
Discrete Comput Geom (2008) 39: 500–579

DOI 10.1007/s00454-007-9031-0

An Optimal-Time Algorithm for Shortest Paths

on a Convex Polytope in Three Dimensions

Yevgeny Schreiber · Micha Sharir

Received: 19 January 2007 / Revised: 4 August 2007 /

Published online: 19 September 2007

© Springer Science+Business Media, LLC 2007

Abstract We present an optimal-time algorithm for computing (an implicit repre-

sentation of) the shortest-path map from a fixed source s on the surface of a convex

polytope P in three dimensions. Our algorithm runs in O(n logn) time and requires

O(n logn) space, where n is the number of edges of P . The algorithm is based on the

O(n logn) algorithm of Hershberger and Suri for shortest paths in the plane (Hersh-

berger, J., Suri, S. in SIAM J. Comput. 28(6):2215–2256, 1999), and similarly follows

the continuous Dijkstra paradigm, which propagates a “wavefront” from s along ∂P .

This is effected by generalizing the concept of conforming subdivision of the free

space introduced by Hershberger and Suri and by adapting it for the case of a con-

vex polytope in R
3, allowing the algorithm to accomplish the propagation in discrete

steps, between the “transparent” edges of the subdivision. The algorithm constructs a

dynamic version of Mount’s data structure (Mount, D.M. in Discrete Comput. Geom.

2:153–174, 1987) that implicitly encodes the shortest paths from s to all other points

of the surface. This structure allows us to answer single-source shortest-path queries,

where the length of the path, as well as its combinatorial type, can be reported in

O(logn) time; the actual path can be reported in additional O(k) time, where k is the

number of polytope edges crossed by the path.

Work on this paper was supported by NSF Grants CCR-00-98246 and CCF-05-14079, by a grant

from the U.S.-Israeli Binational Science Foundation, by grant 155/05 from the Israel Science

Fund, and by the Hermann Minkowski–MINERVA Center for Geometry at Tel Aviv University.

The paper is based on the Ph.D. Thesis of the first author, supervised by the second author.

A preliminary version has been presented in Proc. 22nd Annu. ACM Sympos. Comput. Geom.,

pp. 30–39, 2006.

Y. Schreiber (�) · M. Sharir

School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel

e-mail: syevgeny@tau.ac.il

M. Sharir

Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA

e-mail: michas@tau.ac.il

Discrete Comput Geom (2008) 39: 500–579 501

The algorithm generalizes to the case of m source points to yield an implicit

representation of the geodesic Voronoi diagram of m sites on the surface of P , in

time O((n + m) log(n + m)), so that the site closest to a query point can be reported

in time O(log(n + m)).

Keywords Continuous Dijkstra · Geodesics · Polytope surface · Shortest path ·

Shortest path map · Unfolding · Wavefront

1 Introduction

1.1 Background

The problem of determining the Euclidean shortest path on the surface of a convex

polytope in R
3 between two points, or, more generally, computing a compact rep-

resentation of all such paths that emanate from a fixed source point s, is a classical

problem in geometric optimization, first studied by Sharir and Schorr [36]. Their al-

gorithm, whose running time is O(n3 logn), constructs a planar layout of the shortest

path map, and then the length and combinatorial type of the shortest path from s to

any given query point q can be found in O(logn) time; the path itself can be reported

in O(k) additional time, where k is the number of edges of P that are traversed by the

shortest path from s to q . Soon afterwards, Mount [27] gave an improved algorithm

for convex polytopes with running time O(n2 logn). Moreover, in [28], Mount has

shown that the problem of storing shortest path information can be treated separately

from the problem of computing it, presenting a data structure of O(n logn) space

that supports O(logn)-time shortest-path queries. However, the question whether this

data structure can be constructed in subquadratic time, has been left open.

For a general, possibly nonconvex polyhedron P , O’Rourke et al. [31] gave an

O(n5)-time algorithm for the single source shortest path problem. Subsequently,

Mitchell et al. [26] presented an O(n2 logn) algorithm, extending the technique

of [27]. All algorithms in [26, 27, 36] use the same general approach, called “con-

tinuous Dijkstra”, first formalized in [26]. The technique keeps track of all the points

on the surface whose shortest path distance to the source s has the same value t ,

and maintains this “wavefront” as t increases. The approach treats certain elements

of ∂P (vertices, edges, or other elements) as nodes in a graph, and follows Dijkstra’s

algorithm to extract the unprocessed element currently closest to s and to propagate

from it, in a continuous manner, shortest paths to other elements. The same general

approach is also used in our algorithm.

Chen and Han [8] use a rather different approach (for a not necessarily convex

polyhedral surface). Their algorithm builds a shortest path sequence tree, using an

observation that they call “one angle one split” to bound the number of branches,

maintaining only O(n) nodes in the tree in O(n2) total running time. The algorithm

of [8] also constructs a planar layout of the shortest path map (which is “dual” to the

layout of [36]), which can be used similarly for answering shortest path queries in

O(logn) time (or O(k+ logn) time for path reporting). (Their algorithm is somewhat

simpler for the case of a convex polytope P , relying on the property, established by

Aronov and O’Rourke [6], that this layout of P does not overlap itself.) In [9], Chen

502 Discrete Comput Geom (2008) 39: 500–579

and Han follow the general idea of Mount [28] to solve the problem of storing short-

est path information separately, for a general, possibly nonconvex polyhedral surface.

They obtain a tradeoff between query time O(d logn/ logd) and space complex-

ity O(n logn/ logd), where d is an adjustable parameter. Again, the question whether

this data structure can be constructed in subquadratic time, has been left open.

The problem has been more or less “stuck” after Chen and Han’s paper, and the

quadratic-time barrier seemed very difficult to break. For this and other reasons, sev-

eral works [2–4, 16, 17, 19, 24, 25, 38] presented approximate algorithms for the

3-dimensional shortest path problem. Nevertheless, the major problem of obtain-

ing a subquadratic, or even near-linear, exact algorithm remained open. In 1999,

Kapoor [21] announced such an algorithm for the shortest path problem on an ar-

bitrary polyhedral surface P (see also a review of the algorithm in O’Rourke’s col-

umn [29]). The algorithm follows the continuous Dijkstra paradigm, and claims to be

able to compute a shortest path between two given points in O(n log2 n) time (so it

does not preprocess the surface for answering shortest path queries). However, as far

as we know, the details of Kapoor’s algorithm have not yet been published.

The Algorithm of Hershberger and Suri for Polygonal Domains A dramatic break-

through on a loosely related problem took place in 1995,1 when Hershberger and

Suri [18] obtained an O(n logn)-time algorithm for computing shortest paths in the

plane in the presence of polygonal obstacles (where n is the number of obstacle ver-

tices). The algorithm actually computes a shortest path map from a fixed source point

to all other (non-obstacle) points of the plane, which can be used to answer single-

source shortest path queries in O(logn) time.

Our algorithm uses (adapted variants of) many of the ingredients of [18], includ-

ing the continuous Dijkstra method—in [18], the wavefront is propagated amid the

obstacles, where each wave emanates from some obstacle vertex already covered by

the wavefront; see Fig. 1(a).

The key new ingredient in [18] is a quad-tree-style subdivision of the plane, of

size O(n), on the vertices of the obstacles (temporarily ignoring the obstacle edges).

Fig. 1 The planar case: (a) The wavefront propagated from s, at some fixed time t . (b) The conforming

subdivision of the free space

1A preliminary (symposium) version has appeared in 1993; the last version was published in 1999.

Discrete Comput Geom (2008) 39: 500–579 503

See Fig. 1(b) for an illustration. Each cell of this conforming subdivision is bounded

by O(1) axis-parallel straight line edges (called transparent edges), contains at most

one obstacle vertex, and satisfies the following crucial “conforming” property: For

any transparent edge e of the subdivision, there are only O(1) cells within distance

2|e| of e. Then the obstacle edges are inserted into the subdivision, while maintain-

ing both the linear size of the subdivision and its conforming property—except that

now a transparent edge e has the property that there are O(1) cells within short-

est path distance 2|e| of e. These transparent edges form the elements on which the

Dijkstra-style propagation is performed—at each step, the wavefront is ascertained

to (completely) cover some transparent edge, and is then advanced into O(1) nearby

cells and edges. Since each cell is “simple,” the wavefront propagation inside a cell

can be implemented efficiently. The conforming nature of the subdivision guarantees

the crucial property that each transparent edge e needs to be processed only once, in

the sense that no path that reaches e after the simulation time at which it is processed

can be a shortest path, so the Dijkstra style of propagation works correctly for the

transparent edges.

1.2 An Overview of Our Algorithm

As in [18], we construct a conforming subdivision of ∂P to control the wavefront

propagation. We first construct an oct-tree-like 3-dimensional axis-parallel subdivi-

sion S3D, only on the vertices of ∂P . Then we intersect S3D with ∂P , to obtain a

conforming surface subdivision S. (We use the term “facet” when referring to a tri-

angle of ∂P , and we use the term “face” when referring to the square faces of the

3-dimensional cells of S3D. Furthermore, each such face is subdivided into square

“subfaces”.) In our case, a transparent edge e may traverse many facets of P , but

we still want to treat it as a single simple entity. To this end, we first replace each

actual intersection ξ of a subface of S3D with ∂P by the shortest path on ∂P that

connects the endpoints of ξ and traverses the same facet sequence of ∂P as ξ , and

make those paths our transparent edges. We associate with each such transparent

edge e the polytope edge sequence that it crosses, which is stored in compact form

and is used to unfold e to a straight segment. To compute the unfolding efficiently, we

preprocess ∂P into a surface unfolding data structure that allows us to process any

such unfolding query in O(logn) time. This is a nontrivial addition to the machinery

of [18] (where the transparent edges are simply straight segments, which are trivial

to represent and to manipulate).

However, in order to propagate the wavefront along the surface of P , we have

to overcome another difficulty. On top of the main problem that a surface cell may

intersect many (up to Θ(n)) facets of P , it can in general be unfolded in more than

one way, and such an unfolding may overlap itself (see [11]). To overcome this, we

introduce a Riemann structure that efficiently represents the unfolded regions of the

polytope surface that the algorithm processes. This representation subdivides each

surface cell into O(1) simple building blocks that have the property that a planar un-

folding of such a block (a) is unique, and (b) is a simply connected polygon bounded

by O(1) straight line segments (and does not overlap itself). A global unfolding is a

concatenation of unfolded images of a sequence, or more generally a tree, of certain

504 Discrete Comput Geom (2008) 39: 500–579

blocks. It may overlap itself, but we ignore these overlaps, treating them as different

layers of a Riemann surface.

We maintain two one-sided wavefronts instead of one exact wavefront at each

transparent edge e, so that, for any point p ∈ e, the true shortest path distance from s

to p is the smaller of the two distances to p encoded in the two one-sided wavefronts.

At each step of the wavefront propagation phase, the algorithm picks up a transpar-

ent edge e, constructs each of the one-sided wavefronts at e by merging the wave-

fronts that have already reached e from a fixed side, and propagates from e each of its

two one-sided wavefronts to O(1) nearby transparent edges f , following the general

scheme of [18]. Each propagation that reaches f from e proceeds along a fixed se-

quence of building blocks that connect e to f . For a fixed edge e, there are only O(1)

successor transparent edges f and only O(1) block sequences for any of those f ’s.

A key difference from [18] is that in our case shortest paths “fold” over ∂P , and

need to be unfolded onto some plane (on which they look like straight segments). We

cannot afford to perform all these unfoldings explicitly—this would by itself degrade

the storage and running time to quadratic in the worst case. Instead we maintain par-

tial unfolding transformations at the nodes of our structure, composing them on the

fly (as rigid transformations of 3-space) to perform the actual unfoldings whenever

needed.

During each propagation, we keep track of combinatorial changes that occur

within the wavefront: At each of these events, we either split a wave into two waves

when it hits a vertex, or eliminate a wave when it is “overtaken” by its two neigh-

bors. Following a modified variant of the analysis of [18], we show that the algorithm

encounters a total of only O(n) “events,” and processes each event in O(logn) time.

After the wavefront propagation phase, we perform further preprocessing to facil-

itate efficient processing of shortest path queries. This phase is rather different from

the shortest path map construction in [18], since we do not provide, nor know how

to construct, an explicit representation of the shortest path map on P in o(n2) time.2

However, our implicit representation of all the shortest paths from the source suffices

for answering any shortest path query in O(logn) time. The query “identifies” the

path combinatorially. It can immediately produce the length of the path (assuming

the real RAM model of computation), and the direction at which it leaves s to reach

the query point. An explicit representation of the path takes O(k) additional time to

compute, where k is the number of polytope edges crossed by the path.

To aid readers familiar with [18], the structure of our paper closely follows that

of [18], although each part that corresponds to a part of [18] is quite different in

technical details. Section 2 provides some preliminary definitions and describes the

construction of the conforming surface subdivision using an already constructed con-

forming 3D-subdivision S3D, while the construction of S3D, which is slightly more

involved, is deferred to Sect. 6 (it is nevertheless very similar to its counterpart in [18],

and we only describe the differences between the two procedures). The construction

in Sect. 2 is new and involves many ingredients that cater to the spatial structure of

convex polytopes. Section 3 also has no parallel in [18]—it presents the Riemann

structure, which represents the unfolding of the polytope surface, as needed for the

2An explicit representation is tricky in any case, because the map, in its folded form, has quadratic com-

plexity in the worst case.

Discrete Comput Geom (2008) 39: 500–579 505

implementation of the wavefront propagation phase. Section 4 describes the wave-

front propagation phase itself. The data structures and the implementation details of

the algorithm, as well as the final phase of the preprocessing for shortest path queries,

are presented in Sect. 5. We close in Sect. 7 with a discussion, which includes the ex-

tension to the construction of geodesic Voronoi diagrams on ∂P , and with several

open problems.

The full version of the paper [34] is even longer than this journal version—it builds

upon the already long paper [18], and adds many new technical steps in full detail.

This shorter journal version contains most of its ingredients, but omits certain steps,

such as those sufficiently similar to their counterparts in [18].

2 A Conforming Surface Subdivision

A key ingredient of the algorithm is a special subdivision S of ∂P , which we con-

struct in two steps. The first step, sketched in Sect. 6, builds a rectilinear oct-tree-like

subdivision S3D of R
3 by taking into account only the vertices of P (see [34, Sect. 6]

for details). In the present section, we only state the properties that S3D should satisfy,

assume that it is already available, and describe the second step, which constructs S

from S3D. We start with some preliminary definitions.

2.1 Preliminaries

Without loss of generality, we assume that s is a vertex of P , that all facets of P are

triangles, and that no edge of P is axis-parallel. Our model of computation is the real

RAM.

We borrow some definitions from [26, 35, 36]. A geodesic path π is a simple path

along ∂P so that, for any two sufficiently close points p,q ∈ π , the portion of π be-

tween p and q is the unique shortest path that connects them on ∂P . Such a path π

is always piecewise linear; its length is denoted as |π |. For any two points a, b ∈ ∂P ,

a shortest geodesic path between them is denoted by π(a, b). Generally, π(a, b) is

unique, but there are degenerate placements of a and b for which there exist several

geodesic shortest paths that connect them. For convenience, the word “geodesic” is

omitted in the rest of the paper. For any two points a, b ∈ ∂P , at least one shortest path

π(a, b) exists [26]. We use the notation Π(a,b) to denote the set of all shortest paths

connecting a and b. The length of any path in Π(a,b) is the shortest path distance

between a and b, and is denoted as dS(a, b). We occasionally use dS(X,Y) to denote

the shortest path distance between two compact sets of points X,Y ⊆ ∂P , which is

the minimum dS(x, y), over all x ∈ X and y ∈ Y . We use d3D(x, y) (resp., d∞(x, y))

to denote the Euclidean (resp., the L∞) distance in R
3 between x, y; when consider-

ing points x, y on a plane, we sometimes denote d3D(x, y) by d(x, y).

If facets f and f ′ share a common edge χ , the unfolding of f ′ onto (the plane

containing) f is the rigid transformation that maps f ′ into the plane containing f ,

effected by an appropriate rotation about the line through χ , so that f and the image

of f ′ lie on opposite sides of that line. Let F = (f0, f1, . . . , fk) be a sequence of

distinct facets such that fi−1 and fi have a common edge χi , for i = 1, . . . , k. We say

that F is the corresponding facet sequence of the edge sequence E = (χ1, χ2, . . . , χk)

506 Discrete Comput Geom (2008) 39: 500–579

(and that E is the corresponding edge sequence of F). The unfolding transformation

UE is the transformation of 3-space that represents the rigid motion that maps f0 to

the plane of fk , through a sequence of unfoldings at the edges χ1, χ2, . . . , χk . That

is, for i = 1, . . . , k, let ϕi be the rigid transformation of 3-space that unfolds fi−1

to the plane of fi about χi . The unfolding UE is then the composed transformation

ΦE = ϕk ◦ ϕk−1 ◦ · · · ◦ ϕ1. (The unfolding of an empty edge sequence is the identity

transformation.) However, in what follows, we will also use UE to denote the collec-

tion of all partial unfoldings Φ
(i)

E
= ϕk ◦ϕk−1 ◦ . . .◦ϕi , for i = 1, . . . , k. Thus Φ

(i)

E
is

the unfolding of fi−1 onto the plane of fk . The domain of UE is then defined as the

union of all points in f0, f1, . . . , fk , and the plane of the last facet fk is denoted as the

destination plane of UE . Since each rigid transformation in R
3 can be represented as a

4×4 matrix [32] (see [34] for details), the entire sequence ΦE = Φ
(1)

E
,Φ

(2)

E
, . . . ,Φ

(k)

E
can be computed in O(k) time.

The unfolding UE (F) of the facet sequence F is the union
⋃k

i=0 Φ
(i+1)

E
(fi) of

the unfoldings of each of the facets fi ∈ F , in the destination plane of UE (here

the unfolding transformation for fk is the identity).3 The unfolding UE (π) of a path

π ⊂ ∂P that traverses the edge sequence E , is the path consisting of the unfolded

images of all the points of π in the destination plane of UE .

The following properties of shortest paths are proved in [8, 26, 35, 36]: (i) The

intersection of a shortest path π with any facet f of ∂P is a (possibly empty) line

segment. (ii) If π traverses the edge sequence E , then the unfolded image UE (π) is a

straight line segment. (iii) A shortest path π never crosses a vertex of P (but it may

start or end at a vertex). (iv) Two shortest paths from the same source point s, so that

none of them is an extension of the other, cannot intersect each other except at s and,

if they have the same destination point, possibly at that point too.

The Elements of the Shortest Path Map We consider the problem of computing

shortest paths from a fixed source point s ∈ ∂P to all points of ∂P . A point z ∈ ∂P is

called a ridge point if there exist at least two distinct shortest paths from s to z. The

shortest path map with respect to s, denoted SPM(s), is a subdivision of ∂P into at

most n connected regions, called peels, whose interiors are vertex-free and contain

neither ridge points nor points belonging to shortest paths from s to vertices of P ,

and such that for each such peel Φ , there is only one shortest path π(s,p) ∈ Π(s,p)

to any p ∈ Φ , which also satisfies π(s,p) ⊂ Φ .

There are two types of intrinsic vertices of SPM(s) (excluding intersections of peel

boundaries with edges of P): ridge points that are incident to three or more peels, and

vertices of P (including s). The boundaries of the peels form the edges of SPM(s).

There are two types of edges (see Fig. 2): (i) shortest paths from s to a vertex of P ,

and (ii) bisectors, each being a maximal connected polygonal path of ridge points

between two vertices of SPM(s) that does not contain any vertex of SPM(s).

It is proved in [36] that: (1) A shortest path from s to any point in ∂P cannot cross

a bisector. (2) SPM(s) has only O(n) vertices and (folded) edges, each of which is a

union of O(n) straight segments.

3Our definition of unfolding is asymmetric, in the sense that we could equally unfold into the plane of

any of the other facets of F . We sometimes ignore the exact choice of the destination plane, since the

appropriate rigid transformation that moves between these planes is easy to compute.

Discrete Comput Geom (2008) 39: 500–579 507

Denote by Ei the maximal polytope edge sequence crossed by a shortest path

from s to a vertex of a peel Φi inside Φi (Ei is unique, since Φi does not contain

polytope vertices in its interior). Denote by si the unfolded source image UEi
(s); for

the sake of simplicity, we also denote by si the unfolded source image UE ′
i
(s), where

E ′
i is some prefix of Ei . A bisector between two adjacent peels Φi,Φj is denoted

by b(si, sj). It is the locus of points q equidistant from si and sj (on some com-

mon plane), so that there are at least two shortest paths in Π(s, q)—one, completely

contained in Φi , traverses a prefix of the polytope edge sequence Ei , and the other,

completely contained in Φj , traverses a prefix of the polytope edge sequence Ej . Note

that for two maximal polytope edge sequences Ei,Ej , the bisector b(si, sj) between

the source images si = UEi
(s) and sj = UEj

(s) satisfies both the following proper-

ties: UEi
(b(si, sj)) ⊂ UEi

(Fi), and UEj
(b(si, sj)) ⊂ UEj

(Fj), where Fi,Fj are the

respective corresponding facet sequences of Ei,Ej .

2.2 The 3-Dimensional Subdivision and Its Properties

We begin by introducing the subdivision S3D of R
3, whose construction is sketched

in Sect. 6. The subdivision is composed of 3D-cells, each of which is an axis-parallel

cube, either whole, or perforated by a single axis-parallel cube-shaped hole;4 see

Fig. 3. The boundary face of each 3D-cell is divided into either 16 × 16 or 64 × 64

square subfaces with axis-parallel sides.

Let l(h) denote the edge length of a square subface h.

The crucial property of S3D is the well-covering of its subfaces. Specifically, a

subface h of S3D is said to be well-covered if the following three conditions hold:

Fig. 2 Peels are bounded by

thick lines (dashed and solid).

The bisectors (the set of all the

ridge points) are the thick solid

lines, while the dashed solid

lines are the shortest paths

from s to the vertices of P

Fig. 3 Two types of a 3D-cell:

a whole cube (where the

subdivision of three of its faces

is shown), and a perforated cube

(it is not shown here that each of

its inner and outer faces is

subdivided into subfaces)

4The 3D-subdivision S3D is similar to a (compressed) oct-tree in that all its faces are axis-parallel and

their sizes grow by factors of 4. However, the cells of S3D may be nonconvex and the union of the surfaces

of the 3D-subdivision itself may be disconnected.

508 Discrete Comput Geom (2008) 39: 500–579

Fig. 4 The well-covering region of the darkly shaded face h contains, in this example, a total of 39

3D-cells (nine transparent large cells on the back, five lightly shaded large cells on the front, and 25 small

cells, also on the front). Each face of the boundary of each 3D-cell in this figure is further subdivided into

subfaces (not shown). The well-covering region of each of the subfaces of h coincides with R(h)

(W1) There exists a set of O(1) cells C(h) ⊆ S3D such that h lies in the interior

of their union R(h) =
⋃

c∈C(h) c. The region R(h) is called the well-covering

region of h (see Fig. 4).

(W2) The total complexity of the subdivisions of the boundaries of all the cells

in C(h) is O(1).

(W3) If g is a subface on ∂R(h), then d3D(h, g) ≥ 16 max{l(h), l(g)}.

A subface h is strongly well-covered if the stronger condition (W3′) holds:5

(W3′) For any subface g so that h and g are portions of nonadjacent (undivided)

faces of the subdivision, d3D(h, g) ≥ 16 max{l(h), l(g)}.

Let V denote the set of vertices of the polytope (including the source vertex s).

A 3D-subdivision S3D is called a (strongly) conforming 3D-subdivision for V if the

following three conditions hold.

(C1) Each cell of S3D contains at most one point of V in its closure.

(C2) Each subface of S3D is (strongly) well-covered.

(C3) The well-covering region of every subface of S3D contains at most one vertex

of V .

S3D also has the following minimum vertex clearance property:

(MVC) For any point v ∈ V and for any subface h, d3D(v,h) ≥ 4l(h).

As mentioned, the algorithm for computing a strongly conforming 3D-subdivision

of V is sketched in Sect. 6. We state the main result shown there.6

Theorem 2.1 (Conforming 3D-subdivision Theorem) Every set of n points in R
3

admits a strongly conforming 3D-subdivision S3D of O(n) size that also satisfies the

5The wavefront propagation algorithm described in Sects. 4 and 5 requires the subfaces of S3D only to be

well-covered, but not necessarily strongly well-covered. The stronger condition (W3′) of subfaces of S3D

is needed only in the construction of the surface subdivision S.

6Note that we do not assume that the points of V are in convex position.

Discrete Comput Geom (2008) 39: 500–579 509

minimum vertex clearance property. In addition, each input point is contained in the

interior of a distinct whole cube cell. Such a 3D-subdivision can be constructed in

O(n logn) time.

2.3 Computing the Surface Subdivision

Transparent Edges We intersect the subfaces of S3D with ∂P . Each maximal con-

nected portion ξ of the intersection of a subface h of S3D with ∂P induces a surface-

subdivision (transparent) edge e of S with the same pair of endpoints. (We textitasize

here that e 	= ξ . The precise construction of e is detailed below.) A single subface h

can therefore induce up to four transparent edges (since P is convex and h is a square,

and the construction of S3D ensures that none of its edges is incident to a polytope

edge; see Fig. 5). If ξ is a closed cycle fully contained in the interior of h, we break

it at its x-rightmost and x-leftmost points (or y-rightmost and y-leftmost points, if h

is perpendicular to the x-axis). These two points are regarded as two new endpoints

of transparent edges. These endpoints, as well as the endpoints of the open connected

intersection portions ξ , are referred to as transparent endpoints.

Let ξ(a, b) be a maximal connected portion of the intersection of a subface h of

S3D with ∂P , bounded by two transparent endpoints a, b. Let E = Ea,b denote the

sequence of polytope edges that ξ(a, b) crosses from a to b, and let F = Fa,b denote

the facet sequence corresponding to E . We define the transparent edge ea,b as the

shortest path from a to b within the union of F (a priori, UE (ea,b) is not necessarily

a straight segment, but we will shortly show that it is); see Fig. 6. We say that ea,b

originates from the cut ξ(a, b). Obviously, its length |ea,b| is equal to |UE (ea,b)| ≤

|ξ(a, b)|. (This initial collection of transparent edges may contain crossing pairs, and

Fig. 5 A subface h and three

maximal connected portions

ξ1, ξ2, ξ3 that constitute the

intersection h ∩ ∂P

Fig. 6 The cuts of the boundaries of the 3D-cells c1, c2 with ∂P are denoted by thin solid lines, and the

dashed lines denote polytope edges. The transparent edge ea,b that originates from the cut ξ(a, b) is bold.

(To simplify the illustration, this figure ignores the fact that the faces of S3D are actually subdivided into

smaller subfaces)

510 Discrete Comput Geom (2008) 39: 500–579

each initial transparent edge will be split into sub-edges at the points where other

edges cross it—see below.)

Lemma 2.2 No polytope vertex can be incident to transparent edges. That is, for

each transparent edge ea,b , the unfolded path UE (ea,b) is a straight segment.

