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Abstract—This paper presents an optimal and unsupervised 

satellite image segmentation approach based on Pearson system and 
k-Means Clustering Algorithm Initialization. Such method could be 
considered as original by the fact that it utilised K-Means clustering 
algorithm for an optimal initialisation of image class number on one 
hand and it exploited Pearson system for an optimal statistical 
distributions’ affectation of each considered class on the other hand. 
Satellite image exploitation requires the use of different approaches, 
especially those founded on the unsupervised statistical 
segmentation principle. Such approaches necessitate definition of 
several parameters like image class number, class variables’ 
estimation and generalised mixture distributions. Use of statistical 
images’ attributes assured convincing and promoting results under 
the condition of having an optimal initialisation step with 
appropriated statistical distributions’ affectation.   

Pearson system associated with a k-means clustering algorithm 
and Stochastic Expectation-Maximization ‘SEM’ algorithm could 
be adapted to such problem. For each image’s class, Pearson system 
attributes one distribution type according to different parameters 
and especially the Skewness ‘β1’ and the kurtosis ‘β2’. 

The different adapted algorithms, K-Means clustering algorithm, 
SEM algorithm and Pearson system algorithm, are then applied to 
satellite image segmentation problem. Efficiency of those combined 
algorithms was firstly validated with the Mean Quadratic Error 
‘MQE’ evaluation, and secondly with visual inspection along 
several comparisons of these unsupervised images’ segmentation. 

 
Keywords—Unsupervised classification, Pearson system, 

Satellite image, Segmentation. 

I. INTRODUCTION 
NCREASING use of satellite images acquired periodically 
by satellites on different areas and for multiple purposes 

makes it extremely interesting for various applications. 
Indeed, the recent construction of multi spectral and hyper 
spectral images would provide detailed data with information 
in both the spatial and spectral domains. This data shows 
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great promise for remote sensing applications ranging from 
environmental and agricultural to national security interests. 
Among satellite image processing, numerous algorithms 
using different approaches have been proposed during the 
past few years. These approaches include local edge 
detection [1, 4], deformable curves [2, 5], morphological 
region-based approaches [3, 6, 7], global optimization 
approaches on energy functions and stochastic model-based 
methods [8, 9].  

Some intensity-based methods such as thresholding and 
histogram-based finite mixture models are formulated easily 
and quickly. However they often fail to segment objects with 
low contrast or noisy images with varying backgrounds. It is 
noted that these methods don’t use the spatial morphological 
images information [10]. On the other hand, some other 
methods such as morphological segmentation, region 
growing and deformable curves, mainly focus on spatial 
information such as local structures or regions. 
Unfortunately, the majority of these techniques are not 
suitable for satellite image segmentation since such type of 
image presents a non homogenous texture [11].  

In this context, it would be important to develop 
unsupervised statistical segmentation methods capable of 
analysing and classifying these types of images adequately. 
There has been recently considerable interest in stochastic 
model-based image segmentation techniques because of their 
efficiency. In such techniques, an image would be separated 
into a set of disjoint regions with each region associated with 
one of a finite numbers of classes that would be characterized 
by distinct parameters. In fact, there are two different statistic 
image segmentation approaches: the supervised approach and 
the unsupervised approach. 

In the supervised approach, it is usually assumed that 
training data are available for the image classes; therefore, 
the parameters can be estimated from the training data before 
segmentation. But, this is rather unrealistic in many practical 
situations. 

Zribi [12] says that, for unsupervised techniques, the 
objective is to estimate the parameters and segment the 
image simultaneously. 
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Most of the proposed solutions to the unsupervised 
segmentation problem could be classified into two broad 
categories: one is a two-step procedure estimating the 
parameters for each class and then using a relaxation scheme 
to do segmentation. The other is an iterative procedure which 
starts with initial parameters and alternatively segments the 
image based on current parameters and estimates parameters 
based on current segmentation as if they were correct. In the 
first category, clustering algorithms are usually adopted to 
estimate the classes’ parameters. In the second category, 
parameters are estimated in each iteration using the current 
segmentation as if they were correct, and the estimated 
parameters are used in the next segmentation as if they were 
true parameters. 

