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Abstract—This paper presents a novel design methodology for
optimal transmission policies at a smart sensor to remotely esti-
mate the state of a stable linear stochastic dynamical system. The
sensor makes measurements of the process and forms estimates
of the state using a local Kalman filter. The sensor transmits
quantized information over a packet dropping link to the remote
receiver. The receiver sends packet receipt acknowledgments back
to the sensor via an erroneous feedback communication channel
which is itself packet dropping. The key novelty of this formulation
is that the smart sensor decides, at each discrete time instant,
whether to transmit a quantized version of either its local state
estimate or its local innovation. The objective is to design optimal
transmission policies in order to minimize a long-term average
cost function as a convex combination of the receiver’s expected
estimation error covariance and the energy needed to transmit
the packets. Under high-resolution quantization assumptions, the
optimal transmission policy is obtained by the use of dynamic
programming techniques. Using the concept of submodularity, the
optimality of a threshold policy in the case of scalar systems with
perfect packet receipt acknowledgments is proved. Suboptimal
solutions and their structural results are also discussed. Numerical
results are presented, illustrating the performance of the optimal
and suboptimal transmission policies.

Index Terms—High-resolution quantizer, Markov decision pro-
cesses with imperfect state information, packet drops, state esti-
mation, threshold policy, wireless sensor networks.

I. INTRODUCTION

NE OF the important challenges in wireless-based net-

works is to improve system performance and reliability
under resource (e.g., energy/power, computation, and commu-
nication) constraints. This concern is particularly crucial in
industrial applications, such as remote sensing and real-time
control, where a high level of reliability is usually required. As
a consequence, it becomes of significant importance to inves-
tigate the impact of realistic wireless communication channel
models in the area of state estimation and control of networked
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systems [1]. Two important limitations of wireless communica-
tion channels in these problem formulations include: 1) limited
bandwidth and 2) information loss.

Among the many papers in the area of networked state
estimation and control over bandwidth-limited channels, we
first mention [2], which addresses the minimum data rate re-
quired for stability of a linear stochastic system with quantized
measurements received through a finite rate channel. Recently,
this work is extended to the general case of time-varying
Markov digital communication channels in [3]. The reader is
also referred to the survey [4] and the references therein.

Since the seminal work of [5], state estimation or Kalman
filtering problems over packet dropping communication chan-
nels has been extensively studied (see, for example, [6]-[11],
among others). The reader is also referred to the survey [12] and
the references therein. In these problems, sensor measurements
(or state estimates in the case of [6]) are grouped into packets
which are transmitted over a packet dropping link. The focus in
these works is on deriving conditions on the packet arrival rate
in order to guarantee the stability of the Kalman filter. There are
other works which are concerned with estimation performance
(e.g., minimizing the expected estimation error covariance)
rather than just stability. For instance, power allocation tech-
niques have been applied to the Kalman filtering problem in
[13]-[15] in order to improve the estimation performance and
reliability.

Even though most of the works available in the literature
focus on only one of the two mentioned communication lim-
itations (limited bandwidth or information loss), some recent
works attempt to address both limitations. In particular, the
problem of minimum data rates for achieving bounded average
state estimation error in linear systems over lossy channels is
studied in [16] and [17] (see also [18]), while the problem
of state control around a target state trajectory in the case of
signal quantization and packet drops is investigated in [19] and
[20]. The work in [21] concentrates on designing coding and
decoding schemes to remotely estimate the state of a scalar-
stable stochastic linear system over a communication channel
subject to quantization noise and packet loss.

Similar to [21], this paper is concerned with remote state
estimation subject to quantization noise and packet drops.
However, rather than considering fixed coding and decoding
schemes, we are interested in designing optimal transmission
policies at the smart sensor, choosing between sending the
sensor’s local state estimates or its local innovations. More
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Fig. 1. System architecture.

specifically, we present a novel design methodology for optimal
transmission policies at a smart sensor to remotely estimate
the state of a stable (see Section VIII for some comments
on extensions to unstable systems) linear stochastic dynamical
system. The sensor makes measurements of the process and
forms estimates of the state using a local Kalman filter (see
Fig. 1). The sensor then transmits quantized (using a high-
resolution quantizer) information over a packet dropping link
to the remote receiver. The sensor decides, at each time instant,
whether to transmit a quantized version of either its local state
estimate or its local innovation. The receiver runs a Kalman
filter with random packet dropouts to minimize the estimation
error covariances based on received measurements.

The packet reception probability is generally a function
of the length of the packet, such that shorter packets (and,
hence, lower required data rates) may result in higher packet
receipt probabilities. Since the local innovation process has a
smaller covariance, for a fixed packet reception probability, the
quantized innovations require less energy to transmit than the
quantized state estimates. However, due to the packet dropping
link between the sensor and the remote estimator, if there has
been a number of successive packet losses, then receiving a
quantized state estimate might be more beneficial in reducing
the estimation error covariance at the remote estimator than
receiving the innovations. Thus, there is a tradeoff between
whether the sensor should transmit its local state estimates or
its local innovations. In general, knowledge at the sensor of
whether its transmissions have been received is achieved via
some feedback mechanism. Here, in addition to the case of the
perfect packet receipt acknowledgments, we consider the more
difficult problem where the feedback channel from the receiver
to the sensor is an erroneous packet dropping link.

The objective is to design optimal transmission policies in
order to minimize a long-term average (infinite-time horizon)
cost function as a convex combination of the receiver’s expected
estimation error variance and the energy needed to transmit
the packets. This problem is formulated as an average cost
Markov decision process with imperfect state information. The
optimal transmission policy is obtained by the use of dynamic
programming techniques.

In summary, the main contributions of this paper are as
follows.

1) Unlike a large number of papers focusing on only one of
the two communication limitations (limited bandwidth or
information loss), we consider both limitations, that is,
remote state estimation subject to both quantization noise
and packet drops.

2) Although recent works, such as [17] and [18], consider
packet loss and data-rate constraints simultaneously, the
focus of these papers is on stabilizability (implying only

bounded estimation error) whereas the focus on our work
is on the actual estimation error performance of the
remote estimator (albeit for a stable system) and the
optimization of a cost combining the long-term average
of estimation error and transmission energy expenditure.

3) Unlike [21], which considers fixed coding and decoding
schemes, we are interested in designing optimal trans-
mission policies at the smart sensor, choosing between
sending the sensor’s local state estimates or its local
innovations.

4) We consider the case of imperfect feedback acknowl-
edgements, which is more difficult to analyze than the
case of perfect feedback acknowledgements. We model
the feedback channel by a general erasure channel with
ITOrS.

