
An optimal transport approach for seismic tomography:

Application to 3D full waveform inversion

L. Métivier 1,2, R. Brossier2, Q. Mérigot3, E. Oudet1, J. Virieux2
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Abstract. In the recent years, the use of optimal transport distance has yielded significant progress in
image processing for pattern recognition, shape identification, and histograms matching. In this study, the
use of this distance is investigated for a seismic tomography problem exploiting the complete waveform;
the full waveform inversion. In its conventional formulation, this high resolution seismic imaging method
is based on the minimization of the L2 distance between predicted and observed data. Application of this
method is generally hampered by the local minima of the associated L2 misfit function, which correspond
to velocity models matching the data up to one or several phase shifts. Conversely, the optimal transport
distance appears as a more suitable tool to compare the misfit between oscillatory signals, for its ability
to detect shifted patterns. However, its application to full waveform inversion is not straightforward,
as the mass conservation between the compared data can not be guaranteed, a crucial assumption for
optimal transport. In this study, the use of a distance based on the Kantorovich-Rubinstein norm is
introduced to overcome this difficulty. Its mathematical link with the optimal transport distance is made
clear. An efficient numerical strategy for its computation, based on a proximal splitting technique, is
introduced. Each iteration of the corresponding algorithm requires the solution of a linear system which
is demonstrated to be a second-order finite-difference discretization of the Poisson equation, for which fast
solvers can be used, relying either on the fast Fourier transform or multigrid techniques. The development
of this numerical method make possible applications to industrial scale data, involving tenths of millions of
discrete unknowns. The results we obtain on such large scale synthetic data illustrate the potentialities of
the optimal transport for seismic imaging. Starting from crude initial velocity models, optimal transport
based inversion yields significantly better velocity reconstructions than those based on the L2 distance,
both in 2D and 3D contexts.
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1. Introduction

1.1. Optimal transport in imaging sciences

Optimal transport finds its roots in the work of the French engineer Gaspard Monge (1780), in an
attempt to devise the most efficient strategy to move sand from a given location to a building site.
In this sense, the problem is formulated as an optimal assignment problem, given a cost measuring
the effort for moving mass units from one location to the other. Almost two hundred years later,
[Kantorovich, 1942] introduced a relaxation of the optimal transport problem, where the mass is
allowed to split, giving the first proofs of existence for the (relaxed) optimal transport problem.
Considering two probability distributions µ and ν on two separable metric spaces X and Y , the
optimal transport problem amounts to find, among all the mapping from X to Y transforming
µ into ν, the one minimizing a cost function measuring the effort to achieve this mapping in
terms of elementary displacement from X to Y . In the last fifteen years, this field of research
has been put on the front scene through the work of many mathematicians, as testified by the
books of [Villani, 2003, Villani, 2008, Ambrosio et al., 2008, Santambrogio, 2015]. In particular,
the metric underlain by the optimal transport distance is used to establish new existence results of
solution to nonlinear partial differential equations such as the Boltzmann equations. Applications
of optimal transport in geometry processing and image processing have also been investigated
in the last years. Contrast and color mappings are well known applications in image processing
[Ferradans et al., 2014], but a more complete list would include pattern recognition and shape
classification, texture synthesis and texture mixing, and image smoothing among others (see
[Lellmann et al., 2014] and references therein for a detailed state-of-the-art in image processing).
One of the interesting properties of optimal transport distances relies on the fact that they give
the possibility to perform comparisons between images based on global properties of the images,
and not only local, pixel-by-pixel comparisons, underlain by the use of conventional Lp distances.
This property is the main reason for the interest of these distances for applications in pattern
recognition and shape identification.

1.2. Full waveform inversion: a seismic imaging method

Full waveform inversion (FWI) is based on the minimization of the misfit between observed and
predicted data [Lailly, 1983, Tarantola, 1984]. The observed data is a collection of seismic signals
recorded at the surface, after the propagation of waves either generated by a controlled source
at the exploration scale, with applications for oil and gas industry, or earthquakes, from regional
to global scales, with applications in seismology. The predicted data is computed through the
numerical solution of a wave propagation problem, from simple acoustic modeling to more realistic
visco-elastic anisotropic modeling. The minimization of the misfit between predicted and observed
data is performed on a selected set of discrete parameters, including wave propagation velocities,
density, attenuation, and anisotropy parameters. A review of FWI and its application is provided
in [Virieux and Operto, 2009].

FWI is now routinely used, both in the academy and the industry, mainly for the recon-
struction of wave propagation velocities [Fichtner et al., 2010, Tape et al., 2010, Peter et al., 2011,
Sirgue et al., 2010, Plessix and Perkins, 2010, Zhu et al., 2012, Warner et al., 2013, Vigh et al., 2014,
Borisov and Singh, 2015, Operto et al., 2015]. Its advantage over conventional tomography meth-
ods, which are based on the interpretation of selected arrival times only, is its ability to recover
higher resolution estimates. As the method involves millions (2D acoustic) to tens of billions (3D
elastic) of discrete unknowns, it is based on a local minimization of the misfit, which iteratively
updates an initial estimation of the wave velocity. In its conventional formulation, the misfit is
computed as the L2 distance between observed and predicted data. This yields a significant diffi-
culty: the corresponding misfit function has multiple local minima. The initial guess of the solution
should thus be sufficiently close from the global minimum for the method to converge to the desired
estimation. The reason for the presence of these local minima is well understood. Smooth, macro-
scale modifications of the velocity structure mainly impact the oscillatory seismic waveform through
modifications of the travel-times, resulting in time shifted waveforms [Jannane et al., 1989]. How-
ever, the L2 norm is not an appropriate tool for capturing these time-shifts. Seeing the waveform
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as a purely oscillatory signal, a local minimum is reached each time the velocity model matches
the data with one or several phase shifts. This phenomenon is referred to as cycle skipping or
phase ambiguity in the FWI community. The use of the L2 norm thus requires to start from an
initial velocity model kinematically compatible with the data, in the sense that the observed data
is matched within half a phase, to prevent cycle skipping.

This strong requirement is of course a difficulty for the application of FWI as such an
initial model may not be always available. This difficulty has prompted numerous investigations
attempting to overcome this restriction. Multi-scale frequency approaches have been first
introduced to mitigate the sensitivity to cycle skipping by enlarging the phase in the first steps
of the method [Bunks et al., 1995, Pratt, 1999]. This strategy is limited by the lowest available
frequency, which is most of the time not low enough to sufficiently constrain the model and
avoid cycle skipping. Image domain techniques have also been proposed (see [Symes, 2008]
and references therein for a review). The methods are based on improving the consistency of
the velocity model through the re-focusing of migrated images along a dimension introduced
artificially in the imaging condition (time lag, subsurface offset, illumination angle). These
methods are able to generate smooth updates of the initial background models. However the
high computation cost related to the repeated construction of image volumes through migration
algorithms seems to have precluded their use in 3D configurations up to now. In addition,
these methods rely exclusively on reflected waves as they are based on the construction of
reflectivity images. Data-domain techniques represent a third type of strategies to mitigate cycle
skipping. These methods are based on the modification of the misfit measurement: cross-correlation
[Luo and Schuster, 1991], and later on warping techniques [Hale, 2013, Ma and Hale, 2013], have
been proposed to access directly the time shifts between seismograms without travel-time picking.
Misfit functions based on the instantaneous phase and envelope of the signals have been investigated
in seismology [Fichtner et al., 2008, Bŏzdag et al., 2011]. Recently, deconvolution approaches
[Luo and Sava, 2011, Warner and Guasch, 2014] have also been promoted for FWI, where Wiener
filters are used to match observed and predicted data. All these strategies share the common
purpose to produce more convex misfit functions, possibly at the expense of the high resolution
expected from full waveform inversion. Another drawback of these strategies is related to the
necessity to design a suitable penalization function to maximize the energy at zero time shift (or to
minimize the energy away from zero time shift), which may require non-trivial parameter tuning.
In addition, identification and windowing of the data may be required to robustly estimate the
time shifts between traces, which is a difficult task for seismic data acquired at the exploration
scale.

From an optimization point of view, the convergence to local minima results from the use of
local optimization techniques. As a consequence, since the introduction of FWI, several attempts to
apply global optimization schemes to FWI based on Monte Carlo techniques or genetic algorithms
have been performed. The crucial issue for the success of these methods is the design of a suitable
subsurface velocity parameterization allowing to drastically reduce the number of unknowns, which
is not straightforward. Indeed, current high performance computing devices may provide the
capability to perform such a global model space exploration for problems involving no more than
several hundred discrete parameter, which is several order of magnitudes lower than standard FWI
problem size for realistic applications. In [Diouane et al., 2016], an recent example of such an
attempt is proposed, where the model parameterization is based on a Discrete Cosine Transform
and a step function transform.