Although these techniques have demonstrated substantial 
success for satellite imagery, they have some limitations. 
Indeed, most of the statistical image segmentation techniques 
need a manual initial input such as the classes’ number. 
Meanwhile, these methods are often sensitive to these initial 
conditions. Moreover, all these methods cannot segment 
correctly the entire image if the initialization step is not 
optimal and if the distribution of every image classes is not 
known.  

We propose in this paper an unsupervised satellite image 
segmentation approach with an optimal initialisation step 
based on Pearson system, in order to assure a better 
representation and definition of each image's classes. 

We explore also in this work two models parameters 
estimation, the EM model and the SEM model, and we 
propose a comparison between these models [13]. We focus 
particularly on the mixture of distribution problem. In this 
context, we review the available theoretical results on the 
convergence of these algorithms and on the behaviour of 
SEM. Then we show that, for some particular mixture 
situations, the SEM algorithm is almost always preferable 
than the EM algorithm.  

The SEM algorithm could be used as an efficient data 
exploratory tool for locating significant maxima of the 
likelihood function. In the real data case, we show that the 
SEM stationary distribution provides a contrasted view of the 
log-likelihood by emphasizing sensible maxima. 

II.  STATISTICAL SATELLITE IMAGE CLASSIFICATION : THE 
UNSUPERVISED APPROACH 

Segmentation of a satellite image into differently textured 
regions’ ‘classes’ is a difficult problem. Usually, one does 
not know a priori what types of textures exist in a satellite 
image, how many textures there are, and what regions have 
certain textures [14]. 

The monitoring task can be accomplished by supervised 
classification techniques, which have proven to be effective 
categorisation tools [15].  

 
 
 

Unfortunately, these techniques require the availability of 
a suitable training set (classes’ numbers for example) for 
each new image of the considered area to be classified. 
However, in real applications, it is not possible to rely on 
suitable ground truth information for each of the available 
images of the analysed site. Consequently, not all the satellite 
images acquired on the investigated area at different times 
can be used for updating the related land-cover maps. In this 
context, it would be important to develop classification 
methods capable of analysing the images of the considered 
site for which no training data would be available, thus 
increasing the effectiveness of monitoring systems based on 
the use of remote-sensing images.  

Recently, researchers faced this problem by proposing an 
unsupervised retraining technique for maximum-likelihood 
(ML) classifiers capable of producing accurate land-cover 
maps even for images for which ground-truth information is 
not available [16]. This technique allows the unsupervised 
parameters’ updating of an already trained classifier on the 
basis of the distribution of the new image to be classified.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 Important steps in supervised classification 
 

A. Unsupervised and supervised classification principle  
Classification principle could be described as follows: any 

individual pixel or spatially grouped sets of pixels 
representing some feature, class, or material is characterized 
by a (generally small) range of digital numbers for each band 
monitored by the remote sensor. The digital numbers values 
(determined by the radiance averaged over each spectral 
interval) are considered to be clustered sets of data in 2D 
plotting space. These are analyzed statistically to determine 
their degree of uniqueness in this spectral response space and 
some mathematical function(s) is/are chosen to discriminate 
the resulting clusters. Two methods for unsupervised and 
supervised classification are commonly used [15]: 
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Fig. 2 Unsupervised and supervised classification principle. 
 

In supervised classification the interpreter knows 
beforehand what classes are present and where each is in one 
or more locations within the scene. These are located on the 
image, areas containing examples of the class are 
circumscribed (making them training sites), and the statistical 
analysis is performed on the multiband data for each such 
class (see Fig.1). Instead of clusters then, one has class 
groupings with appropriate discriminant functions (it is 
possible that more than one class will have similar spectral 
values but unlikely when more than three bands are used 
because different classes/materials seldom have similar 
responses over a wide range of wavelengths). All pixels in 
the image lying outside training sites are then compared with 
the class discriminants, with each being assigned to the class 
it is closest to this makes a map of established classes. 

