edges e, we prove by induction on the (discrete steps of the) simulation
clock, as follows. The shortest path 7z’ to one of the endpoints of e (which reaches
e at the time |7/| =t, = Js(s, e)) crosses some f € input(e) at an earlier time 7y,
where ds(s, f) <ty < dg(s, f)+1f1; we may assume that f is the last such edge of
input(e). Note that we must have . > 17 +dg(e, f). By (W3ys), ds(e, f) > 2| f|, and
so t, >ds(s, f) + 2| f]. Since ds(s f) <ds(s, f)+|f|, we have

7'l =te = ds(s, £)+21f] > ds(s, )+ f]. ey

By induction and by this inequality, f has already been processed before the simula-
tion clock reaches t., and so covertime(e) is set, in Step 3, t0 17, + |e| =1, + |e| =
dg (s, e) + |e| (unless it has already been set to this value earlier), at time no later than
t, = dg(s e) (and therefore no later than ds(s e) + |le|, as claimed). By (TD), the
variable covertime(e) cannot be set later (or earlier) to any smaller value; it follows
that e is processed at simulation time JS (s,e)+lel.

(b) The value of covertime(e) is updated only when we process an edge f such
that e € output(f) (i.e., f € input(e)), which consists of O (1) edges, by construction.

(c) Any path  that is part of a one-sided wavefront at e must satisfy dg(s, ¢) <
I7| < ds(s,e) + |e| (x cannot reach e earlier by definition, and if 7 reaches e
later, then, by (a), e would have been already processed and = would not have con-
tributed to any of the one-sided wavefronts at e). Since 7 passes through a trans-
parent edge f € input(e), we can show that || > ds(s, f) + | f1, by applying ar-
guments similar to those used to derive (1) in (a). Hence we can conclude that
ds(s, )+ 1fl <ds(s,e) +lel. U

Remark The synchronization mechanism above assures that if a wave w reaches a
transparent edge e later than the time at which e has been ascertained to be completely
covered by the wavefront, then w will not contribute to either of the two one-sided
wavefronts at e. In fact, this important property yields an implicit interaction between
all the wavefronts that reach e, allowing a wave to be propagated further only if it is
not too “late”; that is, only if it reaches points on e no later than 2|e| simulation time
units after a wave from another wavefront.®

Topologically Constrained Wavefronts Let f,e be two transparent edges so that
f € input(e), and let H be a homotopy class of simple geodesic paths connecting
f to e within R(e) (recall that there might be multiple homotopy classes of that kind;
see Sect. 3.3). We denote by Wg (f, e) the unique maximal (contiguous) portion of
the one-sided wavefront W ( f) that reaches e by traversing only the subpaths from f

8For a detailed discussion of why we use the bound 2|e| rather than just |e| see the description of the
simulation time maintenance in Sect. 5.3.1.
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to e that belong to H. In Sect. 5 we regard Wy (f, e) as a “kinetic” structure, consist-
ing of a continuum of “snapshots,” each recording the wavefront at some time ¢. In
contrast, in the current section we only consider the (static) resulting wavefront that
reaches e, where each point ¢ on (an appropriate portion of) e is claimed by some
wave of Wy (f, e), at some time ?,. (Note that this static version is not a snapshot at a
fixed time of the kinetic version.) We say that Wy ( f, e) is a fopologically constrained
wavefront (by H). To simplify notation, we omit H whenever possible, and simply
denote the wavefront, somewhat ambiguously, as W( f, e).

A topologically constrained wavefront Wg (f, ¢) is bounded by a pair of extreme
bisectors of an “artificial” nature, defined in one of the two following ways. We say
that a vertex of P in R(e) or a transparent endpoint x € d R(e) is a constraint of H if x
lies on the boundary of Ry, which is the locus of all points traversed by all (geodesic)
paths in H (see Fig. 27). It is easy to see that Ry is bounded by e, f, and by a pair of
“chains,” each of which connects f with e, and the unfolded image of which (along
the polytope edge sequence corresponding to H) is a concave polygonal path that
bends only at the constraints of H (this structure is sometimes called an hourglass;
see [14] for a similar analysis).

Let s’ be an extreme generator in Wy ( f, €), and let  be a simple geodesic path (in
H) from s’ that reaches f and touches d Ry ; see the path 771 in Fig. 27. It is easy to see
that if such a path 7 exists, then it must be an extreme path among all paths encoded
in Wy (f, e), since any other path in Wy (f, ) cannot intersect = (see Lemma 4.3
below); we therefore regard 7 as an extreme artificial bisector of Wy (f, ). Another
kind of an extreme artificial bisector arises when, during the propagation of (the ki-
netic version of) Wy (f, €), an extreme generator s’ is eliminated in a bisector event x,
as described below, and the neighbor s” of s’ becomes extreme; then the path 7w from
s through the location of x becomes extreme in Wy ( f, ¢)—see the path 75 in Fig. 27
for an example.”

Fig. 27 The “hourglass” region Ry that is traversed by all paths in H is shaded. The extreme artificial bi-
sectors of the topologically constrained wavefront Wy ( f, ) are the paths 71 (from the extreme generator
s1 through the vertex v of P, which is one of the constraints of H) and 7, (from the generator s, which
became extreme when its neighbor s3 was eliminated at a bisector event x, through the location of x)

9Even though 7 is geodesic, it is not a shortest path to any point beyond x; it is only a convenient (though
conservative) way of bounding Wy (f, e) without losing any essential information.
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4.2 Merging Wavefronts

Consider the computation of the one-sided wavefront W (e) at a transparent edge e
that will be propagated further (through e) to, say, the left of e. The contributing
wavefronts to this computation are all wavefronts W(f, e), for f € input(e), that
contain waves that reach e from the right (not later than at time covertime(e)). If e
is directly reachable from s, and a wavefront W (s, ) has been propagated from s to
the right side of e, then W (s, e) is also contributing to the computation of W (e). The
contributing wavefronts for the computation of the opposite one-sided wavefront at e
are defined symmetrically.

To simplify notation, in the rest of the paper we assume each transparent edge e to
be oriented, in an arbitrary direction (unless otherwise specified). For the special case
s € R(e), we also treat the direct wavefront W (s, ¢) from s to e as if s were another
transparent edge f in input(e).

We call the set of all points of e claimed by a contributing wavefront W ( f, e) the
claimed portion or the claim of W(f, e). The following lemma implies that this set
is a (possibly empty) connected subinterval of e.

Lemma 4.3 Let e be a transparent edge, and let W (f, e) and W (g, e) be two (topo-
logically constrained) contributors to the one-sided wavefront W (e) that reaches e
from the right, say. Let x and x' be points on e claimed by W(f, e), and let y be a
point on e claimed by W (g, e). Then y cannot lie between x and x'.

Proof Suppose to the contrary that y does lie between x and x’. Consider a modified
environment in which the paths that reach e from the left are “blocked” at e by a thin
high obstacle, erected on d P at e. This modification does not influence the wavefronts
W(f,e) and W (g, e), since no wave reaches e more than once. The simple geodesic
paths 7 (s, x), (s, x’), and 7 (s, y) in the modified environment connect x and x’
to f, and y to g, inside R(e), and lie on the right side of e locally near x, x’, and y;
see Fig. 28(a). By (TD), the paths 7 (s, x), (s, x"), and 7 (s, y) are shortest paths
from s to these points in the modified environment, and therefore do not cross each
other. Since W (f, e), W(g, e) are topologically constrained by different homotopies
(within R(e)), no path traversed by W (g, ¢) can reach e and be fully contained in the
portion Q of 3 P delimited by f, e, and by the portions of 7 (s, x), 7 (s, x’) between f

r Yy Ty x
e Loe
9

Wt T

Fig. 28 (a) W(g, e) cannot claim the point y, for otherwise the shortest path 7 (s, y) (which crosses the
transparent edge g) would have to cross one of the paths 7 (s, x), (s, x"), which is impossible for shortest
paths. The region Q delimited by f, e, and the portions of 7 (s, x), (s, x") between f and e is shaded.
(b) If W(, e) is not topologically constrained, W (g, e) may claim an in-between point y on e
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and e. Therefore, the portion of the shortest path 7 (s, y) between g and e must enter
the region Q through one of the paths 7 (s, x), (s, x’), which is a contradiction. [

Remark Lemma 4.3 may fail if W(f, e) is not a topologically constrained wavefront;
see Fig. 28(b) for an example. Moreover, if W (g, ¢) reaches e from the other side of
e then it is possible for W (g, ) to claim portions of xx’ without claiming x and x’.
It is this fact that makes the explicit merging of the two one-sided wavefronts expen-
sive.

We now proceed to describe the merging process, applied to the contributing wave-
fronts that reach a transparent edge ¢ from a fixed side; the process results in the
construction of the corresponding one-sided wavefront at e. Most of the low-level
details of the process are embedded in the procedures supported by the data struc-
ture described in Sect. 5.1; for now, before proceeding with Lemma 4.4, we briefly
review the basic operations, and assert their time complexity bounds. Each contribut-
ing wavefront W is maintained as a list of generators in a balanced tree data structure;
we may therefore assume that each of the operations of constructing a single bisec-
tor, finding its intersection point with e, measuring the distance to a point on e from
a single generator, and concatenating the lists representing two wavefront portions
into a single list, takes O (logn) time. This will be further explained and verified in
Sect. 5.

Lemma 4.4 For each transparent edge e and for each f € input(e), we can compute
the claim of each of the wavefront portions W (f, e) that contribute to the one-sided
wavefront W (e) that reaches e from the right, say, in O((1 + k)logn) total time,
where k is the total number of generators in all wavefronts W (f, e) that are absent
from W (e).

Proof For each contributing wavefront W (f, e), we show how to determine its claim
in the presence of only one other contributing wavefront W(g, e¢). The (connected)
intersection of these claimed portions, taken over all other O (1) contributors W (g, e),
is the part of e claimed by W (f, e) in W (e). This results in the algorithm asserted in
the lemma.

Orient e from one endpoint a to the other endpoint . We refer to a (resp., b) as
the left (resp., right) endpoint of e. We determine whether the claim of W(f, e) is fo
the left or to the right of that of W(g, e), as follows. If both W(f,e) and W (g, e)
claim a, then, in O (logn) time, we check which of them reaches it earlier (we only
need to check the distances from a to the first and the last generator in each of the two
wavefronts, since we assume that W ( f, e), W(g, e) only contain waves that reach e).
Otherwise, one of W(f, e), W(g, e) reaches a point p € e (not necessarily a) that is
left of any point reached by the other; by Lemma 4.3, the claim that contains p, by
“winning” wavefront, is to the left of the claim of the other wavefront. To find p, we
intersect the first and the last (artificial) bisectors of each of W(f, e), W(g, ¢) with ¢;
p is the intersection closest to a.

A basic operation performed here and later in the merging process is to determine
the order of two points x, y along e. Using the surface unfolding data structure of
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Fig. 29 The source image s7 is ‘ e ) b
eliminated from W (e), because % — >
its contribution to W (e) must be !
to the left of py and to the right !
of x, and therefore does not f 3

exist along e

Sect. 2.4, we can compute the polytope edge sequence &, crossed by e, in O (logn)
time, and compare Ug, (x) with Ug, ().

Without loss of generality, assume that the claim of W(f,e) is left of that of
W (g, e). Note that in this definition we also allow for the case where W (g, e) is
completely annihilated by W (f, e).

Let 51 denote the generator in W (f, e) that claims the rightmost point on e among
all points claimed by W ( f, e); by assumption, s; is an extreme generator of W(f, e).
Let p; be the left endpoint of the claim of 51 on Ug, (e) (as determined by W(f, e)
alone; it is the intersection of Ug,(e) and the left bisector of s1). Similarly, let s>
denote the generator in W(g, e) claiming the leftmost point on e (among all points
claimed by W (g, e)), and let p, be the right endpoint of the claim of s, on Ug, (e)
(as determined by W (g, e) alone). We compute the (unfolded) bisector of s1 and s>,
and find its intersection point x with Ug, (e); see Fig. 29. If x is to the left of p; or
x does not exist and the entire e is to the right of b(sy, s2), then we delete s; from
W (f,e), reset s1 to be the next generator in W( f, e), and recompute p;. If x is to
the right of p» or x does not exist and the entire e is to the left of b(sy, s2), then we
update W(g, e), s2 and p symmetrically. In either case, we recompute x and repeat
this test. If pj is to the left of p, and x lies between them, then x is the right endpoint
of the claim of W (f, e) in the presence of W(g, e) and the left endpoint of the claim
of W(g, e) in the presence of W(f, e).

Consider next the time complexity of this process. Merging each of the O (1) pairs
W (f,e), W(g,e) of wavefronts involves O (1 + k) operations, where k is the num-
ber of generators that are deleted from the wavefronts during that merge, and where
each operation either computes a single bisector, or finds its intersection point with e,
or measures the distance to a point on e from a single generator, or deletes an ex-
treme wave from a wavefront, or concatenates two wavefront portions into a single
list. As stated above, each of these operations can be implemented in O (logn) time.
Summing over all O (1) pairs W(f, e), W(g, e), the bound follows. O

The following lemma proves the correctness of the process, with the assumption
that the propagation procedure, whose details are not provided yet, is correct.