5) It is well known that the optimal solution obtained by a
stationary control policy minimizing the infinite horizon
control cost is computationally prohibitive. For the scalar
case, we provide structural results on the optimal policy
which lead to simple threshold policies which are optimal
and yet very simple to implement.

6) Finally, also motivated by the computational burden for
the optimal control solution in the general case of imper-
fect acknowledgments, we provide a suboptimal solution
based on an estimate of the error covariance at the re-
ceiver. Numerical results are presented to illustrate the
performance gaps between the optimal and suboptimal
solutions.

The organization of this paper is as follows. The system
model is given in Section II. The augmented state-space model
at the remote receiver is constructed in Section III and the
corresponding Kalman filtering equations are given. Section IV
presents optimal transmission policy problems, together with
their solutions, in both the cases of perfect and imperfect packet
receipt acknowledgements. A suboptimal transmission scheme
in the case of imperfect packet receipt acknowledgements is
considered in Section V. For scalar systems, Section VI proves
the optimality of the threshold transmission policy for the
case of perfect packet receipt acknowledgements. Numerical
simulations are given in Section VIIL.

We use the following notation. Let (£2, F,P) be a complete
probability space. E denotes the expectation. Throughout this
paper, the subscript or superscript s are used for the sensor’s
quantities, and the superscript r is used for the receiver’s
quantities. We say that a matrix X > 0 if X is positive definite,
and X > 0if X is positive semi-definite.

II. SYSTEM MODEL

We start with a diagram of the system architecture that is
shown in Fig. 1. Detailed descriptions of each part of the system
are given below.

A. Process Dynamics and Sensor Measurements

We consider a stable uncontrolled linear time-invariant
stochastic dynamical process

Tpp1 = Az +wy, k>0 (D
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where xj € R™ is the process state at instant k£ > 0, with A
being a Schur stable matrix, and {wy, : & > 0} is a sequence of
independent and identically distributed (i.i.d.) Gaussian noises
with zero mean and covariance ¥,, > 0. The initial state of the
process x( is a Gaussian random vector, independent of the
process noise sequence {wy, : k > 0}, with mean Z¢ := E[z(]
and covariance P, > 0.

The sensor measurements are obtained in the form

yp = Cop + v, k>0 2

where y, € R™ is the vector observation at instant & > 0, C' €
R™*" "and {vy, : k > 0} is a sequence of i.i.d. Gaussian noises,
independent of both xy and {wy, : & > 0}, with zero mean and
covariance X, > 0. We enunciate the following assumption:

(A1) We assume that (A, C) is detectable. O

B. Local Kalman Filter at the Smart Sensor

We assume that the sensor has some computational capabili-
ties. In particular, it can run a local Kalman filter to reduce the
effects of measurement noise, as in, for example, [6].

Denote the local sensor information at each instant k by
Vi :=oc{y, : 0 <t <k}, which is the o-field generated by
the sensor measurements up to time k. We use the conven-
tion V5 := {0, Q}. Then, the Kalman filtering and prediction
estimates of the process state xj; at the sensor are given by
3, = ElzkVi] and 27 = Elzi1[V}], respectively.

We assume that the local Kalman filter has reached
steady state. The stationary error-covariance is defined by
P, =1limy E[(zk+1—:irz+1‘k)(zk+1—j:Z_H‘k)TD)g], which
is the solution of the algebraic Riccati equation (see, for
example, [22])

P,=AP, AT +3,— AP,CT(CP,CT+%,) "CP,AT. (3)
The Kalman filter equations for 5’2\ , and &7 1)k Are given by

Ty =Thpo1 + Ky (yk - Cii\k,l), E>0 (4

Thr1h = Alpjpr + Ko (yk - Ci’im_l), k>0 (5

with &5, == Zo, where K := P.CT(CP,CT +%,)"! and
K, := AKj are the stationary Kalman filtering and prediction
gains, respectively. Denote the covariance of the local state
estimate via X4 := hmkmE[(@;+1‘k)(§:;+l‘k)T|y,§], which
satisfies the stationary Lyapunov equation

¥, = AX AT + K, (CP,CT +%,)KT. (6)

C. Coding Alternatives at the Smart Sensor

We define the innovation process' at the sensor €() as

€r = Tppp — Ty = Ky (yk - Cii|k—1> , k=0

INote that €, is a linear transformed version of the true innovation process

of Kalman filtering given by (y — Cﬁczlk_l).

As depicted in Fig. 1, the sensor communicates over a digital
erasure channel with a remote receiver which utilizes the re-
ceived data to calculate an estimate of the process state z (..
This work aims at investigating what data the smart wireless
sensor should transmit to the receiver. Motivated by differential
pulse-code modulation (PCM) techniques [23], [24], the digital
sensor may convey either a vector quantized version of its
local estimate or a vector quantized version of its innovation.
Therefore, we may denote the packet sent by the sensor as

gt ity =1
Sk'{ezkliq,i ifv, =0, k=0 ®)
where vy, € {0,1} is a decision variable which is transmit-
ted to the receiver in addition to s;. The sequence {v} is
designed at the sensor, see Section IV. In (8), qﬁ) and q(?)
are the quantization noises resulting from encoding :%Zl , and
€1, respectively. We note that in this paper the effects of the
quantizer are only modelled via the additive quantization noise
term in (8), which is assumed to be zero-mean white noise pro-
cesses independent of the quantized signal. For high-rate quan-
tization, such an approach is quite accurate (see Remark 2.1
below for the validity of this model to low-moderate rate
quantization), since the quantization noises at high rates are
approximately uncorrelated with the quantizer inputs [25], [26].
It is also reasonable to assume that the quantization noises,
while uncorrelated to the inputs, have covariances which are
proportional to the input covariances, i.e.,

Yg = lim B {qz (QZ)T] = o lim B {5021@ (ﬁik)T]
S = lim E (g (6) | = a0 im E [ ()] ©

for given o, 1 > 0 which depend upon the quantizers and the
bit rates used.> We can obtain limy, E[:ﬁz‘k(iz‘k)T] =3+
K{(CP,CT +%,)K} from (4), and limy o Elef(¢;)"] =
K;(CP,CT 4+ %,)K] from (7).

Consider a vector Gaussian source s with N = 2™ quantizer
levels where n is the transmission rate (i.e., the number of bits
transmitted per sample). Then, the quantization noise covari-
ance of a high-resolution quantizer will be ¥, ~ a[E[ss”]. For
the case of asymptotically optimal lattice vector quantizers with
Voronoi cell Sy, we have (see [28])

M(So)Va 2InN
= 7’]2 N%

where m represents the dimension of the vector to be quantized

=12,V = (@™/2/T(m/2 +1))

2
% f |z —yll5 dz
So

M(So) = To(So)Em

is the normalized moment of inertia of Sy, and v(Sy) is the
volume of Sy. For m = 1, it can be shown that o reduces

2For an explanation on how the scaling factors ag, a1 > 0 arise, see
[27, p. 3860].
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to a = (4In N/3N?). For the case of “optimal” Lloyd-Max
quantizers, we have o ~ (B, /N 2/ ™) (see [29]). However, the
exact values of the constants B3,,, are not known for dimensions
m > 3. Form = 1, we have a = (m/3/2N?).