1.3. Contribution

In a recent study, the use of an optimal transport distance in the framework of FWI has been sug-
gested as a novel data-domain technique [Engquist and Froese, 2014]. The main motivation relies
on the fact that the optimal transport distance, as a global comparison tool, is particularly suited
to capture time shifts between signals. This property is emphasized in [Engquist and Froese, 2014]
on 1D time-shifted Ricker signals: the optimal transport distance is a convex, nearly quadratic
function of the time shift.
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Building up on this idea, we have proposed a methodology for using an optimal transport dis-
tance within FWI in realistic 2D configurations [Métivier et al., 2016]. In this context, the seismic
data is interpreted as a collection of 2D images, one for each seismic source. The signal recorded
by each receiver is gathered in a 2D panel depending on the physical location of the receiver at the
surface. This organization of the data is used for years by geophysicists for analyzing the data as it
allows to easily identify all the seismic events (direct propagation, refraction, pre-and-post critical
reflection, conversion). However, this data representation is rarely accounted for in the inversion
algorithm. The L2 distance performs pixel-by-pixel comparisons, while cross-correlation and decon-
volution approaches rely on a computation of time-shifts trace by trace. Nonetheless, macro-scale
variations of the velocity structures impacts the data by shifting the seismic events not only along
the time axis but also along the receiver (space) axis. Warping techniques [Hale, 2013] appear to
us as a first attempt to account for these shifts considering the whole seismogram. Tracking these
shifts using a 2D optimal transport distance should allow to account for these shifts more robustly,
similarly as in pattern recognition applications. Applications of this strategy to 2D realistic case
studies have confirmed its interest.

The methodology we have proposed [Métivier et al., 2016] is based on a modified dual Kan-
torovich problem. This formulation allows for the non conservation of the mass between the data,
which is a crucial point: standard optimal transport distance relies on the assumption that the
total mass is conserved between the compared images. For FWI applications, the concept of mass
used in imaging science is to be understood as the intensity of the recorded signal at a given time
by a given receiver. In this context, there is no reason for the total mass of the observed data to be
equal to the total mass of the predicted data for seismic applications. For instance, if reflections are
missing in the predicted data (due to the absence of the corresponding reflectors in the subsurface
model), the predicted data will contain less mass than the observed one. Noise also contaminates
the observed data in real applications, which in essence unpredictably contributes to its total mass.

In the present study, we propose to further analyze the mathematical foundation of this
modified dual strategy. We show that the distance which is used is actually related to the
Kantorovich-Rubinstein (KR) norm, which has strong connections with the dual Kantorovich
problem, as well as with the L1 distance, as pointed out in [Lellmann et al., 2014]. We also
propose a novel numerical strategy for the computation of the Kantorovich-Rubinstein norm,
making possible to apply this strategy to realistic size 3D data sets for the first time. The
corresponding problem is formulated as a non-smooth convex optimization problem, solved
with the Simultaneous Descent Method of Multipliers (SDMM), a proximal splitting strategy
[Combettes and Pesquet, 2011]. We prove that the linear system to be solved at each iteration
of SDMM corresponds to the solution of the Poisson’s equation with homogeneous Neumann
boundary conditions, which can be solved in linear complexity through multigrid techniques
[Brandt, 1977]. This numerical strategy is implemented within the framework of time-domain
acoustic FWI. An analysis of the KR distance is first performed for the comparison of time-signals
to investigate the dependence of this distance with respect to time shifts, as it is performed in
[Engquist and Froese, 2014]. The KR distance exhibits a single global minimum in this case.
However, it appears not to be a convex function of the time-shift, as it seems non-differentiable
at its minimum. This feature confirms the link between KR and L1 distances. The shape of the
L2 and KR misfit function is then compared in a 2D more realistic context, for a bi-dimensional
problem. Using the KR distance appears to level-up the secondary valleys of the misfit function,
reducing the risk of being trapped in a local minimum following a gradient-based local optimization
method. A 2D FWI application to the Marmousi model is presented, to emphasize the interest of
the strategy, and its robustness to the presence of noise. Finally, a fully 3D experiment performed
on the overthrust SEG/EAGE model is proposed. From these experiments, the use of the optimal
transport distance appears as an interesting tool for FWI as it seems to mitigate efficiently the
cycle skipping issue, while the numerical strategy which is proposed appears as feasible for realistic
size 3D problems.
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1.4. Structure of the paper

The study is divided in six sections. In Section 2, the mathematical background of optimal
transport is reviewed quickly, as well as the link between the KR norm and optimal transport.
In Section 3, the numerical strategy we set up to compute the KR norm for large scale problems is
presented. In Section 4, the formulation of the FWI problem using the KR norm is presented. In
Section 5, we present three different case studies, from 1D to 3D, emphasizing the main properties
of FWI based on the KR distance. Concluding remarks and perspectives are given in Section 6.

1.5. Notations

In what follows, X and Y denote two metric spaces. The space of probability distribution on X
and Y are denoted by P(X) and P(Y ) respectively. The push-forward distribution of µ ∈ P(X)
by the mapping T

{

X −→ Y
T : x −→ T (x),

(1)

is denoted by T#µ ∈ P(Y ), such that for any measurable set A ⊂ Y , we have

(T#µ) (A) ≡ µ
(

T−1(A)
)

= ν(A). (2)

For the numerical computation of the KR norm, we work with a compact subset of R
3 denoted by

Ω, such that

Ω =
∏

s∈{x,y,z}

[as; bs]. (3)

The compact Ω is discretized using a Cartesian mesh with constant step sizes in each direction
hs, s ∈ {x, y, z} such that

hs =
bs − as
Ns

, s ∈ {x, y, z}, (4)

where Ns is the number of grid points in the direction s ∈ {x, y, z}. A point on the mesh is denoted
by (xi, yj , zk) ∈ R

3 such that






xi = ax + (i− 1)hx
yj = ay + (j − 1)hy
zk = az + (k − 1)hz.

(5)

We use the standard discrete notations such that, ∀ ϕ(x, y, z)

Ω −→ R

ϕ : (x, y, z) −→ ϕ(x, y, z),
(6)

we have

ϕ(xi, yj , zk) = ϕijk, (7)

and we introduce the set of indexes on the mesh

A =
{

(i, j, k) ∈ N
3, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz

}

. (8)

The total number of points in the mesh is N = Nx ×Ny ×Nz. We will also use the set of indexes
Ax,Ay,Az, such that

Ax =
{

(i, j, k) ∈ N
3, 1 ≤ i ≤ Nx − 1, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz

}

,
Ay =

{

(i, j, k) ∈ N
3, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny − 1, 1 ≤ k ≤ Nz

}

,
Az =

{

(i, j, k) ∈ N
3, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz − 1

}

.
(9)

The integer P ∈ N is defined by

P = card(Ax) + card(Ay) + card(Az) +N. (10)

Finally, we define the space of real matrices with n ∈ N rows and p ∈ N columns by Mn,p(R). The
Kronecker product between two matrices A ∈ Mn,p(R) and B ∈ Mq,r(R) is defined by

A⊗B =







a11B . . . a1pB
...

...
an1B . . . anpB






∈ Mnq,pr(R). (11)
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2. Optimal transport and the Kantorovich-Rubinstein norm

We start by recalling the standard Monge formulation for the optimal transport problem. Given
two probability distributions µ ∈ P(X) and ν ∈ P(Y ), and a cost function c(x, y)

{

X × Y −→ R+

c : (x, y) −→ c(x, y),
(12)

the optimal transport problem is defined as

inf
T

{∫

c(x, T (x))dµ(x), T#µ = ν

}

. (13)

The constraint T#µ = ν indicates that the push forward distribution T#µ of µ by the map-
ping T is equal to the distribution ν. The optimal transport problem can thus be interpreted
as determining the mapping T which transports the distribution µ onto the distribution ν in the
sense of the equation (2), which minimizes the cost defined in (13), for a given cost function c(x, y).