Proof By (MVC), for any subface h of S3D and for any v ∈ V , we have d3D(h, v) ≥

4l(h). Let ea,b be a transparent edge originating from ξ(a, b) ⊂ h∩∂P . Then |ea,b| ≤

|ξ(a, b)|, by definition of transparent edges, and |ξ(a, b)| ≤ 4l(h), since ξ(a, b) ⊆ h

is convex, and h is a square of side length l(h). Therefore d3D(a, v) ≥ |ea,b|, which

shows that ea,b cannot reach any vertex v of P . �

Lemma 2.3 A transparent endpoint is incident to at least two and at most O(1)

transparent edges.

Proof Easy, and omitted; it follows from the structure of S3D. �

Lemma 2.4 Each transparent edge that originates from some face φ of S3D, meets

at most O(1) other transparent edges that originate from faces of S3D adjacent to φ

(or from φ itself), and does not cross any other transparent edges (which originate

from faces of S3D not adjacent to φ).

Proof Let ea,b be a transparent edge originating from the cut ξ(a, b), and let ec,d be

a transparent edge originating from the cut ξ(c, d). Let h,g be the subfaces of S3D

that contain ξ(a, b) and ξ(c, d), respectively. Since a, b ∈ h, we have d3D(ea,b, h) <
1
2
|ea,b| ≤ 1

2
|ξ(a, b)| ≤ 2l(h). Similarly, d3D(ec,d , g) ≤ 2l(g). Recall that S3D is a

strongly conforming 3D-subdivision. Therefore, if h,g are incident to non-adjacent

faces of S3D, then, by (W3′), d3D(h, g) ≥ 16 max{l(h), l(g)}, hence ea,b does not in-

tersect ec,d . Since are only O(1) faces of S3D that are adjacent to the face of h, and

each of them contains O(1) subfaces g, there are at most O(1) possible choices of g

for each h. �

Splitting Intersecting Transparent Edges Crossing transparent edges are illustrated

in Fig. 7. We first show how to compute the intersection points; then, each intersection

point is regarded as a new transparent endpoint, splitting each of the two intersecting

edges into sub-edges.

Lemma 2.5 A maximal contiguous facet subsequence that is traversed by a pair

of intersecting transparent edges e, e′ contains either none or only one intersection

point of e ∩ e′. In the latter case, it contains an endpoint of e or e′ (see Fig. 8).

Proof Consider some maximal common facet subsequence F̃ = (f0, . . . , fk) that is

traversed by e and e′, so that the union R of the facets in F̃ contains an intersection

point of e ∩ e′. Since F̃ is maximal, no edge of ∂R is crossed by both e and e′; in

particular, F̃ cannot be a single triangle, so k ≥ 1. Since e and e′ are shortest paths

Discrete Comput Geom (2008) 39: 500–579 511

Fig. 7 Subfaces are bounded by

dotted lines, polytope edges are

dashed, the cuts of ∂P ∩ S3D

are thin solid lines, and the two

transparent edges ea,b, ec,d are

drawn as thick solid lines. The

edges ea,b, ec,d intersect each

other at the point x ∈ ∂P ; the

shaded region of ∂P (including

the point x on its boundary) lies

in this illustration beyond the

plane that contains the

cut ξ(c, d)

Fig. 8 Two examples of intersecting transparent edges e, e′ (thin solid lines); the corresponding original

cuts (thick solid lines) never intersect each other. The maximal contiguous facet subsequences that are

traversed by both e, e′ and contain an intersection point of e ∩ e′ are shaded. In the second example, the

“hole” of ∂P between the facet sequence traversed by e and the facet sequence traversed by e′ is hatched

Fig. 9 (a) e′ divides R into two regions, one of which, R′ (shaded), contains neither u nor v. (b) If R′

contains v but not u, ξ ′ (crossing the same edge sequence as e′) intersects ξ (which must cross the bold

dashed edges, since R is maximal)

within R, they cannot cross each other (within R) more than once, which proves the

first part of the lemma.

To prove the second claim, assume the contrary — that is, R does not contain any

endpoint of e and of e′. Denote by u (resp., v) the vertex of f0 (resp., fk) that is not

incident to f1 (resp., fk−1). We claim that e′ divides R into two regions, one of which

contains both u and v, and the other, which we denote by R′, contains neither u nor v.

Indeed, if each of the two subregions contained exactly one point from {u,v} then, by

maximality of F̃ , e and e′ would have to traverse facet sequences that “cross” each

other, which would have forced the corresponding original cuts ξ, ξ ′ also to cross

each other, contrary to the construction; see Fig. 9. The transparent edge e intersects

512 Discrete Comput Geom (2008) 39: 500–579

∂R in exactly two points that are not incident to R′. Since e intersects e′ in R, e must

intersect ∂R′ ∩ e′ in two points—a contradiction. �

By Lemma 2.4, each transparent edge e has at most O(1) candidate edges that can

intersect it (at most four times, as follows from Lemma 2.5). For each such candidate

edge e′, we can find each of the four possible intersection points, using Lemma 2.5, as

follows. First, we check for each of the extreme facets in the facet sequence traversed

by e, whether it is also traversed by e′, and vice versa (if all the four tests are negative,

then e and e′ do not intersect each other). We describe in the proof of Lemma 2.11

below how to perform these tests efficiently. For each positive test—when a facet f

that is extreme in the facet sequence traversed by one of e, e′, is present in the facet

sequence traversed by the other—we unfold both e, e′ to the plane of f , and find the

(image in the plane of f of the) intersection point of e∩ e′ that is closest to f (among

the two possible intersection points).

Surface Cells After splitting the intersecting transparent edges, the resulting trans-

parent edges are pairwise openly disjoint and subdivide ∂P into connected (albeit

not necessarily simply connected) regions bounded by cycles of transparent edges, as

follows from Lemma 2.3. These regions, which we call surface cells, form a planar

(or, rather, spherical) map S on ∂P , which is referred to as the surface subdivision

of P . Each surface cell is bounded by a set of cycles of transparent edges that are

induced by some 3D-cell c3D, and possibly also by a set of other 3D-cells adjacent

to c3D whose originally induced transparent edges split the edges originally induced

by c3D.

Corollary 2.6 Each 3D-cell induces at most O(1) (split) transparent edges.

Proof Follows immediately from the property that the boundary of each 3D-cell con-

sists of only O(1) subfaces, from the fact that each subface induces up to four trans-

parent edges, and from Lemmas 2.4 and 2.5. �

Corollary 2.7 For each surface cell c, all transparent edges on ∂c are induced by

O(1) 3D-cells.

Proof Follows immediately from Lemma 2.4. �

Corollary 2.8 Each surface cell is bounded by O(1) transparent edges.

Proof Follows immediately from Corollaries 2.6 and 2.7. �

Well-Covering We require that all transparent edges be well-covered in the surface

subdivision S (compare to the well-covering property of the subfaces of S3D), in the

following modified sense.

(W1S) For each transparent edge e of S, there exists a set C(e) of O(1) cells of S

such that e lies in the interior of their union R(e) =
⋃

c∈C(e) c, which is called

the well-covering region of e.

Discrete Comput Geom (2008) 39: 500–579 513

(W2S) The total number of transparent edges in all the cells in C(e) is O(1).

(W3S) Let e1 and e2 be two transparent edges of S such that e2 lies on the boundary

of the well-covering region R(e1). Then dS(e1, e2) ≥ 2 max{|e1|, |e2|}.

As the next theorem shows, our surface subdivision S is a conforming surface

subdivision for P , in the sense that the following three properties hold.

(C1S) Each cell of S is a region on ∂P that contains at most one vertex of P in its

closure.

(C2S) Each edge of S is well-covered.

(C3S) The well-covering region of every edge of S contains at most one vertex of P .

Theorem 2.9 (Conforming Surface-Subdivision Theorem) Each convex polytope P

with n vertices admits a conforming surface subdivision S into O(n) transparent

edges and surface cells, constructed as described above.

Proof The properties (C1S), (C3S) follow from the properties (C1), (C3) of S3D,

respectively, and from the fact that each cycle C of transparent edges that forms a

connected component of the boundary of some cell of S traverses the same polytope

edge sequence as the original intersections of S3D with ∂P that induce C.

To show well-covering of edges of S (property (C2S)), consider an original trans-

parent edge ea,b (before the splitting of intersecting edges). The endpoints a, b are

incident to some subface h that is well-covered in S3D, by a region R(h) con-

sisting of O(1) 3D-cells. We define the well-covering region R(e) of every edge

e, obtained from ea,b by splitting, as the connected component containing e, of

the union of the surface cells that originate from the 3D-cells of R(h). There are

clearly O(1) surface cells in R(e), since each 3D-cell of S3D induces at most O(1)

(transparent edges that bound at most O(1)) surface cells. R(e) is not empty and

it contains e in its interior, since all the surface cells that are incident to e orig-

inate from 3D-cells that are incident to h and therefore are in R(h). For each

transparent edge e′ originating from a subface g that lies on the boundary of (or

outside) R(h), dS(h, g) ≥ d3D(h, g) ≥ 16 max{l(h), l(g)}. The length of e satisfies

|e| ≤ |ea,b| ≤ |ξ(a, b)| ≤ 4l(h), and, similarly, |e′| ≤ 4l(g). Therefore, for each p ∈ e

we have d3D(p,h) ≤ 2l(h), and for each q ∈ e′ we have d3D(q, g) ≤ 2l(g). Hence,

for each p ∈ e, q ∈ e′, we have dS(p, q) ≥ d3D(p, q) ≥ (16 − 4)max{l(h), l(g)}, and

therefore dS(e, e′) ≥ 2 max{|e|, |e′|}. �

We next simplify S by deleting (all the transparent edges of) each group of surface

cells whose union completely covers exactly one hole of a single surface cell c and

contains no vertices of P , thereby eliminating the hole and making it part of c; see

Fig. 10. (This optimization clearly does not violate any of the properties of S proved

above.) After the optimization, each hole of a surface cell of S must contain a vertex.

The following lemma sharpens a simple property of S that is used later in Sect. 3.

Lemma 2.10 A transparent edge e intersects any polytope edge in at most one point.

Proof A polytope edge χ can intersect e at most once, since e is a shortest path

(within the union of a facet sequence); since we assume that no edge of P is axis-

parallel, e ∩ χ cannot be a nontrivial segment. �

514 Discrete Comput Geom (2008) 39: 500–579

Fig. 10 Simplifying the subdivision (dashed edges denote polytope edges, and solid edges denote trans-

parent edges). (a) None of the cells is discarded, since, although the shaded cells are completely contained

inside a single hole of another cell, one of them contains a vertex of P . (b) All the shaded cells are dis-

carded, and become part of the containing cell

2.4 The Surface Unfolding Data Structure

In this subsection we present the surface unfolding data structure, which we define

and use to efficiently construct the surface subdivision. This data structure is also

used in Sect. 3 to construct more complex data structures for wavefront propagation

and in Sect. 5 by the wavefront propagation algorithm.

Sort the vertices of P in ascending z-order, and sweep a horizontal plane ζ up-

wards through P . At each height z of ζ , the cross section P(z) = ζ ∩ P is a convex

polygon, whose vertices are intersections of some polytope edges with ζ . The cross-

section remains combinatorially unchanged, and each of its edges retains a fixed ori-

entation, as long as ζ does not pass through a vertex of P . When ζ crosses a vertex

v, the polytope edges incident to v and pointing downwards are deleted (as vertices)

from P(z), and those that leave v upwards are added to P(z).

We can represent P(z) by the circular sequence of its vertices, namely the circular

sequence of the corresponding polytope edges. We use a linear, rather than a circular,

sequence, starting with the x-rightmost vertex of P(z) and proceeding counterclock-

wise (when viewed from above) along ∂P (z). (It is easy to see that the rightmost

vertex of P(z) does not change as long as we do not sweep through a vertex of P .)

We use a persistent search tree Tz (with path-copying, as in [20], for reasons de-

tailed below) to represent the cross section. Since the total number of combinatorial

changes in P(z) is O(n), the total storage required by Tz is O(n logn), and it can be

constructed in O(n logn) time.

We can use Tz to perform the following type of query: Given a horizontal subface

h = [a, b] × [c, d] × {z1} of S3D, compute efficiently the convex polygon P ∩ h, and

represent its boundary in compact form (without computing P ∩ h explicitly). We

access the value Tz(z1) of Tz at z = z1 (which represents P(z1)), and compute the

intersection points of each of the four edges of h with P . It is easily seen that this can

be done in a total of O(logn) time. We obtain at most eight intersection points, which

partition ∂P (z1) into at most eight portions, and every other portion in the resulting

sequence is contained in h. Since these are contiguous portions of ∂P (z1), each of

them can be represented as the disjoint union of O(logn) subtrees of Tz(z1), where

Discrete Comput Geom (2008) 39: 500–579 515

the endpoints of the portions (the intersection points of ∂h with ∂P (z1)) do not appear

in the subtrees, but can be computed explicitly in additional O(1) time. Hence, we

can compute, in O(logn) time, the polytope edge sequence of the intersection P ∩h,

and represent it as the disjoint concatenation of O(logn) canonical sequences, each

formed by the edges stored in some subtree of Tz.

We can also use Tz for another (simpler) type of query: Given a facet f of ∂P and

some z = z1, locate the endpoints of f ∩ P(z1) (which must be stored at two consec-

utive leaves in the cyclic order of leaves of the corresponding version of Tz), or report

that f ∩ P(z1) = ∅. As noted above, the slopes of the edges of P(z) do not change

when z varies, as long as P(z) does not change combinatorially. Moreover, these

slopes increase monotonically, as we traverse P(z1) in counterclockwise direction

from its x-leftmost vertex vL to its x-rightmost vertex vR , and then again from vR

to vL. This allows us to locate f in the sequence of edges of P(z1), in O(logn) time,

by a binary search in the sequence of their slopes. To make binary search possible

in O(logn) time (as well as to enable a somewhat more involved search over Tz that

we use in the proof of Lemma 3.12), we store at each node of Tz a pair of pointers

to the rightmost and leftmost leaves of its subtree. These extra pointers can be easily

maintained during the insertions to and deletions from Tz; it is also easy to see that

updating these pointers is coherent with the path-copying method.

However, the most important part of the structure is as follows. With each node ν

of Tz, we precompute and store the unfolding Uν of the sequence Eν of polytope edges

stored at the leaves of the subtree of ν, exploiting the following obvious observation.

Denote by Fν the corresponding facet sequence of Eν . If ν1, ν2 are the left and the

right children of ν, respectively, then the last facet in Fν1
coincides with the first

facet of Fν2
. Hence Uν = Uν2

◦Uν1
, from which the bottom-up construction of all the

unfoldings Uν is straightforward. Each node stores exactly one rigid transformation,

and each combinatorial change in P(z) requires O(logn) transformation updates,

along the path from the new leaf (or from the deleted leaf) to the root. (The rotations

that keep the tree balanced do not affect the asymptotic time complexity; maintaining

the unfolding information while rebalancing the tree can be performed in a manner

similar to that used in another related data structure, described in Sect. 5.1, with full,

and fairly routine, details given in [34].) Hence the total number of transformations

stored in Tz is O(n logn) (for all z, including the nodes added to the persistent tree

with each path-copying), and they can all be constructed in O(n logn) time.

Let F = (f0, f1, . . . , fk) denote the corresponding facet sequence of the sequence

of edges stored at the leaves of Tz at some fixed z. We next show how to use the

tree Tz to perform another type of query: Compute the unfolded image U(q) of some

point q ∈ fi ∈ F in the (destination) plane of some other facet fj ∈ F (which is not

necessarily the last facet of F), and return the (implicit representation of) the corre-

sponding edge sequence Eij between fi and fj . If i = j , then Eij = ∅ and U(q) = q .

Otherwise, we search for fi and fj in Tz (in O(logn) time, as described above).

Denote by Ui (resp., Uj) the unfolding transformation that maps the points of fi

(resp., fj) into the plane of fk . Then U(q) = U−1
j Ui(q).

We describe next the computation of Ui , and Uj is computed analogously. If fi

equals fk , then Ui is the identity transformation. Otherwise, denote by νi the leaf

of Tz that stores the polytope edge fi ∩ fi+1, and denote by r the root of Tz. We

traverse, bottom up, the path P from νi to r , and compose the transformations stored

516 Discrete Comput Geom (2008) 39: 500–579

Fig. 11 Constructing Ui by traversing the path from the polytope edge succeeding the facet fi to the

root r of Tz . (a) The nodes ν1, ν3 are the left turns, and the nodes ν2, ν4 are the right turns in this example.

(b) Composing the corresponding transformations stored at ν1, . . . , ν4 and at r

at the nodes of P , initializing Ui as the identity transformation and proceeding as

follows. We define a node ν of P to be a left turn (resp., right turn) if we reach ν

from its left (resp., right) child and proceed to its parent ν′ so that ν is the right (resp.,

left) child of ν′. When we reach a left (resp., right) turn ν that stores Uν , we update

Ui := UνUi (resp., Ui := U−1
ν Ui). If we reach r from its right child, we do nothing;

otherwise we update Ui := UrUi , where Ur is the transformation stored at r . See

Fig. 11 for an illustration. Thus, Ui (and Uj) can be computed in O(logn) time, and

so U(q) = U−1
j Ui(q) can be computed in O(logn) time.

We construct, in a completely symmetric fashion, two additional persistent search

trees Tx and Ty , by sweeping P with planes orthogonal to the x-axis and to the y-axis,

respectively.

Hence we can compute, in O(logn) time, the image of any point q ∈ ∂P in any

unfolding formed by a contiguous sequence of polytope edges crossed by an axis-

parallel plane that intersects the facet of q . The surface unfolding data structure that

answers these queries requires O(n logn) space and O(n logn) preprocessing time.

Lemma 2.11 Given the 3D-subdivision S3D, the conforming surface subdivision S

can be constructed in O(n logn) time and space.

Proof First, we construct the surface unfolding data structure (the enhanced persis-

tent trees Tx, Ty , and Tz) in O(n logn) time, as described above. Then, for each sub-

face h of S3D, we use the data structure to find P ∩ h in O(logn) time. If P ∩ h is

a single component, we split it at its rightmost and leftmost points into two portions

as described in the beginning of Sect. 2.3—it takes O(logn) time to locate the split

points using a binary search.

To split the intersecting transparent edges, we check each pair of edges (e, e′) that

might intersect, as follows. First, we find, in the surface unfolding data structure, the

edge sequences E and E ′ traversed by e and e′, respectively (by locating the cross

sections P ∩ h,P ∩ h′, where h,h′ are the respective subfaces of S3D that induce

e, e′). Denote by F = (f0, . . . , fk) (resp., F ′ = (f ′
0, . . . , f

′
k′)) the corresponding facet

sequence of E (resp., E ′). We search for f0 in F ′, using the unfolding data structure.

If it is found, that is, both e and e′ intersect f0, we unfold both edges to the plane of f0

and check whether they intersect each other within f0. We search in the same manner

Discrete Comput Geom (2008) 39: 500–579 517

for fk in F ′, and for f ′
0 and f ′

k′ in F . This yields up to four possible intersections

between e and e′ (if all searches fail, e does not cross e′), by Lemma 2.5. Each of

these steps takes O(logn) time. As follows from Lemma 2.4, there are only O(n)

candidate pairs of transparent edges, which can be found in a total of O(n) time;

hence the whole process of splitting transparent edges takes O(n logn) time.

Once the transparent edges are split, we combine their pieces to form the boundary

cycles of the cells of the surface subdivision. This can easily be done in time O(n).

The optimization that deletes each group of surface cells whose union completely

covers exactly one hole of a single surface cell and contains no vertices of P also

takes O(n) time (using, e.g., DFS on the adjacency graph of the surface cells), since,

during the computation of the cell boundaries, we have all the needed information to

find the transparent edges to be deleted. �

3 Surface Unfoldings and Shortest Paths

In this section we show how to unfold the surface cells of S and how to represent these

unfoldings for the wavefront propagation algorithm (described in Sects. 4 and 5)

as Riemann structures. Informally, this representation consists of unfolded “flaps,”

which we call building blocks, all lying in a common plane of unfolding. We glue

them together locally without overlapping, but they may globally have some over-

laps, which however are ignored, since we consider the corresponding flaps to lie at

different “layers” of the unfolding.

3.1 Building Blocks and Contact Intervals

Maximal Connecting Common Subsequences Let e and e′ be two transparent edges,

and let E = (χ1, χ2, . . . , χk) and E ′ = (χ ′
1, χ

′
2, . . . , χ

′
k′) be the respective polytope

edge sequences that they cross. We say that a common (contiguous) subsequence Ẽ

of E and E ′ is connecting if none of its edges χ̃ is intersected by a transparent edge

between χ̃ ∩ e and χ̃ ∩ e′; see Fig. 12(a). We define G(e, e′) to be the collection of

all maximal connecting common subsequences of E and E ′.

Let e and E be as above, and let v be a vertex of P . Denote by E ′ =

(χ ′
1, χ

′
2, . . . , χ

′
k′) the cyclic sequence of polytope edges that are incident to v, in their

counterclockwise order about v. We regard E ′ as an infinite cyclic sequence, and we

define G(e, v) to be the collection of maximal connecting common subsequences

of E and E ′, similarly to the definition of G(e, e′). See Fig. 12(b).

In either case, the elements of such a collection G(x,y) do not share any polytope

edge. We say that a subsequence in G(x,y) connects x and y.

The Building Blocks Let c be a cell of the surface subdivision S. Denote by E(c)

the set of all the transparent edges on ∂c. Denote by V (c) the set of (zero or one)

vertices of P inside c (recall the properties of S). Define G(c) to be the union of

all collections G(x,y) so that x, y are distinct elements of E(c) ∪ V (c). Fix such

a pair of distinct elements x, y ∈ E(c) ∪ V (c). Let Ex,y = (e0, e1, . . . , ek) ∈ G(x,y)

be a maximal subsequence that connects x and y, and let F = (f0, f1, . . . , fk) be

its corresponding facet sequence. Define the shortened facet sequence of Ex,y to be

518 Discrete Comput Geom (2008) 39: 500–579

Fig. 12 Maximal connecting common subsequences of polytope edges (drawn as thin solid lines)

in (a) G(e, e′), and (b) G(e, v). The transparent edges are drawn thick, and the interiors of the transparent

boundary edge cycles that separate Ẽ1 and Ẽ2 are shaded

Fig. 13 Building blocks (shaded): (a), (b), (c) of types I, II and III, respectively, and (d), (e) of type IV

F \ {f0, fk} (so that the extreme edges e0, ek of Ex,y are on the boundary of its

union), and note that the shortened sequence can be empty (when k = 1). We define

the following four types of building blocks of c.

Type I: Let f be a facet of ∂P . Any connected component of the intersection region

c ∩ f that meets the interior of f and has an endpoint of some transparent edge of ∂c

in its closure is a building block of type I of c. See Fig. 13(a) for an illustration.

Type II: Let v be the unique vertex in V (c) (assuming it exists), e a transparent edge

in ∂c, and Ee,v ∈ G(e, v) a maximal subsequence connecting e and v. Then the region

B , between e and v in the shortened facet sequence of Ee,v , if nonempty, is a building

block of type II of c; see Fig. 13(b).

Type III: Let e, e′ be two distinct transparent edges in ∂c, and let Ee,e′ ∈ G(c) be a

maximal connecting subsequence between e and e′. The region B between e and e′

in the shortened facet sequence of Ee,e′ , if nonempty, is a building block of type III

of c; see Fig. 13(c).

Type IV: Let f be a facet of ∂P . Any connected component of the region c ∩ f

that meets the interior of f , does not contain endpoints of any transparent edge, and

whose boundary contains a portion of each of the three edges of f , is a building block

of type IV of c. See Fig. 13(d), (e).

We associate with each building block one or two edge sequences along which it

can be unfolded. For blocks B contained in a single facet, we associate with B the

empty sequence. For other blocks B (which must be of type II or III), the maximal

connecting edge sequence E = (χ1, . . . , χk) that defines B contains at least two poly-

tope edges. Then we associate with B the two shortened (possibly empty) sequences

Discrete Comput Geom (2008) 39: 500–579 519

E1 = (χ2, . . . , χk−1),E2 = (χk−1, . . . , χ2). Note that neither E1 nor E2 is cyclic, and

that the unfolded images UE1
(B),UE2

(B) are congruent.

We say that two distinct points p,q ∈ ∂P overlap in the unfolding UE of some

edge sequence E , if UE (p) = UE (q). We say that two sets of surface points X,Y ⊂

∂P overlap in UE , if there are at least two points x ∈ X and y ∈ Y so that UE (x) =

UE (y). The following lemma states an important property of building blocks (which

easily follows from their definition).

Lemma 3.1 Let c be a surface cell of S, and let B be a building block of c. Let E be

an edge sequence associated with B . Then no two points p,q ∈ B overlap in UE .

Proof Easy, and omitted. �

Lemma 3.2 Let B be a building block of type IV of a surface cell c, and let f be

the facet that contains B . Then either (a) B is a convex pentagon, bounded by por-

tions of the three edges of f , a vertex of f , and portions of two transparent edges

(see Fig. 13(d)), or (b) B is a convex hexagon, whose boundary alternates between

portions of the edges of f and portions of transparent edges (see Fig. 13(e)). In the

latter case, B contains no vertices of P (i.e., of f).

Proof Easy, and omitted. �

Corollary 3.3 Let B be a building block of type II, III, or IV, and let E be an edge

sequence associated with B . Then UE (B) is convex.

Proof If B is of type II, then UE (B) is a triangle, by construction. If B is of type IV,

then by Lemma 3.2, UE (B) = B is a convex pentagon or hexagon. If B is of type III,

then UE (B) is a convex quadrilateral, by construction. �

Corollary 3.4 There are no holes in building blocks.

Proof Immediate for blocks of type II, III, IV, and follows for blocks of type I from

the optimization procedure described after the proof of Theorem 2.9. �

Lemma 3.5 Any surface cell c has only O(1) building blocks.

Proof There are O(1) transparent edges in c (by construction of S), and therefore

O(1) transparent endpoints, and each endpoint x can be incident to at most one build-

ing block of c of type I (or to at most two such blocks, if our general position as-

sumption is not strong enough—in that case x may be incident to an edge, but not to

a vertex, of P).

There are O(1) transparent edges and at most one vertex of P in c, by construction

of S. Therefore there are at most O(1) pairs (e′, v) in c so that e′ is a transparent edge

and v is a vertex of P . Since there are at most O(1) transparent edge cycles in ∂c

that intersect polytope edges delimited by v and crossed by e′, and since each such

cycle can split the connecting sequence of polytope edges between e′ and v at most

520 Discrete Comput Geom (2008) 39: 500–579

Fig. 14 The triple, of (a) two transparent edges and a vertex of P , or (b) three transparent edges, con-

tributes to two building blocks B1,B2. The corresponding graphs K3,2 are illustrated by dotted lines. If the

triple contributed to three building blocks, we would have obtained an impossible plane drawing of K3,3

once, there are at most O(1) maximal connecting common subsequences in G(e′, v).

Hence, there are O(1) building blocks of type II of c.

Similarly, there are O(1) pairs of transparent edges (e′, e′′) in c. There are at

most O(1) other transparent edges and at most one vertex of P in c that can lie

between e′ and e′′, resulting in at most O(1) maximal connecting common subse-

quences in G(e′, e′′). Hence, there are O(1) building blocks of type III of c.