Lemma 4.5 (i) Any generator deleted during the construction of a one-sided wave-
front at the transparent edge e does not contribute to the true wavefront at e. (ii) As-
suming that the propagation algorithm deletes a wave from the wavefront not earlier
than the time when the wave becomes dominated by its neighbors, every generator
that contributes to the true wavefront at e belongs to one of the (merged) one-sided
wavefronts at e.
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Proof The first part is obvious—each point in the claim of each deleted generator s;
along e is reached earlier either by its neighbor generator in the same contributing
wavefront or by a generator of a competing wavefront. It is possible that these gen-
erators are further dominated by other generators in the true wavefront, but in either
case s; cannot claim any portion of e in the true wavefront. The second part follows
by induction on the order in which transparent edges are being processed, based on
the following two facts: (i) Any wave that contributes to the true wavefront at e must
arrive either directly from s inside R(e), or through some edge f € input(e). (ii) The
one-sided wavefronts at each edge f € input(e) that have been covered before e is
processed, have already been computed (by Lemma 4.2). Hence each generator s;
that contributes to the true wavefront at e contributes to the true wavefront at some
such edge f, and the induction hypothesis implies that s; belongs to the appropriate
one-sided wavefront at f. Since, by the assumption that is established in the next
section, the propagation algorithm from f to e deletes from the wavefront only the
waves that become dominated by other waves, s; participates in the merging process
at e, and, by the first part of the lemma, cannot be fully eliminated in that process. [J

4.3 The Bisector Events

When we propagate a one-sided wavefront W (e) to the edges of output(e), as will
be described in detail in Sect. 5.2, and when we merge the wavefronts that reach the
same transparent edge, as described in Sect. 4.2, bisector events may occur, as defined
above. We distinguish between the following two kinds of bisector events.

(i) Bisector events of the first kind are detected when we simulate the advance of
the wavefront W (e) from a transparent edge e to another edge g to compute the wave-
front W (e, g), where g € output(e). In any such event, two non-adjacent generators
Si—1, Si+1 become adjacent due to the elimination of the intermediate wave generated
by s; (as we show in Lemma 5.6, this is the only kind of events that occur when
waves from the same topologically constrained wavefront collide with each other);
see Fig. 30(a) for an illustration. This event is the starting point of b(s;_1, Si+1),
which reaches g in W (e, g) if both waves survive the trip.

A bisector event, at which the first generator s; in the propagated wavefront is
eliminated, is treated somewhat differently; see Fig. 30(b), (c) for an illustration. In

T
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Fig. 30  When a bisector event (of the first kind) takes place at x: (a) The wave of s; is eliminated, and the
new bisector b(s;_1, s;41) is computed. (b), (¢) The wave of s is eliminated, and the ray from s, through
x becomes the leftmost (artificial) bisector of W, instead of the former leftmost bisector, which is the ray
from s through either (b) a transparent edge endpoint v (a visibility constraint), or (¢) the location w of
an earlier bisector event, where sq, the previous leftmost generator of W, has been eliminated
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Fig. 31 W(e), propagated from e, is split inside R(e) when it reaches the inner (top) boundary cycle.
Then the two new topologically constrained wavefronts partially collide into each other, creating a se-
quence of bisectors (dotted lines, bounded by thick points where bisector events of the second kind occur),
eliminating a sequence of waves in each wavefront

this case 51 is deleted from the wavefront W and the next generator s, becomes the
first in W. The ray from s, through the event location becomes the first (that is,
extreme), artificial bisector of W, meaning that W needs to be maintained only on
the s2-side of this bisector (which is a conservative bound). Indeed, any point p € 0 P
for which the path 7 (s2, p) crosses b(s1, s2) into the region of d P that is claimed by
s1 (among all generators in W), can be reached by a shorter path from s;. The case
when the last generator of W is eliminated is treated symmetrically.

(ii) Bisector events of the second kind occur when waves from different topolog-
ically constrained wavefronts collide with each other. Our algorithm does not ex-
plicitly detect these events; however, they are all (implicitly) considered at the query
processing time, as described in Sect. 5.4, and some of them undergo additional (al-
beit still implicit) processing, as briefly described next.

If a generator s; contributes to one of the input wavefronts W (e, g) but not to the
merged one-sided wavefront W(g) at g, then s; is involved in at least one bisector
event (of the second kind) on the way from e to g, and there must exist some gener-
ator s; in another (topologically constrained) wavefront W (f, g) that also reaches g,
which eliminates the wave of s;. This event is implicitly recognized by the algorithm
when s; is deleted from W (e, g) during the merging process at g.

Another kind of such an event occurs when a one-sided wavefront W (e) is split
during its propagation inside R(e) (either at of a vertex of P or at a hole of R(e) that
may contain one or more vertices of P), and the two portions of the split wavefront
partially collide into each other during their further propagation inside R(e), as dis-
tinct topologically constrained wavefronts, before they reach d R(e)—see Fig. 31.
The algorithm implicitly processes some of these events, by realizing that these
waves attempt to exit the current block tree, by re-entering an already visited building
block. The algorithm then simply discards these waves from further processing; see
Sect. 5.3.1.

Tentatively False and True Bisector Events Consider the time ¢ = covertime(e).
There may be waves that have reached e before time ¢ (although not earlier than
time ¢ — 2|e|), and some of these waves could have participated in bisector events of
the first kind “beyond” e that could have taken place before time #. As described in
Sect. 5, the algorithm detects these (currently considered as) “false” bisector events
when the wavefronts from the edges in input(e) are propagated to e, but the gen-
erators that are eliminated in these events are not deleted from their corresponding
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t1 ta 13 t

Fig. 32 The bisector event at x occurs at time #,. It is first detected when the wavefront is propagated
toward the transparent edge e, which has not been fully covered yet. Since x is beyond e, the event is
currently considered false (and the eliminated wave w is not deleted from the wavefront, so that it shows
up on W(e)). When e is ascertained (at time 13 = covertime(e)) to be fully covered, the one-sided wave-
front W(e) is computed, and then propagated toward the transparent edge f, starting from some time
t < covertime(e) (e.g., tp). Since w is part of W (e), the bisector event at x is detected again, and this time
it is considered to be true

contributing wavefronts before time ¢. This is done to ensure that the invariant (TD)
is satisfied. However, such a bisector event is detected again, and considered to be
true, when the wavefront is propagated further, after processing e. This latter propa-
gation from e can be considered to start at the time when the first among such events
occurs, which might happen earlier than covertime(e); see Fig. 32. Further details
are given in Sect. 5, where we also show that the number of all “true” and “false”
processed events is only O (n).

Remark Note that a detected “true” event does not necessarily appear as a vertex
of SPM(s), since it involves only waves from a single one-sided wavefront, and its
location x can actually be claimed by a wave from another wavefront. To find the true
claimer of x (or any other query point), we make use of the fact that x belongs to only
O (1) well-covering regions, each of which is traversed by only O (1) wavefronts;
knowing the claimer of x in each of these wavefronts gives us the “global” claimer
of x—see Sect. 5.4.

5 Implementation Details
5.1 The Data Structures

A one-sided wavefront is an ordered list of generators (source images). Our algorithm
performs the following three types of operations on these lists (the first two types are
similar to those in [18]):

1. List operations: CONCATENATE, SPLIT, and DELETE.'? Each operation is applied
to the list of generators that represents the wavefront at any particular simulation
time.

10Note that the algorithm does not use INSERT operations; a new wave is created only during a SPLIT
operation, and generating it is part of the SPLIT. Similarly, the omitted CREATE operation is performed
only once, when the first singleton wavefront at s is created.
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Fig. 33 The wavefront W at simulation times ¢; and t» consists of four source images s, ..., s4, all
unfolded to one plane at time #; and to another plane at time #, (for this illustration, both planes are the
same—this is the plane of the facet that contains the point p). In order to determine the generator of W
that claims p, the SEARCH operation can be applied to the version of W at time #o, when p is already
claimed by s3

2. Priority queue operations: We assign to each generator a priority (as defined below
in Sect. 5.3.1; it is essentially the time at which the generator is eliminated by
its two neighbors), and the data structure needs to update priorities and find the
minimum priority in the list.

3. Source unfolding operations: (a) To compute explicitly each source image s; in
the wavefront at time ¢, we need to unfold the maximal polytope edge sequence
of s; at +—this operation is referred to as an “unfolding query”; the unfolding
structure needs to be updated as the wavefront advances. (b) The bisectors between
consecutive generators in the list, as long as they do not meet one another, partition
a portion of the plane of unfolding into a linearly ordered sequence of regions, and
we want to locate the region containing a query point g. That is, we SEARCH in the
generator list for a claimer of ¢ (without considering other wavefronts or possible
visibility constraints); see Fig. 33, and see later for more precise details.

All these types of operations can be supported by a data structure based on bal-
anced binary search trees, with the generators stored at the leaves [15]. In particular,
the “bare" list operations (ignoring the maintenance of priorities and unfolding data)
take O (logn) time each, using standard machinery [15, 37]. Moreover, one can also
update the extra unfolding fields (described in the following paragraphs) as these list
operations are executed (so that the operations retain their O (logn) time). Although
not completely straightforward, the manipulation of the unfolding fields is still sim-
ple enough, so that we omit it here—we present the full details in [34]. The priority
queue operations are supported by adding a priority field to each node of the binary
tree, which records the minimum priority of the leaves in the subtree of that node
(and the leaf with that priority). Each priority queue operation takes O (logn) time;
the actual implementation details are fairly standard, and are therefore omitted.

Source Unfolding Operations The source unfolding queries are supported by
adding an unfolding transformation field U[v] to each node v of the binary tree,
in such a way that, for any queried generator s;, the unfolding of s; is equal to the
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product (composition) of the transformations stored at the nodes of the path from the
leaf storing s; to the root. That is, if the nodes on the path are v; =root, v, ..., vp =
leaf storing s;, then the unfolding of s; is given by U[v{]U[v2] - -- U[v]. We repre-
sent each unfolding transformation as a single 4 x 4 matrix in homogeneous coordi-
nates (see [32, 34]), so composition of any pair of transformations takes O(1) time.
For each node v, and for any path v = vy, vy, ..., vk that leads from v to a leaf, the
product U[v1]U[v2]--- Ulvr] maps the generator stored at vi to a fixed destination
plane that depends only on v.

For each internal node v, let (v = v, v2,..., vy = the rightmost leaf of the
left subtree of v) be the path from v to wvg, and let (v = v}, v}, ..., v,’(, = the
leftmost leaf of the right subtree of v) be the path from v to v;,. To per-
form the SEARCH operation efficiently, we store at v the bisector image b[v] =
b(U[v1]U[va] - -- Ulvel(s), Uvj U [v5] - - - Ulw;,1(s)), which is the bisector between
the source image stored at vy and the source image stored at v, unfolded into the des-
tination plane of U[v1]U[v2]--- Ulvk] (or, equivalently, of U[v{]U[v;]---Ulv,,]).
Note that, for any path = from v to a leaf in the subtree of v, the destination plane
A(v) of the resulting composition of the unfolding transformations stored at the
nodes of 7, in their order along 7, is the same, and depends only on v (and indepen-
dent of ). During any operation that modifies the data structure, we always maintain
the invariant that b[v] is unfolded onto A(v). As already said, the updating of the
fields U[v], b[v], at nodes v affected by tree rebalancing rotations, is quite simple,
and described in [34].

The procedure SEARCH with a query point g in A(root) is performed as follows.
We determine on which side of b[root] ¢ lies, in constant time, and proceed to the
left or to the right child of the root, accordingly. When we proceed from a node v to
its child, we maintain the composition U*[v] of all unfolding transformations on the
path from the root to v (by initializing U*[root] := U[root] and updating U*[w] :=
U*[u]U[w] when processing a child w of a node u on the path). Thus, denoting by
b the bisector whose corresponding image b[v] is stored at v, we can determine on
which side of b ¢ lies, by computing the image U*[v]b[v], in O(1) time. Since the
height of the tree is only O (logn), it takes O (logn) time to SEARCH for the claimer
of g.

Note that the result of the SEARCH operation is guaranteed to be correct only if
the query point ¢ is already covered by the wavefront (that is, the bisectors between
consecutive generators in the list do not meet one another closer to s than the location
of q). It is the “responsibility” of the algorithm to provide valid query points (in that
sense).

Typical Manipulation of the Structure Initializing the unfolding fields is trivial
when the unique singleton wavefront is initialized at + = 0 at 5. In a typical step of
updating some wavefront W, we have a contiguous subsequence W’ of W, which we
want to advance through a new polytope edge sequence £ (given that all the source
images in W are currently unfolded to the plane of the first facet of the correspond-
ing facet sequence of &; see Sect. 5.3 for further details). We perform two SPLIT
operations that split T into three subtrees T~,T’, T*, where T’ stores W/, and T~
(resp., T ) stores the portion of W that precedes (resp., succeeds) W’ (either of these
two latter subtrees can be empty). Then we take the root r’ of T’, and replace U[r’]
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Fig. 34 T is split into three subtrees T, T/, TT, where T stores the sub-wavefront W’ of W. Then the
unfolding fields stored at the root r’ of T’ are updated

by UgU[r'] and b[r'] by Ugb[r']; see Fig. 34. Finally, we concatenate T ~, the new
T’,and T, into a common new tree 7.

Remark The collection of the fields U[v] and b[v] in the resulting data structure
is actually a dynamic version of the incidence data structure of Mount [28], which
stores the incidence information between m nonintersecting geodesic paths and n
polytope edges; the main novelty is the dynamic nature of the structure and the opti-
mal construction time of O ((n +m)log(n +m)). (Mount constructs his data structure
in time proportional to the number of intersections between the polytope edges and
the geodesic paths, which is & (nm) in the worst case.)