Remark 2.1: In principle, this additive white noise model for
the quantization error is valid for high-resolution quantization.
However, it has been reported by many works, including the
seminal review paper by Gray and Neuhoff [30, p. 2358] that
the high-resolution theory is fairly accurate for rates greater
than or equal to 3 b/sample per signal dimension. More recent
papers, such as [27], have reported similar results in designing
decentralized linear estimation schemes with quantized inno-
vations. Finally, the same quantization noise model has been
used in a parallel work by Dey, Chiuso, and Schenato (see the
extended online version of [21]). It has been shown in [21] that
only 3 bits of quantization/sample for a convex combination
of the (scalar) state estimate and the innovation signal at the
transmitter achieve remote estimation error performance that
is sufficiently close to the one predicted by the additive white
noise model. Note that in the context of modern wireless
local-area networks (LANSs), communication rates on the or-
der of megabits per second are quite common, implying that
3-5 bits of quantization per sample can be easily achieved.
Thus, this approximation is a fairly accurate tool for analysis
that is suitable for practical implementations as well.

Remark 2.2: Although quantization noise is generally mod-
elled as uniformly distributed, it has been shown in a number of
works that a Gaussian approximation to the quantization noise
is valid at high-rate quantization. In particular, quantization
noise due to lattice vector quantization (as used in this paper)
approaches a white Gaussian noise in a divergence sense as the
resolution increases [31].

Based on the aforementioned observations, we model the
quantization noise processes gy and ¢j as zero-mean addi-
tive white Gaussian noise processes with covariances Z‘g, EZ,
respectively. While this model is valid in principle at high
rate quantization, it serves as a good approximation and a
very useful analytical tool also at low-to-moderate rates of
quantization.

In what follows, we allow the sensor to choose a varying rate
of quantization in order to make the traces of the quantization
noise covariances Zﬁ and Zf] the same. From (9), this implies
that the data rates ng and n; for transmitting ¢;, and iZ\ i in the
case of the lattice vector quantizer satisfy

M(So)V 2n1In2/m
n? 95

x Tr (X5 + Kf(CP.CT +3,)K}) = Trs

_ M(So)Vin 2ngIn2/m

Trys =

T T
7 T (K (CP,CT + %,)KT)

m

and in the case of the Lloyd-Max quantizer

B,
Try) = - Tr (S, + K (CP.CT 4+ 5,)KY)

B
—=Tr (K (CP.CT +%,)Kf) . (10)

m

=Tiys =

q=

If the resulting ny and n4 are not integers, their nearest integers
will be chosen as the transmission rates. Since >, > 0, we have
ng < ny in the two cases above.

Since the local innovation process has a smaller stationary
covariance and, hence, a smaller data rate to maintain a given
packet receipt probability, transmitting ¢;, should require less
energy than transmitting a?‘,‘i‘k (see Section II-D). However, due
to the packet dropping link between the sensor and the remote
estimator, a number of successive packet losses imply that
receiving “%Z\ . might be more beneficial in reducing the estima-
tion error covariance at the remote estimator than receiving ;..
Thus, it is not immediately clear whether the sensor should
transmit local estimates Z7,, or innovations €;,. This paper seeks
to elucidate this dilemma in answering how to optimally design
the control sequence {vy : k > 0} using causal information
available at the sensor.

D. Forward Erasure Communication Channel

We assume that the forward communication channel be-
tween the sensor and the receiver is unreliable, see Fig. 1.
This channel carries {(sy, ;) : k > 0} and is characterized by
the transmission success process {7 : k > 0}, where v, = 1
refers to successful reception of (s, ), and v, = 0 quantifies
a dropout. Since the decision variable vy, consists of only one
bit of information, it can be easily sent along with sy, as a header
in the transmitted packet.

In this paper, we assume that ~y; is a Bernoulli random
variable with P(y; = 1) = 1 — p, where p € [0, 1] is the packet
loss probability. The packet loss probability is generally a
function of the data rates, such that higher data rates result in
higher packet loss probabilities. If pj, is the error probability of
sending one bit, then the packet loss probability of sending a
packet of n bits is given by

p=1-(1—-p)" (11
where the packet is assumed to be lost if an error occurs in
any of its bits (e.g., when there is no channel coding used). We
assume that the bit-error probability p;, of a wireless communi-
cation channel depends on the transmission energy per bit [}
such that p;, decreases as E}, increases. The bit-error probability
Py can be computed for different combinations of channels and
digital modulation schemes, for example, in the case of the
additive white Gaussian noise (AWGN) channel with binary
phase-shift keying (BPSK) modulation

2F)
P =Q (\/ Ny )
where Ny/2 is the noise power spectral density, and Q(x) :=
(1/v/2m) [ e " dt = (1/2)erfe(x/V/2) is the Q-function
[32]. As a consequence of (11) and (12), to obtain a fixed packet
dropout probability, when innovations are sent, the transmit
energy per bit will be lower than when local estimates are trans-

mitted. In Section IV, we will further elucidate the situation and
allocate power levels accordingly.

(12)
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E. Erroneous Feedback Communication Channel

In this paper, we will study the more realistic but complex
case where acknowledgments are unreliable (see [33] and [34]
for relevant models with an imperfect feedback mechanism). In
this scenario, the packet loss process {~i, k >0} is not known
to the sensor. Instead, the sensor receives an imperfect acknowl-
edgment process {9,k >0} from the receiver. It is assumed
that after the transmission of y;, and before transmitting vy 1,
the sensor has access to the ternary process Jj, € {0, 1, 2} where

R OQorl iff,=1
%_{2 Br

if B, =0

with given dropout probability 1 € [0, 1] for the binary process
{Bk : k > 0}, that is, P(8; = 0) = n for all k£ > 0. In the case
Br =1, a transmission error may occur, independent of all
other random processes, with probability ¢ € [0, 1]. We may
model the erroneous feedback channel as a discrete memoryless
erasure channel with errors depicted by a transition probability
matrix

(1-90)1—mn) 5(1—mn) n
6(1—mn) (1=0)1—=mn) n

where a;; :=P(y=j—1]y=1i¢—1) for i € {1,2} and j €
{1,2,3}. The present situation encompasses, as special cases,
situations where no acknowledgments are available (UDP-
case) and cases where acknowledgments are always available
(TCP-case), see also [35] for a discussion in the context of
closed-loop control with packet dropouts. The case of perfect
packet receipt acknowledgments is a special case when 7 and §
above are set to zero.

