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ABSTRACT To reduce recovery cost of repairing multiple failed nodes, many repair schemes have been

proposed for erasure codes based distributed storage systems. However, most of the existing researches

ignore the network topology of storage devices. Motivated by such considerations, we combine delay repair

schemeswith network topology and propose a tree-structuredmodel based on fountain codes with large value

of (n, k, r) to improve the repair efficiency. More precisely, with the consideration of network topology,

a new target named data recovery cost is defined to measure the efficiency of coded fragment download

and source file reconstruction, and then the optimal recovery threshold is derived to minimize the average

data recovery cost of general tree-structured model. Moreover, we analyze and compare the average data

recovery cost of general tree-structure with different systematic parameters. To further improve the data

transmission efficiency, an optimal tree-structured scheme based on improved tabu search algorithm (ITSA-

ORT) is proposed. Compared with other algorithms, the ITSA-ORT scheme uses Prim algorithm to generate

the initial solution and then uses special method to obtain the corresponding neighborhood structure. The

experimental results show that the proposed scheme can find a globally optimal solution and obtain lower

cost of data recovery. In addition, the ITSA-ORT scheme has lower computational complexity than the

optimal tree-structured scheme based on particle swarm optimization algorithm (PSO-ORT) and the optimal

tree-structured scheme based on firefly algorithm (FA-ORT).

INDEX TERMS Centralized communication model, fountain codes, delay repair, network topology,

tree-structured model, optimization algorithms.

I. INTRODUCTION

With the arrival of the big data era, the reliability of stored

data becomes a critical issue in large-scale distributed storage

systems (DSSs). However, since the DSSs are usually viewed

as a collection of a large number of inexpensive commercial

hardware, failure events are the norm rather than exception.

To guarantee the high reliability of stored data, replication

and erasure coding are used to provide fault tolerance [1].

Compared to replication, erasure coding provably achieves

the same degree of fault tolerance while incurring much less

redundancy [2]. Because of the high storage efficiency and

reliability, most current production storage systems deploy

The associate editor coordinating the review of this manuscript and
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erasure coding to maintain stored data, such as Windows

Azure Storage [3] and Facebook’s Hadoop Distributed File

System [4].

A plethora of work on the design of new types of erasure

codes have appeared in recent years. The pioneering

work in [5] proposed regenerating codes that optimally deal

with the repair bandwidth problem. Following the [5], there

has been a growing literature focused on designing new

regenerating codes, such as the minimum storage regenerat-

ing (MSR) codes and the minimum bandwidth regenerating

(MBR) codes [6]. Moreover, there are also several other

erasure codes for DSSs [7]–[10]. The aforementioned refer-

ences mainly concentrate on the single failure problem while

the erasure coding schemes typically use a small value of

(n, k, r), which is called small codes. The DSSs based on
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small codes, which are called small code systems, therefore

distribute encoded data for each object across a relatively

small number of storage nodes. For the small code systems,

it is necessary to use instantaneous repair strategy to achieve a

largeMean Time to Data Loss (MTTDL), which is often used

to characterize the durability of stored data. However, the fre-

quent quick repair will demand a large amount bandwidth

resources, and therefore result in the repair bottleneck. To the

best of our knowledge, the practical DSS is usually composed

of a large number of storage nodes, in which often occurs

multiple nodes failed simultaneously. To solve the repair bot-

tleneck, on the one hand, some scholars proposed to deploy

large codes (i.e. the codes with large value of (n, k, r)) into

large-scale DSS to meet the practical requirements. On the

other hand, delay repair strategy was proposed to mitigate the

repair penalty, thus avoiding some unnecessary instantaneous

repairs, e.g. the repair of transient node failures.

Fountain codes (FCs) are a class of erasure codes with

several advantages, including low encoding/decoding com-

plexity, rate adaptation, near maximum distance separable

(near-MDS) property, and limited feedback [11], [12]. Espe-

cially, for the FCs, the larger the message length is, the better

the performance of FCs is. Therefore, when a large amount of

data need to be stored, the FCs can achieve better performance

than other erasure codes in improving data reliability for

large-scale DSSs. As the first practical realization of FCs,

Luby transform (LT) codes have been frequently used in data

storage of DSS [13]–[18]. In order to improve the practicabil-

ity, we take the LT codes with large value of (n, k, r) as the

coding scheme in DSS, which we call large LT codes. At the

same time, the delay repair strategy is used to slowly repair

data lost from failed nodes.

The idea of delay repair is to decrease the repair rate,

thereby reducing the required bandwidth traffic, but without

significant impact on durability. Unlike the instantaneous

repair, the delay repair triggers the data repair after a threshold

number of storage nodes are failed, rather than triggers at

the first failed node. Thus, it is a modified version of instan-

taneous repair. Delay repair strategies for different DSSs

are investigated in many literatures recently [19]–[23]. They

mainly investigate the optimal repair threshold for minimiz-

ing the communication cost of transmitting data during down-

loading and repairing process. However, the aforementioned

references are all ignores the network topology of storage

nodes, which plays an important role in large-scale DSS.

As a crucial role in DSS, network topology has a sig-

nificant impact on the repair performance of failed nodes.

Several works have been proposed that take network topology

into account while doing repairs. Gerami et al. [24] and

Qin and Li [25] analyzed the optimal repair cost with con-

sideration of network topology in DSS and investigated the

impact of network topology in repairs. In [26], the authors

proposed a general framework to find the optimal cost fea-

sible recovery in a dynamic network topology and investi-

gated the gains for different codes by utilizing the network

aware. In addition, there are some special network topologies

which are used to promote the repair efficiency, such as in

literatures [27]–[31]. Therefore, network topology plays an

important role in DSSs, which inspires us to explore and

exploit the relationships for failure recovery.

In this paper, we consider a large-scale distributed stor-

age system, which achieves the reliability of stored data by

deploying LT codes with a large value of (n, k, r). With the

consideration of centralized repair model, the regenerative

information can be transmitted to all replacement nodes by

a broadcast network. A new metric named data recovery cost

is defined to measure the data download and file reconstruc-

tion efficiency. Different from [20], we combine the delay

repair strategy with storage nodes’ topology and propose

the tree-structured model to calculate the data recovery cost

by using the transmitted data and network link weights of

tree-structured model. In addition, the optimal repair thresh-

old is derived to minimize the average data recovery cost

of general repair tree structure in centralized communication

model. Furthermore, an optimal repair tree structure is con-

structed by using improved approximation algorithm, since

the optimal repair tree problem is NP-hard in a large-scale

distributed storage system. Therefore, the data recovery cost

can be reduced through the proposed scheme. To summarize,

we make the following contributions.

(1) A two-dimensional Markov chain model is established

to investigate the delay repair strategies in centralized com-

munication model. In the centralized model, the leader node

first reconstructs the source file by downloading coded sym-

bols from providers, then disseminates the repaired fragments

to replacement nodes by a broadcast network.