The problem (13) is difficult to solve, in particular because of the constraint (2). A relaxation
of this problem has been proposed by [Kantorovich, 1942], under the linear programming problem

inf
γ

{∫

X×Y

c(x, y)dγ(x, y), s.c. γ ∈ Π(µ, ν)

}

, (14)

where the ensemble of transport plans Π(µ, ν) is defined by

Π(µ, ν) =
{

γ ∈ P(X × Y ), (πX)# γ = µ, (πY )# γ = ν
}

. (15)

The operators πX and πY are the projectors on X and Y respectively. The problem (14) gener-
alizes (13) in the sense that, instead of considering a mapping T transporting each particle of the
distribution µ to the distribution ν, it considers all pairs (x, y) of the space X×Y and for each pair
defines how many particles of µ go from x to y. While in the context of the Monge formulation (13),
each point of the space X has only one possible destination on Y , given by T (x), in the context
of the Kantorovich formulation (14), the particles at point x can have various destinations in Y ,
given by γ(x, y) for y ∈ Y . The constraint (15) ensures that the distribution µ is transported onto
the distribution ν. The relaxed problem (14) admits a solution under very mild hypothesis, unlike
Monge’s problem (13). In addition, when (14) admits a solution T , the measure π = (I, T )#µ is a
solution of the relaxed problem (13) [Ambrosio, 2003, Pratelli, 2007].

The dual problem of (14) is formulated as






max
ϕ,ψ

∫

X

ϕdµ+

∫

Y

ψdν,

ϕ ∈ Cb(X), ψ ∈ Cb(Y ), ∀(x, y) ∈ X × Y, ϕ(x) + ψ(y) ≤ c(x, y),
(16)

where the ensemble of continuous and bounded functions on X (resp. Y ) is denoted by Cb(X)
(resp. Cb(Y )). The standard duality result shows that the solution of (14) is equal to the solution
of (16) (see for instance [Villani, 2003] or [Santambrogio, 2015] for a complete proof).

In the particular case where Y = X and the cost function c(x, y) is a distance (which will be
the case in the remainder of this study), the dual problem (16) can be simplified into

max
ϕ

∫

X

ϕd (µ− ν) , ϕ ∈ Lip1,c, (17)

where Lip1,c denotes the space of 1 Lipschitz function for the distance c(x, y), i.e.

Lip1,c = {ϕ : x ∈ X −→ R, ∀(x, x′) ∈ X ×X, |ϕ(x) − ϕ(x′)| ≤ c(x, x′)} . (18)

The duality result in this particular case is known as the Kantorovich-Rubinstein theorem
[Santambrogio, 2015, chap. 3.2.1]. The modification of the initial Monge problem into the dual
form of the Kantorovich problem thus leads to the solution of the linear problem with linear con-
straints (17).
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While, under its primal form (14), the optimal transport problem is defined for probability
measures, the dual form is defined for general measures provided they have the same total mass,
i.e the mass is conserved from the mass distribution µ to the mass distribution ν. An illustration
of this requirement follows. Consider the case where µ and ν have a different mass

∫

X

d(µ− ν) 6= 0. (19)

Consider the constant function ϕα(x) = α for α ∈ R
∗. We have ϕα ∈ Lip1,c and

∫

X

ϕαd (µ− ν) = α

∫

X

d(µ− ν) 6= 0. (20)

Thus, the problem (17) has no solution as for any ϕ ∈ Lip1,c, one can find ϕα ∈ Lip1,c such that,
for α sufficiently large,

∫

X

ϕαd (µ− ν) >

∫

X

ϕd (µ− ν) . (21)

This simple example suggests a straightforward generalization of the dual Kantorovich problem
which remains well posed when the total mass between µ and ν is not conserved. This generalization
consists in complementing the 1-Lipschitz constraint with a bound constraint. The problem (17)
thus becomes

max
ϕ

∫

X

ϕd (µ− ν) , s.c. ϕ ∈ Lip1,c, ‖ϕ‖∞ ≤ λ. (22)

In this study, we focus on the particular case for which the distance function c(x, y) is the
distance associated with the ℓ1 norm on R

d

c(x, y) = |x− y| =

d
∑

i=1

|xi − yi|. (23)

Interestingly, with this choice of cost function c(x, y), the generalization (22) corresponds to the
definition of the KR norm [Bogachev, 2007]. This norm is defined in the space of Radon measures
on Ω, which is the dual space, for the ‖.‖∞ norm, of the space of real valued continuous functions
defined on Ω which are zero at infinity, denoted by (C0 (Ω,R), ‖.‖∞)). Besides the link with op-
timal transport, the KR norm can also be interpreted as a generalization of the L1 norm (in a
similar sense that the generalization from Total Variation to Total Generalized Variation norms),
and shares some properties with the Meyer’s G-norm. These similarities are studied in detail in
[Lellmann et al., 2014], where the use of the KR norm is proposed as an alternative to the L1 norm
in a TV denoising problem. In the remainder of the paper, the space of 1-Lipschitz functions for
the distance induced by the ℓ1 norm on R

d and with infinity norm bounded by λ will be denoted
by BLip1,λ.

3. An efficient numerical strategy for computing the Kantorovich-Rubinstein norm

3.1. Discretization and reduction of the number of constraints

In this section we assume that the dimension d is set to 3. Using the notations introduced in
Section 1.5, the problem (22) is discretized as

max
ϕijk

∑

ijk

ϕijk (µijk − νijk) , s.c.

{

∀ (i, j, k), (l,m, n) ∈ A2, |ϕijk − ϕlmn| < |xi − xl| + |yj − ym| + |zk − zn|,
∀ (i, j, k) ∈ A, |ϕijk| ≤ λ.

(24)

Computing a numerical approximation of the solution of (24) requires the solution of a convex
optimization problem involving O(N2) linear constraints. This would lead to an unacceptable
computational time for the large scale problems induced by FWI applications. However, a prop-
erty of the ℓ1 norm on R

d can be used to reduce the number of constraints from O(N2) to O(N).
Note that the following proposition can be rephrased in terms of graph theory by saying that the
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restriction of the ℓ1 distance to the grid Zd is a geodesic distance on the graph over Zd where two
nodes a, b ∈ Zd are joined by an edge if and only if |a− b|ℓ1 ≤ 1 (Fig.1).

Proposition.

The two following assertions are equivalent

(A1) ∀ (i, j, k), (l,m, n) ∈ A2, |ϕijk − ϕlmn| < |xi − xl| + |yj − ym| + |zk − zn|,

(A2)







∀ (i, j, k) ∈ Ax, |ϕi+1,j,k − ϕijk| < |xi+1 − xi|,
∀ (i, j, k) ∈ Ay, |ϕi,j+1,k − ϕijk| < |yj+1 − yj |,
∀ (i, j, k) ∈ Az, |ϕi,j,k+1 − ϕijk| < |zk+1 − zk|.

(25)

Proof.

(A1) obviously implies (A2). To prove the reciprocal implication, consider a pair of points on the
mesh denoted by u and v, such that

u = (xi, yj , zk), v = (xl, ym, zn). (26)

A sequence of points wq = (xiq , yjq , zkq
), q = 1, . . . ,M can be selected to form a path on the mesh

from u to v, such that w1 = u, wM = v, and wq are all adjacent on the grid, with monotonically
varying coordinates. The key is to see that, for such a sequence of points, the ℓ1 distance on R

d

ensures that

||v − u||1 =

M
∑

q=1

||wq+1 − wq||1. (27)

(see Fig. 1 for an illustration).

Figure 1. Illustration of the property (27) for a 2D mesh. Considering two points u and v, a sequence
of adjacent points w1, . . . , w6 with monotonically varying coordinates is found to connect them. Such a
sequence always exists and is non-unique.

Now, consider a function ϕ satisfying (A2). The triangle inequality yields

||ϕ(v) − ϕ(u)||1 ≤

M
∑

q=1

||ϕ(wq+1) − ϕ(wq)||1. (28)

As the points wq are adjacent, the local inequalities described by (A2), satisfied by ϕ, yield

M
∑

q=1

||ϕ(wq+1) − ϕ(wq)||1 ≤

M
∑

q=1

||wq+1 − wq||1. (29)

Putting together equations (28), (29) and (27) yields

||ϕ(v) − ϕ(u)||1 ≤ ||v − u||1, (30)

or

|ϕijk − ϕlmn| < |xi − xl| + |yj − ym| + |zk − zn|, (31)

which proves the proposition.
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�

Using the equivalence (25), the problem (24) can be rewritten in its equivalent form

max
ϕijk

∑

ijk

ϕijk (µijk − νijk) , s.c.