By Lemma 3.2, the boundary of a building block B of type IV contains either two

transparent edge segments and a polytope vertex or three transparent edge segments.

In either case, we say that this triple of elements (either two transparent edges and a

vertex of P , or three transparent edges) contributes to B . We claim that one triple can

contribute to at most two building blocks of type IV (see Fig. 14). Indeed, if a triple,

say, (e1, e2, e3), contributed to three type IV blocks B1,B2,B3, we could construct

from this configuration a plane drawing of the graph K3,3 (as is implied in Fig. 14),

which is impossible. There are O(1) transparent edges and at most one vertex of P

in c, by construction of S; therefore there are at most O(1) triples that contribute to

at most O(1) building blocks of type IV of c. �

Lemma 3.6 The interiors of the building blocks of a surface cell c are pairwise

disjoint.

Proof The polytope edges subdivide c into pairwise disjoint components (each con-

tained in a single facet of P). Each building block of type I or IV contains (and

coincides with) exactly one such component, by definition. Each building block of

type II or III contains one or more such components, and each component is fully

contained in the block. Hence it suffices to show that no two distinct blocks can share

a component; the proof of this claim is easy, and omitted. �

Let B be a building block of a surface cell c. A contact interval of B is a maximal

straight segment of ∂B that is incident to one polytope edge χ ⊂ ∂B and is not in-

tersected by transparent edges, except at its endpoints. See Fig. 13 for an illustration

(contact intervals are drawn as dashed segments on the boundary of the respective

building blocks). Our propagation algorithm considers portions of shortest paths that

traverse a surface cell c from one transparent edge bounding c to another such edge.

Such a path, if not contained in a single building block, traverses a sequence of such

blocks, and crosses from one such block to the next through a common contact inter-

val.

Discrete Comput Geom (2008) 39: 500–579 521

Lemma 3.7 Let c be a surface cell, and let B be one of its building blocks. Then B

has at most O(1) contact intervals. If B is of type II or III, then it has exactly two

contact intervals, and if B is of type IV, it has exactly three contact intervals.

Proof If B is of type I, then B is a (simply connected) polygon contained in a single

facet f , so that every segment of ∂B is either a transparent edge segment or a segment

of a polytope edge bounding f (transparent edges cannot overlap polytope edges,

by Lemma 2.10). Every transparent edge of c can generate at most one boundary

segment of B , since it intersects ∂f at most twice. There are O(1) transparent edges,

and at most one vertex of P in c, by construction of S. Since each contact interval of

B is bounded either by two transparent edges or by a transparent edge and a vertex

of P , it follows that B has at most O(1) contact intervals.

If B is of type II, III, or IV, the claim is immediate. �

Corollary 3.8 Let I1 	= I2 be two contact intervals of any pair of building blocks.

Then either I1 and I2 are disjoint, or their intersection is a common endpoint.

Proof By definition. �

Lemma 3.9 Let c be a surface cell. Then each point of c that is not incident to a

contact interval of any building block of c, is contained in (exactly) one building

block of c.

Proof Fix a point p ∈ c, and denote by f the facet that contains p. Denote by Q the

connected component of c ∩ f that contains p. If Q contains in its closure at least

one endpoint of some transparent edge of ∂c, then p is in a building block of type I,

by definition.

Otherwise, Q must be a convex polygon, bounded by portions of transparent edges

and by portions of edges of f ; the boundary edges alternate between transparent

edges and polytope edges, with the possible exception of a single pair of consecutive

polytope edges that meet at the unique vertex v of f that lies in c. Thus only the

following cases are possible: (1) Q is a triangle bounded by the two edges χ1, χ2 of f

that meet at v and by a transparent edge e. See Fig. 15(a). The subsequence (χ1, χ2)

connects e and v, hence p is in a building block of type II (f clearly lies in the

shortened facet sequence). (2) Q is a quadrilateral bounded by the two edges χ1, χ2

of f and by two transparent edges e1, e2. See Fig. 15(b). Then (χ1, χ2) connects

Fig. 15 If Q (shaded) does not contain a transparent endpoint, it must be either a portion of a building

block of (a) type II or (b) type III, or (c), (d) a building block of type IV

522 Discrete Comput Geom (2008) 39: 500–579

e1 and e2, hence p is in a building block of type III (again, f lies in the shortened

facet sequence). (3) Q is a pentagon bounded by the two edges χ1, χ2 of f incident

to v, by two transparent edges, and by the third edge χ3 of f . See Fig. 15(c). Then

p lies in a building block of type IV. (4) Q is a hexagon bounded by all three edges

of f and by three transparent edges. See Fig. 15(d). Again, by definition, p lies in a

building block of type IV. This (and the disjointness of building blocks established in

Lemma 3.6) completes the proof of the lemma. �

The following two auxiliary lemmas are used in the proof of Lemma 3.12, which

gives an efficient algorithm for computing (the boundaries of) all the building blocks

of a single surface cell.

Lemma 3.10 Let c be a surface cell. We can compute the boundaries of all the build-

ing blocks of c of type I in O(logn) total time.

Proof We compute the boundary of each such block by a straightforward iterative

process that starts at a transparent endpoint a lying in some facet f of P , and traces

the block boundary from a along an alternating sequence of transparent edges and

edges of f (with the possible exception of traversing, once, two consecutive edges of

f through a common vertex), until we get back to a.

Since, by Corollary 3.4, there are no holes inside building blocks, after each

boundary tracing step we compute one building block of type I of c. Hence, by

Lemma 3.5, there are O(1) iterations. In each iteration we process O(1) segments of

the current building block boundary. Processing each segment takes O(logn) time,

since it involves unfolding O(1) transparent edges in O(logn) time, using the sur-

face unfolding data structure. (Although we work in a single facet f , each transpar-

ent edge that we process is represented relative to its destination plane, which might

be incident to another facet of P . Thus we need to unfold it to obtain its portion

within f .) �

Lemma 3.11 We can compute the boundaries of all the building blocks that are

incident to vertices of P in total O(n logn) time.

Proof Let c be a surface cell that contains some (unique) vertex v of P in its in-

terior. Denote by Fv the cyclic sequence of facets that are incident to v. Compute

all the building blocks of type I of c in O(logn) time, applying the algorithm of

Lemma 3.10. Denote by H the set of facets in Fv that contain building blocks of

c of type I that are incident to v. Denote by Y the set of maximal contiguous sub-

sequences that constitute Fv \ H. To compute Y , we locate each facet of H in Fv ,

and then extract the contiguous portions of Fv between those facets. To traverse Fv

around each vertex v of P takes a total of O(n) time (since we traverse each facet of

P exactly three times).

We process Y iteratively. Each step picks a nonempty sequence F ∈ Y and tra-

verses it, until a building block of type II or IV is found and extracted from F .

Let F be a sequence in Y . Since there are no cyclic transparent edges, by con-

struction, it easily follows that H∩Fv 	= ∅, and therefore F is not cyclic. Denote the

facets of F by f1, . . . , fk , with k ≥ 1. Denote by (χ1, . . . , χk−1) the corresponding

Discrete Comput Geom (2008) 39: 500–579 523

Fig. 16 Extracting from F building blocks (drawn shaded) of type II (cases (a), (b)) or IV (case (c))

polytope edge sequence of F (if k = 1, it is an empty sequence). If k > 1, denote by

χ0 the edge of f1 that is incident to v and does not bound f2, and denote by χk the

edge of fk that is incident to v and does not bound fk−1. Otherwise (k = 1), denote by

χ0, χ1 the polytope edges of f1 that are incident to v. Among all the O(1) transparent

edges of ∂c, find the transparent edge e that intersects χ0 closest to v (by unfolding

all these edges and finding their intersections with χ0). We traverse F either until it

ends, or until we find a facet fi ∈F so that e intersects χi−1 but does not intersect χi

(that is, e intersects the polytope edge χ ⊂ ∂fi that is opposite to v). Note that F

cannot be interrupted by a hole in c, since the endpoints of the transparent edges of

such a hole lie in blocks of type I, which belong to H.

In the former case (see Fig. 16(a)), mark the region of ∂P between e, χ0, and χk as

a building block of type II, delete F from Y , and terminate this iteration of the loop. In

the latter case, there are two possible cases. If i > 1 (see Fig. 16(b)), mark the region

of ∂P between e, χ0, and χi−1 as a building block of type II, delete f1, f2, . . . , fi−1

from F , and terminate this iteration of the loop. Otherwise (fi = f1), denote by x the

intersection point e∩χ , and denote by χ ′ the portion of χ whose endpoint is incident

to χ1. Among all transparent edges of ∂c, find the transparent edge e′ that intersects

χ ′ closest to x (such an edge must exist, or else c would contain two vertices of P).

The edge e′ must intersect χ1, since otherwise fi would contain a building block of

type I incident to v, and thus would belong to H. See Fig. 16(c) for an illustration.

Mark the region bounded by χ0, χ1, χ, e, e′ as a building block of type IV, and delete

f1 from F .

At each iteration we compute a single building block of c, hence there are only

O(1) iterations. We traverse the facet sequence around v twice (once to compute Y ,

and once during the extraction of building blocks), which takes O(n) total time for

all vertices of P . At each iteration we perform O(1) unfoldings (as well as other

constant-time operations), hence the total time of the procedure for all the cells of S

is O(n logn). �

Lemma 3.12 We can compute (the boundaries of) all the building blocks of all the

surface cells of S in total O(n logn) time.

Proof Let c be a surface cell. Compute the boundaries of all the (unfoldings of the)

building blocks of c of types I and II, and the building blocks of type IV that contain

the single vertex v of P in c, applying the algorithms of Lemmas 3.10 and 3.11.

Denote the set of all these building blocks by H. (Note that H cannot be empty,

because ∂c contains at least two transparent edges, which have at least two endpoints

524 Discrete Comput Geom (2008) 39: 500–579

that are contained in at least one building block of type I.) Construct the list L of

the contact intervals of all the building blocks in H. For each contact interval I that

appears in L twice, remove both instances of I from L. If L becomes (or was initially)

empty, then H contains all the building blocks of c. Otherwise, each interval in L is

delimited by two transparent edges, since all building blocks that contain v are in H.

Each contact interval in L bounds two building blocks of c, one of which is in H (it is

either of type I or contains a vertex of P in its closure), and the other is not in H and

is either of type III or a convex hexagon of type IV. The union of all building blocks

of c that are not in H consists of several connected components. Since there are no

blocks of H among the blocks in a component, neither transparent edges nor polytope

edges terminate inside it; therefore such a component is not punctured (by boundary

cycles of transparent edges or by a vertex of P), and its boundary alternates between

contact intervals in L and portions of transparent edges. For each contact interval I

in L, denote by limits(I) the pair of transparent edges that delimit it.

Denote by Y the partition of contact intervals in L into cyclic sequences, so

that each sequence bounds a different component, and so that each pair of consec-

utive intervals in the same sequence are separated by a single transparent edge. By

construction, each contact interval in Y appears in a unique cycle. Since there are

only O(1) building blocks of c, we can compute the sequences of Y in constant

time. Let Y = (I1, I2, . . . , Ik) be a cyclic sequence in Y (with Izk+l = Il , for any

l = 1, . . . , k and any z ∈ Z). Then, for every pair of consecutive intervals Ij , Ij+1 ∈ Y ,

limits(Ij) ∩ limits(Ij+1) is nonempty, and consists of one or two transparent edges

(two if the cyclic sequence at hand is a doubleton). Obviously, any cyclic sequence

in Y contains two or more contact intervals. As argued above, the portion of ∂P

bounded by these contact intervals and by their connecting transparent edges is a

portion of c which consists of only building blocks of types III and IV. In particular,

it does not contain in its interior any vertex of P , nor any transparent edge.

We process Y iteratively. Each step picks a sequence Y ∈ Y , and, if necessary,

splits it into subsequences, each time extracting a single building block of type III

or IV, as follows.

If Y contains exactly two contact intervals, they must bound a single build-

ing block of type III, which we can easily compute, and then discard Y . Other-

wise, let Ij−1, Ij , Ij+1 be three consecutive contact intervals in Y , and denote by

χj−1, χj , χj+1 the (distinct) polytope edges that contain Ij−1, Ij and Ij+1, respec-

tively. Define the common bounding edge ej = limits(Ij)∩ limits(Ij+1) (there is only

one such edge, since |Y | > 2), and denote by Ej the polytope edge sequence inter-

sected by ej . Similarly, define Ej−1 as the polytope edge sequence traversed by the

transparent edge ej−1 = limits(Ij−1) ∩ limits(Ij). Without loss of generality, assume

that both Ej−1 and Ej are directed from χj , to χj−1 and to χj+1, respectively. See

Fig. 17.

We claim that Ē = Ej−1 ∩ Ej is a contiguous subsequence of both sequences.

Indeed, assume to the contrary that Ē contains at least two subsequences Ē1, Ē2, and

there is an edge χ̄ between them that belongs to only one of the sequences Ej−1,Ej .

Then the region R of ∂P between the last edge of Ē1, the first edge of Ē2, ej−1

and ej is contained in the region bounded by the contact intervals of Y and by their

connecting transparent edges, and χ̄ must have an endpoint in R, contradicting the

fact that this region does not contain any vertex of P . We can therefore use a binary

Discrete Comput Geom (2008) 39: 500–579 525

Fig. 17 There are two possible cases: (a) There is more than one edge in Ē , hence a building block of

type III (whose unfolded image is shown shaded) can be extracted. (b) |Ē| = 1 (that is, χj = χ), therefore

there must be a building block of type IV (whose image is shown shaded) that can be extracted

search to find the last polytope edge χ in Ē , by traversing the unfolding data structure

tree T that contains Ej−1 from the root r to the leaf that stores χ . To facilitate this

search, we first search for ξj , which is the first edge of Ē . We then trace the search

path P bottom-up. For each node μ on the path for which the path continues via its

left child, we go to the right child ν, and test whether the edges stored at its leftmost

leaf and rightmost leaf belong to the portion of Ej between χj and χj+1; for the sake

of simplicity, we refer to this portion as Ej . (As we will shortly argue, each of these

tests can be performed in O(1) time.) If both edges belong to Ej , we continue up P .

If neither of them is in Ej , then χ is stored at the rightmost leaf of the left child of μ.

If only one of them (namely, the one at the leftmost leaf) is in Ej , we go to ν, and start

tracing a path from ν to the leaf that stores χ . At each step, we go to the left (resp.,

right) child if its rightmost leaf stores an edge that belongs (resp., does not belong)

to Ej .

To test, in O(1) time, whether an edge χ⋆ of P belongs to Ej , we first recall that,

by construction, all the edges of Ej intersect the original subface hj of S3D from

which ej originates, and so they appear as a contiguous subsequence of the sequence

of edges of P stored at the surface unfolding data structure at the appropriate x-,

y-, or z-coordinate of hj . Moreover, the slopes of the segments that connect them in

the corresponding cross-section of P (which are the cross-sections of the connecting

facets) are sorted in increasing order.

We thus test whether χ⋆ intersects hj . We then test whether the slope of the cross-

section of the facet that precedes χ⋆ lies within the range of slopes of the facets

between the edges χj and χj+1. Clearly, χ⋆ belongs to Ej if and only if both tests are

positive. Since each of these tests takes O(1) time, the claim follows. Hence, we can

construct Ē in O(logn) time.

If χ 	= χj , then we find the unfoldings UĒ (ej) and UĒ (ej−1) and compute a new

contact interval I ′
j that is the portion of χ bounded by ej and ej−1. See Fig. 17(a).

The quadrilateral bounded by UĒ (ej),UĒ (ej−1),UĒ (I ′
j) and UĒ (Ij) is the unfolded

image of a building block of type III. Delete Ij from Y and replace it by I ′
j .

Otherwise, χ = χj . See Fig. 17(b). Denote by χ ′ (resp., χ ′′) the second edge in

Ej−1 (resp., Ej); clearly, χ ′ 	= χ ′′. Since all blocks that contain either a vertex of P

526 Discrete Comput Geom (2008) 39: 500–579

Fig. 18 (a) Before the extraction of B , Y contains five (bold dashed) contact intervals. (b) After the

extraction of B , Y has been split into two new (cyclic) sequences Y ′, Y ′′ containing the respective contact

intervals I ′, I ′′. Ij is no longer contained in any sequence in Y

or a transparent edge endpoint are in H, the edges χj , χ
′, χ ′′ bound a single facet,

and there is a transparent edge that intersects both χ ′, χ ′′ (otherwise the block of

type IV that we are extracting would be bounded by at least four polytope edges—

a contradiction). Denote by e the transparent edge that intersects both χ ′, χ ′′ nearest

to χj or, rather, nearest to ej−1 and to ej , respectively (in Fig. 17(b) we have e =

ej−2). The region bounded by χj , χ
′, χ ′′ and ej−1, ej , e is a hexagonal building block

of type IV. Compute its two contact intervals that are contained in χ ′ and χ ′′, and

insert them into Y instead of Ij . If χ ′ contains Ij−1 and χ ′′ contains Ij+1, Y is

exhausted, and we terminate its processing. If χ ′ contains Ij−1 and χ ′′ does not

contain Ij+1, we remove Ij and Ij−1 from Y and replace them by the portion of χ ′′

between e and ej . Symmetric actions are taken when χ ′′ contains Ij+1 and χ ′ does

not contain Ij−1. Finally, if χ ′ does not contain Ij−1, nor does χ ′′ contain Ij+1, we

split Y into two new cyclic subsequences, as shown in Fig. 18, and insert them into

Y instead of Y .

In each iteration we compute the boundary of a single building block of type III

or IV, hence there are O(1) iterations; each performs O(1) unfoldings, O(1) binary

searches, and O(1) operations on constant-length lists, hence the time bound fol-

lows. �

3.2 Block Trees and Riemann Structures

In this section we combine the building blocks of a single surface cell into more

complex structures.

Let e be a transparent edge on the boundary of some surface cell c, and let B be a

building block of c so that e appears on its boundary. The block tree TB(e) is a rooted

tree whose nodes are building blocks of c that is defined recursively as follows. The

root of TB(e) is B . Let B ′ be a node in TB(e). Then its children are the blocks B ′′

that satisfy the three following conditions.

(1) B ′ and B ′′ are adjacent through a common contact interval;

(2) B ′′ does not appear as a node on the path in TB(e) from the root to B ′, except

possibly as the root itself (that is, we allow B ′′ = B if the rest of the conditions

are satisfied);

Discrete Comput Geom (2008) 39: 500–579 527

Fig. 19 (a) A surface cell c containing a single vertex of P and bounded by four transparent edges (solid

lines) is partitioned in this example into ten building blocks (whose shadings alternate): B1,B3,B7,B9

are of type I, B,B2,B4,B6 are of type II, B8 of type III and B5 of type IV. Adjacent building blocks are

separated by contact intervals (dashed lines; other polytope edges are also drawn dashed). (b) The tree

TB (e) of building blocks of c, where e is the (thick) transparent edge that bounds the building block B

(3) if B ′′ = B , then (a) it is of type II or III (that is, if a root is a building block of

type I or IV, it cannot appear as another node of the tree), and (b) it is a leaf of

the tree.

Note that a block may appear more than once in TB(e), but no more than once

on each path from the root to a leaf, except possibly for the root B , which may also

appear at leaves of TB(e) if it is of type II or III. However, B cannot appear in any

other internal node of TB(e)—see Fig. 19.

Remark Here is a motivation for the somewhat peculiar way of defining TB(e) (re-

flected in properties (2) and (3)). Since each building block is either contained in a

single facet (and a single facet is never traversed by a shortest path in more than one

connected segment), or has exactly two contact intervals (and a single contact inter-

val is never crossed by a shortest path more than once), a shortest path π(s, q) to a

point q in a building block B may traverse B through its contact intervals in no more

than two connected segments. Moreover, B may be traversed (through its contact in-

tervals) in two such segments only if the following conditions hold: (i) π(s, q) must

enter B through a point p on a transparent edge on ∂c, (ii) B consists of components

of at least two facets, and p and q are contained in two distinct facets, relatively “far"

from each other in B , and (iii) π(p,q) exits B through one contact interval and then

re-enters B through another (before reaching q). See Fig. 20 for an illustration. This

shows that the initial block B through which a shortest path from s enters a cell c

may be traversed a second time, but only if it is of type II or III. After the second

time, the path must exit c right away, or end inside B .

528 Discrete Comput Geom (2008) 39: 500–579

Fig. 20 The shortest path

π(s, q) enters the (shaded)

building block B through the

transparent edge e at the point p,

leaves B through the contact

interval I1, and then reenters B

through the contact interval I2

We denote by T (e) the set of all block trees TB(e) of e (constructed from the

building blocks of both cells containing e on their boundaries). Note that each block

tree in T (e) contains only building blocks of one cell. We call T (e) the Riemann sur-

face structure of e; it will be used in Sect. 5 for wavefront propagation block-by-block

from e in all directions (this is why we include in it block trees of both surface cells

that share e on their boundaries). This structure is indeed similar to standard Riemann

surfaces (see, e.g., [39]); its main purpose is to handle effectively (i) the possibility of

overlap between distinct portions of ∂P when unfolded onto some plane, and (ii) the

possibility that shortest paths may traverse a cell c in “homotopically inequivalent”

ways (e.g., by going around a vertex or a hole of c in two different ways—see below).

Remark Concerning (i), note that without the Riemann structure, unfolding an arbi-

trary portion of ∂P may result in a self-overlapping planar region (making it difficult

to apply the propagation algorithm)—see [11] for a discussion of this topic. However,

there exist schemes of cutting a polytope along lines other than its edges that produce

a non-overlapping unfolding—see [1, 6, 8, 36]. It is plausible to conjecture that in the

special case of surface cells of S, the unfolding of such a cell does not overlap itself,

since S is induced by intersecting ∂P with S3D (which is contained in an arrangement

of three sets of parallel planes); however, related results [5, 30] do not suffice in our

case, and we have not succeeded to prove this conjecture, which we leave for further

research.

A block sequence B = (B1,B2, . . . ,Bk) is a sequence of building blocks of

a surface cell c, so that for every pair of consecutive blocks Bi,Bi+1 ∈ B,

we have Bi 	= Bi+1, and their boundaries share a common contact interval.

We define EB , the edge sequence associated with B, to be the concatenation

E1||(χ1)||E2||(χ2)|| · · · ||(χk−1)||Ek , where, for each i, χi is the polytope edge con-

taining the contact interval that connects Bi with Bi+1, and Ei is the edge sequence

associated with Bi that can be extended into (χi−1)||Ei ||(χi) (recall that there may

be two oppositely oriented edge sequences associated with each Bi). Note that, given

a sequence B of at least two blocks, EB is unique.

For each block tree TB(e) in T (e), each path in TB(e) defines a block sequence

consisting of the blocks stored at its nodes. Conversely, every block sequence of c

that consists of distinct blocks, with the possible exception of coincidence between

its first and last blocks (where this block is of type II or III), appears as the sequence of

blocks stored along some path of some block tree in T (e). We extend these important

properties further in the following lemmas.

Discrete Comput Geom (2008) 39: 500–579 529

Lemma 3.13 Let e, c and B be as above; then TB(e) has at most O(1) nodes.

Proof The construction of TB(e) is completed, when no path in TB(e) can be ex-

tended without violating conditions (1–3). In particular, each path of TB(e) consists

of distinct blocks (except possibly for its leaf). Each building block of c contains

at most O(1) contact intervals and O(1) transparent edge segments in its boundary,

hence the degree of every node in TB(e) is O(1). There are O(1) building blocks

of c, by Lemma 3.5, and this completes the proof of the lemma. �

Note that Lemma 3.13 implies that each building block is stored in at most O(1)

nodes of TB(e).

Lemma 3.14 Let e, c and B be as above. Then each building block of c is stored in

at least one node of TB(e).

Proof Easy, and omitted. �

The following two lemmas summarize the discussion and justify the use of block

trees. (Lemma 3.15 establishes rigorously the informal argument given right after the

block tree definition.)

Lemma 3.15 Let B be a building block of a surface cell c, and let E be an edge

sequence associated with B . Let p,q be two points in c, so that there exists a shortest

path π(p,q) that is contained in c and crosses ∂B in at least two different points.

Then UE (π(p,q) ∩ B) consists of either one or two disjoint straight segments, and

the latter case is only possible if p,q lie in B .

Proof Since π(p,q) is a shortest path, every connected portion of UE (π(p,q) ∩ B)

is a straight segment.

Suppose first that p,q ∈ B , and assume to the contrary that UE (π(p,q)∩B) con-

sists of three or more distinct segments (the assumption in the lemma excludes the

case of a single segment). Then at least one of these segments is bounded by two

points x, y ∈ ∂B and is incident to neither p nor q . Neither x nor y is incident to a

transparent edge, since π(p,q) ⊂ c. Hence x, y are incident to two different respec-

tive contact intervals Ix, Iy on ∂B . The segment of UE (π(p,q) ∩ B) that is incident

to p is also delimited by a point of intersection with a contact interval, by similar

arguments. Denote this contact interval by Ip , and define Iq similarly. Obviously, the

contact intervals Ix, Iy, Ip, Iq are all distinct. Since only building blocks of type I

might have four contact intervals on their boundary (by Lemma 3.7), B must be of

type I. But then B is contained in a single facet f , and π(p,q) must be a straight

segment contained in f , and thus cannot cross ∂f at all.

Suppose next that at least one of the points p,q , say p, is outside B . Assume

that UE (π(p,q) ∩ B) consists of two or more distinct segments. Then at least one of

these segments is bounded by two points x, y of ∂B (and is not incident to p). By

the same arguments as above, x and y are incident to two different respective contact

intervals Ix and Iy . The other segment of UE (π(p,q)∩B) is delimited by at least one

point of intersection with some contact interval Iz, by similar arguments. Obviously,

530 Discrete Comput Geom (2008) 39: 500–579

the three contact intervals Ix, Iy, Iz are all distinct. In this case, B is either of type I

or of type IV. In the former case, arguing as above, π(p,q) ∩ B is a single straight

segment. In the latter case, B may have three contact intervals, but no straight line

can meet all of them. Once again we reach a contradiction, which completes the proof

of the lemma. �

Lemma 3.16 Let e be a transparent edge bounding a surface cell c, and let B be a

building block of c so that e appears on its boundary. Then, for each pair of points

p,q , so that p ∈ e ∩ ∂B and q ∈ c, if the shortest path π(p,q) is contained in c, then

π(p,q) is contained in the union of building blocks that form a single path in TB(e)

(which starts from the root).

Proof Let p ∈ e∩∂B and q ∈ c be two points as above, and denote by B ′ the building

block that contains q . Denote by B the building block sequence crossed by π(p,q).

No building block appears in B more than once, except possibly B if B = B ′ (by

Lemma 3.15). Hence, the elements of B form a path in TB(e) from the root node

(which stores B) to a node that stores B ′, as asserted. �

Corollary 3.17 Let e be a transparent edge bounding a surface cell c, and let q be a

point in c, such that the shortest path π(s, q) intersects e, and the portion π̃(s, q) of

π(s, q) between e and q is contained in c. Then π̃(s, q) is contained in the union of

building blocks that define a single path in some tree of T (e).

Proof Follows from Lemma 3.16. �

Lemma 3.18 (a) Let e be a transparent edge; then there are only O(1) different

paths from a root to a leaf in all trees in T (e). (b) It takes O(n logn) total time to

construct the Riemann structures T (e) of all transparent edges e.