(2) For the general repair tree-structured model, the data

recovery cost is calculated and the optimal repair threshold

is derived to minimize the average data recovery cost per

unit of time. With the Consideration of nodes’ topology,

the repair tree models are constructed among the surviving

nodes (called providers), leader node and replacement nodes,

where the replacement nodes are root nodes of the repair

trees.

(3) We further propose a novel optimal repair tree-

structured scheme, named improved TSA algorithm based

optimal repair tree scheme (ITSA-ORT). Simulation results

show that the proposed scheme has a better performance than

other traditional optimization algorithms.

The remainder of the paper is organized as follows.

In Section II, we present some related work and give some

definitions. Section III analyzes the delay repair strategies

with two-dimensional Markov chain model and then derives

the optimal repair threshold for general repair tree model.

In Section IV, we design the improved TSA algorithm based

optimal repair tree scheme and verify its significant improve-

ments by simulation. Finally, we conclude the paper in

Section V.

II. RELATED WORK

In this section, we provide some of necessary background that

are starting point of this paper, including large LT codes and
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FIGURE 1. The encoding process of LT codes.

several system models. Moreover, some relative definitions

are also provided.

A. LARGE LT CODES

In this subsection, we provide a brief view on large LT codes,

which is used as a redundancy coding scheme. We define the

large LT codes with LT(�(x) , n, k), where k is the num-

ber of input message fragments, and it is regarded as the

block length; n is the number of output coded fragments,

and � (x) =
∑k

d=1 �dx
d is the node degree distribution,

where �d denotes the probability that one coded fragment

has a degree d . The redundancy overhead is defined as

r = n − k . The factor graph describing the large LT encod-

ing process is shown in Fig.1, which consists of the parity

nodes (squares) and variable nodes (circles). Moreover, the

receiver can recover the source file of k fragments through

receiving any (1+ ε) k from n coded fragments, with an

arbitrarily small decoding overhead of ε.

In general, the error-correction performance of LT code is

directly proportional to the block length. Therefore, the LT

codes with a large value of (n, k, r) can achieve high file

maintenance performance in large-scale DSSs. Without any

loss of generality, we assume that each storage device (i.e.,

storage node) stores a coded fragment. It means that the

n coded fragments would be stored into n storage nodes,

respectively. In this paper, we exploit the advantage of large

LT codes to ensure the reliability of stored data during trans-

mission. It must be noted that, in order to guarantee the

encoding/decoding performance of large LT codes, we select

the combined Poisson robust soliton distribution (CPRSD) as

the degree distribution for large LT codes [32].

B. SYSTEM MODEL

1) CENTRALIZED REPAIR MODEL

We construct a centralized communication model by consid-

ering the network topology between storage nodes, where all

data regenerations are done at a leader node [33], [34]. More

precisely, the leader node downloads sufficient fragments

from surviving nodes, named providers, and reconstructs the

source file. Then, the leader node transmits repaired frag-

ments to each of replacement nodes by the way of broadcast-

ing. A simple example is shown in Fig.2.

In Fig.2, the green circular indicates the leader node, the

red circulars denote the replacement nodes, and the black

FIGURE 2. The centralized communication model.

FIGURE 3. Three samples of repair tree.

circulars represent the provider nodes. In addition, the solid

lines indicate the selected network links for data transmission.

In such centralized scenarios, we assume only the source file

of F bits is stored in the storage system. For simplicity, it is

assumed that the dissemination of coded fragments among

storage nodes had been finished in advance. The data are

uniformly allocated, and the amount of stored data for each

storage node are α = F
k
. We further suppose the replace-

ment nodes have been given, and the surviving nodes are

distributed in different geographical locations. It means that

the network distance between surviving nodes is not always

equal. Based on the above assumption, we construct a repair

tree-structured model for data recovery in large LT-coded

DSS by integrating network topology of storage nodes into

repair procedure.

For the repair tree-structured model, the leader node is

viewed as a key node, which is responsible for the regen-

eration and distribution of repaired fragments. In addition,

the providers provide enough available codedmessage for the

leader node and the replacement nodes are regarded as the

root nodes of repair trees. In such case, the repair tree can be

treated as an n-to-1 model, which means that the n indepen-

dent data flows from branches are gathered at a leader and

the leader node can finally transmit the repaired fragments to

replacement nodes [35]. Fig.3 shows the construction of three

samples of repair tree structures in centralized repair model.

It can be seen that multiple repair tree structures can be built

with different replacement nodes.

To sum up, the construction of the repair tree structure

should satisfy the following principles:

(p1) Provider nodes should be close to the key node, i.e.,

leader node;

(p2) Leader node should be close to both the providers and

root node;

(p3) The path from providers to the root node should be as

short as possible.

VOLUME 9, 2021 21845



A. Zhou et al.: Optimal Tree-Structured Repair Scheme of Multiple Failure Nodes for Distributed Storage Systems

2) FAILURE-REPAIR MODEL

In order to analyze the delay repair strategy more com-

prehensively, we define a two-dimensional continuous time

discrete stochastic process
{

na (t) , nf (t)
}

, where na (t) = θ,

θ ∈ {n− m, . . . , n} indicates the number of surviving nodes

at time t; nf (t) = ̺, ̺ ∈ {0, 1, 2, . . . ,m} denotes the

number of failures at time t , and the m denotes the repair

trigger threshold. Moreover, we indicate the system state of

our storage system at time t by the two-dimensional stochas-

tic process
{

na (t) , nf (t)
}

. In our system model, the storage

nodes failure follows a Poisson process. Thus, the lifespan of

a live node in the system can be modeled by an exponentially

distributed random variable with parameter θλwhich denotes

the expected survival rate of a node [22], [23], [36], [47].

Therefore, the probability density function (PDF) of the sur-

viving time (lifespan) Tθ is

fTθ (t) = θλ · e−θλt , i ≥ 0, t ≥ 0 (1)

Similarly, we also can model the nodes repair time T̺ as

an exponentially distributed random variable with parameter

µ. And the PDF of T̺ is

fT̺ (t) = µ · e−µt , µ ≥ 0, t ≥ 0 (2)

We assume the repair process is performed in parallel at

different nodes with the same repair rate µ.

C. SOME RELATIVE DEFINITIONS

Compared with the other ways of data transmission, i.e.,

from providers to replacement node directly, our repair

tree-structured models transmit data through the links of

network topology among the providers, leader node and

replacement node. Therefore, the repair strategies of litera-

tures [20]–[22] may be not suitable for our models. To solve

this problem, some metrics are defined to more accurately

indicate the repair cost of the repair tree model. In the fol-

lowing definitions, the V is represented as the set of storage

nodes, and E is denoted as the set of edges in the repair tree

model.