∀ (i, j, k) ∈ Ax, |ϕ,i+1,jk − ϕijk| < |xi+1 − xi| = hx,
∀ (i, j, k) ∈ Ay, |ϕi,j+1,k − ϕijk| < |yj+1 − yj | = hy,
∀ (i, j, k) ∈ Az, |ϕi,j,k+1 − ϕijk| < |zk+1 − zk| = hz,
∀ (i, j, k) ∈ A, |ϕijk| < λ.

(32)

The problem (32) is equivalent to (24) and only involves 2P = O(N) constraints. This reduction of
the order of the number of constraints gives the possibility to design an efficient numerical strategy
to compute the KR norm.

3.2. Proximal splitting technique for the solution of (32)

3.2.1. The SDMM method
The problem (32) is reformulated as the convex non-smooth problem

max
ϕ

f1(ϕ) + f2(Aϕ), (33)

where

f1(ϕ) =
∑

i,j,k∈A

ϕijk (µijk − νijk) , f2(ϕ) = iK (ϕ) , (34)

with K the unit hypercube

K =
{

x ∈ R
P , |xi| ≤ 1, i = 1, . . . P

}

, (35)

iK the indicator function of K

iK(x) =

∣

∣

∣

∣

0 if x ∈ K
+∞ if x /∈ K,

(36)

and A ∈ MP,N (R) a rectangular real matrix with P rows and N columns such that

A =

[

Dx Dy Dz

1

λ
IN

]T

, (37)

where IN is the real identity matrix of size N and Dx, Dy, Dz are the forward finite differences
operators























(Dxϕ)ijk =
ϕi+1,j,k − ϕijk

hx
,

(Dyϕ)
ijk

=
ϕi,j+1,k − ϕijk

hy
,

(Dzϕ)ijk =
ϕi,j,k+1 − ϕijk

hz
.

(38)

Convex optimization problems of type (33) involving at least one non differentiable functions, here
f2(ϕ), can be efficiently solved through proximal splitting techniques, such as forward-backward
algorithms, Douglas-Rashford splitting, or alternating direction method of multipliers (ADMM)
[Combettes and Pesquet, 2011]. From our numerical experiments, among this class of proximal
splitting techniques, the simultaneous-direction method of multipliers (SDMM) was found to
achieve the fastest convergence. The method can be briefly sketched as follows

Proximal splitting strategies rely on a splitting of the problem in terms of the functions f1(ϕ)
and f2(ϕ) and the computation of the proximity operators of these two functions (scaled by
a positive factor γ). Proximity operators can be seen as a generalization of convex projection
operators. They are defined as

proxf (x) = arg min
y
f(y) +

1

2
‖x− y‖2

2, (39)

where the standard Euclidean distance on R
d is denoted by ‖.‖2. For the particular case of the

function f1 and f2, closed-form formulations can be found such that

proxγf1(ϕ) = ϕ− γ(µ+ ν), (40)
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γ > 0, y0
1 = 0, y0

2 = 0, z0
1 = 0, z0

2 = 0;
for n = 0, 1, . . . do

ϕn =
(

IN +ATA
)−1 [

(yn1 − zn1 ) +AT (yn2 − zn2 )
]

;

yn+1
1 = proxγf1 (ϕn + zn1 ) ;

zn+1
1 = zn1 + ϕn − yn+1

1 ;
yn+1
2 = proxγiK (Aϕn + zn2 ) ;

zn+1
2 = zn2 +Aϕn − yn+1

2 ;
end

Algorithm 1: SDMM method for the solution of the problem (33).

∀i = 1, . . . , P,
(

proxγf2(x)
)

i
=
(

proxiK (x)
)

i
=

∣

∣

∣

∣

∣

∣

xi if −1 ≤ xi ≤ 1
1 if xi > 1
−1 if xi < −1.

(41)

Note that the scaling γ only acts on the proximity operator of γf1 as γiK = iK . However, the
choice of γ should be done with care. Small values for γ could slow down the convergence of
the algorithm while too large values can yield numerical instabilities and hamper the convergence.
In practice, we choose γ = 0.9. The closed-form formulations (40) and (41) are inexpensive to
compute with an overall complexity in O(N) operations. However, the SDMM algorithm requires
the solution of a linear system involving the matrix I + ATA, which is the most time-consuming
part of the algorithm.

3.2.2. A Laplacian operator with homogeneous Neumann boundary conditions
Let us inspect in more details what is the form of the matrix ATA. We assume the following

ordering of the discrete vector of R
N using the mapping

i, j, k −→ l = i+ (j − 1) ×Nx + (k − 1) ×Nx ×Ny
A −→ {1, . . . , N} .

(42)

With this ordering, the matrices Dx, Dy and Dz may be defined by

Dx = INz
⊗ INy

⊗ FNx
, Dy = INz

⊗ FNy
⊗ INx

, Dz = FNz
⊗ INy

⊗ INx
, (43)

where the definition of the Kronecker product ⊗ defined in Section 1.5 is used, and, for Ns ∈ N, s ∈
{x, y, z}, the matrix FNs

is defined by

FNs
=

1

hs







−1 1
. . .

. . .

−1 1






∈ MNs−1,Ns

(R), s ∈ {x, y, z}. (44)

The matrix ATA ∈ MN,N (R) is given by

ATA = ∆ +
1

λ2
I, ∆ = DT

xDx +DT
y Dy +DT

z Dz. (45)

The following theorem proves that the matrix ∆ actually corresponds to the second-order finite
differences discretization of the 3D Laplacian operator defined on Ω with homogeneous Neumann
boundary conditions.

Theorem. The theorem is stated for an arbitrary number of dimension d ∈ N. In this context Ω
is a compact subset of R

d such that

Ω =

d
∏

i=1

[ai, bi]. (46)

The integer Ni ∈ N, i = 1, . . . , d, is the number of discretization points in the direction i, and the
discretization step hi is defined by

hi =
bi − ai
Ni

, i = 1, . . . , d. (47)
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Let Di be the matrix such that

Di = INd
⊗ . . .⊗ INi+1

⊗ FNi
⊗ INi−1

⊗ . . .⊗ IN1
. (48)

Then the matrix ∆ =
d
∑

i=1

DT
i Di corresponds to the second-order finite differences discretization of

the Laplacian operator defined on Ω with homogeneous Neumann boundary conditions.

Proof. We start with the case d = 1. In this case the second-order finite differences discretization
of the Laplacian operator with homogeneous Neumann boundary conditions is the matrix of size
N1

LN1
=

1

h2
1















−1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −1















. (49)

In the case d = 1, we also have D1 = FN1
, therefore DT

1 D1 = FTN1
FN1

. A simple matrix product

allows us to verify that FTN1
FN1

= LN1
which proves the theorem for d = 1.

For d > 1, the second-order finite differences discretization of the Laplacian operator with
homogeneous Neumann boundary conditions on the Cartesian mesh A can be expressed as

∆ =

d
∑

i=1

Bi, Bi = INd
⊗ . . .⊗ INi+1

⊗ LNi
⊗ INi−1

⊗ . . .⊗ IN1
. (50)

We have

DT
i Di =

(

INd
⊗ . . .⊗ INi+1

⊗ Fi ⊗ INi−1
⊗ . . .⊗ IN1

)T
INd

⊗. . .⊗INi+1
⊗Fi⊗INi−1

⊗. . .⊗IN1
,(51)

which is equivalent to

DT
i Di =

(

INd
⊗ . . .⊗ INi+1

⊗ FTi ⊗ INi−1
⊗ . . .⊗ IN1

)

INd
⊗. . .⊗INi+1

⊗Fi⊗INi−1
⊗. . .⊗IN1

,(52)

as the transpose operation is distributive for the Kronecker product. This yields

DT
i Di = INd

⊗ . . .⊗ INi+1
⊗ FTi Fi ⊗ INi−1

⊗ . . .⊗ IN1
, (53)

using the mixed-product property of the Kronecker product. However, FTi Fi = LNi
, therefore

Bi = DT
i Di which completes the proof.

�

The linear system which has to be solved at each iteration of the SDMM algorithm thus
corresponds to a second-order finite-differences discretization of the Poisson’s problem

−(∆ + 2I)ϕn = f, (54)

where ∆ is a Laplacian operator with homogeneous Neumann boundary conditions. The best nu-
merical strategies for the solution of such problems appears to rely either on Fast Fourier Transform
algorithm with O(N logN) complexity [Swarztrauber, 1974] or multigrid solvers with O(N) com-
plexity [Brandt, 1977]. In this study, we use the multigrid method implemented in the MUDPACK
library [Adams, 1989].