Proof Let TB(e) be a block tree in T (e). There are O(1) different paths from the root

node to a leaf of TB(e) (see the proof of Lemma 3.13). There are two surface cells that

bound e, and there are O(1) building blocks of each surface cell, by Lemma 3.5. By

Lemma 3.12, we can compute all the boundaries of all the building blocks in overall

O(n logn) time. Hence the claim follows. �

For the surface cell c that contains s, we similarly define the set of block

trees T (s), so that the root B of each block tree TB(s) ∈ T (s) contains s on its

boundary (recall that s is also regarded as a vertex of P). It is easy to see that Corol-

lary 3.17 applies also to the Riemann structure T (s), in the sense that if q is a point

in c, such that the shortest path π(s, q) is contained in c, then π(s, q) is contained in

the union of building blocks that define a single path in some tree of T (s). It is also

easy to see that Lemma 3.18 applies to T (s) as well.

3.3 Homotopy Classes

In this subsection we introduce certain topological constructs that will be used in the

analysis of the shortest path algorithm in Sects. 4 and 5.

Discrete Comput Geom (2008) 39: 500–579 531

Let R be a region of ∂P . We say that R is punctured if either R is not simply

connected, so its boundary consists of more than one cycle, or R contains a vertex of

P in its interior; in the latter case, we remove any such vertex from R, and regard it

as a new artificial singleton hole of R. We call these vertices of P and/or the holes

of R the islands of R. Let X,Y be two disjoint connected sets of points in such a

punctured region R, let x1, x2 ∈ X and y1, y2 ∈ Y , and let π(x1, y1),π(x2, y2) be

two geodesic paths that connect x1 to y1 and x2 to y2, respectively, inside R. We

say that π(x1, y1) and π(x2, y2) are homotopic in R with respect to X and Y , if one

path can be continuously deformed into the other within R, while their corresponding

endpoints remain in X and Y , respectively. (In particular, none of the deformed paths

pass through a vertex of P .) When R is punctured, the geodesic paths that connect,

within R, points in X to points in Y , may fall into several different homotopy classes,

depending on the way in which these paths navigate around the islands of R. If R

is not punctured, all the geodesic paths that connect, within R, points in X to points

in Y , fall into a single homotopy class. In the analysis of the algorithm in Sects. 4

and 5, we only encounter homotopy classes of simple geodesic subpaths from one

transparent edge e to another transparent edge f , inside a region R that is either a

well-covering region of one of these edges or a single surface cell that contains both

edges on its boundary. (We call these paths subpaths, since the full paths to f start

from s.)

Since the algorithm only considers shortest paths, we can make the following

useful observation. Consider the latter case (where the region R is a single surface

cell c), and let B be a path in some block tree TB(e) within c that connects e to f .

Then all the shortest paths that reach f from e via the building blocks in B belong to

the same homotopy class. Similarly, in the former case (where R is a well-covering

region consisting of O(1) surface cells), all the shortest paths that connect e to f via

a fixed sequence of building blocks, which itself is necessarily the concatenation of

O(1) sequences along paths in separate block trees (joined at points where the paths

cross transparent edges between cells), belong to the same homotopy class.

4 The Shortest Path Algorithm

This section describes the wavefront propagation phase of the shortest path algorithm.

Since this is the core of the algorithm, we present it here in detail, although its high-

level description is very similar to the algorithm of [18]. Most of the problem-specific

implementation details of the algorithm (which are quite different from those in [18]),

as well as the final phase of the preprocessing for shortest path queries, are presented

in Sect. 5.

The algorithm simulates a unit-speed (true) wavefront W expanding from s, and

spreading along the surface of P . At simulation time t , W consists of points whose

shortest path distance to s along ∂P is t . The true wavefront is a set of closed cycles;

each cycle is a sequence of (folded) circular arcs (of equal radii), called waves. Each

wave wi of W at time t (denoted also as wi(t)) is the locus of endpoints of a collection

Πi(t) of shortest paths of length t from s that satisfy the following condition: There

is a fixed polytope edge sequence Ei crossed by some path π ∈ Πi(t), so that the

polytope edge sequence crossed by any other π ′ ∈ Πi(t) is a prefix of Ei . The wave

532 Discrete Comput Geom (2008) 39: 500–579

Fig. 21 The true wavefront W at some fixed time t , generated by eight source images s1, . . . , s8. The

surface of the box P (see the 3D illustration in Fig. 22) is unfolded in this illustration onto the plane of the

last facet that W reaches; note that some facets of P are unfolded in more than one way (in particular, the

facet that contains s is unfolded into eight distinct locations). The dashed lines are the bisectors between

the current waves of W , and the dotted lines are the shortest paths to the vertices of P that are already

reached by W

wi is centered, in the destination plane of UEi
, at the source image si = UEi

(s), called

the generator of wi . When wi reaches, at some time t during the simulation, a point

p ∈ ∂P , so that no other wave has reached p prior to time t , we say that si claims p,

and put claimer(p) := si . We say that Ei is the maximal polytope edge sequence of si
at time t . For each p ∈ wi(t) there exists a unique shortest path π(s,p) ∈ Πi(t) that

intersects all the edges in the corresponding prefix of Ei , and we denote it as π(si,p).

See Fig. 21.

The wave wi has at most two neighbors wi−1,wi+1 in W , each of which shares a

single common point with wi (if wi−1 = wi+1, it shares two common points with wi).

As t increases and W expands accordingly (as well as the edge sequences Ei of its

waves), each of the meeting points of wi with its adjacent waves traces a bisector,

which is the locus of points equidistant from the generators of the two corresponding

waves; see Fig. 22. The bisector of the two consecutive generators si, si+1 in W is

denoted by b(si, si+1), and its unfolded image is a straight line.

During the simulation, the combinatorial structure of W changes at certain critical

events, which may also change the topology of W . There are two kinds of critical

events:

(i) Vertex event, where W reaches either a vertex of P or some other boundary vertex

(an endpoint of a transparent edge) of the Riemann structure through which W is

propagated. As will be described in Sect. 5, the wave in W that reaches a vertex event

splits into two new waves after the event—see Fig. 23. These are the only events when

a new wave is added to W . Our algorithm detects and processes all vertex events.7

(ii) Bisector event, when an existing wave is eliminated by other waves—the bisectors

of all the involved generators meet at the event point. Our algorithm detects and

7A split at a vertex of P is a “real” split, because the two new waves continue past v along two different

edge sequences. A split at a transparent endpoint is an artificial split, used to facilitate the propagation

procedure; see Sect. 5 for details.

Discrete Comput Geom (2008) 39: 500–579 533

Fig. 22 W at different times t :

(a) Before any critical event, it

consists of a single wave. (b),

(c) After the first four (resp.,

eight) vertex events W consists

of four (resp., eight) (folded)

waves. (d) After two additional

critical events, which are

bisector events, two waves are

eliminated. Before the rest of the

waves are eliminated, and

immediately after (d),

W disconnects into two distinct

cycles

Fig. 23 Splitting the wavefront W at v (the triangles incident to v are unfoldings of its adjacent facets;

note that the sum of all the facet angles at v is less than 2π). The thick dashed line coincides with the

ray from si through v; it replaces the true bisector between the two new wavefronts W1,W2 , which will

later be calculated by the merging process. Each of W1,W2 is propagated separately after the event at v

(through a different unfolding of the facet sequence around v—see, e.g., the shaded facets, each of which

has a different image in (a) and (b))

processes only some of the bisector events, while others are not explicitly detected

(recall that we only compute an implicit representation of SPM(s)). See Sect. 4.3 for

further details.

4.1 The Propagation Algorithm

One-Sided Wavefronts The wavefront propagates between transparent edges across

the cells of the conforming surface subdivision S. Propagating the exact wavefront

explicitly appears to be inefficient (for reasons explained below), so at each transpar-

ent edge e we content ourselves with computing two one-sided wavefronts, passing

534 Discrete Comput Geom (2008) 39: 500–579

Fig. 24 (a) Two wavefronts W,W ′ are approaching e from two opposite directions, within R(e) (shaded).

(b) Two one-sided wavefronts W(e),W ′(e), computed at the simulation time when e is completely covered

by W,W ′ , are propagated further within R(e). However, some of the waves in W(e),W ′(e) obviously do

not belong to the true wavefront, since there is another wave in the opposite one-sided wavefront that

claims the same points of e (before they do)

through e in opposite directions; together, these one-sided wavefronts carry all the

information needed to compute the exact wavefront at e (but they also carry some

superfluous information). Each spurious wave is the locus of endpoints of geodesic

paths that traverse the same maximal edge sequence, but they need not be shortest

paths. Still, our description of bisectors, maximal polytope edge sequences, and crit-

ical events that were defined for the true wavefront, also applies to the wavefront

propagated by our algorithm.

In more detail, a one-sided wavefront W(e) associated with a transparent edge e

(and a specific side of e, which we ignore in this notation), is a sequence of waves

(w1, . . . ,wk) generated by the respective source images s1, . . . , sk (all unfolded to

a common plane that is the same plane in which we compute the unfolded image

of e), so that: (1) There exists a pairwise openly disjoint decomposition of e into k

nonempty intervals e1, . . . , ek , appearing in this order along e, and (2) For each i =

1, . . . , k, for any point p ∈ ei , the source image that claims p, among the generators

of waves that reach p from the fixed side of e, is si . The algorithm maintains the

following crucial true distance invariant (see Fig. 24 for an illustration):

(TD) For any transparent edge e and any point p ∈ e, the true distance dS(s,p) is

the minimum of the two distances to p from the two source images that claim

it in the two respective one-sided wavefronts for the opposite sides of e.

Remark For a fixed side of e, the corresponding one-sided wavefront W(e) (implic-

itly) records the times at which the wavefront reaches the points of e from that side;

note that W(e) does not represent a fixed time t—each point on e is reached by the

corresponding wave at a different time.

The Propagation Step The core of the algorithm is a method for computing a one-

sided wavefront at an edge e based on the one-sided wavefronts of nearby edges. The

set of these edges, denoted input(e), is the set of transparent edges that bound R(e),

the well-covering region of e (cf. Sect. 2.3). To compute a one-sided wavefront at e,

we propagate the one-sided wavefronts from each f ∈ input(e) that has already been

Discrete Comput Geom (2008) 39: 500–579 535

Fig. 25 The boundary of R(e) (shaded) consists of two separate cycles. The transparent edge e and all

the edges f in input(e) that have been covered by the wavefront before time covertime(e) are drawn as

thick lines. The wavefronts W(f, e) that contribute to the one-sided wavefronts at e have been propagated

to e before time covertime(e); wavefronts from other edges of input(e) do not reach e either because of

visibility constraints or because they are not ascertained to be completely covered at time covertime(e) (in

either case they do not include shortest paths from s to any point on e)

processed by the algorithm, to e inside R(e), and then merge the results, separately

on each side of e, to get the two one-sided wavefronts that reach e from each of its

sides. See Fig. 25 for an illustration. The algorithm propagates the wavefronts inside

O(1) unfolded images of (portions of) R(e), using the Riemann structure defined in

Sect. 3.2. The wavefronts are propagated only to points that can be connected to the

appropriate generator by straight lines inside the appropriate unfolded portion of R(e)

(these points are “visible” from the generator); that is, the shortest paths within this

unfolded image, traversed by the wavefront as it expands from the unfolded image of

f ∈ input(e) to the image of e, must not bend (cf. Sect. 2.1 and Sect. 3). Because the

image of the appropriate portion of R(e) is not necessarily convex, its reflex corners

may block portions of wavefronts from some edges of input(e) from reaching e. The

paths corresponding to blocked portions of wavefronts that exit R(e) may then re-

enter it through other edges of input(e). For any point p ∈ e, the shortest path from s

to p passes through some f ∈ input(e) (unless s ∈ R(e)), so constraining the source

wavefronts to reach e directly from an edge in input(e), without leaving R(e), does

not lose any essential information.

We denote by output(e) the set of direct “successor” edges to which the one-sided

wavefronts of e should be propagated; specifically, output(e) = {f | e ∈ input(f)}.

Lemma 4.1 For any transparent edge e, output(e) consists of a constant number of

edges.

Proof Since |R(f)| = O(1) for all f , and each R(f) is a connected set of cells of S,

no edge e can belong to input (f) for more than O(1) edges f (there are only O(1)

possible connected sets of O(1) cells that contain e on the boundary of their union),

and |input(f)| = O(1), by construction. �

Remark As a wavefront is propagated from an edge f ∈ input(e) to e, it may cross

other intermediate transparent edges g (see Fig. 26). Such an edge g will be processed

at an interleaving step, when wavefronts from edges h ∈ input(g) are propagated to g

536 Discrete Comput Geom (2008) 39: 500–579

Fig. 26 Interleaving of the well-covering regions. The wavefront propagation from h ⊂ ∂R(g) to g passes

through f , and the propagation from f ⊂ ∂R(e) to e passes through g

(and some of the propagated waves may reach g by crossing f first). This “leap-frog”

behavior of the algorithm causes some overlap between propagations, but it affects

neither the correctness nor the asymptotic efficiency of the algorithm.

The Simulation Clock The simulation of the wavefront propagation is loosely syn-

chronized with the real “propagation clock” (which measures the distance from s).

The main purpose of the synchronization is to ensure that the only waves that are

propagated from a transparent edge e to edges in output(e) are those that have reached

e no later than |e| simulation time units after e has been completely covered. This,

and the well-covering property of e (which guarantees that at this time none of these

waves has yet reached any f ∈ output(e)), allow us to propagate further all the short-

est paths that cross e by “processing” e only once, thereby making the algorithm

adhere to the continuous Dijkstra paradigm, and consequently be efficient.

For a transparent edge e, we define the control distance from s to e, denoted

by d̃S(s, e), as follows. If s ∈ R(e), and e contains at least one point p that

is visible from s within at least one unfolded image U(R(e)), for some unfold-

ing U , then e is called directly reachable (from s), and d̃S(s, e) is defined to be

the distance from U(s) to U(p) within U(R(e)). The point p ∈ e can be cho-

sen freely, unless U(s) and U(e) are collinear within U(R(e))—then p must be

taken as the endpoint of e whose unfolded image is closer to U(s). Otherwise

(s /∈ R(e) or e is completely hidden from s in every unfolded image of R(e)),

we define d̃S(s, e) = min{dS(s, a), dS(s, b)}, where a, b are the endpoints of e, and

dS(s, a), dS(s, b) refer to their exact values. Thus, d̃S(s, e) is a rough estimate of

the real distance dS(s, e), since dS(s, e) ≤ d̃S(s, e) < dS(s, e) + |e|. The distances

dS(s, a), dS(s, b) are computed exactly by the algorithm, by computing the distances

to a, b within each of the one-sided wavefronts from s to e, and by using the in-

variant (TD). We compute both one-sided wavefronts for e at the first time we can

ascertain that e has been completely covered by wavefronts from either the edges in

input(e), or directly from s if e is directly reachable. This time is d̃S(s, e) + |e|, a

conservative yet “safe” upper bound of the real time max{dS(s, q) | q ∈ e} at which e

is completely run over by the true (not one-sided) wavefront.

The continuous Dijkstra propagation mechanism computes d̃S(s, e)+|e| on the fly

for each edge e, using a variable covertime(e). Initially, for every directly reachable e,

we calculate d̃S(s, e), by propagating the wavefront from s within the surface cell

which contains s, as described in Sect. 5, and put covertime(e) := d̃S(s, e) + |e|. For

all other edges e, we initialize covertime(e) := +∞.

Discrete Comput Geom (2008) 39: 500–579 537

The simulation maintains a time parameter t , called the simulation clock, which

the algorithm strictly increases in discrete steps during execution, and processes each

edge e when t reaches the value covertime(e). A high-level description of the simu-

lation is as follows:

PROPAGATION ALGORITHM

Initialize covertime(e), for all transparent edges e, as described above. Store with

each directly reachable e the wavefronts that are propagated to e from s (without

crossing edges in input(e)).

while there are still unprocessed transparent edges do

1. Select the unprocessed edge e with minimum covertime(e), and set t :=

covertime(e).

2. Merge: Compute the one-sided wavefronts for both sides of e, by merging to-

gether, separately on each side of e, the wavefronts that reach e from that side,

either from all the already processed edges f ∈ input(e) (these wavefronts are

propagated to e in Step 3 below), or directly from s (those wavefronts are stored

at e in the initialization step). Compute dS(s, v) exactly for each endpoint v of

e (the minimum of at most two distances to v provided by the two one-sided

wavefronts at e).

3. Propagate: For each edge g ∈ output(e), compute the time te,g at

which one of the one-sided wavefronts from e first reaches an endpoint

of g, by propagating the relevant one-sided wavefront from e to g. Set

covertime(g) := min{covertime(g), te,g + |g|}. Store with g the resulting wave-

front propagated from e, to prepare for the later merging step at g.

endwhile

The following lemma establishes the correctness of the algorithm. That is, it shows

that covertime() is correctly maintained and that the edges required for processing e

have already been processed by the time e is processed. The description of Step 2

appears in Sect. 4.2 as the wavefront merging procedure; the computation of te,g in

Step 3 is a byproduct of the propagation algorithm as described below and detailed

in Sect. 5. For the proof of the lemma we assume, for now, that the invariant (TD) is

correctly maintained—this crucial invariant will be proved later in Lemma 4.5.

Lemma 4.2 During the propagation, the following invariants hold for each trans-

parent edge e:

(a) The final value of covertime(e) (the time when e is processed) is d̃S(s, e)+|e|; for

directly reachable edges, it is at most d̃S(s, e) + |e|. The variable covertime(e) is

set to this value by the algorithm before or at the time when the simulation clock

t reaches this value.

(b) The value of covertime(e) is updated only a constant number of times before it is

set to d̃S(s, e) + |e|.

538 Discrete Comput Geom (2008) 39: 500–579

(c) If there exists a path π from s that belongs to a one-sided wavefront at e, so

that a prefix of π belongs to a one-sided wavefront at an edge f ∈ input(e), then

d̃S(s, f) + |f | < d̃S(s, e) + |e|.

Proof (a) For directly reachable edges, this holds by definition of the control distance;

for other edges e, we prove by induction on the (discrete steps of the) simulation

clock, as follows. The shortest path π ′ to one of the endpoints of e (which reaches

e at the time |π ′| = te = d̃S(s, e)) crosses some f ∈ input(e) at an earlier time tf ,

where dS(s, f) ≤ tf < d̃S(s, f) + |f |; we may assume that f is the last such edge of

input(e). Note that we must have te ≥ tf + dS(e, f). By (W3S), dS(e, f) ≥ 2|f |, and

so te ≥ dS(s, f) + 2|f |. Since d̃S(s, f) < dS(s, f) + |f |, we have

|π ′| = te ≥ dS(s, f) + 2|f | > d̃S(s, f) + |f |. (1)

By induction and by this inequality, f has already been processed before the simula-

tion clock reaches te, and so covertime(e) is set, in Step 3, to tf,e + |e| = te + |e| =

d̃S(s, e)+|e| (unless it has already been set to this value earlier), at time no later than

te = d̃S(s, e) (and therefore no later than d̃S(s, e) + |e|, as claimed). By (TD), the

variable covertime(e) cannot be set later (or earlier) to any smaller value; it follows

that e is processed at simulation time d̃S(s, e) + |e|.

(b) The value of covertime(e) is updated only when we process an edge f such

that e ∈ output(f) (i.e., f ∈ input(e)), which consists of O(1) edges, by construction.

(c) Any path π that is part of a one-sided wavefront at e must satisfy dS(s, e) ≤

|π | < d̃S(s, e) + |e| (π cannot reach e earlier by definition, and if π reaches e

later, then, by (a), e would have been already processed and π would not have con-

tributed to any of the one-sided wavefronts at e). Since π passes through a trans-

parent edge f ∈ input(e), we can show that |π | > d̃S(s, f) + |f |, by applying ar-

guments similar to those used to derive (1) in (a). Hence we can conclude that

d̃S(s, f) + |f | < d̃S(s, e) + |e|. �

Remark The synchronization mechanism above assures that if a wave w reaches a

transparent edge e later than the time at which e has been ascertained to be completely

covered by the wavefront, then w will not contribute to either of the two one-sided

wavefronts at e. In fact, this important property yields an implicit interaction between

all the wavefronts that reach e, allowing a wave to be propagated further only if it is

not too “late”; that is, only if it reaches points on e no later than 2|e| simulation time

units after a wave from another wavefront.8

Topologically Constrained Wavefronts Let f, e be two transparent edges so that

f ∈ input(e), and let H be a homotopy class of simple geodesic paths connecting

f to e within R(e) (recall that there might be multiple homotopy classes of that kind;

see Sect. 3.3). We denote by WH (f, e) the unique maximal (contiguous) portion of

the one-sided wavefront W(f) that reaches e by traversing only the subpaths from f

8For a detailed discussion of why we use the bound 2|e| rather than just |e| see the description of the

simulation time maintenance in Sect. 5.3.1.

Discrete Comput Geom (2008) 39: 500–579 539

to e that belong to H . In Sect. 5 we regard WH (f, e) as a “kinetic” structure, consist-

ing of a continuum of “snapshots,” each recording the wavefront at some time t . In

contrast, in the current section we only consider the (static) resulting wavefront that

reaches e, where each point q on (an appropriate portion of) e is claimed by some

wave of WH (f, e), at some time tq . (Note that this static version is not a snapshot at a

fixed time of the kinetic version.) We say that WH (f, e) is a topologically constrained

wavefront (by H). To simplify notation, we omit H whenever possible, and simply

denote the wavefront, somewhat ambiguously, as W(f, e).

A topologically constrained wavefront WH (f, e) is bounded by a pair of extreme

bisectors of an “artificial” nature, defined in one of the two following ways. We say

that a vertex of P in R(e) or a transparent endpoint x ∈ ∂R(e) is a constraint of H if x

lies on the boundary of RH , which is the locus of all points traversed by all (geodesic)

paths in H (see Fig. 27). It is easy to see that RH is bounded by e, f , and by a pair of

“chains,” each of which connects f with e, and the unfolded image of which (along

the polytope edge sequence corresponding to H) is a concave polygonal path that

bends only at the constraints of H (this structure is sometimes called an hourglass;

see [14] for a similar analysis).

Let s′ be an extreme generator in WH (f, e), and let π be a simple geodesic path (in

H) from s′ that reaches f and touches ∂RH ; see the path π1 in Fig. 27. It is easy to see

that if such a path π exists, then it must be an extreme path among all paths encoded

in WH (f, e), since any other path in WH (f, e) cannot intersect π (see Lemma 4.3

below); we therefore regard π as an extreme artificial bisector of WH (f, e). Another

kind of an extreme artificial bisector arises when, during the propagation of (the ki-

netic version of) WH (f, e), an extreme generator s′ is eliminated in a bisector event x,

as described below, and the neighbor s′′ of s′ becomes extreme; then the path π from

s′′ through the location of x becomes extreme in WH (f, e)—see the path π2 in Fig. 27

for an example.9

Fig. 27 The “hourglass” region RH that is traversed by all paths in H is shaded. The extreme artificial bi-

sectors of the topologically constrained wavefront WH (f, e) are the paths π1 (from the extreme generator

s1 through the vertex v of P , which is one of the constraints of H) and π2 (from the generator s2, which

became extreme when its neighbor s3 was eliminated at a bisector event x, through the location of x)

9Even though π is geodesic, it is not a shortest path to any point beyond x; it is only a convenient (though

conservative) way of bounding WH (f, e) without losing any essential information.

540 Discrete Comput Geom (2008) 39: 500–579

4.2 Merging Wavefronts

Consider the computation of the one-sided wavefront W(e) at a transparent edge e

that will be propagated further (through e) to, say, the left of e. The contributing

wavefronts to this computation are all wavefronts W(f, e), for f ∈ input(e), that

contain waves that reach e from the right (not later than at time covertime(e)). If e

is directly reachable from s, and a wavefront W(s, e) has been propagated from s to

the right side of e, then W(s, e) is also contributing to the computation of W(e). The

contributing wavefronts for the computation of the opposite one-sided wavefront at e

are defined symmetrically.

To simplify notation, in the rest of the paper we assume each transparent edge e to

be oriented, in an arbitrary direction (unless otherwise specified). For the special case

s ∈ R(e), we also treat the direct wavefront W(s, e) from s to e as if s were another

transparent edge f in input(e).

We call the set of all points of e claimed by a contributing wavefront W(f, e) the

claimed portion or the claim of W(f, e). The following lemma implies that this set

is a (possibly empty) connected subinterval of e.

Lemma 4.3 Let e be a transparent edge, and let W(f, e) and W(g, e) be two (topo-

logically constrained) contributors to the one-sided wavefront W(e) that reaches e

from the right, say. Let x and x′ be points on e claimed by W(f, e), and let y be a

point on e claimed by W(g, e). Then y cannot lie between x and x′.

Proof Suppose to the contrary that y does lie between x and x′. Consider a modified

environment in which the paths that reach e from the left are “blocked” at e by a thin

high obstacle, erected on ∂P at e. This modification does not influence the wavefronts

W(f, e) and W(g, e), since no wave reaches e more than once. The simple geodesic

paths π(s, x),π(s, x′), and π(s, y) in the modified environment connect x and x′

to f , and y to g, inside R(e), and lie on the right side of e locally near x, x′, and y;

see Fig. 28(a). By (TD), the paths π(s, x),π(s, x′), and π(s, y) are shortest paths

from s to these points in the modified environment, and therefore do not cross each

other. Since W(f, e),W(g, e) are topologically constrained by different homotopies

(within R(e)), no path traversed by W(g, e) can reach e and be fully contained in the

portion Q of ∂P delimited by f, e, and by the portions of π(s, x),π(s, x′) between f

Fig. 28 (a) W(g, e) cannot claim the point y, for otherwise the shortest path π(s, y) (which crosses the

transparent edge g) would have to cross one of the paths π(s, x),π(s, x′), which is impossible for shortest

paths. The region Q delimited by f, e, and the portions of π(s, x),π(s, x′) between f and e is shaded.

(b) If W(f, e) is not topologically constrained, W(g, e) may claim an in-between point y on e

Discrete Comput Geom (2008) 39: 500–579 541

and e. Therefore, the portion of the shortest path π(s, y) between g and e must enter

the region Q through one of the paths π(s, x),π(s, x′), which is a contradiction. �

Remark Lemma 4.3 may fail if W(f, e) is not a topologically constrained wavefront;

see Fig. 28(b) for an example. Moreover, if W(g, e) reaches e from the other side of

e then it is possible for W(g, e) to claim portions of xx′ without claiming x and x′.

It is this fact that makes the explicit merging of the two one-sided wavefronts expen-

sive.

We now proceed to describe the merging process, applied to the contributing wave-

fronts that reach a transparent edge e from a fixed side; the process results in the

construction of the corresponding one-sided wavefront at e. Most of the low-level

details of the process are embedded in the procedures supported by the data struc-

ture described in Sect. 5.1; for now, before proceeding with Lemma 4.4, we briefly

review the basic operations, and assert their time complexity bounds. Each contribut-

ing wavefront W is maintained as a list of generators in a balanced tree data structure;

we may therefore assume that each of the operations of constructing a single bisec-

tor, finding its intersection point with e, measuring the distance to a point on e from

a single generator, and concatenating the lists representing two wavefront portions

into a single list, takes O(logn) time. This will be further explained and verified in

Sect. 5.