A= (ay) = (13)

III. ANALYSIS OF THE SYSTEM MODEL
A. Augmented State-Space Model at the Receiver

To analyze the model considered in this paper, we write the
dynamics of the augmented state 6y, := [xkcﬁz‘kfl]T which we
want to estimate at the remote receiver as

Opr1 = Al + &

where A:=[A 0 K,C A— K,C], and & := [wy, K, vg] by
(1), (2), and (5). From (8), the observation is given by z; =
V(& + qi) + (1 — vi) (€, + qi) or, equivalently,

2 = C(vk) 0k + Ck

where C(vg) = [KyCvpl — K;C|, and (i = Kypvp +
vrqi + (1 —vg)gf, by (2), (4), and (7) (note that K;C' is a
square matrix). We note that {& : K > 0} and {(; : k > 0}
are zero-mean noise processes. The covariance of the process
{&k : k >0} is

Y 0

Q:=E[g&l] = [ 0 KSEUKT] >0

while the covariance of the process {(x : k > 0} is given by

R(vk):=FE [G¢f ] ZKvaK}P + 1/;322 +(1- yk)22)f] > 0.

The matrix S, which models the correlation between the aug-
mented state process noise {&; : k > 0} and the measurement
noise {(y : k > 0}, is given by

0
S:=E[&] = {K - K?].

B. Kalman Filter at the Receiver

We assume that the receiver knows whether dropouts oc-
curred or not. At instances where sensor packets are received,
the decision variable vy, is also known. Therefore, the infor-
mation at the receiver at time k, )y, is given by the o-field
o{ e, Ve, ez 1 0 <t < k}. We use the convention ) :=
{0, Q}. At any instant k, the receiver estimates the process state
x, through estimation of the augmented state 8 based on the
information );_;. We denote the conditional expectation and
the associated estimation error covariance of the augmented
state®as 0, := E[0,|V]_,] and

1,1 1,2
by by

Py ::]E[(Gk_ék)(ek—ék)ﬂyg—l} = {Pl,z p22
e %

}. (14)
Let &}, := E[zy|Y}_;]. Then
PP =B [(en — ) (o — 30)" 1]

is the state estimation error covariance at the receiver at time k.
The estimation error covariance P, satisfies the following
random Riccati equation of Kalman filtering with correlated
process and measurement noises:

Py = AP AT + Q — yp, [APCT (1) + 5]

-1 T
x [Cwr)PRCT () + R(vy)] ~ [APRCT (vx) + 5] . (15)
Note that 4, appears as a random coefficient in the Riccati (15).

Theorem 3.1: The estimation error covariance Py of the
augmented system is of the form

1,1 1,1
P, P — P

P. =
k Pk1,1 _p, P/i’l _p |

k>0. (16)

Proof: See Appendix A.
Theorem 3.1 is useful for obtaining numerical solutions of
the stochastic control problems considered in the next section.
It reduces the size of the state space which we need to consider.

IV. OPTIMAL TRANSMISSION POLICY PROBLEM

Based on the discussion in Section II-B, the decision of
whether to send the innovation €j, that is, set v, =0, or the
state estimate :%Z‘ > that is, set v =1, will result in bit rates

no=n(v,=0) or n; =n(v, = 1), respectively, where ng <nj.

3Note that if the quantization noise distribution departs from the assumed
Gaussianity (Remark 2.2), then the filter at the receiver should be interpreted as
the best linear filter. The quantities ék, P will represent the corresponding es-
timate and its covariance, and will only be an approximation for the conditional
mean and error covariance.
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To maintain a fixed packet loss probability p, these bit rates
yield different bit-error probabilities p)) and p; where

0 1 1 1
pp=1-(1=p)m >py=1—-(1-p)™

by (11) and the fact that ny < n;. The required transmission
energies for bit-error probabilities p) and p} will be denoted
by Ej and E}, respectively. Since the transmission energy is a
decreasing function of the bit-error probability, we have EY <
E}. For example, in the case of AWGN channel with BPSK
modulation, (12) implies that

(209))", B =Nox (2}))"
where erfc™!(.) is the inverse complementary error function,
which is monotonically decreasing.

We define the energy per packet of n bits at time k as
J(vk) = ny, x E;* which depends on the control variable
Vg € {0, 1}.

We now aim to design optimal transmission policies in order
to minimize a convex combination of the trace of the receiver’s
expected estimation error variance and the amount of energy
required at the sensor for sending the packet to the receiver.
This optimization problem is formulated as a long term average
(infinite-time horizon) stochastic control problem

= Ny X (erfc_1 (erfc_1

T-1

1 1,1
min limsup — E {)\TrP + (1 =N J(y ‘
o) Tfo)c 1; 0: k41 (1 ) (V)

Gl P (D)

where \ € [0,1] is the weight, and P! 1, is the submatrix of
P11 [see (14)] obtained from the Riccati (15). To take into
account the fact that acknowledgements are unreliable, the
expectation in (17) is conditioned on the transmission success
process of the feedback channel {%;} instead of the packet
loss acknowledgment process of the forward channel {; };—o.
Thus, in problem (17), v, can only depend on {4;}~1, {1}k,
and P, . Therefore, this formulation falls within the general
framework of stochastic control problems with imperfect state
information.

A. Case of Perfect Packet Receipt Acknowledgments

First, let us assume that the smart sensor has perfect informa-
tion about whether the packets have been received at the remote
estimator or not, that is, 77 and ¢ are set to zero in Section II-E.
The optimization problem (17) is then reduced to a stochastic
control problem with perfect state information

min limsup — E [ATrP5Y + (1= ) J (v ‘
{vi} T%Io)c kZO { s ( ) ( k)

ke Dt P

which may be written as

T-1

1
min limsup —ZE[ATrPkl_H—i—(l A)J (I/k)|Pk,I/k} (18)
{vi} T~>oo b—0

due to the fact that Py, is a deterministic function of {v,}F~/,
{v}¥=}, and P,,. Denote

L(P,y,v) =APA" + Q — v [APC (v) + S]

x [c(w)PCT(v) + R(w)] ' [APCT(v) +5]"

‘Cl’l(Pv"YaV) El’l(P,’}QV)*PS
LYY P, y,v) — Py LYY(P,y,v) — P,

(19)

as the random Riccati equation operator (see Theorem 3.1),
where matrices A, @, C, S, and R are given in Section III-A.