Definition 1: (The set of storage nodes

V =
{

Vaη|Vnξ |Vf ξ
}

). Assume that there are n storage nodes in

DSS. In addition tom failed nodes, there are (n−m) available

nodes left. The Vaη denotes the surviving nodes, where

η = 0, 1, 2, . . . , n − m. The replacement nodes are denoted

by Vnξ , and the failed nodes are indicated by Vf ξ , where

ξ = 1, 2, . . . ,m. It must be noted that the node Va0 denotes

the leader node in centralized repair model.

Definition 2: (The edge set between storage nodes

E =
{(

Vai,Vaj
)

|i, j = 0, 1, 2, . . . , n− m
}

). The
(

Vai,Vaj
)

represents the edge between the node Vai and Vaj. In addition,
(

Va0,Vnξ
)

denotes the edge between the leader node and

replacement nodes, where ξ = 1, 2, . . . ,m.

Definition 3:Link weights of the edges between storage

nodes: W
(

Vai,Vaj
)

,W
(

Va0,Vnξ
)

). The W
(

Vai,Vaj
)

repre-

sents the link weighted values among the available nodes,

where i, j = 0, 1, 2, . . . , n−m. The W
(

Va0,Vnξ
)

represents

the link weighted values between the leader node and replace-

ment nodes, where ξ = 1, 2, . . . ,m. In the repair model,

we assume the network distance between two storage nodes is

not always equal, which means that the link weighted values

are not always the same.

Definition 4: (Data recovery cost c (m)). It is defined as the

sum of the product between the amount of data transmitted

and the corresponding link weighted values. It means that the

more network links the data passes through, themore network

resources it will occupy, e.g., storage nodes and links. The

storage nodes and network links are important resources,

whichwill directly influence the performance of network data

transmission in DSS. Thus, the data recovery cost c (m) can

accurately reflect the efficiency of the failed node repairs in

repair tree model.

Definition 5: (Average data recovery cost rc(m)). The rc(m)

is defined as the data recovery cost per unit of time. Since

the repair operations can only be initiated when the number

of failed nodes reaches the threshold m, it is regarded as an

independent and distributed system with a repairing process

in every T seconds, where T is a random variable denoting

the time interval between two samples of a complete repair

system.

For clarity, the summary of used notations in this paper is

listed in Table 1.

III. ANALYSIS OF GENERAL REPAIR TREE STRUCTURE IN

CENTRALIZED REPAIR MODEL

Let m denote the number of failed nodes in DSS, and the

number of available nodes can be obtained by n− m. In this

section, we mainly focus on the determination of optimal

repair threshold m∗, with consideration of storage node’s

network topology, to minimize the average data recovery

cost. Then, we derive the expression of MTTDL of the repair

model to represent the durability of stored data.

A. THE COST OF GENERAL REPAIR TREE STRUCTURE

In the centralized repair model, the Ttree is used to

represent the repair trees composed of a replacement

node, a leader node and a certain number of provider

nodes. With the given definitions, the repair tree can be

denoted by Ttree =
{

V ′,E
′
}

, where V
′
= {Vaη,Vnξ

|η= 0, 1, 2, . . . ,n − m, ξ= 1, 2, . . . ,m} indicates the set of

the leader nodes, providers, and replacement nodes. and E ′ =
{

(

Vai,Vaj
)′

,
(

Va0,Vnξ
)′
|i, j = 0, 1, 2, . . . , n− m,

}

denotes

the edge set of a repair tree. Noted that the E ′ should satisfy

the following conditions.

(

Vai,Vaj
)′
=

{

1, if
(

Vai,Vaj
)′
∈ Ttree

0, otherwise
(3)

∑

(Vai,Vaj)
′
∈E ′

(

(

Vai,Vaj
)′
)

= (1+ ε) k (4)

From the Section II, we can know that there are (1+ ε) k

surviving nodes need to be accessed for recovering the source

file in the leader node. It means that there are (1+ ε) k + 2
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TABLE 1. Symbols used in this paper.

nodes in one repair tree. In other words, there are a set of

repair trees in centralized repair model, and the size of the

repair tree set is m ∗C
(1+ε)k
n−m . It must be noted that we mainly

concentrate on the analysis of general repair tree-structured

model in this section, and we will discuss the optimal repair

tree structure in next section.

To recover the lost data, we need to complete the fol-

lowing two steps. Firstly, the source file is reconstructed

at leader node by independently downloading α symbols

from (1+ ε) k provider nodes. Secondly, the leader node

distributes the encoded fragments simultaneously to replace-

ment nodes to finish the recovery of lost fragments. Thus,

FIGURE 4. Two-dimensional markov chain model for a delay repair
strategy.

the data recovery cost during the repair process can be calcu-

lated by multiplying the link weighted values and the amount

of data transmitted. Finally, the data recovery cost c (m) is

expressed as follows.

c (m) = α

[

∑

(Vai,Vaj)
′
∈E ′

W
(

Vai,Vaj
)′

+
∑m

ξ=1
W

(

Va0,Vnξ
)

]

(5)

Moreover, to determine the optimal repair threshold m∗,

we consider minimizing the average data recovery cost rc(m),

which captures the data recovery cost for maintaining n stor-

age nodes per unit of time.

In order to calculate rc(m), we establish a two-dimensional

Markov chain (TDMC) model shown in Fig.4. This model

describes the periodic repair process when storage node

failures occur independently, the lifespan of each node is

exponentially distributed with parameter θλ, and the failed

node recovery process is exponentially distributed with

parameter µ.

From Fig.4, it can be seen that the TDMC model is com-

posed of n − k + 2 states indicating the number of sur-

viving nodes and failed nodes after each node fault. The

last state represents that there will not be sufficient avail-

able data to recover the source file, when the state changes

to (k−1, n− k+ 1). Note that we mainly concentrate on

optimizing the periodic recovery cost of repairing the DSS

at threshold m, where m∈ [1,n − k]. Therefore, the system

state will return to the state (n, 0) directly when the repair

process is initiated at state (n−m,m). It means that the repair

processes of all failed nodes are performed in parallel. For the

TDMCmodel, we define the average data recovery cost rc(m)

according to the following formula:

rc (m) =
c (m)

E[T ]
(6)

where E[T ] denotes the average time between two repair

rounds in the periodic repair processes. For T ,

T = Tn,0 + Tn−1,1+, . . . ,+Tn−m+1,m−1 + Tn−m,m (7)

where Tθ,̺ indicates the time that the system stays at state

{θ, ̺} and Tn−m,m denotes the expected time of finishing

the repairs of m failed nodes. Moreover, the random time

Tθ,̺ is exponentially independent and identically distributed

with parameter θλ, whereas Tn−m,m is exponentially dis-

tributed with parameter µ. More precisely, E
[

Tθ,̺

]

= 1
θλ

and E
[

Tn−m,m

]

= 1
µ
. Thus, E[T ] equals the sum expectation
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of independent exponential random variables.