Lemma 4.4 For each transparent edge e and for each f ∈ input(e), we can compute

the claim of each of the wavefront portions W(f, e) that contribute to the one-sided

wavefront W(e) that reaches e from the right, say, in O((1 + k) logn) total time,

where k is the total number of generators in all wavefronts W(f, e) that are absent

from W(e).

Proof For each contributing wavefront W(f, e), we show how to determine its claim

in the presence of only one other contributing wavefront W(g, e). The (connected)

intersection of these claimed portions, taken over all other O(1) contributors W(g, e),

is the part of e claimed by W(f, e) in W(e). This results in the algorithm asserted in

the lemma.

Orient e from one endpoint a to the other endpoint b. We refer to a (resp., b) as

the left (resp., right) endpoint of e. We determine whether the claim of W(f, e) is to

the left or to the right of that of W(g, e), as follows. If both W(f, e) and W(g, e)

claim a, then, in O(logn) time, we check which of them reaches it earlier (we only

need to check the distances from a to the first and the last generator in each of the two

wavefronts, since we assume that W(f, e),W(g, e) only contain waves that reach e).

Otherwise, one of W(f, e),W(g, e) reaches a point p ∈ e (not necessarily a) that is

left of any point reached by the other; by Lemma 4.3, the claim that contains p, by

“winning” wavefront, is to the left of the claim of the other wavefront. To find p, we

intersect the first and the last (artificial) bisectors of each of W(f, e),W(g, e) with e;

p is the intersection closest to a.

A basic operation performed here and later in the merging process is to determine

the order of two points x, y along e. Using the surface unfolding data structure of

542 Discrete Comput Geom (2008) 39: 500–579

Fig. 29 The source image s2 is

eliminated from W(e), because

its contribution to W(e) must be

to the left of p2 and to the right

of x, and therefore does not

exist along e

Sect. 2.4, we can compute the polytope edge sequence Ee crossed by e, in O(logn)

time, and compare UEe
(x) with UEe

(y).

Without loss of generality, assume that the claim of W(f, e) is left of that of

W(g, e). Note that in this definition we also allow for the case where W(g, e) is

completely annihilated by W(f, e).

Let s1 denote the generator in W(f, e) that claims the rightmost point on e among

all points claimed by W(f, e); by assumption, s1 is an extreme generator of W(f, e).

Let p1 be the left endpoint of the claim of s1 on UEe
(e) (as determined by W(f, e)

alone; it is the intersection of UEe
(e) and the left bisector of s1). Similarly, let s2

denote the generator in W(g, e) claiming the leftmost point on e (among all points

claimed by W(g, e)), and let p2 be the right endpoint of the claim of s2 on UEe
(e)

(as determined by W(g, e) alone). We compute the (unfolded) bisector of s1 and s2,

and find its intersection point x with UEe
(e); see Fig. 29. If x is to the left of p1 or

x does not exist and the entire e is to the right of b(s1, s2), then we delete s1 from

W(f, e), reset s1 to be the next generator in W(f, e), and recompute p1. If x is to

the right of p2 or x does not exist and the entire e is to the left of b(s1, s2), then we

update W(g, e), s2 and p2 symmetrically. In either case, we recompute x and repeat

this test. If p1 is to the left of p2 and x lies between them, then x is the right endpoint

of the claim of W(f, e) in the presence of W(g, e) and the left endpoint of the claim

of W(g, e) in the presence of W(f, e).

Consider next the time complexity of this process. Merging each of the O(1) pairs

W(f, e), W(g, e) of wavefronts involves O(1 + k) operations, where k is the num-

ber of generators that are deleted from the wavefronts during that merge, and where

each operation either computes a single bisector, or finds its intersection point with e,

or measures the distance to a point on e from a single generator, or deletes an ex-

treme wave from a wavefront, or concatenates two wavefront portions into a single

list. As stated above, each of these operations can be implemented in O(logn) time.

Summing over all O(1) pairs W(f, e), W(g, e), the bound follows. �

The following lemma proves the correctness of the process, with the assumption

that the propagation procedure, whose details are not provided yet, is correct.

Lemma 4.5 (i) Any generator deleted during the construction of a one-sided wave-

front at the transparent edge e does not contribute to the true wavefront at e. (ii) As-

suming that the propagation algorithm deletes a wave from the wavefront not earlier

than the time when the wave becomes dominated by its neighbors, every generator

that contributes to the true wavefront at e belongs to one of the (merged) one-sided

wavefronts at e.

Discrete Comput Geom (2008) 39: 500–579 543

Proof The first part is obvious—each point in the claim of each deleted generator si
along e is reached earlier either by its neighbor generator in the same contributing

wavefront or by a generator of a competing wavefront. It is possible that these gen-

erators are further dominated by other generators in the true wavefront, but in either

case si cannot claim any portion of e in the true wavefront. The second part follows

by induction on the order in which transparent edges are being processed, based on

the following two facts: (i) Any wave that contributes to the true wavefront at e must

arrive either directly from s inside R(e), or through some edge f ∈ input(e). (ii) The

one-sided wavefronts at each edge f ∈ input(e) that have been covered before e is

processed, have already been computed (by Lemma 4.2). Hence each generator si
that contributes to the true wavefront at e contributes to the true wavefront at some

such edge f , and the induction hypothesis implies that si belongs to the appropriate

one-sided wavefront at f . Since, by the assumption that is established in the next

section, the propagation algorithm from f to e deletes from the wavefront only the

waves that become dominated by other waves, si participates in the merging process

at e, and, by the first part of the lemma, cannot be fully eliminated in that process. �

4.3 The Bisector Events

When we propagate a one-sided wavefront W(e) to the edges of output(e), as will

be described in detail in Sect. 5.2, and when we merge the wavefronts that reach the

same transparent edge, as described in Sect. 4.2, bisector events may occur, as defined

above. We distinguish between the following two kinds of bisector events.

(i) Bisector events of the first kind are detected when we simulate the advance of

the wavefront W(e) from a transparent edge e to another edge g to compute the wave-

front W(e,g), where g ∈ output(e). In any such event, two non-adjacent generators

si−1, si+1 become adjacent due to the elimination of the intermediate wave generated

by si (as we show in Lemma 5.6, this is the only kind of events that occur when

waves from the same topologically constrained wavefront collide with each other);

see Fig. 30(a) for an illustration. This event is the starting point of b(si−1, si+1),

which reaches g in W(e,g) if both waves survive the trip.

A bisector event, at which the first generator s1 in the propagated wavefront is

eliminated, is treated somewhat differently; see Fig. 30(b), (c) for an illustration. In

Fig. 30 When a bisector event (of the first kind) takes place at x: (a) The wave of si is eliminated, and the

new bisector b(si−1, si+1) is computed. (b), (c) The wave of s1 is eliminated, and the ray from s2 through

x becomes the leftmost (artificial) bisector of W , instead of the former leftmost bisector, which is the ray

from s1 through either (b) a transparent edge endpoint v (a visibility constraint), or (c) the location w of

an earlier bisector event, where s0 , the previous leftmost generator of W , has been eliminated

544 Discrete Comput Geom (2008) 39: 500–579

Fig. 31 W(e), propagated from e, is split inside R(e) when it reaches the inner (top) boundary cycle.

Then the two new topologically constrained wavefronts partially collide into each other, creating a se-

quence of bisectors (dotted lines, bounded by thick points where bisector events of the second kind occur),

eliminating a sequence of waves in each wavefront

this case s1 is deleted from the wavefront W and the next generator s2 becomes the

first in W . The ray from s2 through the event location becomes the first (that is,

extreme), artificial bisector of W , meaning that W needs to be maintained only on

the s2-side of this bisector (which is a conservative bound). Indeed, any point p ∈ ∂P

for which the path π(s2,p) crosses b(s1, s2) into the region of ∂P that is claimed by

s1 (among all generators in W), can be reached by a shorter path from s1. The case

when the last generator of W is eliminated is treated symmetrically.

(ii) Bisector events of the second kind occur when waves from different topolog-

ically constrained wavefronts collide with each other. Our algorithm does not ex-

plicitly detect these events; however, they are all (implicitly) considered at the query

processing time, as described in Sect. 5.4, and some of them undergo additional (al-

beit still implicit) processing, as briefly described next.

If a generator si contributes to one of the input wavefronts W(e,g) but not to the

merged one-sided wavefront W(g) at g, then si is involved in at least one bisector

event (of the second kind) on the way from e to g, and there must exist some gener-

ator sj in another (topologically constrained) wavefront W(f,g) that also reaches g,

which eliminates the wave of si . This event is implicitly recognized by the algorithm

when si is deleted from W(e,g) during the merging process at g.

Another kind of such an event occurs when a one-sided wavefront W(e) is split

during its propagation inside R(e) (either at of a vertex of P or at a hole of R(e) that

may contain one or more vertices of P), and the two portions of the split wavefront

partially collide into each other during their further propagation inside R(e), as dis-

tinct topologically constrained wavefronts, before they reach ∂R(e)—see Fig. 31.

The algorithm implicitly processes some of these events, by realizing that these

waves attempt to exit the current block tree, by re-entering an already visited building

block. The algorithm then simply discards these waves from further processing; see

Sect. 5.3.1.

Tentatively False and True Bisector Events Consider the time t = covertime(e).

There may be waves that have reached e before time t (although not earlier than

time t − 2|e|), and some of these waves could have participated in bisector events of

the first kind “beyond” e that could have taken place before time t . As described in

Sect. 5, the algorithm detects these (currently considered as) “false” bisector events

when the wavefronts from the edges in input(e) are propagated to e, but the gen-

erators that are eliminated in these events are not deleted from their corresponding

Discrete Comput Geom (2008) 39: 500–579 545

Fig. 32 The bisector event at x occurs at time t2 . It is first detected when the wavefront is propagated

toward the transparent edge e, which has not been fully covered yet. Since x is beyond e, the event is

currently considered false (and the eliminated wave w is not deleted from the wavefront, so that it shows

up on W(e)). When e is ascertained (at time t3 = covertime(e)) to be fully covered, the one-sided wave-

front W(e) is computed, and then propagated toward the transparent edge f , starting from some time

t < covertime(e) (e.g., t2). Since w is part of W(e), the bisector event at x is detected again, and this time

it is considered to be true

contributing wavefronts before time t . This is done to ensure that the invariant (TD)

is satisfied. However, such a bisector event is detected again, and considered to be

true, when the wavefront is propagated further, after processing e. This latter propa-

gation from e can be considered to start at the time when the first among such events

occurs, which might happen earlier than covertime(e); see Fig. 32. Further details

are given in Sect. 5, where we also show that the number of all “true” and “false”

processed events is only O(n).

Remark Note that a detected “true” event does not necessarily appear as a vertex

of SPM(s), since it involves only waves from a single one-sided wavefront, and its

location x can actually be claimed by a wave from another wavefront. To find the true

claimer of x (or any other query point), we make use of the fact that x belongs to only

O(1) well-covering regions, each of which is traversed by only O(1) wavefronts;

knowing the claimer of x in each of these wavefronts gives us the “global” claimer

of x—see Sect. 5.4.

5 Implementation Details

5.1 The Data Structures

A one-sided wavefront is an ordered list of generators (source images). Our algorithm

performs the following three types of operations on these lists (the first two types are

similar to those in [18]):

1. List operations: CONCATENATE, SPLIT, and DELETE.10 Each operation is applied

to the list of generators that represents the wavefront at any particular simulation

time.

10Note that the algorithm does not use INSERT operations; a new wave is created only during a SPLIT

operation, and generating it is part of the SPLIT. Similarly, the omitted CREATE operation is performed

only once, when the first singleton wavefront at s is created.

546 Discrete Comput Geom (2008) 39: 500–579

Fig. 33 The wavefront W at simulation times t1 and t2 consists of four source images s1, . . . , s4 , all

unfolded to one plane at time t1 and to another plane at time t2 (for this illustration, both planes are the

same—this is the plane of the facet that contains the point p). In order to determine the generator of W

that claims p, the SEARCH operation can be applied to the version of W at time t2, when p is already

claimed by s3

2. Priority queue operations: We assign to each generator a priority (as defined below

in Sect. 5.3.1; it is essentially the time at which the generator is eliminated by

its two neighbors), and the data structure needs to update priorities and find the

minimum priority in the list.

3. Source unfolding operations: (a) To compute explicitly each source image si in

the wavefront at time t , we need to unfold the maximal polytope edge sequence

of si at t—this operation is referred to as an “unfolding query”; the unfolding

structure needs to be updated as the wavefront advances. (b) The bisectors between

consecutive generators in the list, as long as they do not meet one another, partition

a portion of the plane of unfolding into a linearly ordered sequence of regions, and

we want to locate the region containing a query point q . That is, we SEARCH in the

generator list for a claimer of q (without considering other wavefronts or possible

visibility constraints); see Fig. 33, and see later for more precise details.

All these types of operations can be supported by a data structure based on bal-

anced binary search trees, with the generators stored at the leaves [15]. In particular,

the “bare" list operations (ignoring the maintenance of priorities and unfolding data)

take O(logn) time each, using standard machinery [15, 37]. Moreover, one can also

update the extra unfolding fields (described in the following paragraphs) as these list

operations are executed (so that the operations retain their O(logn) time). Although

not completely straightforward, the manipulation of the unfolding fields is still sim-

ple enough, so that we omit it here—we present the full details in [34]. The priority

queue operations are supported by adding a priority field to each node of the binary

tree, which records the minimum priority of the leaves in the subtree of that node

(and the leaf with that priority). Each priority queue operation takes O(logn) time;

the actual implementation details are fairly standard, and are therefore omitted.

Source Unfolding Operations The source unfolding queries are supported by

adding an unfolding transformation field U [v] to each node v of the binary tree,

in such a way that, for any queried generator si , the unfolding of si is equal to the

Discrete Comput Geom (2008) 39: 500–579 547

product (composition) of the transformations stored at the nodes of the path from the

leaf storing si to the root. That is, if the nodes on the path are v1 = root, v2, . . . , vk =

leaf storing si , then the unfolding of si is given by U [v1]U [v2] · · ·U [vk]. We repre-

sent each unfolding transformation as a single 4 × 4 matrix in homogeneous coordi-

nates (see [32, 34]), so composition of any pair of transformations takes O(1) time.

For each node v, and for any path v = v1, v2, . . . , vk that leads from v to a leaf, the

product U [v1]U [v2] · · ·U [vk] maps the generator stored at vk to a fixed destination

plane that depends only on v.

For each internal node v, let (v = v1, v2, . . . , vk = the rightmost leaf of the

left subtree of v) be the path from v to vk , and let (v = v′
1, v

′
2, . . . , v

′
k′ = the

leftmost leaf of the right subtree of v) be the path from v to v′
k′ . To per-

form the SEARCH operation efficiently, we store at v the bisector image b[v] =

b(U [v1]U [v2] · · ·U [vk](s),U [v′
1]U [v′

2] · · ·U [v′
k′](s)), which is the bisector between

the source image stored at vk and the source image stored at v′
k′ , unfolded into the des-

tination plane of U [v1]U [v2] · · ·U [vk] (or, equivalently, of U [v′
1]U [v′

2] · · ·U [v′
k′]).

Note that, for any path π from v to a leaf in the subtree of v, the destination plane

Λ(v) of the resulting composition of the unfolding transformations stored at the

nodes of π , in their order along π , is the same, and depends only on v (and indepen-

dent of π). During any operation that modifies the data structure, we always maintain

the invariant that b[v] is unfolded onto Λ(v). As already said, the updating of the

fields U [v], b[v], at nodes v affected by tree rebalancing rotations, is quite simple,

and described in [34].

The procedure SEARCH with a query point q in Λ(root) is performed as follows.

We determine on which side of b[root] q lies, in constant time, and proceed to the

left or to the right child of the root, accordingly. When we proceed from a node v to

its child, we maintain the composition U∗[v] of all unfolding transformations on the

path from the root to v (by initializing U∗[root] := U [root] and updating U∗[w] :=

U∗[u]U [w] when processing a child w of a node u on the path). Thus, denoting by

b the bisector whose corresponding image b[v] is stored at v, we can determine on

which side of b q lies, by computing the image U∗[v]b[v], in O(1) time. Since the

height of the tree is only O(logn), it takes O(logn) time to SEARCH for the claimer

of q .

Note that the result of the SEARCH operation is guaranteed to be correct only if

the query point q is already covered by the wavefront (that is, the bisectors between

consecutive generators in the list do not meet one another closer to s than the location

of q). It is the “responsibility” of the algorithm to provide valid query points (in that

sense).

Typical Manipulation of the Structure Initializing the unfolding fields is trivial

when the unique singleton wavefront is initialized at t = 0 at s. In a typical step of

updating some wavefront W , we have a contiguous subsequence W ′ of W , which we

want to advance through a new polytope edge sequence E (given that all the source

images in W are currently unfolded to the plane of the first facet of the correspond-

ing facet sequence of E ; see Sect. 5.3 for further details). We perform two SPLIT

operations that split T into three subtrees T −, T ′, T +, where T ′ stores W ′, and T −

(resp., T +) stores the portion of W that precedes (resp., succeeds) W ′ (either of these

two latter subtrees can be empty). Then we take the root r ′ of T ′, and replace U [r ′]

548 Discrete Comput Geom (2008) 39: 500–579

Fig. 34 T is split into three subtrees T −, T ′, T + , where T ′ stores the sub-wavefront W ′ of W . Then the

unfolding fields stored at the root r ′ of T ′ are updated

by UEU [r ′] and b[r ′] by UEb[r ′]; see Fig. 34. Finally, we concatenate T −, the new

T ′, and T +, into a common new tree T .

Remark The collection of the fields U [v] and b[v] in the resulting data structure

is actually a dynamic version of the incidence data structure of Mount [28], which

stores the incidence information between m nonintersecting geodesic paths and n

polytope edges; the main novelty is the dynamic nature of the structure and the opti-

mal construction time of O((n+m) log(n+m)). (Mount constructs his data structure

in time proportional to the number of intersections between the polytope edges and

the geodesic paths, which is Θ(nm) in the worst case.)

Maintaining all Versions We also require our data structure to be confluently persis-

tent [12]; that is, we need the ability to maintain, operate on, and modify past versions

of any list (wavefront), and we need the ability to merge (in the terminology of [12])

existing distinct versions into a new version. Consider, for example, a transparent

edge e and two transparent edges f,g in output(e). We propagate W(e) to compute

W(e,f),W(e, g); the first propagation has modified W(e), and the second propa-

gation goes back to the old version of W(e) and modifies it in a different manner.

Moreover, later, when f , say, is ascertained to be covered, we merge W(e,f) with

other wavefronts that have reached f , to compute W(f), and then propagate W(f)

further. At some later time g is ascertained to be covered, and we merge W(e,g) with

other wavefronts at g into W(g). Thus, not only do we need to retrieve older versions

of the wavefront, but we also need to merge them with other versions.

We also use the persistence of the data structure to implement the wavefront prop-

agation through a block tree, as described in Sect. 5.3.1 below. Specifically, our prop-

agation simulation uses a “trial and error” method; when an “error” is discovered,

we restart the simulation from an earlier point in time, using an older version of the

wavefront.

Each of the three kinds of operations, CONCATENATE, SPLIT and DELETE, uses

O(1) storage for each node of the binary tree that it accesses, so we can make the

data structure confluently persistent by path-copying [20]. Each of our operations af-

fects O(logn) nodes of the tree, including all the ancestors of every affected node.

Discrete Comput Geom (2008) 39: 500–579 549

Once we have determined which nodes an operation will affect, and before the oper-

ation modifies any node, we copy all the affected nodes, and then modify the copies

as needed. This creates a new version of the tree while leaving the old version un-

changed; to access the new version we can simply use a pointer to the new root, so

traversing it is done exactly as in the ephemeral case. In summary, we have:

Lemma 5.1 There exists a data structure that represents a one-sided wavefront and

supports all the list operations, priority queue operations, and unfolding operations,

as described above, in O(logn) worst-case time per operation. The size of the data

structure is linear in the number of generators; it can be made confluently persistent

at the cost of O(logn) additional storage per operation.

5.2 Overview of the Wavefront Propagation Stage

Recall from Sect. 4 that the two main subroutines of the algorithm are wavefront

propagation and wavefront merging. In this and the following subsection we describe

the implementation details of the first procedure; the merging is discussed in Sect. 4.2,

which, together with the data structure details presented in Sect. 5.1, implies that all

the merging procedures can be executed in O(n logn) time.

Let e be a transparent edge. We now show how to propagate a given one-sided

wavefront W(e) to another edge g ∈ output(e) (that is, e ∈ input(g)), denoting,

as above, the resulting propagated wavefronts by WH1
(e, g), . . . ,WHk

(e, g), where

H1, . . . ,Hk are all the relevant homotopy classes that correspond to block sequences

from e to g within R(g) (see Sect. 3.3); note that a transparent endpoint “splits” a

homotopy class, similarly to a vertex of P . In the process, we also determine the time

of first contact between each such W(e,g) and the endpoints of g.

The high-level description of the algorithm is a sequence of steps, each of which

propagates a wavefront W(e) from one transparent edge e to another g ∈ output(e),

within a fixed homotopy class H , to form WH (e, g).11 Nevertheless, in the actual im-

plementation, when we start the propagation from e, all the topologically constrained

wavefronts WH (e, g), over all relevant g and H , are treated as a single wavefront W .

At the beginning of the propagation, W is split into k1 initial sub-wavefronts, where

k1 is the number of building blocks that e bounds (on the side into which we propa-

gate W); during the propagation, these initial wavefronts are further split into a total

of k sub-wavefronts, one per homotopy class.

Let c be the surface cell for which e ⊂ ∂c, and W(e) enters c after reaching e. We

describe in the next subsection a procedure for computing (all the relevant topologi-

cally constrained wavefronts) W(e,g) for any transparent edge g ⊂ ∂c. To compute

W(e,g) for all transparent edges g ∈ output(e), possibly not belonging to ∂c, we

proceed as follows. We propagate W(e) cell-by-cell inside R(g) from e to g, and ef-

fectively split the wavefront into multiple component wavefronts, each labeled by the

sequence of O(1) transparent edges it traverses from e to g. We propagate a wave-

front W from e to g inside a single surface cell, either when W is one of the two

one-sided wavefronts merged at e, or when W has reached e on its way to g from

11The initial singleton wavefront W(s) from s to a transparent edge g on the boundary of the cell that

contains s is propagated similarly.

550 Discrete Comput Geom (2008) 39: 500–579

some other transparent edge f ∈ input(g) (without being merged with other compo-

nent wavefronts at e). In what follows, we treat W as in the former case; the latter

case is similar.

5.3 Wavefront Propagation in a Single Cell

So far we have considered a wavefront as a static structure, namely, as a sequence

of generators that reach a transparent edge. We now describe a “kinetic” form of the

wavefront, in which we track changes in the combinatorial structure of the wavefront

W(e) as it sweeps from its origin transparent edge e across a single cell c. Our simu-

lation detects and processes any bisector event in which a wave of W(e) is eliminated

by its two neighboring waves inside c; actually, the propagation may also detect some

events that occur in O(1) nearby cells, as described in detail below. Events are de-

tected and processed in order of increasing distance from s, that is, in simulation

time order. However, the simulation clock t is not updated during the propagation

inside c; that is, the propagation from an edge e to all the edges in output(e) is done

without “external interruptions” of propagating from other fully covered transpar-

ent edges that need processing. The effect of the propagated wavefront W(e,g), for

g ∈ output(e), on the simulation clock is in its updating of the values covertime(g);

the actual updating of t occurs only when we select a new transparent edge e′ with

minimum covertime(e′) for processing—see Sect. 4.1.

We propagate the wavefront separately in each of the O(1) block trees of the

Riemann structure T (e). Let W(e) be the one-sided wavefront that reaches e from

outside c; it is represented as an ordered list of source images, each claiming some

(contiguous and nonempty) portion of e. To prepare W(e) for propagation in c, we

first SPLIT W(e) into O(1) sub-wavefronts, according to the subdivision of e by

building blocks of c. A sub-wavefront that claims the segment of e that bounds a

building block B of c is going to be propagated in the block tree TB(e) ∈ T (e).

By propagating W(e) from e in all the trees of T (e) within c, we compute O(1)

new component wavefronts that reach other transparent edges of ∂c. If e is the initial

edge in this propagation step, then, by Corollary 3.17, these component wavefronts

collectively encode all the shortest paths from s to points p of c that enter c through e

and do not leave c before reaching p. In general, this property holds for all the cells c′

in R(e), as follows easily from the construction. Hence, these component wavefronts,

collected over all propagation steps that traverse c, contain all the needed information

to construct (an implicit representation of) SPM(s) within c.

5.3.1 Wavefront Propagation in a Single Block Tree

Let TB(e) be a block tree in T (e), and denote by eB the sub-edge ∂B ∩ e. Denote

by W(eB) the sub-list of generators of W(e) that claim points on eB (recall that

W(e) claims a single connected portion of e, which may or may not contain the

endpoints of e, or of eB). Let W = W(t) denote the kinetic wavefront within the

blocks of TB(e) at any time t during the simulation; initially, W = W(t0) = W(eB).

Note that even though we need to start the propagation from e at simulation time

t0 = covertime(e), the actual starting time may be strictly smaller, since there may

have been bisector events beyond e that have occurred before time covertime(e). In

Discrete Comput Geom (2008) 39: 500–579 551

Fig. 35 The block B is shaded; the edge sequence associated with B is EB = (χ1, . . . , χ6). W(eB) con-

sists of four source images s1, . . . , s4, all unfolded to the plane of the facet f before the simulation of the

propagation into TB (e) starts (that is, the last facet of the facet sequence corresponding to each Ei is f).

Specifically, E1 = Ẽ1||(χ2, . . . , χ6), E2 = Ẽ2||(χ5, χ6), E3 = Ẽ3 \ (χ6, χ5) and E4 = Ẽ4 \ (χ6)

this case, these events need now to be processed (up to now, they have been detected

by the algorithm but not processed yet), and we set t0 to be the time when the earliest

among them takes place.

Denote by EB an edge sequence associated with B (any one of the two oppositely

ordered such sequences, for blocks of type II, III), and by FB its corresponding facet

sequence. We can then write W = (s1, s2, . . . , sk), so that, for each i, we have si =

UEi
(s), where Ei is defined as follows. Denote by Ẽi the maximal polytope edge

sequence traversed by the wave of si from si to the points that it claims on e; Ẽi must

overlap either with a portion of EB or with a portion of the reverse sequence E rev
B . In

the former case we extend Ẽi by the appropriate suffix of EB (which takes us to f in

Fig. 35). In the latter case we truncate Ẽi at the first polytope edge of E rev
B that it meets,

and then extend it by the appropriate suffix of EB . However, the algorithm does not

compute these sequences explicitly (and does not perform the “extend” or “truncate”

operations); it only stores and composes their unfolding transformations, as described

in Sect. 5.1. Denote by Λ(W) the (common) destination plane of all the UEi
. We do

not alter Λ(W) until the propagation of W in TB(e) is completed (and then Λ(W)

is updated, as described below). That is, as we traverse new blocks of TB(e), we

unfold them all to the plane Λ(W). When we propagate the initial singleton wavefront

directly from s in TB(s), we initialize W := (s), so that the maximal polytope edge

sequence E of s is empty, and UE is the identity transformation I . This setting is

appropriate since s is assumed to be a vertex of P , and therefore all the polytope

edges in EB emerge from s, so it lies on all the facets of FB , and, particularly, on the

last facet of FB .