Maintaining all Versions We also require our data structure to be confluently persis-
tent [12]; that is, we need the ability to maintain, operate on, and modify past versions
of any list (wavefront), and we need the ability to merge (in the terminology of [12])
existing distinct versions into a new version. Consider, for example, a transparent
edge e and two transparent edges f, g in output(e). We propagate W (e) to compute
Wie, f), W(e, g); the first propagation has modified W (e), and the second propa-
gation goes back to the old version of W(e) and modifies it in a different manner.
Moreover, later, when f, say, is ascertained to be covered, we merge W (e, f) with
other wavefronts that have reached f, to compute W ( f), and then propagate W(f)
further. At some later time g is ascertained to be covered, and we merge W (e, g) with
other wavefronts at g into W(g). Thus, not only do we need to retrieve older versions
of the wavefront, but we also need to merge them with other versions.

We also use the persistence of the data structure to implement the wavefront prop-
agation through a block tree, as described in Sect. 5.3.1 below. Specifically, our prop-
agation simulation uses a “trial and error” method; when an “error” is discovered,
we restart the simulation from an earlier point in time, using an older version of the
wavefront.

Each of the three kinds of operations, CONCATENATE, SPLIT and DELETE, uses
O (1) storage for each node of the binary tree that it accesses, so we can make the
data structure confluently persistent by path-copying [20]. Each of our operations af-
fects O(logn) nodes of the tree, including all the ancestors of every affected node.
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Once we have determined which nodes an operation will affect, and before the oper-
ation modifies any node, we copy all the affected nodes, and then modify the copies
as needed. This creates a new version of the tree while leaving the old version un-
changed; to access the new version we can simply use a pointer to the new root, so
traversing it is done exactly as in the ephemeral case. In summary, we have:

Lemma 5.1 There exists a data structure that represents a one-sided wavefront and
supports all the list operations, priority queue operations, and unfolding operations,
as described above, in O(logn) worst-case time per operation. The size of the data
structure is linear in the number of generators; it can be made confluently persistent
at the cost of O (logn) additional storage per operation.

5.2 Overview of the Wavefront Propagation Stage

Recall from Sect. 4 that the two main subroutines of the algorithm are wavefront
propagation and wavefront merging. In this and the following subsection we describe
the implementation details of the first procedure; the merging is discussed in Sect. 4.2,
which, together with the data structure details presented in Sect. 5.1, implies that all
the merging procedures can be executed in O (nlogn) time.

Let e be a transparent edge. We now show how to propagate a given one-sided
wavefront W(e) to another edge g € output(e) (that is, e € input(g)), denoting,
as above, the resulting propagated wavefronts by Wy, (e, g), ..., Wg, (e, g), where
Hy, ..., Hy are all the relevant homotopy classes that correspond to block sequences
from e to g within R(g) (see Sect. 3.3); note that a transparent endpoint “splits” a
homotopy class, similarly to a vertex of P. In the process, we also determine the time
of first contact between each such W (e, g) and the endpoints of g.

The high-level description of the algorithm is a sequence of steps, each of which
propagates a wavefront W (e) from one transparent edge e to another g € output(e),
within a fixed homotopy class H, to form Wy (e, g).“ Nevertheless, in the actual im-
plementation, when we start the propagation from e, all the topologically constrained
wavefronts Wy (e, g), over all relevant g and H, are treated as a single wavefront W.
At the beginning of the propagation, W is split into kj initial sub-wavefronts, where
k1 is the number of building blocks that e bounds (on the side into which we propa-
gate W); during the propagation, these initial wavefronts are further split into a total
of k sub-wavefronts, one per homotopy class.

Let ¢ be the surface cell for which e C dc, and W (e) enters c after reaching e. We
describe in the next subsection a procedure for computing (all the relevant topologi-
cally constrained wavefronts) W (e, g) for any transparent edge g C dc. To compute
W (e, g) for all transparent edges g € output(e), possibly not belonging to dc, we
proceed as follows. We propagate W (e) cell-by-cell inside R(g) from e to g, and ef-
fectively split the wavefront into multiple component wavefronts, each labeled by the
sequence of O(1) transparent edges it traverses from e to g. We propagate a wave-
front W from e to g inside a single surface cell, either when W is one of the two
one-sided wavefronts merged at e, or when W has reached e on its way to g from

HThe initial singleton wavefront W (s) from s to a transparent edge g on the boundary of the cell that
contains s is propagated similarly.
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some other transparent edge f € input(g) (without being merged with other compo-
nent wavefronts at ¢). In what follows, we treat W as in the former case; the latter
case is similar.

5.3 Wavefront Propagation in a Single Cell

So far we have considered a wavefront as a static structure, namely, as a sequence
of generators that reach a transparent edge. We now describe a “kinetic” form of the
wavefront, in which we track changes in the combinatorial structure of the wavefront
W (e) as it sweeps from its origin transparent edge e across a single cell ¢. Our simu-
lation detects and processes any bisector event in which a wave of W (e) is eliminated
by its two neighboring waves inside c; actually, the propagation may also detect some
events that occur in O (1) nearby cells, as described in detail below. Events are de-
tected and processed in order of increasing distance from s, that is, in simulation
time order. However, the simulation clock t is not updated during the propagation
inside c; that is, the propagation from an edge e to all the edges in output(e) is done
without “external interruptions” of propagating from other fully covered transpar-
ent edges that need processing. The effect of the propagated wavefront W (e, g), for
g € output(e), on the simulation clock is in its updating of the values covertime(g);
the actual updating of 7 occurs only when we select a new transparent edge e’ with
minimum covertime(e’) for processing—see Sect. 4.1.

We propagate the wavefront separately in each of the O(1) block trees of the
Riemann structure 7 (e). Let W (e) be the one-sided wavefront that reaches e from
outside c; it is represented as an ordered list of source images, each claiming some
(contiguous and nonempty) portion of e. To prepare W (e) for propagation in c, we
first SPLIT W (e) into O (1) sub-wavefronts, according to the subdivision of e by
building blocks of c¢. A sub-wavefront that claims the segment of e that bounds a
building block B of ¢ is going to be propagated in the block tree T (e) € 7 (e).

By propagating W (e) from e in all the trees of 7 (e) within ¢, we compute O(1)
new component wavefronts that reach other transparent edges of dc. If e is the initial
edge in this propagation step, then, by Corollary 3.17, these component wavefronts
collectively encode all the shortest paths from s to points p of ¢ that enter ¢ through e
and do not leave ¢ before reaching p. In general, this property holds for all the cells ¢’
in R(e), as follows easily from the construction. Hence, these component wavefronts,
collected over all propagation steps that traverse c, contain all the needed information
to construct (an implicit representation of) SPM(s) within c.

5.3.1 Wavefront Propagation in a Single Block Tree

Let Tg(e) be a block tree in 7 (e), and denote by ep the sub-edge d B N e. Denote
by W(ep) the sub-list of generators of W (e) that claim points on ep (recall that
W (e) claims a single connected portion of e, which may or may not contain the
endpoints of e, or of ep). Let W = W () denote the kinetic wavefront within the
blocks of Tg(e) at any time ¢ during the simulation; initially, W = W(#y) = W (ep).
Note that even though we need to start the propagation from e at simulation time
to = covertime(e), the actual starting time may be strictly smaller, since there may
have been bisector events beyond e that have occurred before time covertime(e). In
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X1 X2>/<3 X4 X5 X6

Fig. 35 The block B is shaded; the edge sequence associated with B is £ = (1, - - -, X6)- W(ep) con-
sists of four source images s1, ..., s4, all unfolded to the plane of the facet f before the simulation of the
propagation into Tg(e) starts (that is, the last facet of the facet sequence corresponding to each &; is f).

Specifically, £ = &1 /(x2. - - . x6)- €2 =E1(x5. x6)- €3 =E3\ (x6. x5) and E4 = €4\ (x6)

this case, these events need now to be processed (up to now, they have been detected
by the algorithm but not processed yet), and we set 7y to be the time when the earliest
among them takes place.

Denote by £ an edge sequence associated with B (any one of the two oppositely
ordered such sequences, for blocks of type II, III), and by Fp its corresponding facet
sequence. We can then write W = (s1, 52, ..., Sk), so~that, for each i, we have s; =
Ug, (s), where &; is defined as follows. Denote by &; the maximal polytope edge
sequence traversed by the wave of s; from s; to the points that it claims on e; & must
overlap either with a portion of £g or with a portion of the reverse sequence £5". In

the former case we extend &; by the appropriate suffix of £p (which takes us to f in
Fig. 35). In the latter case we truncate & at the first polytope edge of £ that it meets,
and then extend it by the appropriate suffix of £5. However, the algorithm does not
compute these sequences explicitly (and does not perform the “extend” or “truncate”
operations); it only stores and composes their unfolding transformations, as described
in Sect. 5.1. Denote by A(W) the (common) destination plane of all the Ug,. We do
not alter A(W) until the propagation of W in Tg(e) is completed (and then A(W)
is updated, as described below). That is, as we traverse new blocks of Tg(e), we
unfold them all to the plane A(W). When we propagate the initial singleton wavefront
directly from s in Tp(s), we initialize W := (s), so that the maximal polytope edge
sequence £ of s is empty, and Ug is the identity transformation /. This setting is
appropriate since s is assumed to be a vertex of P, and therefore all the polytope
edges in £p emerge from s, so it lies on all the facets of Fp, and, particularly, on the
last facet of Fp.

The boundary chain C of Tg(e) is recursively defined as follows. Initially, we
put in C all the boundary edges of 0B, other than ep. We then proceed top-down
through Tg(e). For each node B’ of Tg(e) and for each child B” of B’, we remove
from the current C the contact interval connecting B” and B”, and replace it by the
remaining boundary portion of B”. This results in a connected (unfolded) polygonal
boundary chain that shares endpoints with B N e. Since Tp(e) has O(1) nodes, and
each block has O (1) boundary elements, C contains only O (1) elements; see Fig. 36.
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(portion of) h

(portion- of) g

Fig. 36 Bisector events (the thick square points), some of which are processed during the propagation
of the wavefront W from the transparent edge portion ep (the thickest segment in this figure) through
the building blocks (their shadings alternate) of the block tree Tg (e). The unfolded transparent edges are
drawn as thick solid lines, while the unfolded contact intervals are thin solid lines. The bisectors of the
generators of W, as it sweeps through the unfolded blocks, are shown dashed. The union of all the blocks
in Tg(e) is bounded by eg and the boundary chain C (which is non-overlapping in this example). The
dotted lines indicate the distance from the transparent edges in C within which we still process bisector
events of W. For each transparent edge f of C, we can stop propagating the wavefront portion W (ep, f)
that has reached f after it crosses the dotted line (which lies at distance 2| f| from f), since f must have
already been fully swept at that time by the waves of W(ep, f)

When W is propagated towards C, the most important property is that each trans-
parent edge or contact interval of C can be reached only by a single topologically con-
strained sub-wavefront of W, since, if W splits on its way, the new sub-wavefronts
reach different elements of C. (The property does not hold for dc, since, when ¢ con-
tains holes and/or a vertex of P, there is more than one way to reach a transparent
edge f € dc—in such cases f appears more than once in C, each time as a distinct
element, as illustrated in Fig. 36.) In the rest of this section, whenever a resulting
wavefront W (e, f) is mentioned for some f € C, we interpret W (e, f) as Wy (e, f)
for the unique homotopy class H that constrains W on its way from e to this specific
incarnation of f along C.

We denote by range(W) the subset of segments of C that can potentially be
reached by W, initialized as range(W) := C. As W is propagated (and split),
range(W) is updated (that is, split and/or truncated) accordingly, as described below.

Critical Events and Simulation Restarts We simulate the continuous propagation of
W by updating it at the (discrete) critical events that change its topology during its
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propagation in Tp(e). There are two types of these events—bisector events (of the
first kind), when a wave of W is eliminated by its two neighbors, and vertex events,
when W reaches a vertex of C (either transparent or a real vertex of P) and has
to be split. Before we describe in detail the processing of these events, we provide
here the intuition behind the (somewhat unorthodox implementation of the) low-level
procedures.

The purpose of the propagation of W in Tpg(e) is to compute the wavefronts
W (e, f), for each transparent edge f in C that W reaches. To do so, we have to cor-
rectly update W at those critical events that are true with respect to the propagation
of W in Tp(e); that is, events that take place in Tp(e) that would have been vertices
of SPM(s) if there were no other wavefronts except W. For the sake of brevity, in the
rest of this section we refer to these events simply as true events. Unfortunately, it is
difficult to determine in “real time” the exact set of true events (mainly because of
vertex events—see below). Instead, we determine on the fly a larger set of candidates
for critical events, which is guaranteed to contain all the true events, but which might
also contain events that are false with respect to the propagation of W in Tg(e); in the
rest of this section we refer to events of the latter kind as false events. The candidates
that turn out to be false events either are bisector events that involve at least one gen-
erator s’ of W so that the path from s’ to the event location intersects C, or take place
later than some earlier true event that has not yet been detected (and processed).

Let x be such a candidate bisector event that takes place at simulation time #,.. If
all the true events of W that have taken place before t, were processed before t,, then
x can be foreseen at the last critical event at which one of the bisectors involved in x
was updated before time #,, using the priorities assigned to the source images in W.
The priority of a source image s’ is the distance from s’ to the point at which the two
(unfolded) bisectors of s” intersect beyond e, either in B or beyond it. The priority is
+o0 if the bisectors do not intersect beyond ep. (Initially, when W contains the single
wave from s, the priority of s is defined to be +00.) Whenever a bisector of a source
image s’ is updated (as detailed below), the priority of s’ is updated accordingly.