E [T ] =
∑n

θ=n−m+1

1

θλ
+

1

µ
=
Hn,n−m

λ
+

1

µ
(8)

where Hn,n−m =
∑n

θ=n−m+1
1
θ
. Combining (6) and (8),

we can get the average data recovery cost rc(m) as follows

(9), shown at the bottom of the page. It must be noted that

the (9) is obtained by constructing the general repair trees

in centralized model. In next section, we will investigate the

corresponding data recovery cost of another special model,

i.e., optimal repair tree model.

B. THE OPTIMAL REPAIR THRESHOLD m∗ OF GENERAL

REPAIR TREE STRUCTURE

In this subsection, we derive the optimal repair threshold m∗

through minimizing the rc (m). The threshold is obtained by

Proposition 1.

Proposition 1. For the general repair tree in centralized

repair model, the optimal repair threshold m∗ is obtained

as follows (10), as shown at the bottom of the page, where

ρ = λ
µ
.

Proof. The proof process is provided in Appendix A.

From the Proposition 1, the upper bound of ρ is derived for

optimal repair threshold, in which the delay repair strategy at

m = n − k is more efficient than the instantaneous repair

strategy at m = 1. The range of ρ has several implica-

tions. On the one hand, if ρ is low, it indicates that the

DSSs have higher fault tolerance performance and allow to

wait for multiple nodes to fail before triggering the repair

process. On the other hand, if ρ is high, it denotes that

the DSSs cannot tolerate multiple nodes failure at a given

time. Therefore, the instantaneous repair strategy is more

suitable in such cases. In addition, we also derive a lemma

to prove that there is always a positive value of ρ, which

makes the delay repair strategy better than the eager repair

strategy.

Lemma 1. For arbitrary coding parameters used for regen-

eration, there is always some ρ > 0 that the delay repair

strategy (m∗ = n − k) is efficient than instantaneous repair

strategy (m = 1).

Proof. The proof process is provided in Appendix B.

C. THE MTTDL OF PROPOSED REPAIR MODEL

In this subsection, we use the MTTDL of the repair rounds

in TDMC model to analyze the data reliability of DSS. The

MTTDL is defined as the time sum of two state transitions,

i.e., the time from state (n, 0) to state (n−m,m), and the time

from state (n−m,m) to state (n−m−1,m+1). In other words,

we consider that the data are lost when the DSS transitions

from state (n − m,m) to state (n − m − 1,m + 1) instead of

state (n, 0). In the Fig.4, the data are lost if the state transitions

from (k, n − k) to (k − 1, n − k + 1) when m ∈ [1, n − k].

In such case, there are not sufficient available data to recover

the source file. The probability from state (k, n − k) to

(k − 1, n− k + 1) is denoted by p and p = kλ
kλ+µ

. Therefore,

the time of transitioning to the state (k−1, n−k+1) is given

as follows.

Proposition 2. For a delay repair strategy triggering repair

process at threshold m (m ∈ [1, n− k]), the MTTDL is given

as follows.

MTTDL

=
∑∞

x=0

(

(x + 1)Hn,n−m

λ
+
x

µ
+
Hn−m,k−1

λ

)

(1− p)x p

(11)

Proof. The proof process is provided in Appendix C.

D. THE SIMULATION RESULTS OF THE GENERAL REPAIR

TREE STRUCTURE

We evaluate the threshold-based data recovery cost for the

general repair tree structure in various system parameters

and code parameters. In order to trade-off the relationship

between successful decoding rate and decoding overhead,

it is critical to select an appropriate value of ε [32]. For the

LT code with (n = 3000, k = 1500, r = 1500), we set

ε = 0.2, which can guarantee high successful decoding

rate. Fig.5 shows how average data recovery cost rc (m) is

affected by system parameter ρ. It can be seen that for all

repair threshold m, with the decreasing of system parameter

ρ, rc (m) decreases. When the repair threshold m exceeds a

certain value (m∗), the rc (m) decreases to a minimum value.

We can see that when the ρ is high (e.g., ρ = 0.1), the rc (m)

cannot decrease to the minimum value at optimal threshold

rc (m) =
c (m)

E [T ]

=

λµα

[

∑

(Vai,Vaj)
′
∈E ′W

(

Vai,Vaj
)

′+
m
∑

ξ=1

W
(

Va0,Vnξ
)

]

µHn,n−m + λ
(9)

m∗ =















r = n− k, ρ ≤

[

∑

(Vai,Vaj)
′
∈E ′W

(

Vai,Vaj
)′
+W (Va0,Vn1)

]

· Hn−1,k
∑r

ξ=2W
(

Va0,Vnξ
) −

1

n

1, others

(10)
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FIGURE 5. Impact of various ρ on rc (m) for general repair tree structure.

FIGURE 6. Impact of various (n, k) on rc (m) for general repair tree model.

m∗ = n − k = 1500. It means that the delay repair strategy

is inefficient in such cases. In addition, when the ρ is low

(e.g., ρ = 0.001), the rc (m) can decrease to the minimum

value at optimal threshold m∗ = n − k = 1500. Thus, there

is always an appropriate regime of ρ, which make the delay

repair scheme more efficient.

Fig.6 shows the effect of various values of (n, k) on

average data recovery cost rc (m), and we set the system

parameters ρ = 0.001 and ε = 0.2. From Fig.6, we can

see that with the increasing of m, the drop trend of rc (m)

with different values of (n, k) tends to be consistent, which

means that they converge to a same optimal repair threshold

m∗ = n− k = 1500.

Fig.7 shows the relationship between the average data

recovery cost rc (m) and the repair threshold m at differ-

ent decoding overhead ε. We set the system parameters

ρ = 0.001 and (n = 3000, k = 1500). From the Fig.7, it can

be seen that the rc (m) of ε = 0.8 is highest while it is lowest

when ε = 0.2.

Fig.8 shows the relationship between MTTDL and repair

threshold at different system parameter ρ, and we set

(n = 3000, k = 1500). For all repair threshold m, with

FIGURE 7. Effect of ε on rc (m) for (n = 3000, k = 1500) LT codes.

FIGURE 8. Effect of ρ on MTTDL.

the increasing of ρ, the MTTDL decreases. As expected,

the MTTDL is a decreasing function of repair threshold m

due to the corresponding increase in departure rate from state

(n − m,m) with the value of m. In the high ρ regime,

the MTTDL becomes impractical due to the node fails fre-

quently before repair process can be finished.

IV. THE OPTIMAL REPAIR TREE IN CENTRALIZED

REPAIR MODEL

We have discussed the delay repair strategy of centralized

repair model in Section III and derived the optimal repair

threshold of general repair tree structure to minimize the

average data recovery cost. However, the optimal utilization

of the network resource in large-scale DSS is expected while

the general repair tree model cannot meet the requirement.