The boundary chain C of TB(e) is recursively defined as follows. Initially, we

put in C all the boundary edges of ∂B , other than eB . We then proceed top-down

through TB(e). For each node B ′ of TB(e) and for each child B ′′ of B ′, we remove

from the current C the contact interval connecting B ′ and B ′′, and replace it by the

remaining boundary portion of B ′′. This results in a connected (unfolded) polygonal

boundary chain that shares endpoints with B ∩ e. Since TB(e) has O(1) nodes, and

each block has O(1) boundary elements, C contains only O(1) elements; see Fig. 36.

552 Discrete Comput Geom (2008) 39: 500–579

Fig. 36 Bisector events (the thick square points), some of which are processed during the propagation

of the wavefront W from the transparent edge portion eB (the thickest segment in this figure) through

the building blocks (their shadings alternate) of the block tree TB (e). The unfolded transparent edges are

drawn as thick solid lines, while the unfolded contact intervals are thin solid lines. The bisectors of the

generators of W , as it sweeps through the unfolded blocks, are shown dashed. The union of all the blocks

in TB (e) is bounded by eB and the boundary chain C (which is non-overlapping in this example). The

dotted lines indicate the distance from the transparent edges in C within which we still process bisector

events of W . For each transparent edge f of C, we can stop propagating the wavefront portion W(eB , f)

that has reached f after it crosses the dotted line (which lies at distance 2|f | from f), since f must have

already been fully swept at that time by the waves of W(eB , f)

When W is propagated towards C, the most important property is that each trans-

parent edge or contact interval of C can be reached only by a single topologically con-

strained sub-wavefront of W , since, if W splits on its way, the new sub-wavefronts

reach different elements of C. (The property does not hold for ∂c, since, when c con-

tains holes and/or a vertex of P , there is more than one way to reach a transparent

edge f ∈ ∂c—in such cases f appears more than once in C, each time as a distinct

element, as illustrated in Fig. 36.) In the rest of this section, whenever a resulting

wavefront W(e,f) is mentioned for some f ∈ C, we interpret W(e,f) as WH (e, f)

for the unique homotopy class H that constrains W on its way from e to this specific

incarnation of f along C.

We denote by range(W) the subset of segments of C that can potentially be

reached by W , initialized as range(W) := C. As W is propagated (and split),

range(W) is updated (that is, split and/or truncated) accordingly, as described below.

Critical Events and Simulation Restarts We simulate the continuous propagation of

W by updating it at the (discrete) critical events that change its topology during its

Discrete Comput Geom (2008) 39: 500–579 553

propagation in TB(e). There are two types of these events—bisector events (of the

first kind), when a wave of W is eliminated by its two neighbors, and vertex events,

when W reaches a vertex of C (either transparent or a real vertex of P) and has

to be split. Before we describe in detail the processing of these events, we provide

here the intuition behind the (somewhat unorthodox implementation of the) low-level

procedures.

The purpose of the propagation of W in TB(e) is to compute the wavefronts

W(eB , f), for each transparent edge f in C that W reaches. To do so, we have to cor-

rectly update W at those critical events that are true with respect to the propagation

of W in TB(e); that is, events that take place in TB(e) that would have been vertices

of SPM(s) if there were no other wavefronts except W . For the sake of brevity, in the

rest of this section we refer to these events simply as true events. Unfortunately, it is

difficult to determine in “real time” the exact set of true events (mainly because of

vertex events—see below). Instead, we determine on the fly a larger set of candidates

for critical events, which is guaranteed to contain all the true events, but which might

also contain events that are false with respect to the propagation of W in TB(e); in the

rest of this section we refer to events of the latter kind as false events. The candidates

that turn out to be false events either are bisector events that involve at least one gen-

erator s′ of W so that the path from s′ to the event location intersects C, or take place

later than some earlier true event that has not yet been detected (and processed).

Let x be such a candidate bisector event that takes place at simulation time tx . If

all the true events of W that have taken place before tx were processed before tx , then

x can be foreseen at the last critical event at which one of the bisectors involved in x

was updated before time tx , using the priorities assigned to the source images in W .

The priority of a source image s′ is the distance from s′ to the point at which the two

(unfolded) bisectors of s′ intersect beyond eB , either in B or beyond it. The priority is

+∞ if the bisectors do not intersect beyond eB . (Initially, when W contains the single

wave from s, the priority of s is defined to be +∞.) Whenever a bisector of a source

image s′ is updated (as detailed below), the priority of s′ is updated accordingly.

A candidate vertex event cannot be foreseen so easily, since we do not know which

source image of W claims a vertex v (because of the critical events that might change

W before it reaches v), until v is actually reached by W . Even when v is reached

by W , we do not have in the data structure a “warning” that this vertex event is

about to take place. Instead, we detect the vertex event that occurs at v only later and

indirectly, either when processing some later candidate event (which is false as it was

computed without taking into account the event at v—see Fig. 37(a), (b)), or when

the propagation of W in TB(e) is stopped at a later simulation time, when a segment

f of C incident to v is ascertained to be fully covered, as illustrated in Fig. 37(c).

When we detect a vertex event at some vertex v which is reached by W at time tv ,

so that at least one candidate critical event of W that takes place later than tv has

already been processed, all the versions of the (persistent) data structure that encode

W after time tv become invalid, since they do not reflect the update that occurs at tv .

To correct this situation, we discard all the invalid versions of W , and restart the

simulation of the propagation of the last valid version of W from time tv . This time,

however, we SPLIT W at v (at simulation time tv) into two new sub-wavefronts, as

detailed below. Note that this step does not guarantee that the current event at v is a

true event, since there might still exist undetected earlier vertex events, which, when

554 Discrete Comput Geom (2008) 39: 500–579

Fig. 37 An earlier vertex event at v ∈ C can be detected later: (a) while processing a false bisector event x;

(b) while processing a vertex event at an endpoint v′ of a segment f ⊂ C, when f is ascertained to be

covered by W ; (c) when the segment g ⊂ C, incident to v, is ascertained to be covered by W

eventually detected later, will cause the simulation to be restarted again, making the

current event at v invalid (and we will have to wait until the wavefront reaches v

again).

Path Tracing Let x ∈ Λ(W) be an (unfolded) image of some point of c, and let

s′ ∈ W be a source image. To determine whether the path to x from s′ does or does

not meet C, and, in the former case, to also determine the first intersection point

(along the path π(s′, x)) with C, we trace π(s′, x) either up to x, or until it intersects

C—whichever occurs first—as follows.12

The tracing is done by following the sequence of blocks traversed by π(s′, x),

which forms a path in TB(e). At each block B ′ that we encounter, we test whether

π(s′, x) terminates within B ′, and, if not, we find the edge of ∂B ′ through which

π(s′, x) leaves B ′. If we reach x, or if the exit edge of ∂B ′ is a portion of C, we stop

the tracing. Otherwise we exit B ′ through a contact interval I , and proceed to the

next block beyond I . (It is also possible that we reach a contact interval I which is a

“dead-end” in TB(e), and is thus a portion of C.)

At each step we proceed in TB(e) from a node to its child; since the depth of TB(e)

is O(1), we are done after O(1) steps. Since at each step we compute O(1) unfold-

ings of paths and transparent edges, and each unfolding operation takes O(logn) time

to perform, using the data structures described in Sects. 2.4 and 5.1, the whole tracing

procedure takes O(logn) time.

Corollary 5.2 Tracing the path π(s′,p) from a generator s′ ∈ W to a point p without

intersecting C, correctly determines the distance d(s′,p).

Proof Follows from the description of the tracing procedure. �

Note that we can similarly trace any path π of W until it intersects C, without

specifying any terminal point on π , as long as the starting direction of π in Λ(W) is

well defined.

12Here and in the rest of this section, whenever we say that a path π from a generator s′ ∈ W intersects

C, we actually mean that only the portion of π from s′ to the first intersection point x = π ∩ C is a valid

geodesic path; the portion of π beyond x is merely a straight segment along the direction of π on Λ(W).

Still, for the sake of simplicity, we call π (including possibly a portion beyond x) a path (from s′ to the

terminal point of π).

Discrete Comput Geom (2008) 39: 500–579 555

Fig. 38 (a) π(si ,pi),π(sj ,pj) leave B ′ through two different contact intervals of ∂B ′ . Here pi = pj ,

and τ is the triangle zipizj . (b) π(si ,pi) reaches pi ∈ B ′ and π(sj ,pj) leaves B ′ at the point xj . Here

pi 	= pj , and τ is the quadrilateral zipipj zj . The portion X of ∂B ′ is highlighted in both cases

The following technical lemma is needed later for the correctness analysis of the

simulation algorithm—in particular, for the analysis of critical event processing. See

Fig. 38.

Lemma 5.3 Let si, sj be a pair of generators in W , and let pi,pj be a pair of (pos-

sibly coinciding) points in Λ(W), so that π(si,pi) and π(sj ,pj) do not intersect

each other (except possibly at their terminal point, if pi = pj), and if pi 	= pj then

f = pipj is a straight segment of C. Denote by zi (resp., zj) the intersection point

π(si,pi)∩eB (resp., π(sj ,pj)∩eB), and denote by τ the unfolded convex quadrilat-

eral (or triangle) zipipjzj . Let B ′ be the last building block of the maximal common

prefix block sequence along which both π(si,pi) and π(sj ,pj) are traced (before

possibly diverging into different blocks).

If only one of the two paths leaves B ′, or if π(si,pi) and π(sj ,pj) leave B ′

through different contact intervals of ∂B ′, then the region B ′ ∩ τ contains at least

one vertex of C that is visible, within the unfolded blocks of TB(e), from every point

of z1z2 ⊆ eB .

Proof Assume for simplicity that B ′ 	= B . The paths π(si,pi),π(sj ,pj) must

enter B ′ through a common contact interval I of ∂B ′. Consider first the case

where π(si,pi),π(sj ,pj) leave B ′ through two respective different contact inter-

vals Ii, Ij of ∂B ′, and denote their first points of intersection with ∂B ′ by xi and xj ,

respectively—see Fig. 38(a). Denote by X the portion of ∂B ′ between xi and xj that

does not contain I ; X must contain at least one vertex of ∂B ′. By definition, each

vertex of a building block is a vertex of C; note that the extreme vertices of X are

xi and xj , which may or may not be vertices of C. Since the unfolded image of X is

a simple polygonal line that connects π(si, xi) and π(sj , xj), and intersects neither

π(si, xi) nor π(sj , xj), it is easily checked that we can sweep τ by a line parallel

to eB , starting from eB , until we encounter a vertex v of X within τ , which is also

a vertex of C: Either xi or xj is such a vertex, or else τ must contain an endpoint of

either Ii or Ij . Therefore v is visible from each point of z1z2.

Consider next the case in which only one of π(si,pi),π(sj ,pj) leaves B ′, and

assume, without loss of generality, that π(si,pi) reaches pi ∈ B ′ and π(sj ,pj)

leaves B ′ at the point xj before reaching pj —see Fig. 38(b). Denote by π(pj , sj)

the path π(sj ,pj) directed from pj to sj , and denote by π ′ the concatenation

556 Discrete Comput Geom (2008) 39: 500–579

π(si,pi)||pipj ||π(pj , sj). The path π(si,pi) does not leave B ′, and, by assump-

tion, the segment pipj is either an empty segment or a segment of ∂B ′, and therefore

the only portion of π ′ that leaves B ′ is π(pj , sj). Denote by xi the first point along

π(pj , sj) (beyond pj itself) that lies on ∂B ′; if π(pj , sj) leaves B ′ immediately, we

do take xi = pj . Since (the unfolded) π(pj , sj) is a straight segment, and since, for

each segment f ′ of ∂B ′, B ′ lies locally only on one side of f ′, it follows that xi and

xj lie on different segments of ∂B ′. Define X as above; here it connects the prefixes

of π ′ and π(sj ,pj), up to xi and xj , respectively, and the proof continues as in the

previous case. �

Stopping Times and Their Maintenance The simulation of the propagation of W in

the blocks of TB(e) processes candidate bisector events in order of increasing pri-

ority, up to some time tstop(W), which is initialized to +∞, and is updated during

the propagation.13 When the time tstop(W) is reached, the following holds: Either

tstop(W) = +∞ (see Fig. 39(a)), all the known candidate critical events of W in the

blocks of TB(e) have been processed, and all the waves of W that were not elimi-

nated at these events have reached C; or tstop(W) < +∞ (see Fig. 39(b)), and there

exists some sub-wavefront W ′ ⊆ W that claims some segment (a transparent edge or

a contact interval) f of range(W) (that is, f is ascertained to have been covered by

W ′ not later than at time tstop(W)), such that all the currently known candidate events

of W ′ have been processed before time tstop(W). In the former case we split W into

sub-wavefronts W(e,f) for each segment f ∈ range(W); in the latter case, we ex-

tract from W (by splitting it) the sub-wavefront W(e,f) = W ′ that has covered f .

When we split W into a pair of sub-wavefronts W1,W2, the time tstop(W1) (resp.,

tstop(W2)) replaces tstop(W) in the subsequent propagation of W1 (resp., W2), follow-

ing the same rule, while tstop(W) plays no further role in the propagation process.

For each segment f in C, we maintain an individual time tstop(f), which is a

conservative upper estimate of the time when f is completely covered by W dur-

ing the propagation in TB(e). Initially, we set tstop(f) := +∞ for each such f . As

Fig. 39 (a) The stopping time tstop(W) = +∞. (b) The stopping time tstop(W ′) = tstop(f) < +∞; the

dotted line indicates the stopping time (or distance) at which we stop processing bisector events: the event

at x has been processed before tstop(W ′), while the event at y has been detected but not processed

13The present description also applies to appropriate sub-wavefronts that have already been split from W—

see below.

Discrete Comput Geom (2008) 39: 500–579 557

detailed below, we update tstop(f) whenever we trace a path from a generator in W

that reaches f (without reaching C beforehand); by Corollary 5.2, these updates are

always valid (i.e., do not depend on simulation restarts). The time tstop(W) is the

minimum of all such times tstop(f), where f is a segment of range(W). Whenever

tstop(f) is updated for such an f , we also update tstop(W) accordingly. When the

simulation clock reaches tstop(W), either some f of range(W) is completely covered

by the wavefront W , so that tstop(f) = tstop(W), or the priority of the next event of

W in the priority queue is +∞, in which case tstop(W) = +∞.

As shown below, range(W) is maintained correctly, independently of simulation

restarts; therefore, when range(W) contains only one segment, no further vertex

events may cause a restart of the simulation of the propagation of W (since a simula-

tion restart of a wavefront that is separated from W does not affect W , and the vertex

events at the endpoints of f have already been processed, since W and range(W)

have already been split at them).

Note that there is a gap of at most |f | time between the time tf when the segment

f of C is first reached by W and the time when f is completely covered by W .

In particular, it is possible that both endpoints of f are reached by W before f is

completely covered by W—see Fig. 40(a). It is also possible, because of visibility

constraints, that W reaches only a portion of f in our propagation algorithm (and

then there must be other topologically constrained wavefronts that reach the portions

of f that are not reached by W). Still we say that f is covered by W at time tf + |f |,

as if we were propagating also the non-geodesic paths that progress along f from the

first point of contact between W and f . See Fig. 40(b).

The algorithm does not necessarily detect the first time tf when f is reached

by W . Instead, we detect a time t ′f , when some path encoded in some wave of W

reaches f . However, in order to estimate the time when f is completely covered by W

correctly (although somewhat conservatively), the algorithm sets tstop(f) := t ′f +|f |.

We show below that t ′f is greater than tf by at most |f |, hence the total gap between

the time when f is first reached by W , and the time when the algorithm ascertains

that f is completely covered, is at most 2|f |.

Consider W ′, the sub-wavefront of W that covers a segment f of C. If f is a

transparent edge, the well-covering property of f ensures that during these 2|f | sim-

ulation time units (since tf) no wave of W ′ has reached “too far” beyond f . That is,

all the bisector events of W ′ beyond f that have been detected and processed before

tstop(f) occur in O(1) cells near c (see Fig. 36). This invariant is crucial for the time

complexity of the algorithm, as it implies that no bisector event is detected more than

O(1) times—see below. If f is a contact interval, the paths encoded in W that reach

f in our propagation do not reach f in the real SPM(s), by Corollary 3.17; therefore

Fig. 40 (a) Both endpoints of f are reached by W before f is covered by W . (b) W actually reaches only

a portion of f (between the two dashed lines), because of visibility constraints

558 Discrete Comput Geom (2008) 39: 500–579

these paths do not leave c (as shortest paths), and need not be encoded in the one-

sided wavefronts that leave c. This property is also used below in the time complexity

analysis of the algorithm.

Processing Candidate Bisector Events As long as the simulation clock has not yet

reached tstop(W), at each step of the simulation we extract from the priority queue

of W the candidate bisector event which involves the generator si with the mini-

mum priority in the queue, and process it according to the high-level description in

Sect. 4.3, the details of which are given next. Let x denote the unfolded image of

the location of the candidate event (the intersection point of the two bisectors of si),

and denote by W ′ the constant-size sub-wavefront of W that encodes the paths in-

volved in the event. If si is neither the first nor the last source image in W , then

W ′ = (si−1, si, si+1). The generator si cannot be the only source image in W , since

in this case its two bisectors would be rays emanating from si , and two such rays

cannot intersect (beyond e). If si is either the first or the last source image in W , then

W ′ is either (si, si+1) or (si−1, si), respectively. Denote by π1 (resp., π2) the path

from the first (resp., last) source image of W ′ to x, or, more precisely, the respective

unfolded straight segments of (common) length priority(si).

We use the tracing procedure defined above for each of the paths π1,π2. For any

path π , denote by C(π) the first element of C (along π) that π intersects, if such a

point exists. The following two cases can arise:

Case (i): The bisector event at x is true with respect to the propagation of W in TB(e)

(see Fig. 41(a)), which means that neither π1 nor π2 intersects C, and both paths are

traced along a common block sequence in TB(e). (Recall that the unfolded blocks

of TB(e) might overlap each other; see Fig. 41(b).) By definition of a block tree,

this is a necessary and sufficient condition for the event to be true (with respect to

the propagation of W in TB(e)); however, a following simulation restart might still

discard this candidate event, forcing the simulation to reach it again. If si is neither

the first nor the last source image in W , we DELETE si from W , and recompute the

priorities of its neighbors si−1, si+1, as follows. Since all the source images of W

are currently unfolded to the same plane Λ(W), we can compute, in constant time,

the intersection point p, if it exists, of the new bisector b(si−1, si+1) (stored in the

data structure during the DELETE operation) with the bisector of si−1 that is not in-

cident to x. If the two bisectors do not intersect each other (p does not exist), we

put priority(si−1) := +∞; otherwise priority(si−1) is the length of the straight line

from si−1 to p, ignoring any visibility constraints, or the possibility that the two bi-

sectors reach p through different block sequences. The priority of si+1 is recomputed

similarly.

If si = s1 is the first but not the last source image in W , we DELETE s1 from W

(that is, s2 becomes the first source image in W), and define the first (unfolded) bi-

sector b of W as a ray from s2 through x; the priority of s2 is recomputed as above,

intersecting b with the other bisector of s2. If si is the last but not the first source

image in W , it is handled symmetrically.

Case (ii): The bisector event at x is false with respect to the propagation of W

in TB(e): Either at least one of the paths π1,π2 intersects C, or π1,π2 are traced to-

wards x along different block sequences in TB(e), reaching the location x in different

layers of the Riemann structure that overlap at x. See Fig. 41(b–d) for an illustration.

Discrete Comput Geom (2008) 39: 500–579 559

Fig. 41 In (a) x is a true

bisector event; the new

bisector b between the

generators of π1,π2 is shown

dashed. In (b–d) x is a false

candidate. (b) π1,π2 do not

intersect C, but reach x through

different layers of the Riemann

structure that overlap each other.

At least one vertex of

V = {v1, v2, v3} is visible from

the portion of eB between π1

and π2; the same is true in (c),

where both π1,π2 intersect C

(before reaching x).

(d) C(π1) = C(π2) = f . No

vertex of V (here V = {v1}) is

visible from the portion of eB

between π1 and π2

If π1 intersects C, denote the first such intersection point (along π1) by z and

the segment C(π1), which contains z, by f . We compute z and update tstop(f) :=

min{tstop(f), dz + |f |}, where dz is the distance from s to z along π1. As de-

scribed above, and with the visibility caveats noted there, the expression dz + |f |

is a time at which W will certainly have swept over f . We also update tstop(W) :=

min{tstop(f), tstop(W)}. If, as the result of this update, tstop(W) becomes less than

or equal to the current simulation time, we conclude that f is already fully covered.

We then stop the propagation of W and process f as a covered segment of C (as de-

scribed below), immediately after completing the processing of the current bisector

event. Note that in this case, that is, when tstop(f) gets updated because of the detec-

tion of the crossing of the wavefront of f at z, which causes tstop(W) to go below the

current simulation clock t , we have tstop(W) = tstop(f) = dz +|f | ≤ t = dz +d(z, x),

where d(z, x) is the distance from z to x along π1; see Fig. 42. Hence d(z, x) ≥ |f |.

This however violates the invariant that we want to maintain, namely, that we only

process bisector events that lie no farther than |f | from an edge f of C. Nevertheless,

this can happen at most once per edge f , because from now on tstop(W) will not

exceed tstop(f). We will use this property in the time complexity analysis below.

If π2 intersects C, we treat it similarly.

Regardless of whether π1,π2, or neither of them, intersects C, we then proceed as

follows. Denote by τ the triangle bounded by the images of e, π1 and π2, unfolded

to Λ(W), and denote by V the set of the (at most O(1)) vertices of C that lie in

the interior of τ . Since it takes O(logn) time to unfold each segment of C, it takes

O(logn) time to compute V .

560 Discrete Comput Geom (2008) 39: 500–579

Fig. 42 If dz + |f | ≤ t = dz + d(z, x), then d(z, x) ≥ |f |

Assume first that π1,π2 satisfy the assumptions of Lemma 5.3; it follows that

V is not empty (see Fig. 41(b), (c)). We trace the path from each generator in W ′

to each vertex v of V , and compute claimer(v) (which satisfies d(claimer(v), v) =

min{{d(s′, v) | v is visible from s′ ∈ W ′} ∪ {+∞}}). Denote by u the vertex of V so

that tu := d(claimer(u),u) = minv∈V d(claimer(v), v); by Lemma 5.3, at least one

vertex of V is visible from at least one generator in W ′, and therefore tu is finite. As

we will shortly show in Corollary 5.8, tu < tx (where tx = priority(si) is the current

simulation time). This implies that the propagation is invalid for t ≥ tu. We thus

restart the propagation at time tu, as follows.

Let Wu denote the last version of (the data structure of) W that has been com-

puted before time tu. We SPLIT Wu into sub-wavefronts W1,W2 at s′ := claimer(u)

at the simulation time tu, so that range(W1) is the prefix of range(Wu) up to u, and

range(W2) is the rest of range(Wu) (to retrieve the range that is consistent with the

version Wu we can simply store all the versions of range(W)—recall that each uses

only constant space, because we can keep it unfolded). Discard all the later versions

of W . We set tstop(W1) (resp., tstop(W2)) to be the minimal tstop(f) value among

all segments f in range(W1) (resp., range(W2)). We replace the last (resp., first)

unfolded bisector image of W1 (resp., W2) by the ray from s′ through u, and corre-

spondingly update the priority of s′ in both new sub-wavefronts (recall from Sect. 5.1

that the SPLIT operation creates two distinct copies of s′).

Assume next that the assumptions of Lemma 5.3 do not hold, which means that

both π1 and π2 intersect C, and that C(π1) = C(π2), which is either a contact inter-

val I or a transparent edge f of C (see Fig. 41(d)). In the former case (a contact

interval), the wave of si is not part of any sub-wavefront of W that leaves c (as

shortest paths), and it should not be involved in any further critical event inside c,

as discussed above. To ignore si in the further simulation of the propagation of W

in TB(e), we reset priority(si) := +∞ (instead of deleting si from W , which would

involve an unnecessary recomputation of the bisectors involving the neighbors of si).

In the latter case, the following similar technical operation must be performed. Since

si is a part of the resulting wavefront W(e,f) (as will follow from the correctness of

the bisector event processing, proved in Lemma 5.9 below), we do not want to delete

si from W ; yet, since si is not involved in any further critical event inside c, we want

to ignore si in the further simulation of the propagation of W in TB(e) (that is, to ig-

nore its priority in the priority queue), and therefore we update priority(si) := +∞.

However, this artificial setting must be corrected later, when the propagation of W

in TB(e) is finished, to ensure that the priority of si in W(e,f) is correctly set—we

must then reset priority(si) to its true (current) value. We mark si to remember that its

Discrete Comput Geom (2008) 39: 500–579 561

priority must be reset later, and keep a list of pointers to all the currently marked gen-

erators; when their priorities must be reset, we go over the list, fixing each generator

and removing it from the list).

To summarize, in Case (i) we trace two paths and perform one DELETE opera-

tion and O(1) priority queue operations, hence it takes O(logn) time to process a

true bisector event. In Case (ii) we trace O(1) paths, compute at most O(1) unfolded

images, and perform at most one SPLIT operation and O(1) priority queue opera-

tions; hence it takes O(logn) time to process a false (candidate) bisector event. The

correctness of the above procedure is established in Lemma 5.9 below, but first we

describe the detection and the processing of the candidate vertex events that were not

detected and processed during the handling of false candidate bisector events. This

situation arises when the priority of the next event of W in the priority queue is at

least tstop(W), in which case we stop processing the bisector events of W in TB(e),

and proceed as described next.

Processing a Covered Segment of C Consider the situation in which the algorithm

stops propagating W in TB(e) at simulation time tstop(W) 	= +∞. We then must have

tstop(W) = tstop(f), for some segment f in range(W), so that all the currently known

candidate events which occur in c and involve the sub-wavefront of W that claims f

have already been processed.

Another case in which the algorithm stops the propagation of W is when

tstop(W) = +∞. This means that all the currently known candidate events of W

have already been processed; that is, the former situation holds for each segment

f ′ in range(W). Therefore, to treat the latter case, we process each f ′ in range(W)

in the same manner as we process the (only relevant) segment f in the former case;

and so, we consider only the former situation.

Let f be such a segment of range(W). We compute the static wavefront W(e,f)

from the current dynamic wavefront W—if f is a transparent edge, then W(e,f) is

needed for the propagation process in further cells; otherwise (f is a contact interval)

we do not need to compute W(e,f) to propagate it further, but we need to know the

extreme generators of W(e,f) to ensure correctness of the simulation process, a step

that will be explained in the proof of Lemma 5.9 below. Since the computation in

the latter case is almost identical to the former, we treat both cases similarly (up to a

single difference that is detailed below).