The combination of the reduction of the number of constraints using the property of the ℓ1
distance and the observation that the matrix appearing in the SDMM strategy actually corresponds
to the discretization of the Poisson’s equation offers the possibility to design an efficient numerical
method to compute the KR norm for large scale problems.
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4. Application to full waveform inversion

4.1. Formulation of the FWI problem

The observed data corresponding to Ns sources and Nr receivers is denoted by

dobs,s(xr, t), t ∈ [0;T ], xr ∈ R
d, r = 1, . . . , Nr, s = 1, . . . , Ns, (55)

where xr denotes the position of the receivers. In this study, we restrict to the acoustic
approximation with constant density, and the predicted data is computed as the solution of

1

v2
P

∂ttp(x, t) − ∆p(x, t) = fs(x, t), (56)

where T is the recording time, vP (x) denotes the pressure wave (P-wave) velocity, p(x, t) is the
pressure wavefield and fs(x, t) an explosive seismic source which we assume to be known in this
study. For a given P-wave velocity vP (x) and a given source fs(x, t), the predicted data is denoted
by

dpred,s[vP ](t) = [p(x1, t), . . . , p(xR, t)] , (57)

where p(x, t) is the solution of (56).

Conventional FWI is formulated as the minimization over the set of pressure wave velocity
functions vP (x) of the L2 distance between dpred[vP ](xr, t) and dobs(xr, t) expressed as

min
vP

fL2(vP ) =
1

2

Ns
∑

s=1

‖dpred,s[vP ]−dobs,s‖
2
2

def
=

1

2

Ns
∑

s=1

Nr
∑

r=1

∫ T

0

|dpred,s(xr, t)−dobs,s(xr, t)|
2dt.(58)

In this study, we investigate the effect of comparing the data using the distance associated with
the KR norm, reformulating the FWI problem as

min
vP

fKR(vP ) =

Ns
∑

s=1

‖dpred,s[vP ] − dobs,s‖KR. (59)

4.2. Gradient computation

The numerical solution to the FWI problem (59) is computed through a local minimization
technique. The quasi-Newton l-BFGS algorithm introduced by [Nocedal, 1980] is used to this
purpose. This requires the ability to compute the gradient of the misfit function fKR(vP ).
The adjoint-state technique provides an efficient strategy to compute this quantity [Lions, 1968,
Chavent, 1974, Plessix, 2006] which we present quickly here. For the sake of simplicity, a single
seismic source is considered in what follows (Ns = 1), the generalization to Ns > 1 sources being
straightforward by summation. The modeling equation (56) and the relation between the predicted
data and the pressure wavefield (57) are rewritten in compact form as

F (vP , p) = 0, dpred[vP ] = Rp, (60)

where

F (vP , p) =
1

v2
P

∂ttp(x, t) − ∆p(x, t) − fs(x, t), (61)

and R is the extraction operator at the receivers location such that

R : p(x, t) −→ [p(x1, t), . . . , p(xR, t)] . (62)

Consider the Lagrangian function

L(vP , p, λ) = g(Rp, dobs) + (F (vP , p), λ)W , (63)

where the L2 scalar product in the wavefield space is denoted by (., .)W and g is a general distance
function measuring the discrepancy between Rp and dobs. For p(vP ) solution of the modeling
equation (56), the Lagrangian function is

L(vP , p(vP ), λ) = g(Rp(vP ), dobs) ≡ fg(vP ), (64)
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where fg(vP ) denotes a general misfit function associated with the distance g. For the sake of
simplicity, the dependence of p with vP is not written explicitly in the sequel. Taking the derivatives
of eq. (64) with respect to vP yields

∂L(vP , p, λ)

∂p

∂p

vP
+

(

∂F (vP , p)

∂vP
, λ

)

W

=
∂g(Rp, dobs)

∂vP
= ∇fg(vP ). (65)

The adjoint state variable λ is chosen to cancel the first term of (65), such that the gradient of the
misfit function f(vP ) can be computed as the scalar product in the wavefield space

∇fg(vP ) =

(

∂F (vP , p)

∂vP
, λ

)

W

, (66)

avoiding the computation of ∂p/∂vP , the Jacobian operator of the pressure wavefield. Computing
this matrix is prohibitively expensive for large-scale applications. The problem of computing
efficiently the gradient is thus brought back to the ability to compute λ. Cancelling the first term
of (65) gives the adjoint equation

∂F (vP , p)
T

∂p
λ = −

∂g(Rp, dobs)

∂p
. (67)

In the context of the wave equation, the operator F (vP , p) is linear with respect to p and self-adjoint.
For this reason, the adjoint wavefield λ is the solution of the acoustic wave equation (56) backward
in time, with a source term depending on the distance function g. Interestingly, this source term
is the only quantity involved in the gradient computation which is impacted by the choice of the
distance function g (as already noticed for instance in [Brossier et al., 2010, Luo and Sava, 2011]).
In the case where the L2 norm is used, this source term is simply

−
∂‖Rp− dobs‖

2
L2

∂p
= −2RT (Rp− dobs). (68)

If the KR norm is used, the source term becomes

−
∂‖Rp− dobs‖KR

∂p
= −

∂

(

max
ϕ∈BLip

1,λ

∫

X

ϕ (Rp− dobs)

)

∂p
. (69)

We denote by ϕ the solution of (17), such that

ϕ = arg max
ϕ∈BLip

1,λ

∫

X

ϕ (Rp− dobs) . (70)

Using the almost-everywhere differentiability of concave functions, we thus have for a.e. p̄

−
∂‖Rp− dobs‖KR

∂p
= −RTϕ. (71)

Using the KR norm to compare the observed and predicted data within a FWI framework thus
only requires to modify the definition of the source term of the adjoint equation from (68) to (71).
In terms of implementation, this means that the maximization problem (17) has to be solved only
once per source and per iteration of the FWI loop. The value of the criterion reached at the
maximum yields the misfit function value, while the function ϕ achieving this maximal value is the
source term of the adjoint equation. As a consequence, introducing the KR norm within an existing
FWI code has only a limited impact on the code structure. With a slight abuse of language, ϕ is
referred to as the KR residuals in the following.

5. Numerical experiments

5.1. Normalization

In the following experiments, the seismic data are considered to be defined on

Ω =

d
∏

s=1

[0, 1]. (72)
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Figure 2. Ricker signal playing the role of observed data (thick line). Example of shifted in time Ricker
(dash line).

The discretization steps hs, s ∈ {x, y, z} are thus defined as

hs =
1

Ns
(73)

This amounts to treat the seismic data as square images with no preferred dimensions to perform
the comparison. In addition, the parameter λ which controls the infinity norm of the solution to
32 is set to 1. This is a pragmatical choice. In turns, it requires to scale appropriately the initial
residuals dpred[vP ] − dcal so that their infinity norm is not too far from 1.

5.2. 1D case study: sensitivity to time shift

We start the numerical investigation with a schematic 1D experiment similar to the one proposed
in [Engquist and Froese, 2014]. A Ricker time signal serves as observed data, and the predicted
data corresponds to this same Ricker signal, shifted in time (Fig. 2). The L2 and KR distances,
as functions of the time shift, are compared. In this particular case, as the energy of the signal
is conserved by the time-shift, the bound constraint on the dual variable ϕ is relaxed by setting
λ to an arbitrary high value. The misfit profiles using the L2 and KR distances are presented in
Figure 3. The misfit based on the L2 distance presents two local minima, typical of cycle skipping,
apart the global minimum. The misfit based on the KR distance presents a single minimum, which
indicates a better robustness to the time shift. However, compared to the 2-Wasserstein distance
used in [Engquist and Froese, 2014, Fig. 3] which yields a convex misfit function, the misfit function
here appears as not differentiable at its minimum and concave. The non-differentiability at the
minimum is reminiscent of the L1 norm, which might not be surprising according to the strong
relation between the KR norm and this norm [Lellmann et al., 2014]. Note that, compared with
the study of [Engquist and Froese, 2014], the KR norm does not require to separate the signal in
its positive and negative part.