Theorem 4.1 (Perfect Packet Receipt Acknowledgments): In-
dependent of the initial estimation error variance P, the value
of problem (18) is given by p, which is the solution of the
average cost optimality (Bellman) equation

p+V(P)= n{l(i)nl} (E ATrLY (P, vy, v)+(1 — A\ J(v) [P, V]
rvel,

+E[V(LP,y,v) [P, v])  (20)

where V is called the relative value function.

Proof: The proof follows from the dynamic programming
principle for average cost stochastic control problems (see, e.g.,
[36, Prop. 7.4.1]). ]

The stationary solution to the problem (18) is then given by

v°(P) = arg Ug{l(l)l’ll} (E [ATrLYH (P, vy, v)

+ (L= N)JW)PVE[V (L(P,7,v)) [P, v])

where V(+) is the solution to (20).

Remark 4.1: Equation (20), together with the control policy
v? defined in (21), is known as the average cost optimality
equations. If a control »°, a measurable function V, and a
constant p exist which solve (20) and (21), then the strategy
v is optimal, and p is the optimal cost in the sense that

2n

T-1

limsup % Z E

T—o0 k=0

[ATrP,jfl +(1- )\)J(yk)\uk:uo(Pk)}:p

and for any other control policy {v; € {0.1} : k£ > 0}

T-1

1 1,1
limsup — E [)\TrP +
T%IO)C kzo w1 T (1

A)J(uk)m] > p.
The reader is referred to [37] for a proof of the average cost
optimality equations and related results. We solve the Bellman
equation with the use of the relative value iteration algorithm
(see [36, Ch. 7).

In (20), the term E[LY! (P, v, v)|P, v] is the submatrix [sim-
ilar to (14)] of the following matrix:

E[L(P,v,v)P,v]=APAT +Q—(1—p)x [APCT (v)+S]

x [C)PCT (W) +Rw)] " [APCT()+5]"  (22)
where p is the packet loss probability of the forward erasure

communication channel given in Section II-D.
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B. Case of Imperfect Packet Receipt Acknowledgments

In a more practical formulation of problem (17), the smart
sensor does not have perfect knowledge about whether its
transmissions have been received at the receiver. Hence, at
time k, the sensor has only “imperfect state information” about
{P;:1 <t <k} via the acknowledgment process {5:,0 <
t <k — 1}. We will reduce the optimization problem (17) to
a stochastic control problem with perfect state information by
using the notion of information-state [38]. For & > 0, denote
2% =140, Ak, V0, , Vk_1, Px, } as all observations about
the receiver’s Kalman filtering state estimation error covariance
at the sensor after transmission at time k& and before transmis-
sion at time k + 1. We set 2~ := { P, }. The information-state
is defined by

fra1 (Prgal 2, vi) =P (Prya|2", vi)

which is the conditional probability of the estimation error
covariance Py given (2*,1y). The following lemma shows
how fry1(-|2¥, ) can be determined from f,(-|2*~1 v 1)
together with 4 and vy.

Lemma4.1: The information-state f(.) satisfies the recursion

k>0 (23)

Fr1 (Prga 2", )

-3

v1€{0,1} P,

(PPt Proyvi i) % fo (Pr| 25 i) dP

P(k|ve) X P(k)
> etoy PGwle) < P(y)
=@ [fu(-12" N 1) Ak vk] (Prgr). k>0

with fo(Po|z~ 1) = §(Py), where 4 is the Dirac delta function.
Proof: See Appendix B.

Note that in (24), the probabilities P(4y|vx) can be obtained
from the probability transition matrix A in (13). It is impor-
tant to note that ® in (24) depends on the entire function
fr(-|2¥"1, v4_1) and not just on its value at any particular P},

We now reduce problem (17) to a problem with perfect state
information, where its state is given by the information state
f¢)» which evolves based on the recursion (24). Define the class
of matrices S as

P  P-P],
s {p=[, 7, EoB].pon)

Theorem 4.2 (Imperfect Packet Receipt Acknowledgments):
Independent of the initial estimation error variance P, the
value of problem (17) is given by p, which is the solution of
the average cost optimality (Bellman) equation

(24)

(25)

p+V(r) :uéﬂ%ﬂ} (E ATeLY (P, y,v) + (1= N)J(v)|m, ]
+E[V(2(r,5,v)) |m,v])  (26)

for m € II, where the operator ® is defined in (24), V' is the
relative value function, and I1 is the space of probability density
functions on matrices S of the form (25).

Proof: The proof follows from the dynamic programming
principle for stochastic control problems with imperfect state
information (see [38, Theor. 7.1]). O

Note that in (26), the state is the entire probability density
function 7 which takes its values in the space of probability
densities II. We may write the terms in (26) as

E[L(P,y,v)|m, ]

= / (APA" + Q)n(P)dP
P
—(1—-p)x / ([APCT(V) + 8] [cw)PCT (v) + R(w)] "
P

x [APCT (v) + S]T) 7(P)dP

and E[V(®(m, 4,v))|m v] =P = 0)V(P(r,0,v))+P(%
DV(®(m, 1,v)) + P(y = 2)V(P(m, 2,v)).

V. SUBOPTIMAL TRANSMISSION POLICY PROBLEM

To obtain the optimal transmission strategy in the case
of imperfect packet receipt acknowledgments presented in
Section IV-B, we need to compute the solution of the Bellman
equation (26) in the space of probability density functions II,
which is computationally demanding. In this section, we con-
sider suboptimal policies which are computationally much less
intense than finding the optimal solution.

We formulate the suboptimal optimization problem as

T-1

in i 1 H1,1 .
min limsup — E[)\TrP L (1= )T () [P, v .
{vi} THEOTICZ:% o1 T (L= J (V) [Py, i | (27)

where 15(1,51 is the submatrix [similar to (14)] of f’(,) which is an
estimate of P .y computed by the sensor based on the following
recursive equations (with f’o = Py):

i) In the case §; = 0, we have

P(9 =0]7,=0)xP(7,=0)
> veto.1y P =00y )< P(vx)

+ (APLAT +Q — [APKCT () + ]

Py = (APkAT + Q) x

X [C(Uk)PkCT(Vk> + R(Z/k)} -
x [APkCT(yk) + S}T>

P =0y = 1) x P(yp = 1)

> oefo,1y Pk = Olvk) x P(yk)

ii) In the case 4 = 1, we have

P(4% =1]vx=0) x P(y,=0)
>eeiony Pe=1|v) x P(ve)

+ (APLAT + Q - [APLCT () + 5]

Doy = (APkAT + Q)X

X {C(Vk)f’kCT(Vk) + R(I/k)} B
x [APch(uk) + S}T>

P(r = 1y = 1) x P(y = 1)
> efo,1y POk = 1) x ()
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iii) In the case 43 = 2, we have

Pog1 = APLAT +Q — Py, = 1) x [APkCT(uk) + S}

x (e PrcT () + R(yk)} - [APch(yk) + Sr.