A candidate vertex event cannot be foreseen so easily, since we do not know which
source image of W claims a vertex v (because of the critical events that might change
W before it reaches v), until v is actually reached by W. Even when v is reached
by W, we do not have in the data structure a “warning” that this vertex event is
about to take place. Instead, we detect the vertex event that occurs at v only later and
indirectly, either when processing some later candidate event (which is false as it was
computed without taking into account the event at v—see Fig. 37(a), (b)), or when
the propagation of W in Tp(e) is stopped at a later simulation time, when a segment
f of C incident to v is ascertained to be fully covered, as illustrated in Fig. 37(c).

When we detect a vertex event at some vertex v which is reached by W at time t,,,
so that at least one candidate critical event of W that takes place later than 7, has
already been processed, all the versions of the (persistent) data structure that encode
W after time t, become invalid, since they do not reflect the update that occurs at ,,.
To correct this situation, we discard all the invalid versions of W, and restart the
simulation of the propagation of the last valid version of W from time t,. This time,
however, we SPLIT W at v (at simulation time ¢,) into two new sub-wavefronts, as
detailed below. Note that this step does not guarantee that the current event at v is a
true event, since there might still exist undetected earlier vertex events, which, when
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2N

Fig. 37 An earlier vertex event at v € C can be detected later: (a) while processing a false bisector event x;
(b) while processing a vertex event at an endpoint v’ of a segment f C C, when f is ascertained to be
covered by W; (¢) when the segment g C C, incident to v, is ascertained to be covered by W

eventually detected later, will cause the simulation to be restarted again, making the
current event at v invalid (and we will have to wait until the wavefront reaches v
again).

Path Tracing Let x € A(W) be an (unfolded) image of some point of ¢, and let
s’ € W be a source image. To determine whether the path to x from s’ does or does
not meet C, and, in the former case, to also determine the first intersection point
(along the path 7 (s’, x)) with C, we trace 7 (s’, x) either up to x, or until it intersects
C—whichever occurs first—as follows.!?

The tracing is done by following the sequence of blocks traversed by m(s’, x),
which forms a path in Tg(e). At each block B’ that we encounter, we test whether
7(s’, x) terminates within B’, and, if not, we find the edge of dB’ through which
7 (s’, x) leaves B’. If we reach x, or if the exit edge of 8B’ is a portion of C, we stop
the tracing. Otherwise we exit B’ through a contact interval I, and proceed to the
next block beyond 7. (It is also possible that we reach a contact interval / which is a
“dead-end” in T (e), and is thus a portion of C.)

At each step we proceed in T (e) from a node to its child; since the depth of T (e)
is O(1), we are done after O(1) steps. Since at each step we compute O (1) unfold-
ings of paths and transparent edges, and each unfolding operation takes O (logn) time
to perform, using the data structures described in Sects. 2.4 and 5.1, the whole tracing
procedure takes O (logn) time.

Corollary 5.2 Tracing the path 7w (s', p) from a generator s’ € W to a point p without
intersecting C, correctly determines the distance d(s’', p).

Proof Follows from the description of the tracing procedure. (]
Note that we can similarly trace any path = of W until it intersects C, without

specifying any terminal point on 7, as long as the starting direction of 7 in A(W) is
well defined.

12Here and in the rest of this section, whenever we say that a path 7 from a generator s’ € W intersects
C, we actually mean that only the portion of 7= from s’ to the first intersection point x = 7 N C is a valid
geodesic path; the portion of 7 beyond x is merely a straight segment along the direction of 7 on A(W).
Still, for the sake of simplicity, we call v (including possibly a portion beyond x) a path (from s’ to the
terminal point of ).

@ Springer



Discrete Comput Geom (2008) 39: 500-579 555

Di

I B f

AN

l’j VQS'Z pj
X

(b)

Fig. 38 (a) 7(s;, p;). (s}, pj) leave B through two different contact intervals of dB’. Here p; = p;,
and 7 is the triangle z; p;z;. (b) 7 (s;, p;) reaches p; € B’ and 7(sj, pj) leaves B’ at the point xj. Here
pi # pj,and 7 is the quadrilateral z; p; pjzj. The portion X’ of 9B’ is highlighted in both cases

The following technical lemma is needed later for the correctness analysis of the
simulation algorithm—in particular, for the analysis of critical event processing. See
Fig. 38.

Lemma 5.3 Let s;, s; be a pair of generators in W, and let p;, p; be a pair of (pos-
sibly coinciding) points in A(W), so that w(s;, p;) and 7 (sj, p;) do not intersect
each other (except possibly at their terminal point, if p; = p;), and if p; # pj then
f ="Dipj is a straight segment of C. Denote by z; (resp., z;) the intersection point
m(si, pi)Nep (resp., (s}, pj) Nep), and denote by T the unfolded convex quadrilat-
eral (or triangle) zi pip;zj. Let B' be the last building block of the maximal common
prefix block sequence along which both 7 (s;, p;) and 7w (sj, p;) are traced (before
possibly diverging into different blocks).

If only one of the two paths leaves B', or if 7 (s;, p;) and 7 (s;j, p;) leave B’
through different contact intervals of dB’, then the region B’ Nt contains at least
one vertex of C that is visible, within the unfolded blocks of Tg(e), from every point
ofz1z2 C es.

Proof Assume for simplicity that B’ # B. The paths m(s;, p;), (s}, p;) must
enter B’ through a common contact interval I of dB’. Consider first the case
where 7 (s;, p;), (s, p;) leave B’ through two respective different contact inter-
vals I;, I; of 9 B’, and denote their first points of intersection with d B’ by x; and x s
respectively—see Fig. 38(a). Denote by X the portion of d B’ between x; and x; that
does not contain 7; X’ must contain at least one vertex of dB’. By definition, each
vertex of a building block is a vertex of C; note that the extreme vertices of X" are
x; and x ;, which may or may not be vertices of C. Since the unfolded image of X’ is
a simple polygonal line that connects 7 (s;, x;) and 7 (s}, x;), and intersects neither
m(s;, x;) nor m(sj,x;), it is easily checked that we can sweep 7 by a line parallel
to ep, starting from ep, until we encounter a vertex v of X within t, which is also
a vertex of C: Either x; or x; is such a vertex, or else T must contain an endpoint of
either I; or I;. Therefore v is visible from each point of 71z5.

Consider next the case in which only one of 7 (s;, p;), 7w (s}, p;) leaves B’, and
assume, without loss of generality, that 7 (s;, p;) reaches p; € B’ and 7 (s i Pj)
leaves B’ at the point x; before reaching p j—see Fig. 38(b). Denote by 7 (p;, s;)
the path 7(s;, p;) directed from p; to s;, and denote by 7" the concatenation
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(si, p)IIpipjllm(pj,s;). The path 7 (s;, p;) does not leave B’, and, by assump-
tion, the segment p; p; is either an empty segment or a segment of d B’, and therefore
the only portion of 7’ that leaves B" is (p;, s;). Denote by x; the first point along
m(pj,sj) (beyond p; itself) that lies on dB'; if 7 (p}, s;) leaves B’ immediately, we
do take x; = p;. Since (the unfolded) 7 (p;, s;) is a straight segment, and since, for
each segment f’ of dB’, B’ lies locally only on one side of f’, it follows that x; and
x; lie on different segments of dB’. Define X’ as above; here it connects the prefixes
of 7" and (s}, p;), up to x; and x;, respectively, and the proof continues as in the
previous case. U

Stopping Times and Their Maintenance The simulation of the propagation of W in
the blocks of Tg(e) processes candidate bisector events in order of increasing pri-
ority, up to some time #sop (W), which is initialized to 400, and is updated during
the propagation.]3 When the time #yp(W) is reached, the following holds: Either
tstop(W) = +00 (see Fig. 39(a)), all the known candidate critical events of W in the
blocks of Tg(e) have been processed, and all the waves of W that were not elimi-
nated at these events have reached C; or #yp(W) < 400 (see Fig. 39(b)), and there
exists some sub-wavefront W' C W that claims some segment (a transparent edge or
a contact interval) f of range(W) (that is, f is ascertained to have been covered by
W’ not later than at time fop(W)), such that all the currently known candidate events
of W’ have been processed before time tstop(W). In the former case we split W into
sub-wavefronts W (e, f) for each segment f € range(W); in the latter case, we ex-
tract from W (by splitting it) the sub-wavefront W (e, f) = W’ that has covered f.
When we split W into a pair of sub-wavefronts Wy, W5, the time #so,(W1) (resp.,
tstop (W2)) replaces fit0p (W) in the subsequent propagation of Wy (resp., W»), follow-
ing the same rule, while #sop (W) plays no further role in the propagation process.
For each segment f in C, we maintain an individual time fsop(f), Which is a
conservative upper estimate of the time when f is completely covered by W dur-
ing the propagation in Tg(e). Initially, we set fgop(f) := +00 for each such f. As

Fig. 39 (a) The stopping time Zsiop (W) = +00. (b) The stopping time tstop(W/ ) = tstop(f) < +00; the
dotted line indicates the stopping time (or distance) at which we stop processing bisector events: the event
at x has been processed before tsmp(W’ ), while the event at y has been detected but not processed

13The present description also applies to appropriate sub-wavefronts that have already been split from W—
see below.
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detailed below, we update #50p(f) Whenever we trace a path from a generator in W
that reaches f (without reaching C beforehand); by Corollary 5.2, these updates are
always valid (i.e., do not depend on simulation restarts). The time fyop(W) is the
minimum of all such times f#sop(f), where f is a segment of range(W). Whenever
Istop(f) is updated for such an f, we also update fsop(W) accordingly. When the
simulation clock reaches tsp (W), either some f of range(W) is completely covered
by the wavefront W, so that fgop(f) = tstop(W), or the priority of the next event of
W in the priority queue is 400, in which case #sop (W) = 4-00.

As shown below, range(W) is maintained correctly, independently of simulation
restarts; therefore, when range(W) contains only one segment, no further vertex
events may cause a restart of the simulation of the propagation of W (since a simula-
tion restart of a wavefront that is separated from W does not affect W, and the vertex
events at the endpoints of f have already been processed, since W and range(W)
have already been split at them).

Note that there is a gap of at most | f| time between the time ¢y when the segment
f of C is first reached by W and the time when f is completely covered by W.
In particular, it is possible that both endpoints of f are reached by W before f is
completely covered by W—see Fig. 40(a). It is also possible, because of visibility
constraints, that W reaches only a portion of f in our propagation algorithm (and
then there must be other topologically constrained wavefronts that reach the portions
of f that are not reached by W). Still we say that f is covered by W at time ¢y + | f|,
as if we were propagating also the non-geodesic paths that progress along f from the
first point of contact between W and f. See Fig. 40(b).

The algorithm does not necessarily detect the first time ¢y when f is reached
by W. Instead, we detect a time t}, when some path encoded in some wave of W
reaches f. However, in order to estimate the time when f is completely covered by W
correctly (although somewhat conservatively), the algorithm sets #stop () := t} +1fl.
We show below that ', is greater than ¢ by at most | f|, hence the total gap between
the time when f is first reached by W, and the time when the algorithm ascertains
that f is completely covered, is at most 2| f|.

Consider W’, the sub-wavefront of W that covers a segment f of C. If f is a
transparent edge, the well-covering property of f ensures that during these 2| f| sim-
ulation time units (since 7 7) no wave of W’ has reached “too far” beyond f. That is,
all the bisector events of W’ beyond f that have been detected and processed before
tstop(f) occur in O(1) cells near ¢ (see Fig. 36). This invariant is crucial for the time
complexity of the algorithm, as it implies that no bisector event is detected more than
O (1) times—see below. If f is a contact interval, the paths encoded in W that reach
f in our propagation do not reach f in the real SPM(s), by Corollary 3.17; therefore

S > f %
W on Lwes
(a) (b)

Fig. 40 (a) Both endpoints of f are reached by W before f is covered by W. (b) W actually reaches only
a portion of f (between the two dashed lines), because of visibility constraints
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these paths do not leave c (as shortest paths), and need not be encoded in the one-
sided wavefronts that leave c. This property is also used below in the time complexity
analysis of the algorithm.

Processing Candidate Bisector Events ~As long as the simulation clock has not yet
reached #s0p (W), at each step of the simulation we extract from the priority queue
of W the candidate bisector event which involves the generator s; with the mini-
mum priority in the queue, and process it according to the high-level description in
Sect. 4.3, the details of which are given next. Let x denote the unfolded image of
the location of the candidate event (the intersection point of the two bisectors of s;),
and denote by W' the constant-size sub-wavefront of W that encodes the paths in-
volved in the event. If s; is neither the first nor the last source image in W, then
W’ = (si_1, i, Si+1). The generator s; cannot be the only source image in W, since
in this case its two bisectors would be rays emanating from s;, and two such rays
cannot intersect (beyond e). If s; is either the first or the last source image in W, then
W’ is either (s;, si+1) or (s;—1, s;), respectively. Denote by 7| (resp., m2) the path
from the first (resp., last) source image of W’ to x, or, more precisely, the respective
unfolded straight segments of (common) length priority(s;).