Since f ∈ C defines a unique homotopy class of paths from eB to f within TB(e),

the sub-wavefront of W that claims points of f is indeed a single contiguous sub-

wavefront W ′ ⊆ W . We determine the candidate extreme claimers of f by perform-

ing a SEARCH in W for each of the endpoints a, b of f (note that the candidates are

not necessarily true, since SEARCH does not consider visibility constraints). If the

candidate claimer of a does not exist, we denote by a′ the point of f closest to a

which is intersected by an extreme bisector of W—see Fig. 43(a). (If there is no such

a′, we can already determine that W claims no points on f , and no further process-

ing of f is needed—see Fig. 43(c).) Symmetrically, we SEARCH for the claimer of b,

and, if it is not found, we define b′ similarly. If a (resp., b) is claimed by W , denote by

π1 (resp., π2) the path π(claimer(a), a) (resp., π(claimer(b), b)); otherwise denote

by π1 (resp., π2) the path π(claimer(a′), a′) (resp., π(claimer(b′), b′)). Denote by

W ′ the sub-wavefront of W between the generators of π1 and π2 (inclusive), and use

562 Discrete Comput Geom (2008) 39: 500–579

Fig. 43 Processing a covered

segment f of range(W). (a) The

endpoint a of f is not claimed

by W , and π1 is the shortest

path to the point a′ closest to a

and claimed by W ; the generator

of π1 is extreme in W (which

has already been split at v).

(b) At least one vertex of

V = {v1, v2, v3} (namely, v2) is

visible from the entire portion

of eB between π1 and π2.

(c) f is not reached by W at all.

No vertex of V is visible from

the portion of eB between π1

and π2. (d) Since

df = |π1| < |π2|, W is first split

at the generator of π1

π1,π2 to define (and compute) V as in the processing of a candidate bisector event

(described above).

Assume first that π1,π2 satisfy the assumptions of Lemma 5.3. It follows that V

is not empty, and at least one vertex of V is visible from its claimer in W ′ (see, e.g.,

Fig. 43(b)). Then the case is processed as Case (ii) of a candidate bisector event, with

the following difference: Instead of tracing a path from each source image in W ′ to

each vertex v ∈ V (which is too expensive now, since W ′ may have non-constant

size), we first SEARCH in W ′ for the claimer of each such v and then trace only the

paths π(claimer(v), v). (Then we restart the simulation from the earliest time when

a vertex v of V is reached by W , splitting W at claimer(v).)

Assume next that the assumptions of Lemma 5.3 do not hold, which means that

both π1 and π2 intersect C, and that C(π1) = C(π2), which is either f or a segment

f ′ 	= f of C. In the latter case, since f is not reached by W at all, no further process-

ing of f is needed (see Fig. 43(c))—we ignore f in the rest of the present simula-

tion, and update tstop(W) := min{tstop(f
′)|f ′ ∈ range(W) \ {f }}. In the former case,

if both π1,π2 are extreme in W , then we have W ′ = W ; the further processing of f

is described below. Otherwise (at least one of π1,π2 is not extreme in W), we first

have to split W , as follows. If π1 and π2 are not extreme in W , denote by df the min-

imum of |π1|, |π2|; if only one path π ∈ {π1,π2} is non-extreme in W , let df := |π |.

Without loss of generality, assume that df = |π1| (see Fig. 43(d)). We restart the sim-

ulation from time |π1|, splitting W at the generator of π1, as described in Case (ii) of

the processing of a candidate bisector event.

It is only left to describe the case where W ′ = W and f is the only (not ignored)

segment of range(W). If f is a contact interval, no further processing of f is needed.

Discrete Comput Geom (2008) 39: 500–579 563

Otherwise (f is a transparent edge), we have to make the following final updates (to

prepare W(e,f) for the subsequent merging procedure at f and for further propaga-

tion into other cells). First, we recalculate the priority of each marked source image

(recall that it was temporarily set to +∞), and update the priority queue component

of the data structure accordingly. Next, we update the source unfolding data (and

Λ(W)), as follows. Let B be the block sequence traversed by W from e to f along

TB(e), including (resp., excluding) B if the first (resp., last) facet of B lies on Λ(W),

and let E be the edge sequence associated with B. We compute the unfolding trans-

formation UE , by composing the unfolding transformations of the O(1) blocks of B.

We update the data structure of W(e,f) to add UE to the unfolding data of all the

source images in W(e,f), as described in Sect. 5.1. As a result, for each generator si
of W(e,f), the polytope edge sequence Ei is the concatenation of its previous value

with E , and all the generators in W(e,f) are unfolded to the plane of an extreme

facet incident to f .

To summarize, we trace O(1) paths and perform at most O(1) SPLIT and SEARCH

operations, for each of O(1) segments of C. Then we perform at most one source

unfolding data update for each transparent edge in C. All these operations take a total

of O(logn) time. However, we also perform a single priority update operation for

each marked generator that has participated in a candidate bisector event beyond a

transparent edge of C. A linear upper bound on the total number of these generators,

as well as the number of the processed candidate events, is established next.

Correctness and Complexity Analysis We start by observing, in the following

lemma, a basic property of W that asserts that distances from generators increase

along their bisectors.

Lemma 5.4 Let si, sj ∈ W be a pair of generators that become neighbors at a bisec-

tor event x during the propagation of W through TB(e), where an intermediate gen-

erator s′ gets eliminated. Then (i) the portion of the bisector b(si, sj) that is closer to

s′ than x is claimed, among si, s
′ and sj , by s′, and (ii) the distances from si and sj

to points y on the portion of b(si, sj) that is not claimed by s′, increase as y moves

away from x.

Proof In the plane Λ(W), consider the Voronoi diagram of the three sites si, s
′, sj ,

whose sole vertex is x. The line containing e intersects exactly two Voronoi edges,

because it meets the Voronoi cells V (si),V (s′),V (sj) of all the three sites. Moreover,

by assumption, e ∩ V (s′) lies between e ∩ V (si) and e ∩ V (sj). Hence, the Voronoi

edge that e misses is between V (si) and V (sj), implying that b(si, sj), between e

and x, is fully contained in V (s′), as asserted—see Fig. 44(a). The same argument

also implies (ii). �

Lemma 5.5 Assume that all bisector events of W that have occurred up to some

time t have been correctly processed, and that the data structure of W has been

correctly updated. Let p be a point tentatively claimed by a generator si ∈ W at time

d(si,p) ≤ t , meaning that the claim is only with respect to the current generators

in W (at time t), and that we ignore any visibility constraints of C. Denote by R(si)

564 Discrete Comput Geom (2008) 39: 500–579

Fig. 44 (a) The bisector

b(si , sj), between e and x, must

be fully contained in V (s′)

(shaded). (b) If the bisector

b(s′, sj) is already computed in

the wavefront W , then the

path π(sj ,p), which

intersects b(s′, sj), cannot be

encoded in W

the unfolded region that is enclosed between the bisectors of si currently stored in the

data structure. Then p ∈ R(si), and p /∈ R(sj), for any other generator sj 	= si in W .

Proof The claim that p ∈ R(si) is trivial, since the bisectors of si that are currently

stored in the data structure have been computed before time t , and are therefore cor-

rect, by assumption; hence, p is enclosed between them.

For the second claim, assume to the contrary that there exists a generator sj 	= si
in W so that p ∈ R(sj) too. Denote by q the first point along π(sj ,p) that is equally

close to sj and to some other generator s′ ∈ W (such q and s′ must exist, since

d(si,p) < d(sj ,p)); that is, q = π(sj ,p) ∩ b(s′, sj). The fact that in the data struc-

ture p lies in R(sj) means that the bisector b(s′, sj) is not correctly stored in the

data structure, and thus it cannot be part of W(eB); therefore b(s′, sj) emanates

from a bisector event location x that lies within c—see Fig. 44(b). By Lemma 5.4,

d(s′, x) < d(s′, q) < d(s′,p) ≤ t ; hence, the bisector event when b(s′, sj) is com-

puted occurs before time t , and therefore, by assumption, b(s′, sj) is correctly stored

in the data structure—a contradiction. �

In particular, Lemma 5.5 shows that when a vertex event at v is discovered during

the processing of another event at simulation time t , or is processed when a segment

of C that is incident to v is covered at time t , the tentative claimer of v (among all

the current generators in W) is correctly computed, assuming that all bisector events

of W that have occurred up to time t have been correctly processed. We will use this

argument in Lemma 5.9 below.

Lemma 5.6 Assume that all bisector events of W that have occurred up to some time

t have been correctly processed, and that the data structure of W has been correctly

updated at all these events. If two waves of a common topologically constrained por-

tion of W are adjacent at t , then their generators must be adjacent in the generator

list of W at simulation time t .

Proof Assume the contrary. Then there must be two source images si, sj in a com-

mon topologically constrained portion W ′ ⊆ W such that their respective waves

wi,wj are adjacent at some point x at time t (that is, d(si, x) = d(sj , x) = t ≤

d(sk, x) for all other generators sk in W), but there is a positive number of source

images si+1, . . . , sj−1 in the generator list of W ′ at time t between si and sj , whose

distances to x are necessarily larger than d(si, x) (and their waves in W ′ at time t are

nontrivial arcs). See Fig. 45 for an illustration.

Discrete Comput Geom (2008) 39: 500–579 565

Fig. 45 The waves from the source images si , sj collide at x. Each of the two following cases contradicts

the assumption in the proof of Lemma 5.6: (a) The portion β of b(si , sj) intersects the transparent edge e;

(b) The generator sk is eliminated at time ty = d(si , y) < d(si , x) = t

Consider the situation at time t . Since wi,wj belong to a common topologically

constrained W ′, it follows that e, π(si, x) and π(sj , x) unfold to form a triangle τ in

an unfolded block sequence of TB(e) (so that τ is not intersected by C).

Consider the “unfolded” Voronoi diagram Vor({si, . . . , sj }) within τ . By assump-

tion, x lies in the Voronoi cells V (si),V (sj) of si, sj , respectively, separated by a

Voronoi edge β , which is a portion of b(si, sj). If β intersects e (see Fig. 45(a)),

then si and sj claim consecutive portions of e in W(e), so si and sj must be consec-

utive in W already at the beginning of its propagation within TB(e), a contradiction.

Otherwise, β ends at a Voronoi vertex y within τ—see Fig. 45(b). Clearly, y is

the location of a bisector event in which some generator sk ∈ W is eliminated at time

ty = d(si, y) = d(sj , y). By Lemma 5.4, ty < t , and therefore, by our assumption, the

bisector event at y has been correctly processed, so si and sj must be consecutive in

W already before time t—a contradiction. �

Lemma 5.6 shows that if all the events considered by the algorithm are processed

correctly, then all the true bisector events of the first kind are processed by the algo-

rithm, since, as the lemma shows, such events occur only between generators of W

that are consecutive at the time the bisector event occurs. Let W ′ be a topologically

constrained portion of W , and denote by R(W ′, t) the region within TB(e) that is

covered by W ′ from the beginning of the simulation in TB(e) up to time t . By de-

finition of topologically constrained wavefronts, ∂R(W ′, t) consists only of eB and

of the unfolded images of the waves and of the extreme bisectors of W ′ at time t .

Another role of Lemma 5.6 is in the proof of the following observation.

Corollary 5.7 R(W ′, t) is not punctured (by points that are not covered by W ′ at

time t).

Proof Consider the first time at which R(W ′, t) becomes punctured. When this hap-

pens, R(W ′, t) must contain a point q where a pair of waves, generated by the re-

spective generators si, sj , collide, and eB and the paths π(si, q),π(sj , q) enclose an

island within the (unfolded) triangle that they form. This however contradicts the

proof of Lemma 5.6. �

566 Discrete Comput Geom (2008) 39: 500–579

Corollary 5.8 When a vertex event at v is discovered during the processing of a

candidate event at simulation time t (either a bisector event x or an event involving

a covered segment f of C), the vertex v is reached by W no later than time t .

Proof By the way vertex events are discovered, v must lie in an unfolded triangle τ

formed as in the proof of Lemma 5.6, where the waves of the respective generators

si, sj either collide at x, or are adjacent in the wavefront that covers the segment f .

Since the two sides of τ incident to x belong to R(W ′, t), for some topologically

constrained portion W ′ of W that contains si, sj , Corollary 5.7 implies that all of τ is

contained in R(W ′, t), which implies the claim. �

We are now ready to establish the correctness of the simulation algorithm. Since

this is the last remaining piece of the inductive proof of the whole Dijkstra-style prop-

agation (Lemmas 4.2 and 4.5), we may assume that all the wavefronts were correctly

propagated to some transparent edge e, and consider the step of propagating from e.

This implies that W(eB) encodes all the shortest paths from s to the points of eB from

one fixed side. Now, let x1, . . . , xm be all the true critical events (that is, both bisec-

tor and vertex events that are true with respect to the propagation of W in TB(e)),

ordered according to the times t1, . . . , tm at which the locations of these events are

first reached by W . Since we assume general position, t1 < · · · < tm.

Before we show the correctness of the processing of the true critical events, let

us discuss the processing of the false candidates. First, note that the simulation can

be aborted at time t ′ (during the processing of a false candidate event) and restarted

from an earlier time t ′′ < t ′ only if there exists some true vertex event x that should

occur at time t ≤ t ′′ and has not been detected prior to time t ′ (in the aborted version

of the simulation). Note that whenever a false candidate event x′ /∈ {x1, . . . , xm} is

processed at time t ′, one of the three following situations must arise.

(i) It might be that x′ is not currently (at time t ′) determined to be false, since both

paths involved in x′ are traced along the same block sequence and do not intersect C;

x′ is false “just” because there is some earlier true vertex event x′′ that is still un-

detected. In this case, we create a new version of W at time t ′, but it will later be

declared invalid, when we finally detect x′′.

Otherwise, x′ is immediately determined to be false (since either one of the in-

volved paths intersects C or the paths are traced along different block sequences).

In this case either (ii) an earlier candidate vertex event x′′ (occurring at some time

t ′′ < t ′) is currently detected and the simulation is restarted from t ′′, or (iii) x′ is a

bisector event which occurs outside TB(e), so it involves only bisectors that do not

participate in any further critical event inside TB(e). In this case a new version of

W , corresponding to the time t ′, is created, the generator that is eliminated at x′ is

marked in it, and its priority is set to +∞.

In any of the above cases, none of the existing true (valid) versions of W is al-

tered (although some invalid versions may be discarded during a restart); moreover,

a new invalid version corresponding to time t ′ may be created (without restarting the

simulation yet) only if there is some true event that occurred at time t < t ′ but is still

undiscovered at time t ′.

Assume now that at the simulation time tk (for 1 ≤ k ≤ m) all the true events that

occur before time tk have been correctly processed; that is, for each such bisector

Discrete Comput Geom (2008) 39: 500–579 567

event xi , the corresponding generator has been eliminated from W at simulation time

ti , and for each such vertex event xj , W has been split at simulation time tj at the

generator that claims the corresponding vertex. Note that the assumption is true for

simulation time t1, since the processing of false candidate events does not alter W(eB)

(which does not encode events within TB(e); its validity follows from the inductive

correctness of the merging procedure and is not violated by the processing of false

events).

Lemma 5.9 Assuming the above inductive hypothesis, the next true critical event xk

is correctly processed at simulation time tk , possibly after a constant number of times

that the simulation clock has reached and passed tk (to process a later false candidate

event) without detecting xk , each time resulting in a simulation restart.

Proof There are two possible cases. In the first case, xk is a true bisector event, in

which the wave of a generator s′ in W is eliminated by its neighbors at propagation

time tk . Any possible false candidate event that is processed before xk and after the

processing of all true events that take place before time tk may only create new invalid

versions that correspond to times that are later than time tk (since a false candidate

event can arise only when an earlier true event is still undetected). This implies that

s′ has not been deleted from any valid version of W that corresponds to time tk or

earlier, and all such valid versions exist. By this fact and by the inductive hypothesis,

the bisectors of s′ have been computed correctly either already in W(eB), or during

the processing of critical events that took place before time tk .

In the second case, xk is a true vertex event that takes place at a vertex v ∈ C,

which is claimed by some generator sv in W . By the argument used in the first case,

sv has not been deleted from W at an earlier (than tk) simulation time, and each point

on the path π(sv, v) is claimed by sv at time tk or earlier. Therefore sv can only be

deleted from a version of W at time later than tk when a false bisector event involving

sv is processed. Moreover, a sub-wavefront including sv can be split from a version

of W at time later than tk (and v can be removed from range(W)) when a false vertex

event is processed. We show next that in both cases, xk is detected and the simulation

is restarted from time tk , causing xk to be processed correctly.

Consider first the case where sv is not deleted in any later false candidate event.

In that case, when we stop the propagation of W , v is in range(W), and therefore at

least one segment f of the segments of range(W) that is incident to v is ascertained

to be covered at that time. Since sv is in W , Lemma 5.5 implies that the SEARCH

procedure that the algorithm uses to compute the claimer of v outputs sv , and, by

Corollary 5.2, the tracing procedure correctly computes d(sv, v) to be tk . Since xk is

the next true vertex event, the distance from the other endpoint of f to its claimer is

larger than or equal to tk , and, since W has not yet been split at v, π(sv, v) is not an

extreme bisector of W . Hence the algorithm sets df := tk , and W is split at sv at time

tk , as required.

Consider next the case where sv is deleted (or split) from W at a false event x′

at time t ′ ≥ tk . Suppose first that x′ is a false bisector event. Then v must lie in the

interior of the region τ bounded by e and by the paths to the location of x′ from the

outermost generators of W involved in x′. The algorithm traces the paths to v and to

(some of) the other vertices of C in τ from all the generators of W that are involved

568 Discrete Comput Geom (2008) 39: 500–579

in x′, including sv (see Fig. 41(b), (c)); then all such distances are compared. Only

distances from each such generator s′ to each vertex that is visible from s′ (within the

unfolded blocks of TB(e)) are taken into account, since, by Corollary 5.2, all visibility

constraints are detected by the tracing procedure. The vertex v must be visible from sv
and the distance d(sv, v) must be the shortest among all compared distances, since,

by the inductive hypothesis, all vertex events that are earlier than xk have already

been processed (and W has already been split at these events). By Lemma 5.5 and

by Corollary 5.2, the tentative claimer (among all current generators in W) of each

vertex u is computed correctly. No generator s′ that has already been eliminated from

W can be closer to u than the computed claimer(u), since, by Corollary 5.8 and by the

inductive hypothesis, u would have been detected as a vertex event no later than the

bisector event of s′, which is assumed to have been correctly processed. Therefore the

distance d(claimer(u),u) is correctly computed for each such vertex u (including v),

and therefore the distance d(sv, v) = tk is determined to be the shortest among all

such distances. Hence the simulation is restarted from time tk , and W is split at sv at

simulation time tk , as asserted.

Otherwise, x′ is a false vertex event processed when a segment f of C is ascer-

tained to be fully covered by W , and v must lie in the interior of the region τ bounded

by e, f , and by the paths from the outermost generators of W claiming f to the ex-

treme points of f that are tentatively claimed by W (see Fig. 43(b)). The algorithm

performs the SEARCH operation in the sub-wavefront W ′ ⊆ W that claims f for v and

for all the other vertices of C in τ , and then compares the distances d(claimer(u),u),

for each such vertex u that is visible from its claimer (including v). By the same

arguments as in the previous case, the distance d(sv, v) = tk is determined to be the

shortest among all such distances, the simulation is restarted from time tk , and W is

split at sv at simulation time tk , as asserted. �

The above lemma completes the proof of the correctness of our algorithm. Now

we show that the total number of the processed candidate events is only linear. Order

the O(1) vertices of C that are reached by W (that is, the locations of the true vertex

events) as v1, . . . , vm, where W reaches v1 first, then v2, and so on; denote by tj , for

1 ≤ j ≤ m, the time at which W reaches vj . Note that if the simulation is restarted

because of a vertex event at vj , then, by Lemma 5.9, the simulation is restarted ex-

actly from time tj —that is, tj depends only on W and on the previous true candidate

events. Note also that the simulation is only restarted from times t1, . . . , tm.

Lemma 5.10 When the vertex events at vertices v1, . . . , vk , for 1 ≤ k ≤ m, are al-

ready detected and processed by the algorithm, the simulation is never restarted from

time tk or earlier.

Proof Since the simulation restart from time t discards all existing versions of W

that correspond to times t ′ ≥ t , the claim of the lemma is equivalent to the claim that

all the versions of W that were created at time tk or earlier will never be discarded by

the algorithm if all the vertex events at vertices v1, . . . , vk have already been detected

and processed. We prove the latter claim by induction on k.

For k = 1, the version of W created at time t1 can only be discarded if a vertex

event that occurs earlier than t1 is discovered, which is impossible since v1 is the

Discrete Comput Geom (2008) 39: 500–579 569

first vertex reached by W . Now assume that the claim is true for v1, . . . , vk−1, and

consider the version Wk of W that is created at time tk when the vertex events at

vertices v1, . . . , vk are already detected and processed. The algorithm may discard

Wk only when at some time t ′ > tk a vertex v is discovered, such that v is reached by

W at time tv < tk , and therefore v must be in {v1, . . . , vk−1}. But then, restarting the

propagation from time tv contradicts the induction hypothesis. �

Lemma 5.11 For each 1 ≤ j ≤ m, the simulation is restarted from time tj at most

2j−1 times.

Proof By induction on j . By Lemma 5.10, the simulation is restarted from time t1 at

most once. Now assume that j ≥ 2 and that the claim is true for times t1, . . . , tj−1.

By Lemma 5.9, the vertex event at vj is eventually processed at time tj ; by

Lemma 5.10, there are no further restarts from time tj after we get a version of W

that encodes all the events at v1, . . . , vj . Hence the simulation may be restarted from

time tj only once each time that W ceases to encode the vertex event at vj , and this

may only happen either at the beginning of the simulation, or when the simulation

is restarted from a time earlier than tj . Since, by the induction hypothesis, the simu-

lation is restarted from times t1, . . . , tj−1 at most
∑j−1

i=1 2i−1 = 2j−1 − 1 times, the

simulation may be restarted from time tj at most 2j−1 times. �

Remark From a practical point of view, the algorithm can be significantly optimized,

by using the information computed before the restart to speed up the simulation after

it is restarted. Moreover, we suspect that, in practice, the number of restarts that the

algorithm will perform will be very small, significantly smaller than the bounds in

the lemma.

By Lemma 5.11, the algorithm processes only O(1) candidate vertex events

(within a fixed TB(e)), and, since the simulation is restarted only at a vertex event, it

follows that each bisector event x has at most O(1) “identical copies,” which are the

same event, processed at the same location (and at the same simulation time tx) after

different simulation restarts. At most one of these copies of x remains encoded in

valid versions of W , and the rest are discarded (that is, there is at most one valid ver-

sion of W that has been created at simulation time tx to reflect the correct processing

of x, and the following valid versions of W are coherent with this version). Hence for

the purpose of further asymptotic time complexity analysis, it suffices to bound the

number of the processed candidate bisector events that take place at distinct locations.

Note that each candidate bisector event x processed by the propagation algorithm

falls into one of the five following types:

(i) x is a true bisector event.

(ii) x is a false candidate bisector event, during the processing of which an earlier-

reached vertex of C has been discovered, and the simulation has been restarted.

(iii) x is a false candidate bisector event of a generator s′ ∈ W , so that all paths in

the wave from s′ cross a common contact interval of C (a “dead-end”) before

the wave is eliminated at x.

570 Discrete Comput Geom (2008) 39: 500–579

(iv) x is a false candidate bisector event of a generator s′ ∈ W , so that all paths in

the wave from s′ cross a common transparent edge f of C before the wave is

eliminated at x, and the distance from f to x along d(s′, x) is greater than 2|f |.

(v) x is a false candidate bisector event, as in (iv), except that the distance from f

to x along d(s′, x) is at most 2|f |.

Lemma 5.12 The total number of processed true bisector events (events of type (i)),

during the whole wavefront propagation phase, is O(n).

Proof First we bound the total number of waves that are created by the algorithm.

The wavefront W is always propagated from some transparent edge e, within the

blocks of a tree TB(e), for some block B incident to e, in the Riemann structure T (e)

of e. A wave of W is split during the propagation only when W reaches a vertex of C,

the corresponding boundary chain of TB(e). Each such vertex is reached at most once

(ignoring restarts) by each topologically constrained wavefront that is propagated in

TB(e). There are only O(1) such wavefronts, since there are only O(1) paths in

TB(e) (and corresponding homotopy classes). Each (side of a) transparent edge e

is processed exactly once (as the starting edge of the propagation within R(e)), by

Lemma 4.2, and e may belong to at most O(1) well-covering regions of other trans-

parent edges that may use e at an intermediate step of their propagation procedures.

There are O(1) vertices in any boundary chain C, hence at most O(1) wavefront

splits can occur within TB(e) during the propagation of a single wavefront. Since

there are only O(n) transparent edges e in the surface subdivision, and there are only

O(1) trees TB(e) for each e, we process at most O(n) such split events. (Recall from

Lemma 5.11 that a split at a vertex is processed at most O(1) times.) Since a new

wave is added to the wavefront only when a split occurs, at most O(n) waves are

created and propagated by the algorithm.

In each true bisector event processed by our algorithm, an existing wave is elimi-

nated (by its two adjacent waves). Since a wave can be eliminated exactly once and

only after it was earlier added to the wavefront, we process at most O(n) true bisector

events. �

Lemma 5.13 The algorithm processes only O(n) candidate bisector events during

the whole wavefront propagation phase.

Proof There are at most O(n) events of type (i) during the whole algorithm, by

Lemma 5.12. By Lemma 5.11, there are only O(1) candidate events of type (ii) that

arise during the propagation of W in any single block tree TB(e). Since a candidate

event of type (iii), within a fixed surface cell c, involves at least one wave that en-

codes paths that enter c through eB but never leave c (that is, they traverse a facet

sequence that contains a loop, and are therefore known not to be shortest paths be-

yond some contact interval in the loop), the total number of these candidate events

during the whole propagation is bounded by the total number of generated waves,

which is O(n) by the proof of Lemma 5.12.

Consider a candidate event of type (iv) at a location x at time tx , in some fixed

TB(e), and let f denote the transparent edge of C that is crossed by the wave from the

generator s′ eliminated at x. Denote by d1 (resp., d2) the distance along π(s′, x) from

Discrete Comput Geom (2008) 39: 500–579 571

s′ to f (resp., from f to x); that is, d2 > 2|f | and d1 + d2 = d(s′, x) = tx . Before the

update of tstop(f), caused by the processing of this event, the value of tstop(f) must

have been equal to or greater than tx > d1 + 2|f |, since otherwise f would have

been ascertained to be covered before time tx , and therefore the event at tx would

not have been processed; hence, after the update, we have tstop(f) = d1 + |f | < tx .

Therefore, immediately after the processing of the event at tx we detect that f has

been covered; by Lemma 5.11 each f is detected to be covered at most O(1) times,

and, since there are only O(1) transparent edges in C, there are at most O(1) events

of type (iv) during the propagation of W in TB(e).

Consider now a candidate event of type (v) that occurs at a location x at time tx
after crossing the transparent edge f of C. This event may also be detected during

the propagation of the wavefront through f into further cells, and therefore it must

be counted more than once during the whole wavefront propagation phase. However,

on Λ(W), x lies no further than 2|f | from the image of f , and therefore the shortest-

path distance from f to the location of x on ∂P cannot be greater than 2|f |; hence,

by the well-covering property of f , x lies within k = O(1) cells away from the cell c.

