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Abstract: Node coverage is one of the crucial metrics for wireless sensor networks’ (WSNs’) quality
of service, directly affecting the target monitoring area’s monitoring capacity. Pursuit of the optimal
node coverage encounters increasing difficulties because of the limited computational power of
individual nodes, the scale of the network, and the operating environment’s complexity and constant
change. This paper proposes a solution to the optimal node coverage of unbalanced WSN distribution
during random deployment based on an enhanced Archimedes optimization algorithm (EAOA). The
best findings for network coverage from several sub-areas are combined using the EAOA. In order
to address the shortcomings of the original Archimedes optimization algorithm (AOA) in handling
complicated scenarios, we suggest an EAOA based on the AOA by adapting its equations with
reverse learning and multidirection techniques. The obtained results from testing the benchmark
function and the optimal WSN node coverage of the EAOA are compared with the other algorithms
in the literature. The results show that the EAOA algorithm performs effectively, increasing the
feasible range and convergence speed.

Keywords: coverage optimization; enhanced Archimedes optimization algorithm; wireless sensor
network; optimization approach

1. Introduction

Wireless sensor networks (WSNs) are mainly composed of several autonomous devices
called sensor nodes implemented for specific purposes and scattered in wide areas [1,2].
As wireless communication technology has improved and time has passed [3], WSNs have
become more common in the information field [4]. They are utilized in various crucial
fields, including the military, intelligent transportation, urban planning, industrial and
agricultural automation, and environmental monitoring [5]. The sensor node’s job is to
send captured information to the base station (BS) or the destination node by sensing
and collecting ambient data, including sound vibration, pressure, temperature, and light
intensity, among other things [6].

Due to their ease of implementation, cheap maintenance costs, and high flexibility,
WSNs have successfully replaced wired networks and been embraced in the industrial field
in recent years [7]. However, due to the nature of wireless communication, interference
and conflict are invariably present during data transmission [8], and data packets may be
lost or delayed past their planned deadline [9].

One of the most fundamental difficulties in WSNs is coverage, which is a critical metric
for evaluating coverage optimization efforts. Because coverage affects the monitoring capa-
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bility of the target monitoring area, it substantially impacts WSNs’ quality of service [10].
A node coverage optimization technique has been developed to increase the coverage of
wireless sensor nodes in a big-data environment, considering the characteristics of large
wireless sensor networks with limited node computing capabilities [11,12]. However, wire-
less sensor networks’ operating environment is complex and changing, and sensor energy
is limited and cannot be supplemented [13].

Deployment of sensor nodes that is both sensible and effective reduces network ex-
penses and energy consumption [14]. All WSN coverage applications try to deploy a
minimal number of sensor nodes to monitor a defined target region of interest to improve
coverage efficiency. Sensor nodes are typically placed randomly in the target monitoring
region, resulting in an uneven distribution of nodes and limited coverage [15]. As a result,
the network coverage control problem is the central research problem in wireless sensor
networks [16]. Adopting an effective and acceptable network coverage control technique is
beneficial to optimizing sensor node deployment to increase wireless sensor network perfor-
mance. Sensor nodes are randomly placed around the monitoring region [17]. Strategically
positioning sensor nodes in the monitoring zone is crucial to increasing WSN node cover-
age. For large-scale sensor node deployment challenges, logical and efficient deployment
of WSNs has been demonstrated to be an NP-hard problem, and finding the best solution
remains challenging [18]. Multiple nodes must be deployed to meet the monitoring needs,
resulting in significant network redundancy coverage issues, the repeated transmission of
vast amounts of data in the network, and a rise in the number of network nodes [19].

The metaheuristic algorithm is one of the promising approaches being examined
as a solution for dealing with WSN node coverage in this scenario [20]. Metaheuristic
algorithms can identify near-optimal solutions in a fair amount of time with limited nodes
and computational resources, making them a convenient approach to the WSN coverage
optimization problem [21]. Approximation optimization techniques with solutions that
can tackle high-dimensional optimization problems effectively are known as metaheuristic
algorithms [22]. Natural phenomena, such as human behaviors, physical sensations, animal
swarm behaviors, and evolutionary concepts, are frequently used to inspire metaheuristic
algorithms [23]. The metaheuristic optimization algorithms are widely used in a variety
of fields, including technology, health, society, and finance, and are especially good at
meeting time deadlines [20]. They are usually fairly easy to implement, having few pa-
rameters, being relatively simple to understand, and powerful, including selecting for
biological nature, natural social swarm behavior, and autocatalytic physical phenomena,
e.g., simulated annealing (SA) [24], genetic algorithms (GAs) [25,26], particle swarm op-
timization (PSO) [27], cat swarm optimization (CSO) [28], parallel PSO (PPSO) [29], ant
colony optimization (ACO) [30], artificial bee colony (ABC) [31], bat algorithms (BA) [32,33],
moth–flame optimization (MFO) [34,35], whale optimization algorithm (WOA) [36], flower
pollination algorithm (FPA) [37,38], sine–cosine algorithm (SCA) [39,40], etc.