Therefore, it is necessary to investigate the optimal repair

tree-structured model for fully utilizing the node resources in

large-scale DSS. As a combinatorial optimization problem,

the optimal tree problem has been verified to be a NP prob-

lem [37]. To solve discrete combinatorial optimization prob-

lems, many algorithms have been proposed, such as exact

algorithms, approximate algorithms, heuristic algorithms,
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metaheuristic algorithms and so on [38]–[40]. In this section,

we use an improved tabu search algorithm to construct the

optimal repair tree in the centralized model. Next, we first

introduce the tabu search algorithm, and then describe our

optimal repair tree construction scheme in detail.

A. TABU SEARCH ALGORITHM

Tabu search algorithm (TSA) is a very efficient method in

the field of combinatorial optimization [41]. As a local-search

metaheuristic algorithm, tabu search drives solution space to

avoid local optima and cycling which as the weakness of

heuristic approaches within a set of neighborhoods of solu-

tions. Briefly, the TSA approach explores the search space

by moving from a feasible solution to the best solution in

a set of neighborhoods with each iteration. Therefore, the

primary part of TSA is to generate an initial solution as the

current solution by a random approach, then searches several

solutions in the neighboring set of the current solution and

finds the best solution. To escape from the local optima,

the tabu list is introduced to record the historical information

of the local optima. Specially, the length of tabu list plays

an important role, which will affect the performance of TSA.

Thus, the initial solution and the length of tabu list greatly

affect the efficiency of the TSA. Due to the excellent per-

formance, TSA has been widely used to solve combinatorial

optimization problems [42]–[45].

The simple implementation steps of TSA to solve the

combinatorial optimization problem are as follows.

Step 1: Generate an initial solution s by a random method

and initialize the tabu list.

Step 2: The initial solution is viewed as the current solu-

tion scur and its neighboring set N (scur ) is constructed by a

special principle. Then, the neighborhood of current solution

is searched and choose the candidate solutions {scan} which

meets the tabu requirements. If the multiple criteria are met,

then turn to the step 4.

Step 3: Select the best solution scan_best among the candi-

date solutions {scan}, and let scur = scan_best , update the tabu

list and turn to the step 2.

Step 4:Output the global optimal solution sopt and stop the

operation.

B. MODELING OF OPTIMAL REPAIR TREE PROBLEM

Before introducing our scheme, it is necessary to model the

optimal repair tree problem in large-scale DSS. Without loss

of generality, an edge-weighted node graph G(V ,E,W ) is

used to denote the storage node network scenario, where V

indicates the set of storage nodes, E denotes the edge set

of nodes, and W is the set of edge weights. For simplicity,

we assume that the amount of data transmitted between nodes

is equal. According to previous description, the Lemma 2 is

obtained as follows.

Lemma 2. In the set of general repair tree structure Ttree,

the optimal repair tree structure T
opt
tree is defined as the tree

which minimizes the sum of edge weights.

Proof: From the formula (5), we can see that the

data recovery cost c (m) achieves the minimum when the
[

∑

(Vai,Vaj)
′
∈E ′W

(

Vai,Vaj
)′
+

∑m
ξ=1W

(

Va0,Vnξ
)′
]

equals

the minimum value, while the amount of data transmitted α

is a constant. Since the replacement nodes have been given

in advance, the c (m) can achieve the minimum when the
∑

(Vai,Vaj)
′
∈E ′W

(

Vai,Vaj
)′
is minimum. Obviously, it can be

proved that the repair tree with the minimum sum of edge

weights is the optimal repair tree.

According to Lemma 2, the optimal repair tree problem can

be defined as follows.

MinimizeWsum =
∑

(Vai,Vaj)
′
∈E ′

W
(

Vai,Vaj
)′

(12)

Subject to
∑

(Vai,Vaj)
′
∈E ′

(

Vai,Vaj
)′
= (1+ ε) k, (13)

where ε > 0, i, j = 0, 1, 2, . . . , n− m.

Under such scenario, there are C
(1+ε)k
n−m selections of

provider nodes with different data transmission costs for

constructing a repair tree. Therefore, it is very meaningful to

find an appropriate method to construct optimal repair tree.

C. THE IMPROVED TSA-BASED OPTIMAL REPAIR TREE

(ITSA-ORT)

As two classical algorithms, Prim algorithm and Kruskal

algorithm are always used to tackle the traditional minimum

spanning tree problems [46]. However, they cannot escape

from the local optimal trap. In most practical applications,

it is usually necessary to find a group of optimal or subop-

timal solutions as the candidate solutions for evaluation and

selection. Therefore, for our optimal repair tree problem in

large-scale DSSs, we adopt an improved tabu search algo-

rithm (ITSA) to deal with this problem.

From the previous subsection a, we can know that the tsa

would have better performance and faster convergence speed

when there is a good initial solution and neighborhood struc-

ture. Inspired by tsa and prim, we propose an improved tsa by

combining the prim algorithm in this paper. more precisely,

the initial solution of tsa is generated by prim algorithm.

Then the corresponding neighborhood structure is obtained

by special method. The detailed description is provided as

follows.

1) THE DESIGN OF NEIGHBORHOOD STRUCTURE OF

ITSA-ORT SCHEME

Let A denotes the search space. The neighborhood structure

N : A 7−→ 2A is a function that provides a neighboring

set for each solution s ∈ A. The neighborhood structure we

design for optimal repair tree problem is very simple and

intuitive. The repair tree can be denoted by T tree, and the cor-

responding neighborhood structure is indicated byN (T tree).

The generation process of N (T tree) can be described as

follows: Firstly, a new repair tree T tree_1 can be generated

by removing a tree edge e and adding another edge from the

edge set E
(

T tree_1

)

\ {e}, where the E
(

T tree_1

)

is defined as
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follows:

E
(

Ttree1
)

= e =
(

Vai,Vaj
)′

∈ E|Vai ∈ V
(

Ttree1
)

XORVaj ∈ V
(

Ttree1
)

(14)

where E indicates the edge set of a graph G. It can be seen

intuitively from (14) that the edge E
(

T tree_1

)

consists of

all edges which do not belong to the repair tree T tree_1 and

have exactly one end-point in T tree 1. We are going to use

the proposed neighborhood structure in the improved tsa for

performing moves.