In unsupervised classification, every individual pixel is 
compared to each discrete cluster to see which one it is 
closest to. A map of all pixels in the image, classified as to 
which cluster each pixel is most likely to belong, is produced 
(in black and white or more commonly in colors assigned to 
each cluster). This, then, must be interpreted by the user as to 
what the color patterns may mean in terms of classes, which 
are actually present in the real world scene; this requires 
some knowledge of the scene's feature/class/material content 
from general experience or personal familiarity with the area 
imaged.  

The aim of the unsupervised classification methods is to 
find partitions of individuals set according to proximity 
criteria’s of their attribute vectors in the representation space. 
The objective is in fact to group multiband spectral response 
patterns into clusters that are statistically separable.  

Thus, a small range of digital numbers (DNs) say three 
bands, can establish one cluster that is set apart from a 
specified range combination for another cluster (and so 
forth).  

Separation depends on the parameters we choose to 
differentiate. However, the unsupervised classification 
methods are used to do blind classification and so to achieve 
segmentation without priori knowledge of the image, but 
some important parameters like the class numbers must be 
fixed. Indeed, the majority of unsupervised classification 
algorithms need an initialization step on which parameters 
like the class numbers must be known. It exists different 
techniques for the estimation of this parameter. 

 We are going to present in this paper our initialization and 
estimation techniques used for this aim, and we try to 
describe the different steps of our statistical satellite image 
segmentation algorithm.  

B. Unsupervised Satellite Image Segmentation Approach 
The approach that we are going to evoke, thereafter, is in 

fact an optimal unsupervised segmentation method based on 
the adoption of the Pearson system [17], which is going to 
guarantee an optimal adjustment of the mixture densities. 
Our approach involves four steps described as follows: 
a) A first step of initialisation and definition of image 

classes by the use of the k-means algorithm in order to 
provide an optimal classes’ number, and to assure a 
better convergence of these different images attributes.   

b) A second step permits the set of distribution families for 
every classes of our image, based on the Pearson system.   

c) A third step of estimation and optimization of the 
different classes distribution parameters.  

d) And finally, a bayesien segmentation step in order to 
define the different regions of interest in the image.  

III. MODELLING AND CLASSIFICATION ALGORITHM 

A. Initialisation step:  K-means clustering algorithm 
The K-means is an unsupervised classification algorithm 

based on a clustering technique [18] through which one set of 
data (observations) is divided into different groups                    
('clusters'), while introducing a similarity criteria, elements of 
a same group are most similar possible.    

The objective of this algorithm is to regroup pixels in K 
distinct regions (classes); K being fixed by the user.  

The K-means technique’s takes pixels intensities as a 
basis. One randomly assigns each pixel to a class and one 
reiterates as follows: Centers of various groups (class) would 
be recalculated and each pixel would be again affected to the 
group according to its nearest center. Convergence would be 
reached when all centers would be fixed. 
Principle: For one space referred to as ‘V’, observations 
consists of M vectors vi (i=1,…, M). K-means algorithm 
consists in finding a partition of V noted G={G1, G2,…, GK}, 
whose subsets would be called clusters, and each group 
would be represented by a vector Ck called centroïd. Let 
C={C1,…, CK} are the whole of the centroïds, also called 
alphabet or partition dictionary. One introduces a distance 
measurement d(vi,Ck) between the ith sample and the kth 

centroïd.  
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The K-means algorithm proceeds in an iterative way 
starting from an initial alphabet C[0]. With every iteration [q], 
every sample, represented by a vector vi, is an associated 
closest centroïde Ck , and a new partition G[q] is thus found. 
Total distance, relatively to every iteration, could be 
formulated as follows: 

     [ ] [ ]∑
=

−=
M

j

q
kj

q cvd
M

D
1

1 )),(min(1  with k=1,…,K      (1) 

For each group, (noting Qk the number of vectors 
associated with the kth group), the new centroïds are found by 
minimizing the distance: 

 

                                                                    (2) 

 

 i.e.:                                                           (3) 

 
In our application, we will consider the Euclidean distance 
‘d’ as a metric distance. 
 