A further insight on the KR distance is given in Figure 4 where the L2 residuals and the KR
residuals are compared for the comparison of the two signals presented in the Figure 2. While the L2

residuals only correspond to the difference between these two signals, the KR residuals appears as
an envelope of the L2 residuals, with positive and negative DC components at the beginning and the
end of the signal respectively. In addition, the extrema of the KR residuals present an angular shape
typical of the L1 norm. This particular shape may be related again to the Lipschitz constraint.
The similarities between the KR norm and the L1 norm may question the use of standard quasi-
Newton solvers dedicated to the minimization of smooth functions such as the l-BFGS algorithm.
However the numerical experiments presented in the next section demonstrate that, for 2D and
3D FWI applications, this property does not preclude the use of these solvers to minimize the KR
misfit function, as was already observed previously for the L1 norm [Brossier et al., 2010].



Optimal transport approach for seismic tomography 15

Figure 3. Misfit function depending on the time shift of the Ricker signal, using the L2 distance (black)
and the KR distance (red).

Figure 4. Comparison between the L2 (black) and KR (red) residuals for the two shifted Ricker signals
presented in Figure 2.

5.3. 2D case study: misfit function comparison in a more realistic configuration

In this experiment, a 2D configuration is considered. A fixed-spread surface acquisition is used,
constituted of 168 receivers equally spaced each 100 m, at 50 m depth, from x = 0 km to
x = 16.85 km. A single source is located at x = 8.45 km. Similar to the experiment presented in
[Mulder and Plessix, 2008] to emphasize the local minima of the L2 misfit function, the velocity
model is assumed to vary linearly in depth such that

vP (x, z) = vP,0 + αz. (74)

The P-wave velocity is thus parameterized by the velocity at the origin vP,0 and the velocity vertical
gradient α. The reference velocity model is chosen so that vP,0 = 2000 m s−1 and α = 0.7 s−1. A
reference data set is computed in this model through the solution of the wave equation (56). The
L2 and KR misfit functions are then evaluated on a grid of 41 × 41 points such that

vP,0 ∈ [1750, 2250], α ∈ [0.4, 0.9], (75)

with discretization steps ∆vP,0 = 12.5 m s−1 and ∆α = 0.015 s−1. For each couple of parameters
on this grid, the misfit functions fL2 and fKR are evaluated. The results are presented in Figure
5. Interestingly, the L2 misfit function presents two narrow valleys of attraction, on both sides of
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Figure 5. L2 misfit function (a) and KR misfit function (b) depending on the background velocity vP,0

and the slope α.

the valley where the global minimum is located. Finding this global minimum with local descent
methods thus requires to start in the correct valley. Conversely, even if the KR misfit function
still possesses local minima, the two narrow valleys of attraction on both sides of the central valley
containing the global minima have been lifted up. The valley on the left is not anymore an obstacle
to converge to the central valley. The valley on the right still plays the role of a barrier, however the
height of the barrier has been significantly reduced compared to the L2 case. This is an indication
of a better behavior of the KR misfit function compared to the L2 misfit function.

Contrary to the previous 1D experiment, the misfit function appears as more regular. A better
insight on the shape of the global minimum is provided in Figure 6 where misfit function profiles
along the velocity gradient α and the background velocity vP,0 respectively are presented. These
profiles well illustrate how the secondary valley of attraction are lifted up for the KR distance.
They also show that even if the KR misfit function is smoother, in the vicinity of the global mini-
mum, the misfit function exhibits similarities with the L1 norm and appears as not differentiable
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at the global minimum. In terms of resolution power, it should be noted that the width of the

Figure 6. L2 (black) and KR (red) misfit function depending on the velocity gradient α for a constant
vP,0 = 2000 m.s−1 (a). L2 (black) and KR (red) misfit function depending on vP,0 for a constant velocity
gradient α = 0.7 (b).

global valley of attraction is almost the same for the L2 and KR misfit function. This is different
from what is observed when cross-correlation or deconvolution approaches are used to reduce the
sensitivity to the initial model and cycle skipping: in this case the valley of attraction is strongly
widen. This reflects a resolution loss of the imaging method as, near the solution, models possibly
quite different yield approximately the same misfit. The KR misfit function is thus expected to
keep the same resolution of the L2 misfit function while relaxing the constraint on the choice of
the initial model.

In Figure 7, the L2 and KR residuals are presented for the velocity model corresponding to
vP,0 = 2250 m s−1, α = 0.9 s−1. Cycle skipped diving and direct arrivals can be identified on the
L2 residuals for far offset receivers, between t = 3 s and t = 4 s. The corresponding KR residuals
appear in this 2D case as a smooth version of the L2 residuals, with a re-balancing of the energy
between the mismatched direct and diving waves. Low frequency components seem also to be
introduced in the KR residuals (black and white diffuse energy from left to the right of Figure 7
(c)). In the following experiments, this tendency to smooth and weight approximately equally the
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different mismatched seismic events is confirmed. The smoothing effect is not surprising: actually
it is directly related to the repeated application of an approximate inverse of the Laplacian operator
within the SDMM algorithm (solution of the linear system (54)).

Figure 7. Observed data for the reference model (a). L2 (b) and KR (c) residuals for the model
vP,0 = 2250 m s−1, α = 0.9 s−1.

5.4. Application to 2D and 3D realistic configurations

In the two following experiments, we consider FWI of synthetic offshore data in 2D (Marmousi
model) and 3D (overthrust SEG/EAGE model) configurations. In both cases, the misfit functions
fL2(vP ) and fKR(vP ) are minimized using the quasi-Newton l-BFGS method [Nocedal, 1980] with
the memory parameter l set to 20. The FWI implementation which is used interfaces the l-BFGS
method provided in the SEISCOPE optimization toolbox [Métivier and Brossier, 2016]. A regu-
larization strategy based on a gradient smoothing is used, designed as a Gaussian filter with a
correlation length equal to a fraction of the local wavelength [Operto et al., 2006]. As a surface
acquisition is considered in both experiments, a preconditioning of the gradient simply based on a
linear (in 2D) or quadratic (in 3D) amplification in depth is also applied.

The KR distance is computed with a fixed number of SDMM iterations. This number is se-
lected such that the criterion which is maximized during the solution of the problem (33) only
marginally evolves after this number of iterations. For the 2D Marmousi problem, this number
is set to 50, while it is set to 100 for the 3D overthrust problem. The computational overhead
associated with the use of the KR distance is related to the increase of the gradient computational
time. For the 2D Marmousi case, this overhead is equal to 3.8 s for a gradient computational
time of 20.6 s in the conventional L2 distance FWI formulation. This represents almost an 19%
increase of the computational time. For the 3D overthrust model, the overhead is equal to 180 s
for a gradient computational time of 240 s in the conventional L2 distance FWI formulation. This
represents approximately a 75% increase of the computational time.

5.4.1. 2D Marmousi case study, sensitivity to noise
The P-wave velocity of the Marmousi 2 benchmark model is presented in Figure 8a. A fixed-

spread surface acquisition with 128 sources each 125 m and 168 receivers each 100 m, at 50 m depth
is considered. The synthetic data is generated using a Ricker source function centered on 5 Hz. The
frequency content of the source is low-pass filtered below 3 Hz to mimic realistic seismic data for
which this frequency band is contaminated by noise and therefore unavailable for inversion. Two
initial models are considered: the first contains the main features of the exact model, only with
smoother interfaces. The second is a strongly smoothed version of the exact model with very weak
lateral variation and underestimated growth of the velocity in depth. In the following experiments,
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the misfit functions fL2(vP ) and fKR(vP ) are minimized using the quasi-Newton l-BFGS method
[Nocedal, 1980].

The results obtained using the L2 and KR distances are presented in Figure 8(d-g). The
convergence to a correct estimation of the P-wave velocity model is reached using both the L2 and
KR distances starting from the first initial model. The models presented in Figure 8d and 8e have
been obtained after 100 l-BFGS iterations. A slightly better estimation is obtained using the KR
norm in the low velocity zone at x = 11 km, z = 2.5 km, where a high velocity artifact can be
seen for the L2 estimation. Starting from the second initial model, only the results obtained using
the KR distance are meaningful (Fig.8g). The poor initial approximation of the P-wave velocity is
responsible for cycle skipping and the L2 estimation converges towards a local minimum (Fig.8f).
The estimation obtained with the KR norm is significantly closer from the true model, despite low
velocity artifacts in the shallow part at x = 1.5 km, z = 1 km and in depth at x = 12 km, z = 3.4
km. The results obtained with the KR distance are obtained after 439 l-BFGS iterations. The
minimization of the L2 misfit function with the same strategy fails after 83 iterations. From this
experiment, the KR distance appears as an appropriate tool to mitigate cycle skipping in FWI.