2) THE IMPLEMENTATION OF ITSA-ORT SCHEME

To obtain the best solution by implementing the ITSA-ORT

scheme, we need two tabu lists, denoted by RemList and

AddList, respectively. They store the edges which were

recently removed and added, respectively. Each deletion and

addition of an edge in the current repair tree indicate a round,

i.e., a move operation. The RemList denotes the list that

keep storage of the removed edges, and the AddList indicates

the list that store the added edges. Moreover, as a critical

parameter, the tenure of tabu list is a period for which it

forbids edges in the list from removing or adding. In our

scheme, an adaptive method is adopted to adjust the tabu

tenure. We denote the minimum tabu list tenure by tlmin,

indicate the maximum tabu list tenure by tlmax and denote an

increment value by 1tlen. In detail, we set an initial value of

tabu tenure tl ten to tlmin at the beginning of each reboot phase

(i.e., a new initial solution is generated while the current

solution is removed). If the reboot-optimal solution T
ropt
tree was

not modified for a maximum number of itermax , the tabu list

tenure tl ten is increased by 1tlen for diversifying the search

process. Whenever the T
ropt
tree is modified, the tabu list tenure

tl ten is set back to tlmin for strengthening the search process

around T
ropt
tree . In addition, if tl ten +1tlen > tlmax , the reboot

is performed. This situation can be regarded as an escaping

mechanism. The implementation of our ITSA-ORT scheme

is shown in Algorithm 1.

From the Algorithm 1, we can get the optimal repair tree

T
opt
tree and its sum of edge weights. To analyze the data trans-

mission cost of T
opt
tree, we substitute the formula (9) from the

result of Algorithm 1. Thus, the average data recovery cost of

T
opt
tree can be calculated as follows.

rc_opt (m) =
λµα

[

Min(Wsum)+
∑m

ξ=1W
(

Va0,Vnξ
)

]

µHn,n−m + λ

(15)

Min (Wsum) =
∑

(Vai,Vaj)
′
∈E
′
(T

opt
tree)

W
(

Vai,Vaj
)′

(16)

where E
′
(T

opt
tree) denotes the edge set of T

opt
tree.

Therefore, the optimal repair threshold of T
opt
tree can be also

obtained as follows.

m∗opt =

{

r = n− k, ρ ≤
[Min(Wsum)+W(Va0,Vn1)]·Hn−1,k

∑r
ξ=2 W(Va0,Vnξ )

− 1
n

1, others

(17)

Algorithm 1: The Optimal Repair Tree Based on

Improved Tabu Search Algorithm (ITSA-ORT)

Input : a weighted complete graph G(V ,E,W )

Output: T
opt
tree&

Min(Wsum)
∑

(Vai,Vaj)
′
∈E
′
(T

opt
tree)

W
(

Vai,Vaj
)′

1: Initialize Parameters

(tlmin, tlmax , 1tlen, tl ten, iter= 0,itermax)

2: Initialize Tabulists (RemList,AddList, tl ten)

3: T curtree ← Generate initial solution by Prim algorithm

4: T
opt
tree ← T curtree , T

ropt
tree ← T curtree

5: While termination conditions not met do

6: T newtree ← Neighborhood

(N
(

T curtree

)

,Remlist,Addlist)

7: If T newtree 6= NULL then

8: Update Tabulists (T curtree ,T
new
tree ,Remlist,Addlist)

9: T curtree ← T newtree

10: Update (T curtree ,T
ropt
tree ,T

opt
tree, iter)

11: If iter > itermax then

12: If tl ten +1tlen > tlmax then

13: Perform Restart ()

14: else

15: tl ten← tl ten +1tlen

16: end if

17: end if

18: else

19: Perform Restart ()

20: end if

21: end while

22: The final solution is the best solution T
opt
tree found so far

Compared with the formula (9), it can be seen intuitively

from (15) that the average data recovery cost of optimal repair

tree T
opt
tree is lower than that of the general tree Ttree. The reason

is that the T
opt
tree provides the lowest value of links’ weight sum.

In addition, comparing formula (10) and (17), we can find

that although the T
opt
tree and the Ttree have the same optimal

repair threshold, the corresponding upper bounds of ρ are

different. It means that the T
opt
tree has a lower upper bound of

ρ.

D. THE COMPUTATIONAL COMPLEXITY ANALYSIS OF

ITSA-ORT

In order to fully understand the performance of our scheme,

we now analyze its time complexity and space complexity

for ITSA-ORT algorithm. For the time complexity, since the

initial solution is generated by Prim algorithm, the genera-

tion of initial solution can be done in O
(

|V |2
)

, where |V |

denotes the number of nodes in graph G. Then, constructing

neighborhood for the current solution runs in O (|V |), and

checking whether a solution of the neighborhood is feasible

or not can be done in O
(

|V |2
)

. Sorting all solutions of the

neighborhood in non-descending order of the average data

recovery cost runs inO (|V | log |V |). With the tabu list tenure

VOLUME 9, 2021 21851



A. Zhou et al.: Optimal Tree-Structured Repair Scheme of Multiple Failure Nodes for Distributed Storage Systems

TABLE 2. Comparison of different optimal repair tree generation schemes.

tl ten, the selection of a best current solution can be done

in O (tl ten). Therefore, each iteration of ITSA-ORT algo-

rithm can be done in O
(

|V |2
)

+ O (|V |)+ O (|V | log |V |)+

O
(

|V |2
)

+ O (tl ten), which can be simplified as O
(

|V |2
)

.

To sum up, the time complexity of the proposed scheme is

O
(

itermax . |V |
2
)

, where itermax denotes themaximum size of

iterations.

The space complexity of initial solution’s generation and

parameters’ initialization is O (|V |). Then, the space com-

plexity of constructing the neighborhood set for current solu-

tion is O (|V |). After that, the space complexity of updat-

ing the neighborhood set and current solution is O (2 |V |).

Finally, the space complexity for the storage of best solu-

tion (i.e., the optimal average data recovery cost) is O (|V |).

Therefore, the final space complexity of ITSA-ORT scheme

is O (2 |V |).

E. THE SIMULATION RESULTS ANALYSIS AND

COMPARISON

In this subsection, we compare the proposed scheme of

optimal repair tree with several other optimization algo-

rithms. The parameter settings are as follows, |V | =

3000, ρ = 0.001, and ε = {0.2, 0.4, 0.6, 0.8}. In addi-

FIGURE 9. The sample of optimal repair tree generated by ITSA scheme.

tion, some initial parameters of improved TSA, such as

(tlmin, tlmax , 1tlen, tl ten, iter = 0, itermax), are set as recom-

mended in [40]. The storage nodes are deployed in the range

of 5000 ∗ 5000.

Fig.9 shows the sample of optimal repair tree which is

generated by improved TSA scheme, where the number of k

is 200. From the Fig.9, it can be seen that the network distance

21852 VOLUME 9, 2021



A. Zhou et al.: Optimal Tree-Structured Repair Scheme of Multiple Failure Nodes for Distributed Storage Systems

FIGURE 10. The summed weights comparison of optimal repair tree for different algorithms. (a)ε = 0.2;
(b)ε = 0.4; (c)ε = 0.6; (d) ε = 0.8.