We use the tracing procedure defined above for each of the paths 1, 2. For any
path 7, denote by C(rr) the first element of C (along ) that 7 intersects, if such a
point exists. The following two cases can arise:

Case (1): The bisector event at x is true with respect to the propagation of W in Tg(e)
(see Fig. 41(a)), which means that neither r; nor 7> intersects C, and both paths are
traced along a common block sequence in Tp(e). (Recall that the unfolded blocks
of Tp(e) might overlap each other; see Fig. 41(b).) By definition of a block tree,
this is a necessary and sufficient condition for the event to be true (with respect to
the propagation of W in Tg(e)); however, a following simulation restart might still
discard this candidate event, forcing the simulation to reach it again. If s; is neither
the first nor the last source image in W, we DELETE s; from W, and recompute the
priorities of its neighbors s;_1, s;+1, as follows. Since all the source images of W
are currently unfolded to the same plane A(W), we can compute, in constant time,
the intersection point p, if it exists, of the new bisector b(s;_1, s;+1) (stored in the
data structure during the DELETE operation) with the bisector of s;_; that is not in-
cident to x. If the two bisectors do not intersect each other (p does not exist), we
put priority(s;_1) := +00; otherwise priority(s;—1) is the length of the straight line
from s;_1 to p, ignoring any visibility constraints, or the possibility that the two bi-
sectors reach p through different block sequences. The priority of s;4 is recomputed
similarly.

If s; = 51 is the first but not the last source image in W, we DELETE s1 from W
(that is, 5o becomes the first source image in W), and define the first (unfolded) bi-
sector b of W as a ray from s, through x; the priority of s, is recomputed as above,
intersecting b with the other bisector of s;. If s; is the last but not the first source
image in W, it is handled symmetrically.

Case (ii): The bisector event at x is false with respect to the propagation of W
in Tp(e): Either at least one of the paths 1, 7, intersects C, or 71, 75 are traced to-
wards x along different block sequences in Tg (e), reaching the location x in different
layers of the Riemann structure that overlap at x. See Fig. 41(b—d) for an illustration.
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Fig. 41 In(a) x is a true

bisector event; the new

bisector b between the

generators of 771, 7y is shown ‘

dashed. In (b—d) x is a false

candidate. (b) 7y, 75 do not

intersect C, but reach x through

different layers of the Riemann

structure that overlap each other.

At least one vertex of

V = {vy, vp, v3} is visible from T €p T2 T €p M2
) (b)

the portion of e between |
and m5; the same is true in (c¢), (a
where both 71, 7 intersect C

(before reaching x).

() C(rp) = C(my) = f.No

vertex of V (here V = {v;}) is

T
visible from the portion of eg
between 1 and ) ‘ k
7 ‘
™ €p T2 ™ €p T2
(d)

(c)

If 71 intersects C, denote the first such intersection point (along 1) by z and
the segment C(sr1), which contains z, by f. We compute z and update tyop(f) 1=
min{tsop(f). d; + | f1}, where d; is the distance from s to z along m;. As de-
scribed above, and with the visibility caveats noted there, the expression d; + | f|
is a time at which W will certainly have swept over f. We also update fsop(W) :=
min{Zsop(f), stop(W)}. If, as the result of this update, fyop(W) becomes less than
or equal to the current simulation time, we conclude that f is already fully covered.
We then stop the propagation of W and process f as a covered segment of C (as de-
scribed below), immediately after completing the processing of the current bisector
event. Note that in this case, that is, when #0p(f) gets updated because of the detec-
tion of the crossing of the wavefront of f at z, which causes fsop (W) to go below the
current simulation clock ¢, we have fyop (W) = tyop(f) =d; + | f| <t =d; +d(z, x),
where d(z, x) is the distance from z to x along 7ry; see Fig. 42. Hence d(z, x) > | f|.
This however violates the invariant that we want to maintain, namely, that we only
process bisector events that lie no farther than | f| from an edge f of C. Nevertheless,
this can happen at most once per edge f, because from now on fsop(W) will not
exceed fstop (f). We will use this property in the time complexity analysis below.

If 7, intersects C, we treat it similarly.

Regardless of whether 71, 77, or neither of them, intersects C, we then proceed as
follows. Denote by t the triangle bounded by the images of e, w1 and m, unfolded
to A(W), and denote by V the set of the (at most O(1)) vertices of C that lie in
the interior of 7. Since it takes O (logn) time to unfold each segment of C, it takes
O (logn) time to compute V.
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Fig. 42 Ifd; +|f| <t=d; +d(z,x), thend(z,x) > | f]

Assume first that w1, o satisfy the assumptions of Lemma 5.3; it follows that
V is not empty (see Fig. 41(b), (c)). We trace the path from each generator in W’
to each vertex v of V, and compute claimer(v) (which satisfies d(claimer(v), v) =
min{{d(s’, v) | v is visible from s" € W'} U {+00}}). Denote by u the vertex of V so
that #, := d(claimer(u), u) = min,cy d(claimer(v), v); by Lemma 5.3, at least one
vertex of V is visible from at least one generator in W', and therefore ¢, is finite. As
we will shortly show in Corollary 5.8, 1, < t, (where t, = priority(s;) is the current
simulation time). This implies that the propagation is invalid for ¢ > t,. We thus
restart the propagation at time ¢, as follows.

Let W, denote the last version of (the data structure of) W that has been com-
puted before time 7,. We SPLIT W, into sub-wavefronts Wy, W, at s” := claimer(u)
at the simulation time 7, so that range(W1) is the prefix of range(W,) up to u, and
range(W>) is the rest of range(W,) (to retrieve the range that is consistent with the
version W, we can simply store all the versions of range(W)—recall that each uses
only constant space, because we can keep it unfolded). Discard all the later versions
of W. We set ts0p(W1) (resp., fsiop(W2)) to be the minimal #gop(f) value among
all segments f in range(Wp) (resp., range(W3)). We replace the last (resp., first)
unfolded bisector image of Wy (resp., W) by the ray from s’ through u, and corre-
spondingly update the priority of s” in both new sub-wavefronts (recall from Sect. 5.1
that the SPLIT operation creates two distinct copies of s”).

Assume next that the assumptions of Lemma 5.3 do not hold, which means that
both 71 and m intersect C, and that C(7r;) = C(7r), which is either a contact inter-
val I or a transparent edge f of C (see Fig. 41(d)). In the former case (a contact
interval), the wave of s; is not part of any sub-wavefront of W that leaves c¢ (as
shortest paths), and it should not be involved in any further critical event inside c,
as discussed above. To ignore s; in the further simulation of the propagation of W
in Tg(e), we reset priority(s;) := +oo (instead of deleting s; from W, which would
involve an unnecessary recomputation of the bisectors involving the neighbors of s;).
In the latter case, the following similar technical operation must be performed. Since
s; is a part of the resulting wavefront W (e, f) (as will follow from the correctness of
the bisector event processing, proved in Lemma 5.9 below), we do not want to delete
s; from W; yet, since s; is not involved in any further critical event inside ¢, we want
to ignore s; in the further simulation of the propagation of W in Tg(e) (that is, to ig-
nore its priority in the priority queue), and therefore we update priority(s;) := —+o00.
However, this artificial setting must be corrected later, when the propagation of W
in T (e) is finished, to ensure that the priority of s; in W (e, f) is correctly set—we
must then reset priority(s;) to its true (current) value. We mark s; to remember that its
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priority must be reset later, and keep a list of pointers to all the currently marked gen-
erators; when their priorities must be reset, we go over the list, fixing each generator
and removing it from the list).

To summarize, in Case (i) we trace two paths and perform one DELETE opera-
tion and O(1) priority queue operations, hence it takes O(logn) time to process a
true bisector event. In Case (ii) we trace O (1) paths, compute at most O (1) unfolded
images, and perform at most one SPLIT operation and O(1) priority queue opera-
tions; hence it takes O (logn) time to process a false (candidate) bisector event. The
correctness of the above procedure is established in Lemma 5.9 below, but first we
describe the detection and the processing of the candidate vertex events that were not
detected and processed during the handling of false candidate bisector events. This
situation arises when the priority of the next event of W in the priority queue is at
least #sop(W), in which case we stop processing the bisector events of W in Tg(e),
and proceed as described next.

Processing a Covered Segment of C  Consider the situation in which the algorithm
stops propagating W in T (e) at simulation time fsop(W) # +00. We then must have
tstop (W) = ftop (f), for some segment f in range(W), so that all the currently known
candidate events which occur in ¢ and involve the sub-wavefront of W that claims f
have already been processed.

Another case in which the algorithm stops the propagation of W is when
tstop(W) = +00. This means that all the currently known candidate events of W
have already been processed; that is, the former situation holds for each segment
S’ in range(W). Therefore, to treat the latter case, we process each f’ in range(W)
in the same manner as we process the (only relevant) segment f in the former case;
and so, we consider only the former situation.

Let f be such a segment of range(W). We compute the static wavefront W (e, f)
from the current dynamic wavefront W—if f is a transparent edge, then W (e, f) is
needed for the propagation process in further cells; otherwise ( f is a contact interval)
we do not need to compute W (e, f) to propagate it further, but we need to know the
extreme generators of W (e, f) to ensure correctness of the simulation process, a step
that will be explained in the proof of Lemma 5.9 below. Since the computation in
the latter case is almost identical to the former, we treat both cases similarly (up to a
single difference that is detailed below).

Since f € C defines a unique homotopy class of paths from ep to f within Tp(e),
the sub-wavefront of W that claims points of f is indeed a single contiguous sub-
wavefront W C W. We determine the candidate extreme claimers of f by perform-
ing a SEARCH in W for each of the endpoints a, b of f (note that the candidates are
not necessarily true, since SEARCH does not consider visibility constraints). If the
candidate claimer of a does not exist, we denote by a’ the point of f closest to a
which is intersected by an extreme bisector of W—see Fig. 43(a). (If there is no such
a’, we can already determine that W claims no points on f, and no further process-
ing of f is needed—see Fig. 43(c).) Symmetrically, we SEARCH for the claimer of b,
and, if it is not found, we define b’ similarly. If a (resp., b) is claimed by W, denote by
71 (resp., mo) the path m(claimer(a), a) (resp., w(claimer(b), b)); otherwise denote
by w1 (resp., m2) the path w(claimer(a’), a’) (resp., w(claimer(b’), b")). Denote by
W' the sub-wavefront of W between the generators of 71 and 75 (inclusive), and use
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Fig. 43 Processing a covered 1 b f
segment f of range(W). (a) The

endpoint a of f is not claimed f

by W, and my is the shortest
path to the point a’ closest to a

[
|
and claimed by W; the generator v | VU3
. . . - V1
of mq is extreme in W (which en |
has already been split at v). 1 T2 u
(b) At least one vertex of W/ U2
V = {v1, v2, v3} (namely, vy) is ~—— T en l7T
visible from the entire portion W 1 2
of ep between 7| and m».
(¢) f is not reached by W at all. (a) (b)

No vertex of V is visible from

the portion of ep between |

and 5. (d) Since f
dy =|m| <|ma|, W is first split

at the generator of |

71, o to define (and compute) V as in the processing of a candidate bisector event
(described above).

Assume first that w1, 7 satisfy the assumptions of Lemma 5.3. It follows that V
is not empty, and at least one vertex of V is visible from its claimer in W' (see, e.g.,
Fig. 43(b)). Then the case is processed as Case (ii) of a candidate bisector event, with
the following difference: Instead of tracing a path from each source image in W’ to
each vertex v € V (which is too expensive now, since W’ may have non-constant
size), we first SEARCH in W’ for the claimer of each such v and then trace only the
paths 7 (claimer(v), v). (Then we restart the simulation from the earliest time when
a vertex v of V is reached by W, splitting W at claimer(v).)

Assume next that the assumptions of Lemma 5.3 do not hold, which means that
both 771 and 7, intersect C, and that C(;r1) = C(;r2), which is either f or a segment
f' # f of C. In the latter case, since f is not reached by W at all, no further process-
ing of f is needed (see Fig. 43(c))—we ignore f in the rest of the present simula-
tion, and update fs0p (W) := min{tsop(f)| f' € range(W) \ { f}}. In the former case,
if both 71, 7y are extreme in W, then we have W’ = W the further processing of f
is described below. Otherwise (at least one of 7, 75 is not extreme in W), we first
have to split W, as follows. If r; and 7, are not extreme in W, denote by d ¢ the min-
imum of |mr1], |7r2[; if only one path 7w € {71, 72} is non-extreme in W, let dy := | |.
Without loss of generality, assume that d y = |71 | (see Fig. 43(d)). We restart the sim-
ulation from time |71 |, splitting W at the generator of 1, as described in Case (ii) of
the processing of a candidate bisector event.

It is only left to describe the case where W' = W and f is the only (not ignored)
segment of range(W). If f is a contact interval, no further processing of f is needed.

@ Springer



Discrete Comput Geom (2008) 39: 500-579 563

Otherwise (f is a transparent edge), we have to make the following final updates (to
prepare W (e, f) for the subsequent merging procedure at f and for further propaga-
tion into other cells). First, we recalculate the priority of each marked source image
(recall that it was temporarily set to 4-00), and update the priority queue component
of the data structure accordingly. Next, we update the source unfolding data (and
A(W)), as follows. Let B be the block sequence traversed by W from e to f along
Tp(e), including (resp., excluding) B if the first (resp., last) facet of B lies on A(W),
and let £ be the edge sequence associated with B. We compute the unfolding trans-
formation Ug, by composing the unfolding transformations of the O (1) blocks of B.
We update the data structure of W (e, f) to add Ug to the unfolding data of all the
source images in W (e, f), as described in Sect. 5.1. As a result, for each generator s;
of W{(e, f), the polytope edge sequence &; is the concatenation of its previous value
with £, and all the generators in W (e, f) are unfolded to the plane of an extreme
facet incident to f.