The reason why the solution to the stochastic control problem
(27) is only suboptimal is that the true error covariance matrix
P, in (17) is replaced by its estimate f’(,) in (27). The intuition
behind these recursive equations can be explained as follows.
Note that in the case of perfect feedback acknowledgements
(15), the error covariance is updated as Py = AP, AT +Q in
case 7 =0, and Py, = AP AT +Q — i [APCT (vp) + 5] x
[C(vi)PrCT (1) + R(vp)] ™t x [APRCT (vp) + S]T in case
vx = 1. In our imperfect acknowledgement model, even when
Br = 1, errors can occur such that 4, = 0 is received when
v, = 1, and 4, =1 is received when 7, = 0. Thus, the re-
cursions given in i) and ii) are the weighted combinations
of the error covariance recursions (based on the Bayes’ rule
using corresponding error event probabilities) in the case of
perfect feedback acknowledgements. In the case 4, = 2 where
an erasure occurs, taking the average of the error covariances in
the cases v, = 0 and v, = 1 is intuitively a reasonable thing to
do, which motivates the recursion in iii).

Note that P(Yx) = >_., (0,1} P([7k)P(7k), where the
conditional probabilities are given in Section II-E. This, to-
gether with the recursive equations of f’(,), implies that the ex-

pression E[ﬁ;_&l [P}, ] is of the same form as E[P,ifl [P, vi]
when Py is replaced by Py, and the Bellman equation for
problem (27) is given by a similar Bellman equation to (20).
The details are omitted for brevity.

VI. STRUCTURAL RESULTS ON THE
OPTIMAL TRANSMISSION POLICIES
FOR SCALAR SYSTEMS

This section presents structural results of the optimal trans-
mission policies for scalar systems (where we will set A = a,
C=1%,=02,%,=02%,= 03) in the perfect packet re-
ceipt acknowledgments case examined in Section IV-A, which
is also valid for the suboptimal solution presented in Section V.
The idea is to apply the submodularity concept (see [39] and
[40]) to the recursive Bellman (20), to show that the optimal
policy v°(-) in both scenarios is monotonically increasing with
respect to the receiver’s state estimation error variance P!,
This monotonicity then implies a threshold structure since the
control space has only two elements {0, 1}.

Definition 6.1 ([39] After [40]): A function F(x,y) : X X
Y — S is submodular in (z,y) if F(z1,11) + F(z2,y2) <
F(z1,y2) + F(z2,y1) forall 1,29 € X and y1,y2 € Y such
that 1 > xo and y1 > yo. O

It is important to note that the submodularity is a sufficient
condition for the optimality of monotone increasing policies.
Specifically, if F'(x,y) defined above is submodular in (z,y),
then y(z) = arg min, F'(x,y) is non-decreasing in .

We define the ordering > for matrices in class S of the
form (25) as P; > Py if Py — P, is positive semidefinite. It
is evident that for P, P € S, we have P; > P if and only if
Pl > Pyt We also define F : S x {0,1} — S as

F(P,v) = APA" +Q — (1 —p) x [APCT (v) + 5]

x [c()PCT (v) + R] ' [APCT(v) + 5]"

based on the instantaneous cost E[L(P,~,v)|P,v] in (22).
Note that in the scalar case, R can be made independent of v.

Lemma 6.1: The function F'(P,v) is submodular in (P, v),
that is, for Py, Py € S such that P; > P5, we have

FYY(Py, 1)+ FYH Py, 0) < FH (P, 0)+F2 1 (Po, 1) (28)

where F11(. ) is the (1,1) entry of F(-,-). This implies that
F(P1,1) + F(P2,0) < F(P1,0) + F(P2,1).
Proof: See Appendix C.

We now present the relative value iteration algorithm to solve
the Bellman (20). It is used to construct structural results for
the optimal transmission policy. First, we consider the Bellman
equation for the finite 7™-horizon stochastic control problem

Vi(P) = min (E[ALY'(P,v,v)+ (1= N)J(v)P,v]

ve{0,1}

+E[Vie (L(P,y, ) |P,v]), 0<t<T -1 (29)
with terminal condition V(P) = 0, where T is large. We now
define the function

Hy(-) =Vi() = Vi(Py), 0<t<T (30)
where Py # Py is fixed. We then have the following relative
value iteration algorithm recursion:

Hy(P) = V?{%ﬁ} (E ALY (P, v) + (1= N)J(v)[P,v]

+E Vi1 (L(P,7,v)) [P, v])

- Ir{l(i)nl}(E[)\El’l(P, v, )+ (1=N)J(v)P=Pg,v]
ve 0,

+E [‘/t-i-l(L(P’ v V))|P:Pf’ V]) (31)
for 0 <t < T — 1. It can be shown that the relative value recur-
sion (31) converges to the optimal solution p of the infinite-time
horizon average cost Bellman (20) such that p ~ Hy(Pg) (see
the discussion in [36, p. 391]).

Theorem 6.1: The optimal transmission policy in the case of
the perfect feedback channel is threshold with respect to the
receiver’s state estimation error variance P':! (and, hence, in
the augmented state estimation error covariance P), i.e.,

.. pl1 "
VO(P){O, if PV < ¢

. (32)
1, otherwise

where ¢* is the threshold.
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Proof: See Appendix D.

The threshold structure of Theorem (6.1) simplifies the im-
plementation of the optimal transmission policy significantly.
However, this requires knowledge of the threshold ¢*(-). In
general, there is no closed-form expression for ¢*(-), but it can
be found via iterative search algorithms. Here, we present a
stochastic gradient algorithm based on [41, Algorithm 1].

First, we establish some notation. For fixed P, denote

J(O) :=E ALY (P, y,0°) + (1= N)J(v)|P, 7]
+E[Vo (L(P,7,v°)) [P, v°]

where the policy v° is defined in (32) based on the threshold
¢*, and V(+) is obtained from the finite 7-horizon Bellman
(29). For n € N,0.5 < k < 1 and w, s > 0, we denote w,, :=
(w/(n+1)%) and ¢ := (¢/(n +1)").

Stochastic gradient algorithm for computing the threshold.
For fixed P in the relative value algorithm (31), the following
steps are carried out:

Step 1) Choose the initial threshold ¢(©).
Step 2) For iterations n = 0,1, - - -
e compute the gradient

2w,

D) = d, (33

where d,, € {—1,1} is a random variable such
that P(d,, = —1) = P(d, = 1) = 0.5;

o update the threshold via @™t = (") —
$n0gJn, which gives

if pLl < ¢(n+1)

V(n+1) (P) _ 0,
otherwise.