Figure 8. Marmousi model case study. Exact model (a), initial model 1 (b), initial model 2 (c), results
obtained with the L2 distance starting from model 1 (d), from model 2 (e), results obtained with the KR
distance starting from model 1 (f), from model 2 (g).

In practice, low frequency seismic data required to initiate multi-scale FWI cycles are signif-
icantly contaminated by noise. Therefore, it is important to design stable strategies with respect
to the interpretation of noisy data. For this reason, an additional inversion is performed using
the KR distance, starting from the second initial model, with noisy data. A white Gaussian noise
is added to the synthetic data. This white noise is band-pass filtered such that it belongs to the
frequency-band of the data i.e between 3 − 12.5 Hz. The signal over noise ratio (SNR) is taken
equal to 5 (the power of the original data is 5 times higher than the power of the noise in the
frequency), which is representative of the SNR observed on real data for this frequency band. The
result of this experiment is presented in Figure 9. The P-wave velocity estimation is only slightly
degraded by the presence of noise. Not surprisingly, the less illuminated zone on the borders of the
model are more affected. This is understandable as these are the zones where the redundancy of
the information is the weakest. A high frequency oscillation is also introduced in the estimation,
which could be removed in a second stage through smoothing/denoising strategies. Compared to
the first case where no noise is introduced, the convergence is observed here after 502 l-BFGS
iterations, corresponding to a limited increase of 63 iterations. The method thus seems stable with
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respect to the introduction of noise.

Figure 9. Results obtained on the Marmousi model using the KR distance with clean data (a), noisy
data (b).

A better insight on how the method reacts to the addition of noise can be obtained by observing
the L2 and KR residuals in the second initial model, with and without noise (Fig. 10). As already
observed, the KR residuals appear smoother than the L2 residuals, with and without noise. This
smoothing effect may mitigate the impact of noise on the KR results. More interestingly, the
comparison between KR and L2 residuals without noise shows that the KR distance enhance the
weighting of weaker amplitude seismic events, such as those observed after 3 s for the receivers in
the vicinity of the source (located at x = 8 km). This different weighting seems to be preserved
when noise is introduced for the KR distance. Conversely, these weakly energetic events are in the
noise limit for the L2 residuals. The ability to keep these different weighting may explain the weak
impact of the noise on the P-wave velocity estimation, when the KR norm is employed.

5.4.2. 3D application on the SEG/EAGE overthrust model
In this experiment, the shallow left part of the 3D SEG/EAGE overthrust model is considered

(Fig. 11). A 250 m deep water layer is added on top. This model covers a surface of 10 × 10 km2

and is 2.5 km deep. A fixed spread surface acquisition is used, with 8 × 8 = 64 sources (respec-
tively 97×97 = 9409 receivers) regularly located each 1.2 km (respectively 100 m) in both x and y
directions, and at 50 m depth. The synthetic dataset is generated using a Ricker source band-pass
filtered between 3 Hz and 7.5 Hz (Fig. 12). The spatial discretization leads to a representation of
the P-wave velocity model with 201× 201× 51 discrete points with a discretization step h equal to
50 m. The time step is chosen equal to 0.004 s to respect the CFL condition. The recording time
for one seismogram is fixed to 4 s (1000 discrete time steps). Each seismogram thus corresponds
to a data cube of 97 × 97 × 1000 ≃ 107 discrete points.

The purpose of this experiment is to focus on cycle skipping problems in a 3D context and
compare the results obtained with the L2 distance and the KR distance. Cycle skipping is mostly
observed on diving waves, which sample the shallowest part of the model. For this reason, the
initial model is chosen to poorly represent the exact model, especially in its shallow part. Slices
of the exact and initial models at constant y = 5 km and constant depth z = 1.5 km, z = 2 km
are presented in Figure 13. The initial model is an almost constant velocity model around 3000
m.s−1, while the velocity of the exact model reaches 3500 m.s−1 already at z = 1 km depth. For
this reason, the kinematic of the diving waves is not correctly predicted by the initial model. This
can be observed in Figure 14, where the data associated with the source located at x = 4.8 km,
y = 4.8 km, computed in the exact and the initial model are presented. For each model, three data
panels are presented, corresponding to a slice in the data volume at constant x = 5 km, constant
y = 5 km, and constant t = 3 s. The data is dominated by the direct arrival propagating in the
water layer and the strong reflection coming from the interface between the water layer and the see
bottom. The relative complexity of the signal is related to the source signature: the Butterworth
filters applied to the Ricker wavelet yield a complicated wavelet with a large time support (Fig.
12). As the source and the water layer are considered to be known, the initial model correctly
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Figure 10. L2 residuals in the second initial model with clean data (a), noisy data (b). KR residuals in
the second initial model with clean data (c), noisy data (d).

reproduces the direct arrivals. However, a time shift of at least 0.3 s can be observed for the diving
waves recorded by the farthest receivers. Conventional FWI using the L2 distance is thus likely to
produce inaccurate results in this configuration.

In Figure 15, the L2 and KR residuals in the initial model are presented. The three panels
correspond to slices in the residual volume at constant x = 5 km, constant y = 5 km, and constant
t = 3 s., similarly as for the data in Figure 14. As it has been noticed in the previous 2D
experiments, the energy of the seismic events in the KR residuals is balanced so that the amplitude
of each event is comparable, while the L2 residuals are dominated by short-to-intermediate offset
missing events. Interestingly, this balance can be observed in the three panels, which testifies that
the solution of the optimal transport problem is performed in the 3D volume without privileging
one dimension over the two others.

Two distinct workflows for comparing the L2 and the KR distance are followed. The first one
simply consists in performing the inversion giving the freedom to the l-BFGS optimizer to perform
as many iterations as possible. As for the Marmousi experiment, a Gaussian smoothing of the gra-
dient is used, the correlation length being a fraction of the local wavelength [Operto et al., 2006].
Following this workflow, the inversion using the L2 distance terminates after 61 iterations, while
229 iterations are performed with the KR distance. Both terminations are related to a linesearch
failure: the optimizer is not able to minimize further the misfit function. The second workflow is
based on a restarting process. At each stage, 100 l-BFGS iterations are allowed. The initial model
for each stage corresponds to the final model of the previous stage. After the first termination on
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Figure 11. Exact (a) and initial (b) models used for the 3D SEG/EAGE overthrust case study.

Figure 12. Source wavelet profile and spectrum for the 3D overthrust experiment.
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Figure 13. Exact and initial model overthrust model cross-sections. Cross-section at constant y = 5 km
for the exact model (a), initial model (b). Cross-section at constant z = 1.5 km for the exact model (c),
initial model (d). Cross-section at constant z = 2 km for the exact model (e), initial model (f).

a linesearch failure (instead of meeting the maximum 100 iterations criterion), the iterations are
restarted from the previous model, however the regularization is cancelled. The process ends when
the second linesearch failure is detected. Following this second workflow, the inversion using the L2

distance terminates the first stage after 61 iteration, and 517 additional iterations are performed
(with a restart of l-BFGS each 100 iterations), for a total of 578 iterations. The inversion using
the KR distance terminates the first stage after 361 iterations, and 239 additional iterations with
no regularization are performed, for a total of 600 iterations. The reason for this second workflow
is that we observed that the l-BFGS optimizer can be sensitive to the gradient smoothing. This
rather pragmatical modification of the descent direction is not accounted for in the misfit function.
Therefore, errors can be introduced in the estimation of the descent direction using the l-BFGS
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Figure 14. Seismograms in the exact (left column) and initial (right column) models. Seismogram
cross-section at constant y = 5 km in the exact (a) and initial (b) models. Seismogram cross-section at
constant x = 5 km in the exact (a) and initial (b) models. Seismogram cross-section at constant t = 3 s
in the exact (e) and initial (f) models.

algorithm. This workflow also mimics hierarchical strategies which are often used for real data
applications: in this sense it is a more realistic comparison than performing a single optimization
as in workflow 1.