To summarize, we trace O (1) paths and perform at most O (1) SPLIT and SEARCH
operations, for each of O(1) segments of C. Then we perform at most one source
unfolding data update for each transparent edge in C. All these operations take a total
of O(logn) time. However, we also perform a single priority update operation for
each marked generator that has participated in a candidate bisector event beyond a
transparent edge of C. A linear upper bound on the total number of these generators,
as well as the number of the processed candidate events, is established next.

Correctness and Complexity Analysis We start by observing, in the following
lemma, a basic property of W that asserts that distances from generators increase
along their bisectors.

Lemma 5.4 Lets;,s; € W be a pair of generators that become neighbors at a bisec-
tor event x during the propagation of W through Tp(e), where an intermediate gen-
erator s’ gets eliminated. Then (i) the portion of the bisector b(s;, s ) that is closer to
s" than x is claimed, among s;,s" and s, by s', and (ii) the distances from s; and s;
to points 'y on the portion of b(s;, s ) that is not claimed by s’', increase as y moves
away from x.

Proof In the plane A(W), consider the Voronoi diagram of the three sites s;, s’, sj,
whose sole vertex is x. The line containing e intersects exactly two Voronoi edges,
because it meets the Voronoi cells V (s;), V (s”), V (s ) of all the three sites. Moreover,
by assumption, e N V(s”) lies between e N V(s;) and e N V (s 7). Hence, the Voronoi
edge that e misses is between V (s;) and V (s;), implying that b(s;, s;), between e
and x, is fully contained in V (s"), as asserted—see Fig. 44(a). The same argument
also implies (ii). O

Lemma 5.5 Assume that all bisector events of W that have occurred up to some
time t have been correctly processed, and that the data structure of W has been
correctly updated. Let p be a point tentatively claimed by a generator s; € W at time
d(si, p) <t, meaning that the claim is only with respect to the current generators
in W (at time t), and that we ignore any visibility constraints of C. Denote by R(s;)
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Fig. 44 (a) The bisector

b(si, sj), between e and x, must
be fully contained in V (s”)
(shaded). (b) If the bisector i
b(s’, s}) is already computed in L
the wavefront W, then the

path 7r(s]-, p), which . Y
intersects b(s’, s ;), cannot be - AN

encoded in W ! b( i 5/)” ‘ ‘b(sli Sj) !

the unfolded region that is enclosed between the bisectors of s; currently stored in the
data structure. Then p € R(s;), and p ¢ R(s;), for any other generator sj # s; in W.

Proof The claim that p € R(s;) is trivial, since the bisectors of s; that are currently
stored in the data structure have been computed before time 7, and are therefore cor-
rect, by assumption; hence, p is enclosed between them.

For the second claim, assume to the contrary that there exists a generator s; # s;
in W so that p € R(s;) too. Denote by g the first point along 7 (s, p) that is equally
close to s; and to some other generator s" € W (such ¢ and s" must exist, since
d(si, p) <d(sj, p)); thatis, g = m(s;, p) N b(s’, sj). The fact that in the data struc-
ture p lies in R(s;) means that the bisector b(s',s j) is not correctly stored in the
data structure, and thus it cannot be part of W(ep); therefore b(s’,s;) emanates
from a bisector event location x that lies within c—see Fig. 44(b). By Lemma 5.4,
d(s’,x) <d(s',q) <d(s', p) <t; hence, the bisector event when b(s’, s;) is com-
puted occurs before time 7, and therefore, by assumption, b(s’, s ) is correctly stored
in the data structure—a contradiction. O

In particular, Lemma 5.5 shows that when a vertex event at v is discovered during
the processing of another event at simulation time ¢, or is processed when a segment
of C that is incident to v is covered at time ¢, the tentative claimer of v (among all
the current generators in W) is correctly computed, assuming that all bisector events
of W that have occurred up to time ¢ have been correctly processed. We will use this
argument in Lemma 5.9 below.

Lemma 5.6 Assume that all bisector events of W that have occurred up to some time
t have been correctly processed, and that the data structure of W has been correctly
updated at all these events. If two waves of a common topologically constrained por-
tion of W are adjacent at t, then their generators must be adjacent in the generator
list of W at simulation time t.

Proof Assume the contrary. Then there must be two source images s;, s; in a com-
mon topologically constrained portion W C W such that their respective waves
w;, w; are adjacent at some point x at time ¢ (that is, d(s;,x) =d(sj,x) =1t <
d(sy, x) for all other generators s; in W), but there is a positive number of source
images s;41, ...,5j—1 in the generator list of W’ at time 7 between s; and s;, whose
distances to x are necessarily larger than d(s;, x) (and their waves in W’ at time ¢ are
nontrivial arcs). See Fig. 45 for an illustration.
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b(si, 85)
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Fig. 45 The waves from the source images s;, 5; collide at x. Each of the two following cases contradicts

the assumption in the proof of Lemma 5.6: (a) The portion 8 of b(s;, 5 ;) intersects the transparent edge e;
(b) The generator sy is eliminated at time 7y = d(s;, y) <d(s;, x) =1t

Consider the situation at time ¢. Since w;, w; belong to a common topologically
constrained W', it follows that e, 7 (s;, x) and m(s;,x) unfold to form a triangle 7 in
an unfolded block sequence of Tg(e) (so that T is not intersected by C).

Consider the “unfolded” Voronoi diagram Vor({s;, ..., s;}) within 7. By assump-
tion, x lies in the Voronoi cells V (s;), V(s;) of s;, s, respectively, separated by a
Voronoi edge B, which is a portion of b(s;, s;). If B intersects e (see Fig. 45(a)),
then s; and s; claim consecutive portions of e in W (e), so s; and s; must be consec-
utive in W already at the beginning of its propagation within Tz (e), a contradiction.

Otherwise, B ends at a Voronoi vertex y within t—see Fig. 45(b). Clearly, y is
the location of a bisector event in which some generator s € W is eliminated at time
ty=d(s;,y) =d(sj,y). By Lemma 5.4, t, < t, and therefore, by our assumption, the
bisector event at y has been correctly processed, so s; and s; must be consecutive in
W already before time t—a contradiction. U

Lemma 5.6 shows that if all the events considered by the algorithm are processed
correctly, then all the true bisector events of the first kind are processed by the algo-
rithm, since, as the lemma shows, such events occur only between generators of W
that are consecutive at the time the bisector event occurs. Let W’ be a topologically
constrained portion of W, and denote by R(W’, t) the region within Tg(e) that is
covered by W’ from the beginning of the simulation in Tg(e) up to time 7. By de-
finition of topologically constrained wavefronts, d R(W’, r) consists only of eg and
of the unfolded images of the waves and of the extreme bisectors of W’ at time z.
Another role of Lemma 5.6 is in the proof of the following observation.

Corollary 5.7 R(W’,t) is not punctured (by points that are not covered by W' at
time t).

Proof Consider the first time at which R(W’, r) becomes punctured. When this hap-
pens, R(W’, r) must contain a point ¢ where a pair of waves, generated by the re-
spective generators s;, § s collide, and ep and the paths 7 (s;, ), 7w (s j»¢q) enclose an
island within the (unfolded) triangle that they form. This however contradicts the
proof of Lemma 5.6. (]
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Corollary 5.8 When a vertex event at v is discovered during the processing of a
candidate event at simulation time t (either a bisector event x or an event involving
a covered segment f of C), the vertex v is reached by W no later than time t.

Proof By the way vertex events are discovered, v must lie in an unfolded triangle ©
formed as in the proof of Lemma 5.6, where the waves of the respective generators
si, s either collide at x, or are adjacent in the wavefront that covers the segment f.
Since the two sides of t incident to x belong to R(W’,t), for some topologically
constrained portion W’ of W that contains s;, s j, Corollary 5.7 implies that all of 7 is
contained in R(W’, t), which implies the claim. O

We are now ready to establish the correctness of the simulation algorithm. Since
this is the last remaining piece of the inductive proof of the whole Dijkstra-style prop-
agation (Lemmas 4.2 and 4.5), we may assume that all the wavefronts were correctly
propagated to some transparent edge e, and consider the step of propagating from e.
This implies that W (ep) encodes all the shortest paths from s to the points of e from
one fixed side. Now, let x1, ..., x;;, be all the true critical events (that is, both bisec-
tor and vertex events that are true with respect to the propagation of W in Tg(e)),
ordered according to the times 71, ..., f,, at which the locations of these events are
first reached by W. Since we assume general position, | < - -+ < t,.

Before we show the correctness of the processing of the true critical events, let
us discuss the processing of the false candidates. First, note that the simulation can
be aborted at time ¢’ (during the processing of a false candidate event) and restarted
from an earlier time " < ¢’ only if there exists some true vertex event x that should
occur at time 7 < t” and has not been detected prior to time ¢’ (in the aborted version
of the simulation). Note that whenever a false candidate event x’ ¢ {xy, ..., X} is
processed at time ¢’, one of the three following situations must arise.

(1) It might be that x” is not currently (at time ") determined to be false, since both
paths involved in x’ are traced along the same block sequence and do not intersect C;
x’ is false “just” because there is some earlier true vertex event x” that is still un-
detected. In this case, we create a new version of W at time ¢, but it will later be
declared invalid, when we finally detect x”.

Otherwise, x” is immediately determined to be false (since either one of the in-
volved paths intersects C or the paths are traced along different block sequences).
In this case either (ii) an earlier candidate vertex event x” (occurring at some time
t" < t') is currently detected and the simulation is restarted from ¢”, or (iii) x’ is a
bisector event which occurs outside T (e), so it involves only bisectors that do not
participate in any further critical event inside Tp(e). In this case a new version of
W, corresponding to the time ¢/, is created, the generator that is eliminated at x’ is
marked in it, and its priority is set to +0c0.

In any of the above cases, none of the existing true (valid) versions of W is al-
tered (although some invalid versions may be discarded during a restart); moreover,
a new invalid version corresponding to time ¢’ may be created (without restarting the
simulation yet) only if there is some true event that occurred at time ¢ < ¢’ but is still
undiscovered at time ¢'.

Assume now that at the simulation time #; (for 1 < k < m) all the true events that
occur before time #; have been correctly processed; that is, for each such bisector
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event x;, the corresponding generator has been eliminated from W at simulation time
t;, and for each such vertex event x;, W has been split at simulation time #; at the
generator that claims the corresponding vertex. Note that the assumption is true for
simulation time ¢, since the processing of false candidate events does not alter W (ep)
(which does not encode events within Tg(e); its validity follows from the inductive
correctness of the merging procedure and is not violated by the processing of false
events).

Lemma 5.9 Assuming the above inductive hypothesis, the next true critical event xj,
is correctly processed at simulation time t, possibly after a constant number of times
that the simulation clock has reached and passed ty (to process a later false candidate
event) without detecting xi, each time resulting in a simulation restart.

Proof There are two possible cases. In the first case, xi is a true bisector event, in
which the wave of a generator s’ in W is eliminated by its neighbors at propagation
time ;. Any possible false candidate event that is processed before x; and after the
processing of all true events that take place before time #; may only create new invalid
versions that correspond to times that are later than time #; (since a false candidate
event can arise only when an earlier true event is still undetected). This implies that
s’ has not been deleted from any valid version of W that corresponds to time f; or
earlier, and all such valid versions exist. By this fact and by the inductive hypothesis,
the bisectors of s” have been computed correctly either already in W (ep), or during
the processing of critical events that took place before time #.

In the second case, xj is a true vertex event that takes place at a vertex v € C,
which is claimed by some generator s, in W. By the argument used in the first case,
sy has not been deleted from W at an earlier (than #;) simulation time, and each point
on the path 7 (sy, v) is claimed by s, at time #; or earlier. Therefore s, can only be
deleted from a version of W at time later than #; when a false bisector event involving
sy 1s processed. Moreover, a sub-wavefront including s, can be split from a version
of W at time later than #; (and v can be removed from range(W)) when a false vertex
event is processed. We show next that in both cases, xi is detected and the simulation
is restarted from time f, causing xi to be processed correctly.

Consider first the case where s, is not deleted in any later false candidate event.
In that case, when we stop the propagation of W, v is in range(W), and therefore at
least one segment f of the segments of range(W) that is incident to v is ascertained
to be covered at that time. Since s, is in W, Lemma 5.5 implies that the SEARCH
procedure that the algorithm uses to compute the claimer of v outputs s,, and, by
Corollary 5.2, the tracing procedure correctly computes d (s, v) to be #. Since xi is
the next true vertex event, the distance from the other endpoint of f to its claimer is
larger than or equal to #, and, since W has not yet been split at v, 7 (s, v) is not an
extreme bisector of W. Hence the algorithm sets d ¢ := #;, and W is split at s, at time
tx, as required.