1

)

The above algorithm is a gradient-estimate-based algorithm
(see [42]) for estimating the optimal threshold ¢*(-) where
only measurements of the loss function are available (i.e., no
gradient information). We note that (33) evaluates an approx-
imation to the gradient. This algorithm generates a sequence
of estimates for the threshold policy ¢* which converges to a
local minimum with corresponding decision v*. The reader is
referred to [42] for associated convergence analysis of this and
other related algorithms (see, for example, [42, Th. 7.1]). Note
that gradient-estimate-based algorithms are sensitive to initial
conditions and should be evaluated for several distinct initial
conditions to find the best local minimum.

VII. NUMERICAL EXAMPLES

Here, we present numerical results for a scalar model with
parameters a = 0.95,c =1, afj = 0.25, 03 =0.01,and P, =
1 in (1) and (2). These values give Ps; = 0.26, K, = 0.91,
Ky =096, and X, = 2.30 in Section II-B. We take o7 =
Yy =25 =0.01 in (9) together with an optimal Lloyd-Max
quantizer which yields ngp =3 and n; =5 by (10). In the
simulation results, an AWGN channel with BPSK modulation
is assumed where Ny = 0.01 in (12) (see Section II-D).
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Fig. 2. Perfect feedback case: Average estimation error variance versus the
packet error probabilities for the two cases of v = 0 and v = 1.
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Fig. 3. Perfect feedback case: Transmission energy per packet (mWh) versus
the packet error probabilities for the two cases of v = 0 and v = 1.

A. Perfect Feedback Communication Channel Case

First, let the packet error probability p in (11) be equal to 0.2.
This gives p) = 0.07 and p; = 0.04 and, hence, energy per bit
levels of El? = 0.21 and E,} = 0.29, see Section IV.

In Fig. 2, we plot the average estimation error variance versus
the packet error probabilities. More precisely, we take A = 1 in
(18) without computing the optimal solution. Instead, we let the
transmission policies {vy, k > 0} be fixed either equal to zero
(sending innovations) or one (sending state estimates). On the
other hand, Fig. 3 presents the packet transmission energy J(v)
[in milliwatt hours (mWh)] defined in Section IV versus the
packet error probabilities. We let the transmission policy v be
fixed equal to either zero (sending innovations) or one (sending
state estimates). Figs. 2 and 3 show that transmitting local
estimates gives smaller error covariance, but also requires more
transmit energy than transmitting local innovations to maintain
the packet error probability. This motivates the optimization
formulation (17).

We now set the weight A\ in (18) to 0.6. The discretized
equation of the relative value algorithm (31) is used for the
numerical computation of the optimal transmission policy. In
solving the Bellman (20), we use 40 discretization points for
the state estimate error variance Pk1 1 in the range of [0,2].
In Fig. 4, we plot the convex combination of the receiver’s
expected estimation error variance and the energy needed to
transmit the packets, versus the packet loss probability p €
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Fig. 4. Perfectfeedback case: Performance versus the packet error probabilities.
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Fig. 5. Perfect feedback case: A single simulation run.

[0.1,0.9] for the cases of: i) fixed transmission policy v = 0,
ii) fixed transmission policy v = 1, and iii) optimal transmis-
sion policy v°. We observe that for small packet loss proba-
bilities, sending innovations (v = 0) is better than sending the
state estimates (v = 1). On the other hand, for large packet loss
probabilities, sending the state estimates gives better perfor-
mance than sending the innovations, due to the poor estimation
performance when sending innovations when the packet loss
probability is high. Fig. 4 clearly shows that, especially at low-
to-moderate packet error probabilities, the proposed method
has the potential to give significant performance gains when
compared to these fixed schemes.

Threshold Policy: With p = 0.2 in (11), applying the
stochastic gradient algorithm given at the end of Section VI
with parameters w = 0.3,¢ = 0.5 and x = 1 yields the thresh-
old ¢* = 0.5. For this case, a single run simulation result of
the receiver’s state estimation error variance P(l,il is illustrated
together with the optimal transmission strategy in Fig. 5.

B. Imperfect Feedback Communication Channel Case

We now consider the case of imperfect packet receipt ac-
knowledgments, as described in Section II-E with parameters
n=0.4and § = 0.1. Let A in (17) be equal to 0.6. The perfor-
mance of the optimal and suboptimal solutions (of Section V)

The Cost Function with > = 0.6

T T T T
0.8 | =8~ Imperfect Feedback: Suboptimal f
=¥ Imperfect Feedback: Optimal /
0.75 [ =@~ Perfect Feedback: Optimal /

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Packet Error Probability

Fig. 6. Performance versus the packet error probabilities for optimal and
suboptimal solutions for the imperfect feedback case, together with the per-
formance of the optimal sequence in the perfect feedback case.

versus the packet loss probability P(v, = 0) = p € [0.1,0.9]
is given in Fig. 6. The performance of the optimal sequence
in the case of perfect packet receipt acknowledgments is also
shown. We observe that for large packet error probabilities,
the performance for the suboptimal solution, which is easier to
implement, is close to the performance of the optimal solution.

VIII. CONCLUSIONS AND EXTENSIONS

This paper presents a design methodology for remote estima-
tion of the state of a stable linear stochastic dynamical system,
subject to packet dropouts and unreliable acknowledgments.
The key novelty of this formulation is that the smart sensor
decides, at each discrete time instant, whether to transmit either
its local state estimate or its local innovation. It is shown how
to design optimal transmission policies in order to minimize
a long-term average (infinite-time horizon) cost function as a
convex combination of the receiver’s expected estimation error
variance and the energy needed to transmit the packets. Various
computationally efficient suboptimal schemes are presented.
For scalar systems, the optimality of a simple threshold policy
in the case of perfect packet receipt acknowledgments is also
proved.

The analysis of this paper can be extended to the case of
unstable systems with some nontrivial modifications. In order
to study unstable systems without feedback control, one can
use the dynamic zoom-in zoom-out quantizer high-rate quan-
tizers as used in [27] for decentralized Kalman filtering over
bandwidth-constrained channels. In case of an unstable system
stabilized via feedback control, the approach will likely be
different and will possibly use the techniques of linear control
design under signal-to-quantization-noise ratio constraints as
investigated in [43] and [44]. These and other extensions will
be investigated in a future work.