 
 

 
 

 
 

 
 

Fig. 3 K-means classification principle  

B. Modelling and classification step  
In our statistical image segmentation algorithm, we 

suppose the existence of two random fields: for the ‘S’ set of 
pixels, we consider two sets of random variables X=(Xs)s∈S, 
and Y=(Ys)s∈S  called “random fields”. Each Xs takes its value 
in a finite set of classes { }mωω ,,1 …=Ω , and each Ys takes 
its value in IR. The problem of segmentation (classification) 
is then that of estimating the unobserved realisation X=x of 
the field X from the observed realisation Y = y of the field Y, 
where y = (ys)s�S is the digital image to be segmented. The 
problem is then solved by the use of Gaussian mixture model 
and a Bayesian strategy which is "the best" in the sense of 
some criterion. 
 
Gaussian mixtures: The Gaussian mixtures are usually used 
in classification because they correspond often with the 
variable distribution law. In the Gaussian case, the φk 
represents the averages of kth class, noted μk, and Σk is the 
matrix of covariance. The density of multivariate probability 
in an X conditionally to -φk  is written as : 
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The Gaussian mixture model [19] is an omnipresent 

statistical model for density estimation, pattern recognition, 
and function approximation thanks to its benefits from 
analytical tractability, asymptotic properties, and universal 
approximate capability for continuous density functions. 

 
The associated parameters can be estimated in an 

approximate maximum a posteriori (MAP) estimation or the 
maximum likelihood estimation. The MAP or ML estimation 
can be obtained by the expectation maximization (EM) 
algorithm or its more recent stochastic version (SEM) [20]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4 Mixture of five Gaussian distribution.  

 
Through this example, we can notice that the Gaussian 

mixture density permits to come as close as possible to the 
histogram of the image test. However, a few errors of 
approximations exist again in different classes. To minimize 
these errors, it is indispensable to estimate and to optimize 
the different parameters of the Gaussian mixture density.  To 
remedy this problem, we are going to use the maximum 
likelihood estimator thereafter associated to the EM and 
SEM algorithm, and we are going to justify and to approve 
this choice through the calculation of the mean quadratic 
error measured, between the mixture density and the one of 
the image test. 

C. Gaussian mixtures estimation 
 Consider a mixture model with M>1 components 
in nℜ for 1≥n :  
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where ( )Mmm ,,2,1,10 …=∀≤≤ π  are the mixing 
proportions subject to                  . For the Gaussian mixture, 
each component density         is a normal probability 
distribution. 
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where T denotes the transpose operation. Here we 
encapsulate these parameters into a parameter vector, writing 
the parameters of each component as ),( mmm ∑= μθ , to get 

).,,,,,( ,2,121 MM θθθπππ ……=Θ  Then, Eq. (5) can be rewritten as 
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If we knew the component from which x came, then it 

would be simple to determine the parametersΘ . Similarly, if 
we knew the parametersΘ , we could determine the 
component that would be most likely to have produced x. 
The difficulty is that we know neither. However, algorithm 
like ‘EM’, or ‘SEM’ could be introduced to deal with this 
difficulty through the concept of missing data. 

 
EM algorithm: The EM algorithm is a highly successful tool 
especially in statistics, but it has also found an array of 
different applications. One of the more common applications 
within the statistics literature is for the fitting of linear mixed 
models or generalized linear mixed models [21]. Another 
very common application is for the estimation of mixture 
models. We will show thereafter, the principle of this 
algorithm. 

Given a set of samples X={x1, x2,…, xK}, the complete data 
set S=(X;Y) consists of the sample set X and a set Y of 
variables indicating from which component of the mixtures 
the sample came. We describe, below how to estimate the 
parameters of the Gaussian mixtures with the EM algorithm. 