Consider next the case where s, is deleted (or split) from W at a false event x’
at time 7’ > 1. Suppose first that x’ is a false bisector event. Then v must lie in the
interior of the region = bounded by e and by the paths to the location of x” from the
outermost generators of W involved in x’. The algorithm traces the paths to v and to
(some of) the other vertices of C in 7 from all the generators of W that are involved
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in x’, including s, (see Fig. 41(b), (c)); then all such distances are compared. Only
distances from each such generator s’ to each vertex that is visible from s’ (within the
unfolded blocks of T (e)) are taken into account, since, by Corollary 5.2, all visibility
constraints are detected by the tracing procedure. The vertex v must be visible from s,
and the distance d(s,, v) must be the shortest among all compared distances, since,
by the inductive hypothesis, all vertex events that are earlier than x; have already
been processed (and W has already been split at these events). By Lemma 5.5 and
by Corollary 5.2, the tentative claimer (among all current generators in W) of each
vertex u is computed correctly. No generator s’ that has already been eliminated from
W can be closer to u than the computed claimer(u), since, by Corollary 5.8 and by the
inductive hypothesis, # would have been detected as a vertex event no later than the
bisector event of s’, which is assumed to have been correctly processed. Therefore the
distance d(claimer(u), u) is correctly computed for each such vertex u (including v),
and therefore the distance d(s,, v) = #; is determined to be the shortest among all
such distances. Hence the simulation is restarted from time #;, and W is split at s, at
simulation time #;, as asserted.

Otherwise, x’ is a false vertex event processed when a segment f of C is ascer-
tained to be fully covered by W, and v must lie in the interior of the region T bounded
by e, f, and by the paths from the outermost generators of W claiming f to the ex-
treme points of f that are tentatively claimed by W (see Fig. 43(b)). The algorithm
performs the SEARCH operation in the sub-wavefront W' C W that claims f for v and
for all the other vertices of C in 7, and then compares the distances d(claimer(u), u),
for each such vertex u that is visible from its claimer (including v). By the same
arguments as in the previous case, the distance d(s,, v) = #; is determined to be the
shortest among all such distances, the simulation is restarted from time 7z, and W is
split at s, at simulation time #, as asserted. U

The above lemma completes the proof of the correctness of our algorithm. Now
we show that the total number of the processed candidate events is only linear. Order
the O (1) vertices of C that are reached by W (that is, the locations of the true vertex
events) as v, ..., Uy, where W reaches v first, then vz, and so on; denote by ¢;, for
1 < j <m, the time at which W reaches v;. Note that if the simulation is restarted
because of a vertex event at v;, then, by Lemma 5.9, the simulation is restarted ex-
actly from time ¢;—that is, #; depends only on W and on the previous true candidate
events. Note also that the simulation is only restarted from times ¢1, ..., t;.

Lemma 5.10 When the vertex events at vertices vy, ..., Vg, for | <k <m, are al-
ready detected and processed by the algorithm, the simulation is never restarted from
time ty or earlier.

Proof Since the simulation restart from time ¢ discards all existing versions of W
that correspond to times ¢ > ¢, the claim of the lemma is equivalent to the claim that
all the versions of W that were created at time #; or earlier will never be discarded by
the algorithm if all the vertex events at vertices vy, ..., v;x have already been detected
and processed. We prove the latter claim by induction on k.

For k = 1, the version of W created at time #; can only be discarded if a vertex
event that occurs earlier than #; is discovered, which is impossible since v is the
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first vertex reached by W. Now assume that the claim is true for vy, ..., vx—1, and
consider the version W of W that is created at time #; when the vertex events at
vertices vy, ..., Ux are already detected and processed. The algorithm may discard
W only when at some time ¢’ > # a vertex v is discovered, such that v is reached by
W at time f, < f, and therefore v must be in {vy, ..., vy—1}. But then, restarting the
propagation from time ¢, contradicts the induction hypothesis. U

Lemma 5.11 For each 1 < j < m, the simulation is restarted from time t; at most
271 times.

Proof By induction on j. By Lemma 5.10, the simulation is restarted from time #; at
most once. Now assume that j > 2 and that the claim is true for times #1, ..., ;1.
By Lemma 5.9, the vertex event at v; is eventually processed at time t;; by
Lemma 5.10, there are no further restarts from time ¢; after we get a version of W
that encodes all the events at vy, ..., v;. Hence the simulation may be restarted from
time #; only once each time that W ceases to encode the vertex event at v;, and this
may only happen either at the beginning of the simulation, or when the simulation
is restarted from a time earlier than ¢;. Since, by the induction hypothesis, the simu-

lation is restarted from times 71, ...,#;_; at most Z{;]l 2i=1 —2Jj=1 _ 1 times, the
simulation may be restarted from time #; at most 2/~ times. O

Remark From a practical point of view, the algorithm can be significantly optimized,
by using the information computed before the restart to speed up the simulation after
it is restarted. Moreover, we suspect that, in practice, the number of restarts that the
algorithm will perform will be very small, significantly smaller than the bounds in
the lemma.

By Lemma 5.11, the algorithm processes only O(1) candidate vertex events
(within a fixed Tg(e)), and, since the simulation is restarted only at a vertex event, it
follows that each bisector event x has at most O (1) “identical copies,” which are the
same event, processed at the same location (and at the same simulation time ¢, ) after
different simulation restarts. At most one of these copies of x remains encoded in
valid versions of W, and the rest are discarded (that is, there is at most one valid ver-
sion of W that has been created at simulation time ¢, to reflect the correct processing
of x, and the following valid versions of W are coherent with this version). Hence for
the purpose of further asymptotic time complexity analysis, it suffices to bound the
number of the processed candidate bisector events that take place at distinct locations.

Note that each candidate bisector event x processed by the propagation algorithm
falls into one of the five following types:

(i) x is a true bisector event.
(i1) x is a false candidate bisector event, during the processing of which an earlier-
reached vertex of C has been discovered, and the simulation has been restarted.
(iii) x is a false candidate bisector event of a generator s’ € W, so that all paths in
the wave from s’ cross a common contact interval of C (a “dead-end”) before
the wave is eliminated at x.
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(iv) x is a false candidate bisector event of a generator s" € W, so that all paths in
the wave from s’ cross a common transparent edge f of C before the wave is
eliminated at x, and the distance from f to x along d(s’, x) is greater than 2| f|.

(v) x is a false candidate bisector event, as in (iv), except that the distance from f
to x along d(s’, x) is at most 2| f|.

Lemma 5.12 The total number of processed true bisector events (events of type (i)),
during the whole wavefront propagation phase, is O (n).

Proof First we bound the total number of waves that are created by the algorithm.
The wavefront W is always propagated from some transparent edge e, within the
blocks of a tree T (e), for some block B incident to e, in the Riemann structure 7 (e)
of e. A wave of W is split during the propagation only when W reaches a vertex of C,
the corresponding boundary chain of T (e). Each such vertex is reached at most once
(ignoring restarts) by each topologically constrained wavefront that is propagated in
Tp(e). There are only O(1) such wavefronts, since there are only O(1) paths in
Tp(e) (and corresponding homotopy classes). Each (side of a) transparent edge e
is processed exactly once (as the starting edge of the propagation within R(e)), by
Lemma 4.2, and e may belong to at most O (1) well-covering regions of other trans-
parent edges that may use e at an intermediate step of their propagation procedures.
There are O (1) vertices in any boundary chain C, hence at most O (1) wavefront
splits can occur within Tp(e) during the propagation of a single wavefront. Since
there are only O (n) transparent edges e in the surface subdivision, and there are only
O (1) trees Tg(e) for each e, we process at most O (n) such split events. (Recall from
Lemma 5.11 that a split at a vertex is processed at most O (1) times.) Since a new
wave is added to the wavefront only when a split occurs, at most O (n) waves are
created and propagated by the algorithm.

In each true bisector event processed by our algorithm, an existing wave is elimi-
nated (by its two adjacent waves). Since a wave can be eliminated exactly once and
only after it was earlier added to the wavefront, we process at most O (n) true bisector
events. (]

Lemma 5.13 The algorithm processes only O(n) candidate bisector events during
the whole wavefront propagation phase.

Proof There are at most O(n) events of type (i) during the whole algorithm, by
Lemma 5.12. By Lemma 5.11, there are only O (1) candidate events of type (ii) that
arise during the propagation of W in any single block tree Tg(e). Since a candidate
event of type (iii), within a fixed surface cell ¢, involves at least one wave that en-
codes paths that enter ¢ through ep but never leave c (that is, they traverse a facet
sequence that contains a loop, and are therefore known not to be shortest paths be-
yond some contact interval in the loop), the total number of these candidate events
during the whole propagation is bounded by the total number of generated waves,
which is O (n) by the proof of Lemma 5.12.

Consider a candidate event of type (iv) at a location x at time 7., in some fixed
Tg(e), and let f denote the transparent edge of C that is crossed by the wave from the
generator s” eliminated at x. Denote by d; (resp., d») the distance along 7 (s, x) from
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s"to f (resp., from f to x); thatis, dy > 2| f| and d; +dp = d(s', x) = t,.. Before the
update of #yop(f), caused by the processing of this event, the value of fop(f) must
have been equal to or greater than t, > di + 2| f|, since otherwise f would have
been ascertained to be covered before time 7., and therefore the event at £, would
not have been processed; hence, after the update, we have tsop(f) = di + | f] < tx.
Therefore, immediately after the processing of the event at ¢, we detect that f has
been covered; by Lemma 5.11 each f is detected to be covered at most O(1) times,
and, since there are only O(1) transparent edges in C, there are at most O (1) events
of type (iv) during the propagation of W in Tg(e).

Consider now a candidate event of type (v) that occurs at a location x at time 7,
after crossing the transparent edge f of C. This event may also be detected during
the propagation of the wavefront through f into further cells, and therefore it must
be counted more than once during the whole wavefront propagation phase. However,
on A(W), x lies no further than 2| f| from the image of f, and therefore the shortest-
path distance from f to the location of x on d P cannot be greater than 2| f|; hence,
by the well-covering property of f, x lies within k = O (1) cells away from the cell c.
Therefore the event at x is detected during the simulation in the cell which contains
x, where the event at x is considered a true event, and during the simulation in at
most k other cells; hence, by Lemma 5.12, the total number of these candidate events
during the whole algorithm is bounded by O (kn) = O (n). U

We summarize the main result of the preceding discussion in the following lemma.

Lemma 5.14 The total number of candidate events processed during the wavefront
propagation is O (n). The wavefront propagation phase of the algorithm takes a total
of O(nlogn) time and space.

5.4 Shortest Path Queries

Preprocessing Building Blocks Let B be a building block of a surface cell c. A gen-
erator of a wavefront W is called active in B if it was detected by the algorithm to
be involved in a bisector event inside B. The wavefront propagation algorithm lets us
compute the active generators for all pairs (W, B) in a total of O (nlogn) time.

We next define the partition local(W, B) of the unfolded portion of B that was
covered by W (and the wavefronts that W has been split into during its propagation
within B), which will be further preprocessed for point location for shortest path
queries.'* The partition local (W, B) consists of active and inactive regions, defined
as follows. The active regions are those portions of B that are claimed by generators
of W that are active in B, and each inactive region is claimed by a contiguous band
of waves of W that cross B in an “uneventful” manner, delimited by a sequence of
pairwise disjoint bisectors. See Fig. 46 for an illustration.

14Note that if W has been split in another preceding building block of ¢ into two sub-wavefronts Wy, W,
that now traverse B as two distinct topologically constrained wavefronts, no interaction between W; and
W in B is detected or processed (the two traversals are processed at two distinct nodes of a block tree, or
of different block trees of 7 (e), both representing B). Moreover, if W has been split in B (which might
happen if B is a nonconvex type I block—see Sect. 3.1), the split portions cannot collide with each other
inside B; see Fig. 46.
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Fig. 46 The wavefront W enters the building block B (in this example, B is a nonconvex block of type I,
bounded by solid lines) from the left. The partition local (W, B) is drawn by thick dashed lines; thin
dashed lines denote bisectors of W that lie fully in the interior of the inactive regions. The regions of the
partition are numbered from 1 to 12; the active regions are lightly shaded, the inactive regions are white,
and the portions of B that were not traversed by W due to visibility constraints are darkly shaded. The
locations of the bisector events of W and the reflex vertices reached by W in B are marked. W is split at
v into W1 and Wy, and local(W, B) includes these sub-wavefronts too

Here are several comments concerning this definition. The edges of local(W, B)
are those bisectors of pairs of generators of W, at least one of which is active in B.
The first and the last bisectors of W are also defined to be edges of local(W, B).
If, during the propagation in B, W has been split (into sub-wavefronts Wy, W) at a
reflex vertex v of B, then the ray from the generator of W, whose wave has been split
at v, through v (an artificial extreme bisector of both Wy, W>) is also defined to be
an edge of local(W, B). If W has been split into sub-wavefronts Wi, W, in such a
way, we treat also the bisectors of Wy, W5, within B, as if they belonged to W (that
is, embed local(W1, B), local(W>, B) as extensions of local(W, B), and preprocess
them together as a single partition of B).

Note that the complexity of local(W, B) is O(k + 1), where k is the number of
true critical (bisector and vertex) events of W in B. The partition can actually be
computed “on the fly" during the propagation of W in B, in additional O (k) time.