FIGURE 11. The summed weights comparison between general repair trees and ITSA-ORT scheme with different
parameters, i.e., k =

{

500, 1000, 1500, 1800
}

and ε =

{

0.2, 0.4, 0.6, 0.8
}

.
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FIGURE 12. The average data recovery cost of different optimal repair tree generation schemes. (a)ε = 0.2;
(b)ε = 0.4; (c)ε = 0.6; (d) ε = 0.8.

between surviving nodes is not always equal. In our scheme,

the network distance between nodes is regarded as the edge

weight of corresponding nodes.

Table 2 provides computational results of the weights sum

of optimal repair trees for different optimization algorithms.

From Table 2, the columns 4-8 give the optimal weights

sum of different algorithms. It can be seen that the proposed

ITSA-ORT represents the best performance in different k.

In addition, the particle swarm optimization algorithm (PSO)

and firefly algorithm (FA) have better values than traditional

minimum spanning tree algorithms, i.e., Kruskal and Prim

algorithms. In addition, it can be observed that the weights

sum of optimal repair trees is proportional to the decoding

overhead ε.

Fig.10 shows a more intuitive comparison of different

optimal repair tree generation algorithms. Fig.10 (a), (b),

(c) and (d) represent the weights sum of several opti-

mal algorithms with different k for decoding overhead

ε = 0.2, 0.4, 0.6 and 0.8, respectively. From the Table 2 and

Fig.10, we can observe that with the increasing of ε and

k , the weights sum of the optimal repair trees of different

algorithms are increases.

Fig.11 shows the results of weights sum for several repair

trees with different parameters. Fig.11 (a), (b), (c) and

(d) indicate the weights sum of different repair trees with

different values of ε for k = 500, 1000, 1500, and 1800,

respectively. As a matter of fact, for all repair tree models,

the sum of weights is increased along with the increasing

value of decoding overhead ε, and the same result also

can be obtained with the increasing of k. As shown in

Fig.11, the ITSA-ORT scheme outperforms general repair

tree schemes for the values of k and ε in terms of saving cost

of data transmitted.

Fig.12 shows the efficiency of various optimization

algorithms on average data recovery cost rc (m), and

we set the system parameters ρ = 0.001, ε =

{0.2, 0.4, 0.6, 0.8} , and (n = 3000, k = 1500). It can

be seen from Fig.12, taking m from 1000 to 1100 as an

example, as the decoding overhead ε increases, the average

data recovery cost increases at any number of failure nodes.

Moreover, compared with other optimal schemes, the pro-

posed ITSA-ORT scheme has best performance in terms of

rc (m).

The comparison of computational complexity for different

algorithms is shown in Table 3, where |E| denotes the edge

number in graph G and M is the population size. It can be

seen that the ITSA-ORT scheme is worse than the Prim-ORT

scheme and Kruskal-ORT scheme while better than the

PSO-ORT scheme and FA-ORT scheme in terms of com-

putational complexity. Although the Prim-ORT scheme and
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TABLE 3. The comparison of computational complexity for different
optimal algorithms.

Kruskal-ORT scheme have lower computational complexity,

they generate only one optimal repair tree, which is very easy

to get trapped in the local solution. Therefore, they cannot

find a globally optimal solution for the large scale DSSs.

On the contrary, the PSO-ORT scheme, FA-ORT scheme and

the ITSA-ORT scheme can all find a globally optimal solu-

tion by comparing multiple optimal repair trees. In addition,

compared with the PSO-ORT scheme and FA-ORT scheme,

the ITSA-ORT scheme has lower computational complex-

ity and better performance in minimizing the cost of data

recovery.

V. CONCLUSION

In this work, we considered a problem of utilizing nodes’

topology to analyze the delay repair strategies in centralized

model, where the data content is stored by LT codes with a

large value of (n, k, r). In particular, under the consideration

of storage nodes’ topology, repair tree models are established

to calculate the data recovery cost of repairing failed nodes.

Then, we constructed a two-dimensionalMarkov chainmodel

to investigate threshold-based repair strategies and derived

the optimal repair thresholds for minimizing the average data

recovery cost of general repair trees. The numerical results

show that optimal thresholds are dependent on edge weights

of nodes, code parameters and node failure-to-repair rate ratio

(i.e., ρ). Only under low ρ value, the delay repair is optimal

in terms of average data recovery cost. Inspired by Prim

algorithm and TSA algorithm, we proposed an improved TSA

to tackle the optimal repair tree problem (i.e., ITSA-ORT

scheme), and analyzed the average data recovery cost and

optimal repair thresholds for the proposed optimal repair

tree scheme. Simulation results proved that the proposed

ITSA-ORT scheme was promising to lower the data trans-

mission cost than common repair tree and other optimal tree

algorithms. In the meantime, the ITSA-ORT scheme had

lower computational complexity than the PSO-ORT scheme

and the FA-ORT scheme.

APPENDIX A

Proof: In order to determine m∗, we compare rc (r) with

average data recovery cost at all other possible storage nodes’

repair states r − δ, where 1 ≤ δ ≤ r − 1, and r = n − k .

Firstly, we check if

rc (r) ≤ rc (r − δ) ,∀δ ∈ [1, r − 1] (18)

Next, substituting rc (m) from (9) to (18) yields,

λµα
[

∑

(Vai,Vaj)
′
∈E ′W

(

Vai,Vaj
)′
+

∑r
ξ=1W

(

Va0,Vnξ
)

]

µHn,n−r + λ

≤
λµα

[

∑

(Vai,Vaj)
′
∈E ′W

(

Vai,Vaj
)′
+

∑r−δ
ξ=1W

(

Va0,Vnξ
)

]

µHn,n−r+δ + λ

(19)

Let ρ = λ
µ
, and then we can obtain formula (20) (21), as

shown at the bottom of the next page.

The equality of formula (21) is achieved when

m = r = n − k . Now we examine the monotonicity

of the right side in (21) as a function of δ. Similar to the

Lemma 3 of literature [20], we inspect the monotonicity

of function f (n− r, δ) =
Hn−r+δ,n−r
r

∑

ξ=r−δ+1

W(Va0,Vnξ )
, which has

the same monotonicity as the right side in (21). The result

shows that f (n− r, δ) is monotonically decreasing with δ.

Thus, the ρ is also monotonically decreasing with δ. Finally,

we substitute the maximum δ (i.e., δ = r−1) to formula (21)

yields a bound as follows.

ρ ≤
[

∑

(Vai,Vaj)
′
∈E ′W

(

Vai,Vaj
)′
+W (Va0,Vn1)

]

· Hn−1,k
∑r

ξ=2W
(

Va0,Vnξ
) −

1

n

(22)

Next, we need to calculate the range of ρ which make the

average data recovery cost rc (m) minimize at m = 1.