The usual EM algorithm consists of an E-step and an M-
step. Suppose that )(tΘ denotes the estimation of Θ obtained 
after the tth iteration of the algorithm. Then at the (t + 1)th 
iteration, the E-step computes the expected complete data 
log-likelihood function : 
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where                     is a posterior probability and is computed 
as  
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And the M-step finds the (t + 1)th estimation of )1( +Θ t  by 

maximizing )( )(tQ ΘΘ  
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SEM algorithm: The SEM algorithm is a stochastic 
alternative and an improvement of the EM algorithm, 
obtained by the addition of a stochastic component. Indeed, 
in order to prevent a possible stabilization of EM algorithm 
in the neighbourhood of the maximum likelihood, a 
simulation phase (stochastic, step S) is added between the 
estimation phase (step E) and the maximization phase (step 
M) with an aim of making it less sensitive to the local 
minima. 

Indeed, the SEM algorithm contains primarily three stages 
(Estimation, Simulation, and Maximisation), thus allowing to 
optimize the problem of the classes’ number in the 
classification procedures while decreasing this one starting 
from a raised value Kmax. The classes having few pixels are 
eliminated before a restarting.   

In fact the principal idea of this algorithm is to insert a 
stochastic step between the step E and the step M. To every 
iteration one draws in each point xi the multinomial random 
variable en(xi)= (ek

n(xi);k=1,K) with 1ˆ ˆMultk (1; ,..., )i iKz z  
parameters, were:   
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The multinomial distribution (MultK) characterizes the 
phenomena where, (a random pulling), K distinct and 
complementary events can occur, each one with a probability 
pi subjected to the condition: ∑
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The probability that event i occurs xi ≥ 0 times during N 
independent tests is given by this function: 
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The step M is based then on these sub-samples for the 

estimation of the maximum likelihood: 
1 1 1
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Fig. 5 The histogram of an image test, associated to the Gaussian 
mixture density before and after the use of EM  and SEM algorithm. 

 
The MQE measured respectively between the image 

density (histogram) and the one of Gaussian mixture without 
estimation is equal to 3.5467E-009, and the one of Gaussian 
mixture after the use of EM is equal to 7.4668E-010, and 
after the use SEM is equal to 3.8664E-010. 

One notices therefore that the evaluation of Gaussian 
mixture parameters by EM and SEM, minimize the mean 
quadratic error, permitting a better representation of the 
image test density. However, one sees on Figure 5 that some 
classes don't have the shape (probability density) of a 
Gaussian, and that it would be discriminating to change the 
type of distribution.  Indeed, instead of representing every 
class by a Gaussian law, we are going to try to insert new 
distributions (beta law, gamma law,…) in the mixture, and 
we are going to validate and to approve our choice by the 
calculation of the MQE measured between the Gaussian 
mixture and the mixture of several  Pearson distributions.  

 

IV.  CLASSES’ DISTRIBUTION OPTIMIZATION AND BAYESIAN 
SEGMENTATION  

 

A. Pearson’s System 
 
       A distribution density f on IR belongs to Pearson's system if it 
satisfies: 
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The variation of the parameters a, c0, c1, c2 provides 
distributions of different shape and, for each shape, defines 
the parameters fixing a given distribution. Let Y be a real 
random variable whose distribution belongs to Pearson's 

system. For q = 1,2,3,4 let us consider the moments of Y 
defined by: 
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1β  is called ‘Skewness’ and β2 ‘Kurtosis’. 
On the one hand, the coefficients a, c0, c1, c2 are related 

to 1μ , qμ , β1, β2  by the following formula : 
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On the other hand, given: 
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The eight families are illustrated in the Pearson's graph 

given in Figure 6. 
 

 

 

            

 

 
 
 
 
 
 
 
 

 
 
 
 

   Fig. 6 the eight families of Pearson's system function of (β1, β2). 
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The aim of this system is to estimate all parameters 

defining the components of the distribution mixture as the 
shape of the marginal distributions of classes.  