We preprocess each such partition local(W, B) for point location [13, 22], so that,
given a query point p € B, we can determine which region r of local(W, B) contains
the unfolded image g of p (that s, if B is of type Il or III and £ is the edge sequence
associated with B, g = Ug(p); if B is of type I or IV then g = p). If r is traversed
by a single wave of W (which is always the case when r is active, and can also occur
when r is inactive), it uniquely defines the generator of W that claims p (if we ignore
other wavefronts traversing B). This step of locating r takes O (logk) time. If g is
in an inactive region r of local(W, B) that was traversed by more than one wave of
W, then r is the union of several “strips” delimited by bisectors between waves that
were propagated through B without events. We can then SEARCH for the claimer of
g in the portion of W corresponding to the inactive region, in O(logn) time (see
Sect. 5.1).
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Preprocessing Ssp In order to locate the cell of S that contains the query point,
we also preprocess the 3D-subdivision S3p for point location, as follows. First, we
subdivide each perforated cube cell into six rectilinear boxes, by extending its inner
horizontal faces until they reach its outer boundary, and then extending two parallel
vertical inner faces until they reach the outer boundary too, in the region between the
extended horizontal faces. Next, we preprocess the resulting 3-dimensional rectilinear
subdivision in O (nlogn) time for 3-dimensional point location [10]. The resulting
data structure takes O (nlogn) space, and a point location query takes O (logn) time.

Answering Shortest-Path Queries To answer a shortest-path query from s to a point
p € 0 P, we perform the following steps.

1. Query the data structure of the preprocessed S3p to obtain the 3D-cell c3p that
contains p.

2. Query the surface unfolding data structure (defined in Sect. 2.4) to find the facet
f of @ P that contains p in its closure.

3. Since the transparent edges are close to, but not necessarily equal to, the corre-
sponding intersections of subfaces of S3p with 9 P, p may lie either in a surface
cell induced by c3p or by an adjacent 3D-cell, or in a surface cell derived from
the intersection of transparent edges of O(1) such cells. To find the surface cell
containing p, let I (c3p) be the set of the O(1) surface cells induced by c3p and
by its O(1) neighboring 3D-cells in S3p (whose closures intersect that of c3p).
For each cell ¢ € I (c3p), check whether p € c, as follows.

(a) Using the surface unfolding data structure, find the transparent edges of dc
that intersect f, by finding, for each transparent edge e of dc, the polytope
edge sequence £ that e intersects, and searching for f in the corresponding
facet sequence of & (see Sect. 2.4).

(b) Calculate the portion ¢ N f and determine whether p lies in that portion.

If p is contained in more than one surface cell, assign it to an arbitrary cell among

them.

4. Among the O(1) building blocks of ¢, find a block B that contains p. For each
wavefront W that has traversed B, we find the generator s; that claims p in W,
using the point location structure of local (W, B) as described above, and compute
the distance d(s;, p). We report the minimal distance from s to p among all such
claimers of p.

5. If the corresponding shortest path has to be reported too, we report all polytope
edges that are intersected by the path from the corresponding source image to p.
In case there are several such paths, each can be reported in the same manner.

Steps 1-3 take O (logn) time, using [10] and the data structure defined in Sect. 2.4.
As argued above, it takes O (logn) time to perform Step 4. This concludes the proof
of our main result (modulo the construction of the 3D-subdivision, given in the next
section):

Theorem 5.15 (Main Result) Let P be a convex polytope with n vertices. Given a
source point s € d P, we can construct an implicit representation of the shortest path
map from s on d P in O (nlogn) time and space. Using this structure, we can identify,
and compute the length of, the shortest path from s to any query point q € P in
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O (logn) time (in the real RAM model). A shortest path (s, q) can be computed in
additional O (k) time, where k is the number of straight edges in the path.

6 Constructing the 3D-Subdivision

This section briefly sketches the proof of Theorem 2.1, by describing an algorithm
for constructing a conforming 3D-subdivision for a set V of n points in R3. Since
this is a straightforward generalization of the construction of a similar conforming
subdivision in the plane [18], we only describe the details that are different from
those in [18], and provide a few necessary definitions.

The main part of the algorithm constructs a /-conforming 3D-subdivision S;D
of size O(n) in O(nlogn) time, which is then transformed into a conforming 3D-
subdivision S3p by subdividing each face of S;D into 16 x 16 square subfaces, in
O (n) additional time.

Constructing the 1-Conforming 3D-Subdivision We fix a Cartesian coordinate sys-
tem in R3. For any whole number i, the i th-order grid G; in this system is the arrange-
ment of all planes x = k2!, y= k2! and z = k2!, for k € Z. Each cell of G; is a cube
of size 2! x 2! x 2!, whose near-lower-left corner lies at a point (k2i , 12 m2i), for
a triple of integers k, [, m. We call each such cell an i-box. Any 4 x 4 x 4 contigu-
ous array of i-boxes is called an i-quad. Although an i-quad has the same size as an
(i 4+ 2)-box, it is not necessarily an (i + 2)-box because it need not be a cell in G;1».
The eight non-boundary i-boxes of an i-quad form its core, which is thus a2 x 2 x 2
array of i-boxes; see Fig. 47. Observe that an i-box b has exactly eight i-quads that
contain b in their cores.

The algorithm constructs a conforming partition of the point set V in a bottom-up
fashion. It simulates a growth process of a cube box around each data point, until
their union becomes connected. The simulation works in discrete stages, numbered
—2,0,2,4,.... It produces a subdivision of space into axis-parallel cells. The key
object associated with a data point p at stage i is an i-quad containing p in its core.
In fact, the following stronger condition holds inductively: Each (i — 2)-quad con-
structed at stage (i — 2) lies in the core of some i-quad constructed at stage i.

In each stage i, only a minimal set Q(i) of quads is maintained. This set is par-
titioned into equivalence classes under the transitive closure of the overlap relation,
where two i-quads overlap if they have a common i-box (not necessarily in their
cores). The portion of space covered by quads in one class of this partition is called
a component. Each component at stage i is either an i-quad or a connected union
of (open) i-quads. We classify each component as being either simple or complex.

Fig. 47 The planar analog of an
i-quad (darkly shaded) and its
core (lightly shaded)
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A component at stage i is simple if (1) its outer boundary is an i-quad and (2) it con-
tains exactly one (i — 2)-quad of Q(i — 2) in its core. Otherwise, the component is
complex.

The algorithm consists of two main parts. The first part grows the (i — 2)-quads
of stage (i — 2) into i-quads of stage i, and the other part computes and updates the
equivalence classes, and constructs subdivision subfaces. These tasks are performed
by the procedures Growth and Build-subdivision, respectively. We omit the descrip-
tion of Growth (which is a duplicate three-dimensional version of the same procedure
in [18]), but briefly review some of its features, to facilitate the description of Build-
subdivision.

Given an i-quad g, Growth(q) is an (i 4+ 2)-quad containing ¢ in its core. For a
Sfamily S of i-quads, Growth(S) is a minimal (but not necessarily the minimum) set
of (i + 2)-quads such that each i-quad in S is contained in the core of a member
of Growth(S). Let Growth(q), or g, denote the unique (i + 2)-quad returned by the
procedure Growth with input g (see [18, 34] for details concerning the choice of g
among eight possible (i + 2)-quads).

The Build-Subdivision Procedure By appropriate scaling and translation of 3-
space, we may assume that the L..-distance between each pair of points in V is
at least 1, and that no point coordinate is a multiple of 11_6' For each point p € V, we
construct (to distinguish from other quads that we only compute during the process,
constructing a quad means actually adding it to the 3D-subdivision) a (—4)-quad with
p at the near-lower-left (—4)-box of its core; this choice ensures that the minimal dis-
tance from p to the boundary of its quad is at least JT of the side length of the quad.
(This step is needed for the (MVC) property, and does not exist in [18].) Around each
of these quads ¢, we compute (but not construct yet) a (—2)-quad with ¢ in its core,
so that when there is more than one choice to do that (there are one, two, four, or
eight possibilities to choose the (—2)-quad if d¢q is coplanar with none, two, four, or
six planes of G_», respectively), we always choose the (—2)-quad whose position is
extreme in the near-lower-left direction. This ensures that the (—2)-quads associated
with distinct points are openly disjoint (because the points of V are at least 1 apart
from each other in the L-distance; without the last constraint, one could have cho-
sen two (—2)-quads whose interiors have nonempty intersection). These quads form
the set Q(—2), which is the initial set of quads in the Build-subdivision algorithm
described below. Each quad in Q(—2) forms its own singleton component under the
equivalence class in stage —2. As above, we regard all quads in Q(—2) as open,
and thus forming distinct simple components, even though some pairs might share
boundary points.

Let Vs be the set of points of V in the cores of the i-quads of a component S C
Q(i). The implementation of Build-subdivision is based on the observation that the
longest edge of the L,-minimum spanning tree of Vg has length less than 6 - 2¢. To
make this observation more precise, we define G (i) to be the graph on V containing
exactly those edges whose Lo, length is at most 6 - 2/, and define MSF(i) to be the
minimum spanning forest of G (i).

The algorithm is based on an efficient construction of MSF(i) for all i such that
MSEF(i) # MSF(i — 2). We first find all the O(n) edges of the final MSF of V (a
single tree), using the O (nlogn) algorithm of Krznaric et al. [23] for computing an
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L so-minimum spanning tree in three dimensions. (In the planar case of [18], the clas-
sical algorithm of Kruskal is used instead.) Then, for each edge e constructed by the
algorithm, we compute the stage k = 2[% log, %|e|] , at which e is added to MSF (k).
By processing the edges in increasing length order, we obtain the entire sequence of
forests MSF(i), for those i for which MSF(i) #£ MSF(i — 2).

Only stages at which something happens are processed: MSF(i) changes, or
there are complex components of Q(i) whose Growth computation is nontrivial.
Growth(S) is only computed for complex components and for simple components
that are about to be merged with another component, and maintain the equivalence
classes of Q(i) only for this same subset of quads. Simple components that are well
separated from other components are not involved at stage i.

The equivalence classes of Q(i) are computed by finding k = 73 — 1 nearest neigh-
bors of each i-quad g, using the well-separated pair decomposition of [7], and by test-
ing which of them overlaps ¢.'3 This is different from the planar case of [18], where
the nearest-neighbors algorithm is not needed (instead, the plane is simply swept).

To recap, at each “interesting” stage i, we construct Q(i) from Q(i — 2), by invok-
ing the Growth procedure on the set of complex components and simple components
that are about to merge with other components. As argued in [18], repeated applica-
tions of Growth decrease the size of Q(i) (specifically, after each pair of consecutive
steps of Growth, |Q(i)] is at most % of its previous size), until we reach a single quad
containing all of V.

The running time of the Lo,-minimum spanning tree algorithm in [23] is
O (nlogn). The k-nearest-neighbors algorithm of [7] requires O (m; logm; + km;) =
O (m;logm;) time to process m; = |Q(i)| quads, when computing the equivalence
classes of Q(i). As argued in [18], D, m; = O(n); hence, it takes O (nlogn) total
time to perform this step. The space requirements of the MST construction in [23],
and of the k-nearest-neighbors computation, are both O(n), as well as the space
requirements of the other stages of the algorithm. Other steps of the algorithm Build-
subdivision are similar to those in [18], and therefore, the algorithm Build-subdivision
can be implemented to run using O (n logn) standard operations on a real RAM, plus
O (n) floor and base-2 logarithm operations. As shown in [18], the total cost of all the
calls to Growth is O(nlogn), and this procedure requires only linear space; hence,
S3p can be constructed in overall O (nlogn) time, using O (n) space.

7 Extensions and Concluding Remarks

We have presented an optimal-time algorithm for computing an implicit representa-
tion of the shortest path map from a fixed source on the surface of a convex polytope
with n facets in three dimensions. The algorithm takes O (nlogn) preprocessing time
and O(nlogn) storage, and answers a shortest path query (which identifies the path
and computes its length) in O(logn) time. We have used and adapted the ideas of
Hershberger and Suri [18], solving Open Problem 2 of their paper, to construct “on
the fly" a dynamic version of the incidence data structure of Mount [28], answering
in the affirmative the question that was left open in [28].

I5For each i-quad ¢, at most 73 — 1 different i -quads g’ # ¢ can be packed so that ¢’ overlaps g.
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As in the planar case (see [18]), our algorithm can also easily be extended to a
more general instance of the shortest path problem that involves multiple sources on
the surface of P, which is equivalent to computing their (implicit) geodesic Voronoi
diagram. This is a partition of d P into regions, so that all points in a region have
the same nearest source and the same combinatorial structure (i.e., maximal edge se-
quence) of the shortest paths to that source. We only compute this diagram implicitly,
so that, given a query point g € d P, we can identify the nearest source point s to g,
and return the shortest path length and starting direction (and, if needed, the short-
est path itself) from s to g; this is an easy adaptation of the algorithm presented in
this paper, with minor (and obvious) modifications. One can show that, for m given
sources, the algorithm processes O (m + n) events in total O ((m + n)log(m + n))
time, using O ((m + n)log(m + n)) storage; afterwards, a nearest-source query can
be answered in O (log(m + n)) time.

It is natural to extend the wavefront propagation method to the shortest path prob-
lem on the surface of a nonconvex polyhedral surface. As our more recent results [33]
show, such an extension, which still runs in optimal O (nlogn) time, exists for sev-
eral restricted classes of “realistic” polyhedra, such as a polyhedral terrain whose
maximal facet slope is bounded, and a few other classes. However, the question of
whether a subquadratic-time algorithm exists for the most general case of nonconvex
polyhedra, remains open.

Finally, we conclude with two less prominent open problems.

1. Can the space complexity of the algorithm be reduced to linear? Note that our
O (nlogn) storage bound is a consequence of only the need to perform path copy-
ing to ensure persistence of the surface unfolding data structure in Sect. 2.4 and the
source unfolding data structure in Sect. 5.1. Note also that the related algorithms
of [18] and [28] also use O (nlogn) storage.

2. Can an unfolding of a surface cell of S overlap itself?
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