We consider rc (1) ≤ rc (1+ δ), where 1 ≤ δ ≤ r − 1. By

substituting from (9), it follows that

λµα
[

∑

(Vai,Vaj)
′
∈E
′ W

(

Vai,Vaj
)′
+W (Va0,Vn1)

]

µHn,n−1 + λ

≤
λµα

[

∑

(Vai,Vaj)
′
∈E
′ W

(

Vai,Vaj
)′
+

∑1+δ
ξ=1W

(

Va0,Vnξ
)

]

µHn,n−δ−1+λ

(23)

Let ρ = λ
µ
, and then we can obtain formula (24) (25), as

shown at the bottom of the next page. Similar to Lemma 4 of

literature [20], we also can obtain a result that the function

g (n− 1, δ) =
Hn−1,k

r
∑

ξ=2

W(Va0,Vnξ )
is monotonically increasing

with δ. It means that the right side of (25) has the same

monotonicity as the function g. Thus, the lower bound of ρ

for inequality rc (1) ≤ rc (1+ δ) can be obtained. Finally,

the proof is complete.

APPENDIX B

Proof: In order to prove Lemma 1, it needs to show that the

upper bound of ρ for whichm∗ = n−k is strictly positive for

any coding parameters. We examine this fact by analyzing

the boundary of

[

∑

(Vai,Vaj)
′
∈E
′ W(Vai,Vaj)

′
+W(Va0,Vn1)

]

·Hn−1,k
∑r

ξ=2 W(Va0,Vnξ )
.
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For our purposes, we have assumed that the replace-

ment nodes are given, which means that the link weights

W
(

Va0,Vnξ
)

from leader node to replacements have been

known for us. Therefore, without loss of generality, we sup-

pose that the link weights W
(

Va0,Vnξ
)

are same and

denote by Wl . Then we can obtain the expression of
[

∑

(Vai,Vaj)
′
∈E ′

W(Vai,Vaj)
′
+Wl

]

·Hn−1,k

(n−k−1)·Wl
.

Let f (x, δ) =
Hx+δ,x

δ
for x > 0, δ > 0, then we can get that

Hx+δ,x

δ
=

∑x+δ

i=1

1

i
−

∑x

i=1
i

=

1
x+1
+ 1

x+2
+ . . .+ 1

x+δ

δ
(26)

There would be a lower bound and an upper bound for (26)

as follows.

The lower bound:

>

1
x+δ
+ 1

x+δ
+ . . .+ 1

x+δ

δ
=

1
x+δ
· δ

δ
=

1

x + δ
(27)

The upper bound:

<

1
x
+ 1

x
+ . . .+ 1

x

δ
=

1
x
· δ

δ
=

1

x
(28)

Then,

1

x + δ
<
Hx+δ,x

δ
<

1

x
(29)

Therefore, we can obtain formula (30) by substituting (29)

from

[

∑

(Vai,Vaj)
′
∈E
′ W(Vai,Vaj)

′
+Wl

]

·Hn−1,k

(n−k−1)·Wl
as follows.

[

∑

(Vai,Vaj)
′
∈E
′ W

(

Vai,Vaj
)′
+Wl

]

(n− 1) ·Wl

≤

[

∑

(Vai,Vaj)
′
∈E
′ W

(

Vai,Vaj
)′
+Wl

]

· Hn−1,k

(n− k − 1) ·Wl

<

[

∑

(Vai,Vaj)
′
∈E
′ W

(

Vai,Vaj
)′
+Wl

]

k ·Wl
(30)

Thus, the result of equation

ρ =

[

∑

(Vai,Vaj)
′
∈E ′

W(Vai,Vaj)
′
+W(Va0,Vn1)

]

·Hn−1,k
∑r

ξ=2 W(Va0,Vnξ )
− 1

n
is strictly

larger than zero.

APPENDIX C

Proof: To obtain MTTDL, it needs to consider two

phases’ time. The first stage’s time is the cumulative sum

of transition time from state (n, 0) to state (n − m,m),

and equals
∑n

i=n−m+1
1
iλ
=

Hn,n−m
λ

, where Hn,n−m =
∑n

i=n−m+1
1
i
. The time of the second phase equals the

cumulative sum of transition time from state (n − m,m)

to (n − m − 1,m + 1), i.e., it equals
∑n−m

i=k
1
iλ
=

Hn−m,k−1

λ
, where Hn−m,k−1 =

∑n−m
i=k

1
i
. We define a

state variable, namely repair round, which denotes a cycle

process of {(n, 0)−→ repair process −→ (n, 0)}. Therefore,

the MTTDL can be calculated by following steps:

When undergo 0 repair round:
(

Hn,n−m

λ
+
Hn−m,k−1

λ

)

p;

When undergo 1 repair round:
(

2Hn,n−m

λ
+

1

µ
+
Hn−m,k−1

λ

)

(1− p) p;

When undergo 2 repair rounds:
(

3Hn,n−m

λ
+

2

µ
+
Hn−m,k−1

λ

)

(1− p)2 p

...

When undergo i repair rounds:
(

(i+ 1)Hn,n−m

λ
+

i

µ
+
Hn−m,k−1

λ

)

(1− p)i p;

Then,

MTTDL =

∞
∑

i=0

(

(i+ 1)Hn,n−m

λ
+

i

µ

+
Hn−m,k−1

λ

)

(1− p)i p (31)

α
[

∑

(Vai,Vaj)
′
∈E ′W

(

Vai,Vaj
)′
+

∑r
ξ=1W

(

Va0,Vnξ
)

]

Hn,n−r + ρ
≤

α
[

∑

(Vai,Vaj)
′
∈E ′W

(

Vai,Vaj
)′
+

∑r−δ
ξ=1W

(

Va0,Vnξ
)

]

Hn,n−r+δ + ρ
(20)

ρ ≤

[

∑

(Vai,Vaj)
′
∈E ′W

(

Vai,Vaj
)′
+

∑r
ξ=1W

(

Va0,Vnξ
)

]

· Hn−r+δ,n−r

∑r
ξ=r−δ+1W

(

Va0,Vnξ
) − Hn,n−r (21)

α
[

∑

(Vai,Vaj)
′
∈E
′ W

(

Vai,Vaj
)′
+W (Va0,Vn1)

]

Hn,n−1 + ρ
≤

α
[

∑

(Vai,Vaj)
′
∈E
′ W

(

Vai,Vaj
)′
+

∑1+δ
ξ=1W

(

Va0,Vnξ
)

]

Hn,n−δ−1 + ρ
(24)

ρ ≥

[

∑

(Vai,Vaj)
′
∈E
′ W

(

Vai,Vaj
)′
+W (Va0,Vn1)

]

· Hn−1,k
∑r

ξ=2W
(

Va0,Vnξ
) −

1

n
(25)
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