We most therefore calculate the moments: 1μ , 2μ , 3μ , 4μ , 
which can be estimated from empirical moments, from which 
we deduce the estimated values of β1, β2 by (17). Then, we 
estimate the family using (19). Once the family is estimated, 
values of a, c0, c1, c2, given by (18) can be used to solve the 
parameters defining the corresponding densities. And finally, 
one must estimate the different parameters of each family by 
the SEM algorithm. 

B. Bayesian segmentation 
The aim of the Bayesian segmentation approach is to 

calculate the distribution of Y, and the model parameters if 
unknown, given X, that is: 
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Knowing that:  
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With: 
 P (ωi|X): a posterior probability. 
 P(X|ωi): adherence probability to a class.  
 P (ωi) : a prior probability. 

 
The rule used for the probabilistic and Bayesian decision, 

for the choice of the class to which a pixel belongs, is the 
maximum a posteriori: 

 
{ }),(max),,( ,11 pkPii IICxpIICxpifCx …… ∈=∈∈    (22) 

V. EXPERIMENTAL RESULTS 
In this section, we apply the proposed above approach to 

some test images. We also make a comparison between the 
Mean Quadratic Error (MQE) found with the use of k-means 
initiation step, and MQE found with the use of histogram 
thresholding step.     

The first test image is a natural image representing a boat. 
The initialisation parameters for this image are: Kmax=10, 
iteration Nbr =50.  
 The MQE measured respectively between image density 
(histogram) and the one of Gaussian mixture with K-means 
initialization is equal to 3.3725E-010, and the one with 
histogram thresholding is equal to 4.2737E-009 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7 Unsupervised segmentation of ‘the boat’ image. 
 
The second test image is a spot satellite image representing 

the city of Cairo with a 2,5m resolution. The initialisation 
parameters for this image are: Kmax=15, iteration Nbr =50.  
 The MQE measured respectively between image density 
(histogram) and the one of Gaussian mixture with K-means 
initialization is equal to 4.6015E-010, and the one with 
histogram thresholding is equal to 1.04569E-009. 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 8 Unsupervised segmentation of a Spot5 – 2,5 m image, 
representing the city of Cairo – EGYPT. 

 
The third image test is a spot image representing the city 

of Rotterdam with a 20 m resolution. The initialisation 
parameters for this image are: Kmax=20, iteration Nbr =50.  
 The MQE measured respectively between this image 
density (histogram) and the one of Gaussian mixture with          
K-means initialization is equal to 3.6243E-010, and the one 
with histogram thresholding is equal to 0.32679E-009 
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Fig. 9 Unsupervised segmentation of a Spot4- 20 m image, 
representing the city of Rotterdam –NETHERLAND. 

 
The forth image test is a spot image representing the city 

of El Keela with a resolution equal to 5 m. The initialisation 
parameters for this image are: 

 Kmax=20, iteration numbers =50.  
The MQE measured respectively between this image 

density (histogram) and the one of Gaussian mixture with K-
means initialization is equal to 3.4623E-010, and the one 
with histogram thresholding is equal to 2.23369E-009. 

 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 10 Unsupervised segmentation of a Spot 5 – 5 m image, 
representing the city of El Keela – MOROCCO. 

 

VI.  CONCLUSION 
  
Classifying satellite images is a challenging problem as 

these images often contain different textured regions or 
varying backgrounds, and are often subjected to illumination 
changes or environmental effects.  

We proposed in this article one convivial solution to the 
optimization of unsupervised satellite image segmentation, in 
which a method based on K-means technique and Pearson 
system is used in order to optimize segmentation results. A 
mixture Gaussian model and SEM classification algorithms 
are also developed for Bayesien image satellite segmentation. 

Our proposed method showed a high performance in 
satellite image classification since other distributions could 
be used for an optimal modelling. Such method is not 
sensitive to the selection of parameter values, and does not 
require any prior knowledge about the number of class 

(regions) in the image. Finally, it provides significantly better 
results than the existing unsupervised segmentation 
approaches.  
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