The results obtained following workflow 1 are presented in Figure 16. Obvious signs of cycle
skipping are visible in the estimation obtained with the L2 distance following workflow 1. In the
constant y sections (Fig. 16a), low velocity artifacts can be observed at 1 km depth, in zones where
the velocity update should be positive. Conversely, the KR distance provides a more reliable result
in the shallow part of the model, until z > 1.5 km (Fig. 16b). This difference between the L2 and
KR distance is emphasized by the constant z cross-sections presented in Figure 16c-f. At z = 1.5
km, the cross-section of the KR estimation presents the main structures of the exact model (Fig.
16d). Conversely, the L2 estimation does not exhibit these structures and present low velocity
artifacts caused by cycle skipping (Fig. 16c). At z = 2 km, the KR estimation still provides some
relevant information on the exact model, for instance in the zone 6 km < y < 8 km, 2 km < x < 8
km (Fig. 16f). Conversely, the L2 estimation at this depth is completely cycle skipped exhibiting
low velocity structures at the location where high velocity updates would be expected (Fig. 16g).

An additional illustration of the cycle skipping in the shallow part of the model using the L2

distance is provided in Figure 17. The slices at constant y = 5 km of the estimated models are
compared with the exact one and the zone below z = 1.25 km is shaded. As can be seen, the
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Figure 15. Residuals in the initial model for the L2 distance (first row), for the KR distance (second
row). Cross-section for constant y = 5 km (a,b). Cross-section for constant x = 5 km (c,d). Cross-section
for constant t = 3 s (e,f).

curved reflector at 1 km depth is replaced with a low velocity anomaly in the L2 estimation, while
its structure is arising in the KR estimation.

The results obtained following workflow 2 are presented in Figure 18. The restarting procedure
yields better estimation than the results obtained with a single optimization (workflow 1) both
for the L2 and KR misfit functions. For both distances, the shallow part until z = 1.5 km is
approximately correctly recovered. However, stronger differences can be seen in depth. The slice
at constant z = 2 km reveals that the L2 estimation still suffers from cycle skipping, with a low
velocity anomaly located near x = 4km, y = 4 km. Conversely, the KR estimation at this depth
seems in better accordance with the exact model. This low velocity artifact is replaced with the
correct high-velocity structure.

An analysis of the residuals in the final estimations is provided in Figures 19 and 20. For
workflow 1, as can be seen in constant x and constant y panels (Fig. 19b,e) , the residuals
corresponding to the diving waves (arrival between t = 2 s and t = 2.5 for farthest offset receivers)
are strong in the L2 final model. Comparatively, these residuals are strongly attenuated in the
KR final model (Fig. 19c,f). This observation is confirmed by the residual panel at constant
t = 3 s, where the fringes associated to mismatched event are considerably reduced for receivers
between x = 2km, y = 2 km and x = 8 km, y = 8 km (Fig. 19h,i). For workflow 2, the difference
between the residuals obtained with the L2 distance and the KR distance is less obvious (Fig.
20). For both estimations, these residuals are considerably reduced compared to those obtained
in the final estimations following workflow 1. The uninterpreted part of the data corresponds to
strong reflections coming from the deepest part of the model, which is consistent with the inaccurate
reconstruction observed in depth. However, one can note again lower amplitude residuals associated
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Figure 16. Cross-sections of the L2 and KR estimations following workflow 1. Cross-section at constant
y = 5 km for the L2 estimation (a), KR estimation (b). Cross-section at constant z = 1.5 km for the
L2 estimation (c), KR estimation (d). Cross-section at constant z = 2 km for the L2 estimation(e), KR
estimation (f).

with shallow diving waves using the KR distance, showing that in this case the kinematic of these
waves is better reconstructed despite the cycle skipping observed in the initial model.

As a final remark on this 3D experiment, one shall have in mind that the initial model which
has been chosen is particularly inaccurate: in practice better estimations can be obtained without
too much effort, accounting for instance for the velocity increase in depth. In this sense, this 3D
experiment may not represent a realistic application of FWI, and one could question the relative
inaccuracy of the results obtained using both L2 and KR distance, especially in depth. Better
results with both strategies could of course be obtained starting from a more accurate initial
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Figure 17. Focus on the shallow reconstruction following workflow 1. Constant y = 5 km cross-section
for the exact model (a), L2 estimation (b), KR estimation (c).

model. However, the purpose of this experiment is rather to push standard FWI strategy based on
the L2 distance to its limit, and observe what could be brought by the change to the KR distance.
In this respect, the KR distance based FWI appears as a more robust tool for mitigating cycle
skipping issues, feasible for realistic 3D applications.

6. Conclusion and perspectives

Large scale, smooth perturbations of the velocity are mainly responsible for delaying or accelerat-
ing the waves propagating within the subsurface, resulting in shifted events in the predicted and
observed seismograms. Contrary to the L2 distance, optimal transport distances have the capabil-
ity to detect the shifts of recognizable patterns between images. For this reason, they can provide
an interesting alternative for the reconstruction of velocity model.

In this study, the optimal transport distance which is proposed is based on the Kantorovich-
Rubinstein norm. The computation of this norm is recast as a non-smooth optimization problem,
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Figure 18. Cross-sections of the L2 and KR estimations following workflow 2. Cross-section at constant
y = 5 km for the L2 estimation (a), KR estimation (b). Cross-section at constant z = 1.5 km for the
L2 estimation (c), KR estimation (d). Cross-section at constant z = 2 km for the L2 estimation(e), KR
estimation (f).

which is solved efficiently following a proximal splitting technique, namely the SDMM algorithm.
Each iteration of this algorithm requires the solution of a Poisson’s equation with homogeneous
Neumann boundary conditions, which is efficiently performed using a multigrid algorithm.

The synthetic experiments which are performed confirm the interest of this approach for FWI
application. The KR distance between time-shifted 1D signals presents a single minimum as a
function of the time-shift. In a 2D time-domain framework with a surface acquisition, the misfit
maps using the L2 distance and KR distance are computed, for a velocity model represented as
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Figure 19. L2 residuals in the initial model (left column), in the final model obtained using the L2

(middle column) and KR (right column) distances following workflow 1. Cross-section for constant y = 5
km in the initial model (a), in the final model obtained using the L2 (b) and KR (c) distances following
workflow 1. Cross-section for constant x = 5 km in the initial model (d), in the final model obtained
using the L2 (e) and KR (f) distances following workflow 1. Cross-section for constant t = 3 s in the
initial model (g), in the final model obtained using the L2 (h) and KR (i) distances following workflow 1.

a linear function of the depth. The effect of the introduction of the KR distance shows that the
secondary valleys are lifted up, reducing the probability to converge towards a local minimum
when using a gradient-based method. A 2D time-domain FWI experiment on the Marmousi model
shows a better robustness of the KR distance with respect to the accuracy of the initial model.
Interestingly, the method appears robust to the addition of noise to the data. Finally, the 3D
experiment on the overthrust SEG/EAGE model emphasizes the possibility of using the KR norm
even in this large scale configuration. The method appears again as a reliable tool to mitigate
cycle skipping issues: starting from a poor initial model, FWI based on the KR distance is able
to reconstruct more accurately the part of the model sampled by diving waves, which are heavily
cycle skipped in the initial model.

Future work will include application of this method to 2D and 3D real data in the FWI con-
text, as well as a combination of this method with reflection FWI strategies [Chavent et al., 1994,
Plessix et al., 1999, Xu et al., 2012, Brossier et al., 2015, Zhou et al., 2015]. These methods seek
to improve the FWI reconstruction of the velocity in depth through the alternate reconstruction of
the subsurface reflectivity and the smooth velocity background. This allows to account for trans-
mission kernels between reflectors and the surface acquisition. The use of an optimal transport in
this context may improve further the velocity reconstruction.

Beyond FWI, this work yields interesting perspectives for tomography methods in general. As
soon as a model parameter influencing the kinematic of the propagation is reconstructed from the
matching of shifted measurements, the use of optimal transport distance could be advantageously
considered. The KR distance is flexible enough to offer the possibility to compare non-positive
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Figure 20. L2 residuals in the initial model (left column), in the final model obtained using the L2

(middle column) and KR (right column) distances following workflow 2. Cross-section for constant y = 5
km in the initial model (a), in the final model obtained using the L2 (b) and KR (c) distances following
workflow 2. Cross-section for constant x = 5 km in the initial model (d), in the final model obtained
using the L2 (e) and KR (f) distances following workflow 2. Cross-section for constant t = 3 s in the
initial model (g), in the final model obtained using the L2 (h) and KR (i) distances following workflow 1.

signals in the sense of optimal transport, without requiring the mass conservation between the
signals. The numerical strategy presented in this study also gives the possibility to consider large
scale application: in this study, the data volume for the 3D application reaches O(107) discrete
samples. As the method scales in linear complexity, larger-scale applications should be considered
in the future.
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