Therefore the event at x is detected during the simulation in the cell which contains

x, where the event at x is considered a true event, and during the simulation in at

most k other cells; hence, by Lemma 5.12, the total number of these candidate events

during the whole algorithm is bounded by O(kn) = O(n). �

We summarize the main result of the preceding discussion in the following lemma.

Lemma 5.14 The total number of candidate events processed during the wavefront

propagation is O(n). The wavefront propagation phase of the algorithm takes a total

of O(n logn) time and space.

5.4 Shortest Path Queries

Preprocessing Building Blocks Let B be a building block of a surface cell c. A gen-

erator of a wavefront W is called active in B if it was detected by the algorithm to

be involved in a bisector event inside B . The wavefront propagation algorithm lets us

compute the active generators for all pairs (W,B) in a total of O(n logn) time.

We next define the partition local(W,B) of the unfolded portion of B that was

covered by W (and the wavefronts that W has been split into during its propagation

within B), which will be further preprocessed for point location for shortest path

queries.14 The partition local(W,B) consists of active and inactive regions, defined

as follows. The active regions are those portions of B that are claimed by generators

of W that are active in B , and each inactive region is claimed by a contiguous band

of waves of W that cross B in an “uneventful” manner, delimited by a sequence of

pairwise disjoint bisectors. See Fig. 46 for an illustration.

14Note that if W has been split in another preceding building block of c into two sub-wavefronts W1,W2

that now traverse B as two distinct topologically constrained wavefronts, no interaction between W1 and

W2 in B is detected or processed (the two traversals are processed at two distinct nodes of a block tree, or

of different block trees of T (e), both representing B). Moreover, if W has been split in B (which might

happen if B is a nonconvex type I block—see Sect. 3.1), the split portions cannot collide with each other

inside B; see Fig. 46.

572 Discrete Comput Geom (2008) 39: 500–579

Fig. 46 The wavefront W enters the building block B (in this example, B is a nonconvex block of type I,

bounded by solid lines) from the left. The partition local(W,B) is drawn by thick dashed lines; thin

dashed lines denote bisectors of W that lie fully in the interior of the inactive regions. The regions of the

partition are numbered from 1 to 12; the active regions are lightly shaded, the inactive regions are white,

and the portions of B that were not traversed by W due to visibility constraints are darkly shaded. The

locations of the bisector events of W and the reflex vertices reached by W in B are marked. W is split at

v into W1 and W2 , and local(W,B) includes these sub-wavefronts too

Here are several comments concerning this definition. The edges of local(W,B)

are those bisectors of pairs of generators of W , at least one of which is active in B .

The first and the last bisectors of W are also defined to be edges of local(W,B).

If, during the propagation in B , W has been split (into sub-wavefronts W1,W2) at a

reflex vertex v of B , then the ray from the generator of W , whose wave has been split

at v, through v (an artificial extreme bisector of both W1,W2) is also defined to be

an edge of local(W,B). If W has been split into sub-wavefronts W1,W2 in such a

way, we treat also the bisectors of W1,W2, within B , as if they belonged to W (that

is, embed local(W1,B), local(W2,B) as extensions of local(W,B), and preprocess

them together as a single partition of B).

Note that the complexity of local(W,B) is O(k + 1), where k is the number of

true critical (bisector and vertex) events of W in B . The partition can actually be

computed “on the fly" during the propagation of W in B , in additional O(k) time.

We preprocess each such partition local(W,B) for point location [13, 22], so that,

given a query point p ∈ B , we can determine which region r of local(W,B) contains

the unfolded image q of p (that is, if B is of type II or III and E is the edge sequence

associated with B , q = UE (p); if B is of type I or IV then q = p). If r is traversed

by a single wave of W (which is always the case when r is active, and can also occur

when r is inactive), it uniquely defines the generator of W that claims p (if we ignore

other wavefronts traversing B). This step of locating r takes O(log k) time. If q is

in an inactive region r of local(W,B) that was traversed by more than one wave of

W , then r is the union of several “strips” delimited by bisectors between waves that

were propagated through B without events. We can then SEARCH for the claimer of

q in the portion of W corresponding to the inactive region, in O(logn) time (see

Sect. 5.1).

Discrete Comput Geom (2008) 39: 500–579 573

Preprocessing S3D In order to locate the cell of S that contains the query point,

we also preprocess the 3D-subdivision S3D for point location, as follows. First, we

subdivide each perforated cube cell into six rectilinear boxes, by extending its inner

horizontal faces until they reach its outer boundary, and then extending two parallel

vertical inner faces until they reach the outer boundary too, in the region between the

extended horizontal faces. Next, we preprocess the resulting 3-dimensional rectilinear

subdivision in O(n logn) time for 3-dimensional point location [10]. The resulting

data structure takes O(n logn) space, and a point location query takes O(logn) time.

Answering Shortest-Path Queries To answer a shortest-path query from s to a point

p ∈ ∂P , we perform the following steps.

1. Query the data structure of the preprocessed S3D to obtain the 3D-cell c3D that

contains p.

2. Query the surface unfolding data structure (defined in Sect. 2.4) to find the facet

f of ∂P that contains p in its closure.

3. Since the transparent edges are close to, but not necessarily equal to, the corre-

sponding intersections of subfaces of S3D with ∂P , p may lie either in a surface

cell induced by c3D or by an adjacent 3D-cell, or in a surface cell derived from

the intersection of transparent edges of O(1) such cells. To find the surface cell

containing p, let I (c3D) be the set of the O(1) surface cells induced by c3D and

by its O(1) neighboring 3D-cells in S3D (whose closures intersect that of c3D).

For each cell c ∈ I (c3D), check whether p ∈ c, as follows.

(a) Using the surface unfolding data structure, find the transparent edges of ∂c

that intersect f , by finding, for each transparent edge e of ∂c, the polytope

edge sequence E that e intersects, and searching for f in the corresponding

facet sequence of E (see Sect. 2.4).

(b) Calculate the portion c ∩ f and determine whether p lies in that portion.

If p is contained in more than one surface cell, assign it to an arbitrary cell among

them.

4. Among the O(1) building blocks of c, find a block B that contains p. For each

wavefront W that has traversed B , we find the generator si that claims p in W ,

using the point location structure of local(W,B) as described above, and compute

the distance d(si,p). We report the minimal distance from s to p among all such

claimers of p.

5. If the corresponding shortest path has to be reported too, we report all polytope

edges that are intersected by the path from the corresponding source image to p.

In case there are several such paths, each can be reported in the same manner.

Steps 1–3 take O(logn) time, using [10] and the data structure defined in Sect. 2.4.

As argued above, it takes O(logn) time to perform Step 4. This concludes the proof

of our main result (modulo the construction of the 3D-subdivision, given in the next

section):

Theorem 5.15 (Main Result) Let P be a convex polytope with n vertices. Given a

source point s ∈ ∂P , we can construct an implicit representation of the shortest path

map from s on ∂P in O(n logn) time and space. Using this structure, we can identify,

and compute the length of, the shortest path from s to any query point q ∈ ∂P in

574 Discrete Comput Geom (2008) 39: 500–579

O(logn) time (in the real RAM model). A shortest path π(s, q) can be computed in

additional O(k) time, where k is the number of straight edges in the path.

6 Constructing the 3D-Subdivision

This section briefly sketches the proof of Theorem 2.1, by describing an algorithm

for constructing a conforming 3D-subdivision for a set V of n points in R
3. Since

this is a straightforward generalization of the construction of a similar conforming

subdivision in the plane [18], we only describe the details that are different from

those in [18], and provide a few necessary definitions.

The main part of the algorithm constructs a 1-conforming 3D-subdivision S1
3D

of size O(n) in O(n logn) time, which is then transformed into a conforming 3D-

subdivision S3D by subdividing each face of S1
3D into 16 × 16 square subfaces, in

O(n) additional time.

Constructing the 1-Conforming 3D-Subdivision We fix a Cartesian coordinate sys-

tem in R
3. For any whole number i, the ith-order grid Gi in this system is the arrange-

ment of all planes x = k2i, y = k2i and z = k2i , for k ∈ Z. Each cell of Gi is a cube

of size 2i × 2i × 2i , whose near-lower-left corner lies at a point (k2i, l2i,m2i), for

a triple of integers k, l,m. We call each such cell an i-box. Any 4 × 4 × 4 contigu-

ous array of i-boxes is called an i-quad. Although an i-quad has the same size as an

(i + 2)-box, it is not necessarily an (i + 2)-box because it need not be a cell in Gi+2.

The eight non-boundary i-boxes of an i-quad form its core, which is thus a 2 × 2 × 2

array of i-boxes; see Fig. 47. Observe that an i-box b has exactly eight i-quads that

contain b in their cores.

The algorithm constructs a conforming partition of the point set V in a bottom-up

fashion. It simulates a growth process of a cube box around each data point, until

their union becomes connected. The simulation works in discrete stages, numbered

−2,0,2,4, It produces a subdivision of space into axis-parallel cells. The key

object associated with a data point p at stage i is an i-quad containing p in its core.

In fact, the following stronger condition holds inductively: Each (i − 2)-quad con-

structed at stage (i − 2) lies in the core of some i-quad constructed at stage i.

In each stage i, only a minimal set Q(i) of quads is maintained. This set is par-

titioned into equivalence classes under the transitive closure of the overlap relation,

where two i-quads overlap if they have a common i-box (not necessarily in their

cores). The portion of space covered by quads in one class of this partition is called

a component. Each component at stage i is either an i-quad or a connected union

of (open) i-quads. We classify each component as being either simple or complex.

Fig. 47 The planar analog of an

i-quad (darkly shaded) and its

core (lightly shaded)

Discrete Comput Geom (2008) 39: 500–579 575

A component at stage i is simple if (1) its outer boundary is an i-quad and (2) it con-

tains exactly one (i − 2)-quad of Q(i − 2) in its core. Otherwise, the component is

complex.

The algorithm consists of two main parts. The first part grows the (i − 2)-quads

of stage (i − 2) into i-quads of stage i, and the other part computes and updates the

equivalence classes, and constructs subdivision subfaces. These tasks are performed

by the procedures Growth and Build-subdivision, respectively. We omit the descrip-

tion of Growth (which is a duplicate three-dimensional version of the same procedure

in [18]), but briefly review some of its features, to facilitate the description of Build-

subdivision.

Given an i-quad q , Growth(q) is an (i + 2)-quad containing q in its core. For a

family S of i-quads, Growth(S) is a minimal (but not necessarily the minimum) set

of (i + 2)-quads such that each i-quad in S is contained in the core of a member

of Growth(S). Let Growth(q), or q̃ , denote the unique (i + 2)-quad returned by the

procedure Growth with input q (see [18, 34] for details concerning the choice of q̃

among eight possible (i + 2)-quads).

The Build-Subdivision Procedure By appropriate scaling and translation of 3-

space, we may assume that the L∞-distance between each pair of points in V is

at least 1, and that no point coordinate is a multiple of 1
16

. For each point p ∈ V , we

construct (to distinguish from other quads that we only compute during the process,

constructing a quad means actually adding it to the 3D-subdivision) a (−4)-quad with

p at the near-lower-left (−4)-box of its core; this choice ensures that the minimal dis-

tance from p to the boundary of its quad is at least 1
4

of the side length of the quad.

(This step is needed for the (MVC) property, and does not exist in [18].) Around each

of these quads q , we compute (but not construct yet) a (−2)-quad with q in its core,

so that when there is more than one choice to do that (there are one, two, four, or

eight possibilities to choose the (−2)-quad if ∂q is coplanar with none, two, four, or

six planes of G−2, respectively), we always choose the (−2)-quad whose position is

extreme in the near-lower-left direction. This ensures that the (−2)-quads associated

with distinct points are openly disjoint (because the points of V are at least 1 apart

from each other in the L∞-distance; without the last constraint, one could have cho-

sen two (−2)-quads whose interiors have nonempty intersection). These quads form

the set Q(−2), which is the initial set of quads in the Build-subdivision algorithm

described below. Each quad in Q(−2) forms its own singleton component under the

equivalence class in stage −2. As above, we regard all quads in Q(−2) as open,

and thus forming distinct simple components, even though some pairs might share

boundary points.

Let VS be the set of points of V in the cores of the i-quads of a component S ⊆

Q(i). The implementation of Build-subdivision is based on the observation that the

longest edge of the L∞-minimum spanning tree of VS has length less than 6 · 2i . To

make this observation more precise, we define G(i) to be the graph on V containing

exactly those edges whose L∞ length is at most 6 · 2i , and define MSF(i) to be the

minimum spanning forest of G(i).

The algorithm is based on an efficient construction of MSF(i) for all i such that

MSF(i) 	= MSF(i − 2). We first find all the O(n) edges of the final MSF of V (a

single tree), using the O(n logn) algorithm of Krznaric et al. [23] for computing an

576 Discrete Comput Geom (2008) 39: 500–579

L∞-minimum spanning tree in three dimensions. (In the planar case of [18], the clas-

sical algorithm of Kruskal is used instead.) Then, for each edge e constructed by the

algorithm, we compute the stage k = 2⌈ 1
2

log2
1
6
|e|⌉, at which e is added to MSF(k).

By processing the edges in increasing length order, we obtain the entire sequence of

forests MSF(i), for those i for which MSF(i) 	= MSF(i − 2).

Only stages at which something happens are processed: MSF(i) changes, or

there are complex components of Q(i) whose Growth computation is nontrivial.

Growth(S) is only computed for complex components and for simple components

that are about to be merged with another component, and maintain the equivalence

classes of Q(i) only for this same subset of quads. Simple components that are well

separated from other components are not involved at stage i.

The equivalence classes of Q(i) are computed by finding k = 73 −1 nearest neigh-

bors of each i-quad q , using the well-separated pair decomposition of [7], and by test-

ing which of them overlaps q .15 This is different from the planar case of [18], where

the nearest-neighbors algorithm is not needed (instead, the plane is simply swept).

To recap, at each “interesting” stage i, we construct Q(i) from Q(i −2), by invok-

ing the Growth procedure on the set of complex components and simple components

that are about to merge with other components. As argued in [18], repeated applica-

tions of Growth decrease the size of Q(i) (specifically, after each pair of consecutive

steps of Growth, |Q(i)| is at most 3
4

of its previous size), until we reach a single quad

containing all of V .

The running time of the L∞-minimum spanning tree algorithm in [23] is

O(n logn). The k-nearest-neighbors algorithm of [7] requires O(mi logmi + kmi) =

O(mi logmi) time to process mi = |Q(i)| quads, when computing the equivalence

classes of Q(i). As argued in [18],
∑

i mi = O(n); hence, it takes O(n logn) total

time to perform this step. The space requirements of the MST construction in [23],

and of the k-nearest-neighbors computation, are both O(n), as well as the space

requirements of the other stages of the algorithm. Other steps of the algorithm Build-

subdivision are similar to those in [18], and therefore, the algorithm Build-subdivision

can be implemented to run using O(n logn) standard operations on a real RAM, plus

O(n) floor and base-2 logarithm operations. As shown in [18], the total cost of all the

calls to Growth is O(n logn), and this procedure requires only linear space; hence,

S3D can be constructed in overall O(n logn) time, using O(n) space.

7 Extensions and Concluding Remarks

We have presented an optimal-time algorithm for computing an implicit representa-

tion of the shortest path map from a fixed source on the surface of a convex polytope

with n facets in three dimensions. The algorithm takes O(n logn) preprocessing time

and O(n logn) storage, and answers a shortest path query (which identifies the path

and computes its length) in O(logn) time. We have used and adapted the ideas of

Hershberger and Suri [18], solving Open Problem 2 of their paper, to construct “on

the fly" a dynamic version of the incidence data structure of Mount [28], answering

in the affirmative the question that was left open in [28].

15For each i-quad q , at most 73 − 1 different i-quads q ′ 	= q can be packed so that q ′ overlaps q .

Discrete Comput Geom (2008) 39: 500–579 577

As in the planar case (see [18]), our algorithm can also easily be extended to a

more general instance of the shortest path problem that involves multiple sources on

the surface of P , which is equivalent to computing their (implicit) geodesic Voronoi

diagram. This is a partition of ∂P into regions, so that all points in a region have

the same nearest source and the same combinatorial structure (i.e., maximal edge se-

quence) of the shortest paths to that source. We only compute this diagram implicitly,

so that, given a query point q ∈ ∂P , we can identify the nearest source point s to q ,

and return the shortest path length and starting direction (and, if needed, the short-

est path itself) from s to q; this is an easy adaptation of the algorithm presented in

this paper, with minor (and obvious) modifications. One can show that, for m given

sources, the algorithm processes O(m + n) events in total O((m + n) log(m + n))

time, using O((m + n) log(m + n)) storage; afterwards, a nearest-source query can

be answered in O(log(m + n)) time.

It is natural to extend the wavefront propagation method to the shortest path prob-

lem on the surface of a nonconvex polyhedral surface. As our more recent results [33]

show, such an extension, which still runs in optimal O(n logn) time, exists for sev-

eral restricted classes of “realistic” polyhedra, such as a polyhedral terrain whose

maximal facet slope is bounded, and a few other classes. However, the question of

whether a subquadratic-time algorithm exists for the most general case of nonconvex

polyhedra, remains open.

Finally, we conclude with two less prominent open problems.

1. Can the space complexity of the algorithm be reduced to linear? Note that our

O(n logn) storage bound is a consequence of only the need to perform path copy-

ing to ensure persistence of the surface unfolding data structure in Sect. 2.4 and the

source unfolding data structure in Sect. 5.1. Note also that the related algorithms

of [18] and [28] also use O(n logn) storage.

2. Can an unfolding of a surface cell of S overlap itself?

Acknowledgements We thank Joseph O’Rourke for his thorough review of this paper, as well as for

the valuable comments and material on surface unfolding and overlapping, and for remarks on Kapoor’s

paper. We are also grateful to Haim Kaplan for his invaluable help in designing the data structures, to

Joe Mitchell for his comments of Kapoor’s paper, and to an anonymous referee for a careful review and

many useful suggestions. We also acknowledge, with thanks, a recent correspondence with Sanjiv Kapoor

concerning some of the details in his paper.

References

1. Agarwal, P.K., Aronov, B., O’Rourke, J., Schevon, C.A.: Star unfolding of a polytope with applica-

tions. SIAM J. Comput. 26, 1689–1713 (1997)

2. Agarwal, P.K., Har-Peled, S., Sharir, M., Varadarajan, K.R.: Approximate shortest paths on a convex

polytope in three dimensions. J. ACM 44, 567–584 (1997)

3. Aleksandrov, L., Lanthier, M., Maheshwari, A., Sack, J.-R.: An ǫ-approximation algorithm for

weighted shortest paths on polyhedral surfaces. In: 6th Scand. Workshop Algorithm Theory. Lecture

Notes in Computer Science, vol. 1432, pp. 11–22. Springer, Berlin (1998)

4. Aleksandrov, L., Maheshwari, A., Sack, J.-R.: An improved approximation algorithm for computing

geometric shortest paths. In: 14th FCT. Lecture Notes in Computer Science, vol. 2751, pp. 246–257.

Springer, Berlin (2003)

5. Aloupis, G., Demaine, E.D., Langerman, S., Morin, P., O’Rourke, J., Streinu, I., Toussaint, G.: Un-

folding polyhedral bands. In: Proc. 16th Canad. Conf. Comput. Geom., pp. 60–63 (2004)

578 Discrete Comput Geom (2008) 39: 500–579

6. Aronov, B., O’Rourke, J.: Nonoverlap of the star unfolding. Discrete Comput. Geom. 8, 219–250

(1992)

7. Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets with applications to

k-nearest-neighbors and n-body potential fields. J. ACM 42(1), 67–90 (1995)

8. Chen, J., Han, Y.: Shortest paths on a polyhedron, part I: computing shortest paths. Int. J. Comput.

Geom. Appl. 6, 127–144 (1996)

9. Chen, J., Han, Y.: Shortest paths on a polyhedron, part II: storing shortest paths. Tech. Rept. 161-90,

Comput. Sci. Dept., Univ. Kentucky, Lexington, KY, February 1990

10. de Berg, M., van Kreveld, M., Snoeyink, J.: Two- and three-dimensional point location in rectangular

subdivisions. J. Algorithms 18, 256–277 (1995)

11. Demaine, E.D., O’Rourke, J.: Geometric Folding Algorithms: Linkages, Origami, and Polyhedra.

Cambridge University Press, Cambridge (2007)

12. Driscoll, J.R., Sleator, D.D., Tarjan, R.E.: Fully persistent lists with catenation. J. ACM 41(5), 943–

949 (1994)

13. Edelsbrunner, H., Guibas, L.J., Stolfi, J.: Optimal point location in a monotone subdivision. SIAM J.

Comput. 15, 317–340 (1986)

14. Guibas, L., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.E.: Linear time algorithms for visibility

and shortest path problems inside simple polygons. Algorithmica 2, 209–233 (1987)

15. Guibas, L.J., Sedgewick, R.: A dichromatic framework for balanced trees. In: Proc. 19th IEEE Sym-

pos. Found. Comput. Sci., pp. 8–21 (1978)

16. Har-Peled, S.: Approximate shortest paths and geodesic diameters on convex polytopes in three di-

mensions. Discrete Comput. Geom. 21, 216–231 (1999)

17. Har-Peled, S.: Constructing approximate shortest path maps in three dimensions. SIAM J. Comput.

28(4), 1182–1197 (1999)

18. Hershberger, J., Suri, S.: An optimal algorithm for Euclidean shortest paths in the plane. SIAM J.

Comput. 28(6), 2215–2256 (1999). Earlier versions: in Proc. 34th IEEE Sympos. Found. Comput.

Sci., pp. 508–517 (1993); Manuscript, Washington Univ., St. Louis (1995)

19. Hershberger, J., Suri, S.: Practical methods for approximating shortest paths on a convex polytope

in R
3. Comput. Geom. Theory Appl. 10(1), 31–46 (1998)

20. Italiano, G.F., Raman, R.: Topics in Data Structures. In: Atallah, M.J. (ed.) Handbook on Algorithms

and Theory of Computation, Chap. 5. CRC Press, Boca Raton (1998)

21. Kapoor, S.: Efficient computation of geodesic shortest paths. In: Proc. 32nd Annu. ACM Sympos.

Theory Comput., pp. 770–779 (1999)

22. Kirkpatrick, D.: Optimal search in planar subdivisions. SIAM J. Comput. 12, 28–35 (1983)

23. Krznaric, D., Levcopoulos, C., Nilsson, B.J.: Minimum spanning trees in d dimensions. Nord. J.

Comput. 6(4), 446–461 (1999)

24. Lanthier, M., Maheshwari, A., Sack, J.-R.: Approximating shortest paths on weighted polyhedral

surfaces. Algorithmica 30(4), 527–562 (2001)

25. Mata, C., Mitchell, J.S.B.: A new algorithm for computing shortest paths in weighted planar subdivi-

sions. In: Proc. 13th Annu. ACM Sympos. Comput. Geom., pp. 264–273 (1997)

26. Mitchell, J.S.B., Mount, D.M., Papadimitriou, C.H.: The discrete geodesic problem. SIAM J. Comput.

16, 647–668 (1987)

27. Mount, D.M.: On finding shortest paths on convex polyhedra. Tech. Rept., Computer Science Dept.,

Univ. Maryland, College Park, October 1984

28. Mount, D.M.: Storing the subdivision of a polyhedral surface. Discrete Comput. Geom. 2, 153–174

(1987)

29. O’Rourke, J.: Computational geometry column 35. Int. J. Comput. Geom. Appl. 9, 513–515 (1999);

also in SIGACT News, 30(2), 31–32 (1999)

30. O’Rourke, J.: On the development of the intersection of a plane with a polytope. Tech. Rept. 068,

Smith College, June 2000

31. O’Rourke, J., Suri, S., Booth, H.: Shortest paths on polyhedral surfaces. Manuscript, The Johns Hop-

kins Univ., Baltimore, MD (1984)

32. Paul, R.P.: Robot Manipulators: Mathematics, Programming, and Control. MIT Press, Cambridge

(1981)

33. Schreiber, Y.: Shortest paths on realistic polyhedra. In: Proc. 23rd Annu. ACM Sympos. Comput.

Geom., pp. 74–83 (2007)

34. Schreiber, Y., Sharir, M.: An optimal-time algorithm for shortest paths on a convex polytope in three

dimensions, http://www.tau.ac.il/~michas/ShortestPath.pdf. Also in Y. Schreiber, PhD thesis, http:

//www.tau.ac.il/~syevgeny/SchreiberThesis.pdf

Discrete Comput Geom (2008) 39: 500–579 579

35. Sharir, M.: On shortest paths amidst convex polyhedra. SIAM J. Comput. 16, 561–572 (1987)

36. Sharir, M., Schorr, A.: On shortest paths in polyhedral spaces. SIAM J. Comput. 15, 193–215 (1986)

37. Tarjan, R.E.: Data structures and network algorithms. SIAM CBMS, p. 44 (1983)

38. Varadarajan, K.R., Agarwal, P.K.: Approximating shortest paths on a nonconvex polyhedron. In: Proc.

38th Annu. IEEE Sympos. Found. Comput. Sci., pp. 182–191 (1997)

39. Weisstein, E.W.: Riemann surface. MathWorld—a Wolfram web resource. http://mathworld.wolfram.

com/RiemannSurface.html

	An Optimal-Time Algorithm for Shortest Paths on a Convex Polytope in Three Dimensions
	Abstract
	Introduction
	Background
	The Algorithm of Hershberger and Suri for Polygonal Domains

	An Overview of Our Algorithm

	A Conforming Surface Subdivision
	Preliminaries
	The Elements of the Shortest Path Map

	The 3-Dimensional Subdivision and Its Properties
	Computing the Surface Subdivision
	Transparent Edges
	Splitting Intersecting Transparent Edges
	Surface Cells
	Well-Covering

	The Surface Unfolding Data Structure

	Surface Unfoldings and Shortest Paths
	Building Blocks and Contact Intervals
	Maximal Connecting Common Subsequences
	The Building Blocks

	Block Trees and Riemann Structures
	Homotopy Classes

	The Shortest Path Algorithm
	The Propagation Algorithm
	One-Sided Wavefronts
	The Propagation Step
	The Simulation Clock
	Topologically Constrained Wavefronts

	Merging Wavefronts
	The Bisector Events
	Tentatively False and True Bisector Events

	Implementation Details
	The Data Structures
	Source Unfolding Operations
	Typical Manipulation of the Structure
	Maintaining all Versions

	Overview of the Wavefront Propagation Stage
	Wavefront Propagation in a Single Cell
	Wavefront Propagation in a Single Block Tree
	Critical Events and Simulation Restarts
	Path Tracing
	Stopping Times and Their Maintenance
	Processing Candidate Bisector Events
	Processing a Covered Segment of C
	Correctness and Complexity Analysis

	Shortest Path Queries
	Preprocessing Building Blocks
	Preprocessing S3D
	Answering Shortest-Path Queries

	Constructing the 3D-Subdivision
	Constructing the 1-Conforming 3D-Subdivision
	The Build-Subdivision Procedure

	Extensions and Concluding Remarks
	Acknowledgements

	References