APPENDIX
A. Proof of Theorem 3.1

We have, by definition, V; = o{y; : 0 <t <k} and )] =
o{ve, e, veze - 0 <t < k}. In addition, let us define the
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o-fields: Y} =o{v,y: 0 <t <k}, Vi=o0{v,2: 0<t <
k}, J),g = o{V, v,z : 0 <t < k}. We have the obvious inclu-
sions Y2 C Y6 and Vi C V3. Now E[zx|Vi || = E[xi| YV} ]
since ;1 does not provide any additional information about
zj, (because vy, can depend on the error covariance but not the
state). Then, we have

E [E [2x|Vi 1] 1Vio1] =E [E [wYi] V1]
=E [2|Vi_1] = E [2£}_1]

where the second equality is due to the inclusion y,‘j‘,l - y,g,l,
and the third equality holds because ~y;_; is independent of
x,. Following some additional manipulations and the fact that
Yr_, C Y, one can show that

E [#3V 1] = E [zl V5] = &5
On the other hand

P2 =E|(# — E[31¥i1]) (3 — E[#1%51)) Vi)

=E (& - &) (& - )" Vi
=E [((zx — &%) — (v — 23))

% ((@n = a7) = (o = 31) 1V (34)

=Pyt 4 P 2B (o — ) (ax — )T Vi ] G9)

We note that z; := x;, — 2} is orthogonal to V};_, and, hence,
orthogonal to ); ;. Therefore, E[%] (:%Z)TD),:A] =0 and
IE[:%Z(:%Z)TWLJ = 0, which give

E [ (ox — &) (= #0)" 154
A8 ~S AT ~s\T T
= B (e — &) + (3 — 7)) (o = ) 1V | = Poc
This, together with (35), implies that P> = P}'' — P,. In a

similar way, it can be shown that Pkl’2 = Pkl’1 - P,. O

B. Proof of Lemma 4.1

The total probability formula* and the chain rule give

P(PkJrl; zk; Vk)

:Z/P(Pk+l7pk77k72kvyk)dpk
Tk P,

:Z/P(Pk+1|Pka7k72k7Vk)P(kaykazkayk)de
Yk P,

=3 [ PPl PP )P GO
Tk P,

4P(A7 [, B) = Zl P(A,C;, |, B)

where the last equality holds because P is a function of Py,
i and v, see (15). However, the chain rule implies that

PPk, vk, 2%, i)
=P(Pr, Ve, 2", A, Viem1, Vi)
= P(%|Pr, i, 25 e 1, i) Pk | Py 257 w1, 1)
X P(Pg|2* Y vp 1, ve)P(2F 1 v 1, o)
= P(3 [y POy )P(Pr 2" w1 )P g1, ). (37)

Substituting (37) in (36) yields

P(Prat, 1) = 3 [ (B(Pusa P ) Binln)

Ve py
XP () PPz v )P(ZF vy, 1)) Py (38)

On the other hand
P(Pry1|2", k) = a x P(Pyi1, 2F0p) (39)
where « is a normalizing constant. Integrating (39) with re-

spect to Pry1 gives a = ([p, | P(Pri1, 2%, 1)dPyyr) "
However

/ P(Pyy1, 2", v4)dPria

Pyt

-/

Yk P,

(P(Prs1|Pry v V)P [k ) P (k)

Pit1
x P(Py|2" 1 v )P(ZF 1 1, vg) ) APy dP .
(40)

With some additional calculations, one can show that

-1
o= (P(ZkI’Vk—lyvk)ZP(%WUP(%)) N CY)

Tk

Finally, substituting (38) and (41) in (39) gives (24). O

C. Proof of Lemma 6.1
Let P:= [P\t ptl—p, ptl—p, PLt— P] where
PL1 > P, which implies that Py € S. First, note that
a’K?pP?
FL(P. Q) = g2P!1 2 fos
( ) ) a +0—1U ( p)XK?PS_'_R
and

a®((PY1 =P+ KP,)?
(Pl,l_Ps)+K;Ps+R '

FUYP, 1) =a?PY 402 —(1—-p) x
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We denote g(z):=(((z—Ps)+ Ky Ps)?/(x—Ps)+K; Ps+R)
for x > P,. Let P1,P5 € S be such that P; > Ps, then the
inequality (28) is equivalent to

v (o (P1) =a (72"))

1,1 1,1
2(P-ppt) - (1-

<a (P =P, @)
Again, after some additional algebra, one can show that

g'(z) > 0 for x > P;. This, togetherwnhP11 >P11 > P,
implies that the inequality (42) is valid. This gives (28),
thus, F(P1,1) — F(P3,1) < F(P,0) — F(P3,0) based on
Theorem 3.1 and the fact that for P, Py € S, we have P; >
P, if and only if P}"' > P}*'. O

D. Proof of Theorem 6.1
Based on the relative value iteration (31), define

Li(P,v) =E ALY (P, v, v) + (1 = A)J(v)|P, V]
+ E [Vt-i-l ([’(P7 7> V)) |P’ V}
=LV ®, )+ LPP,v)

for0 <t<T-—1.

Submodularity of L (P,v): Lemma 6.1 implies that
F(P,v) =E[L(P,v,v)|P,v] and, hence, (F(P,v))\! =
E[LVY(P,v,v)|P,v] are submodular in (P,v). It is evident
that E[J(v)|v] is also submodular in (P, v) since it is inde-
pendent of P. Therefore, their convex combination Lil) (P,v)
is submodular in (P, v).

Submodularity ofL( )(P v): First, we note that L(P,~,0) =
E[L(P,v,v)[P,v=0]and L(P,7,1)=E[L(P,,v)P,v=1]
given in (22) are concave’ and nondecreasing functions in P
(see [45, Lemmas 1 and 2]). This implies that E]ALY (P, v, v) +
(1-=XN)JW)|P,v=0], EMNLY(P,v,v)+ (1 -N)J(v)P,
v = 1] and therefore

in (E[ACYY(P, A,
i, (BEACY (P, 7,0)

+ (1 =X J()|P,v])

are concave and nondecreasing functions of P (note that the
expectation operator preserves concavity). By induction and
the fact that the composition of two nondecreasing concave
functions is itself concave and nondecreasing, one can show
that the value function V;(P) in (29) is a concave and nonde-
creasing function of P. The composition of a nondecreasing
concave function V;(-) with a monotonic submodular function
L(+,7,v) is submodular (see [46, Prop. 2.3.5, part (c)]). There-
fore, L\ (P, v) = E[V,11(L(P, v, v))|P, ] is submodular in
(P, v). Finally, the submodularity of L:(P,v) follows from
the fact that the sum of two submodular functions is also
submodular.

Consequently, for 0 <t < T — 1, argmin,eo,1y L¢(P,v)
is nondecreasing in P and, hence, nondecreasing in PLL. This
monotonicity implies the threshold structure (32) since the
control space has only two elements {0, 1} (see [40]). ([l

3The proof of concavity is based on the fact that a function f(z) is concave
in z if and only if f(zo + th) is concave in the scalar ¢ for all 2 and h.
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