A new metaheuristic optimization method based on suggested physical laws is the
Archimedes optimization algorithm (AOA) [41], which is mimicked by the location update
technique that uses object collisions for processing optimization equations. The optimiza-
tion is carried out by modeling Archimedes’ buoyancy principle process: following a crash,
the object progressively assumes neutral buoyancy. The AOA has advantages and the po-
tential to optimize various engineering problems because of its fewer parameters, making
it more easily understandable in programming. However, there are specific problems with
the AOA algorithm approach to particular issues, such as the solution’s slow convergence
time and poor quality.

This paper suggests an enhanced Archimedean algorithm (EAOA) for the global opti-
mization problems and node coverage optimization in WSN deployment. The difficulties
of WSN nodes’ uneven distribution and low coverage in the random deployment of WSN
monitoring applications are approached based on the EAOA. The entire WSN monitoring
area can be divided into multiple sub-areas, and then node optimization coverage can be
implemented in each sub-area based on evaluating the objective function values. The mod-
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eled objective function is calculated by the all-nodes coverage area ratio of the probability of
the deployed surface 2D WSN monitoring area of the network. We implemented the EAOA
by adapting its updating equations using reverse learning and multidirection strategies to
overcome the limitations of its original approach. The following item list briefly highlights
the contributions of this paper’s innovations:

• Offering strategies for enhancing the AOA to prevent the original algorithm’s draw-
backs in dealing with complex situations, evaluating the recommended method’s
performance by using the CEC2017 test suite, and comparing the proposed method’s
results with the other algorithms in the literature.

• Establishing the objective function of the optimal WSN node coverage issues in apply-
ing the EAOA and AOA for the first time, and analyzing and discussing the results of
the experiment in comparison with swarm intelligence optimization algorithms.

The paper’s remaining parts are organized as follows: Section 2 describes the WSN
node coverage model as a statement problem, and reviews the AOA algorithm as related
work. Section 3 presents the proposed EAOA, and evaluates its performance under the
test suite. Section 4 offers the EAOA for tackling the node coverage issues by applying the
EAOA algorithm and analyzing the simulation results. The conclusions are presented in
Section 5.

2. System Definition

This section presents the WSN node coverage model as the problem statement, and
the original algorithm—called the Archimedes optimization algorithm (AOA)—as a recent
metaheuristic optimization algorithm. The subsections are reviewed as follows.

2.1. WSN Node Coverage Model

The coverage optimization problem is the desired location of each deployed node,
with a fixed sensing radius for each sensor. Each node needs to be deployed with a
limited sensing radius, and each sensor can only sense and find within its sensing ra-
dius. Detection within its sensing radius is a workable solution to the coverage prob-
lem. Assuming that the WSN is deployed in a two-dimensional (2D) monitoring area of
W × L m2, with M nodes set up randomly [15,42], then if S is a set of nodes denoted as
S = {S1, S2, . . . , Si, . . . , SM, i = 1, 2, . . . , and M}, the coordinates of each node Si can
be represented as (xi, yi). A sensor node’s sensing range is a circle, with the center of the
sensing radius Rs as its radius. The model of a two-dimensional WSN monitoring area
network is assumed as follows:

• The sensing radius of each sensor node is Rs, and the communication radius is Rc,
both measured in meters, with Rc ≥ 2Rs.

• The sensor nodes can normally communicate, have sufficient energy, and can access
time and data information.

• The sensor nodes have the same parameters, structure, and communication capabilities.
• The sensor nodes can move freely and update their location information in time.

Let T be a set of target monitoring points, T =
{

T1, T2, . . . , Tj, . . . , Tn
}

, j = 1, 2, . . . , n;
the Tj coordinate is (xj, yj) in the two-dimensional WSN monitoring area. If the distance
between the target monitoring point Tj and any sensor node is less than or equal to the
sensing radius Rs, then Tj is covered by the sensor nodes. With the sensor node Si and goal
monitoring point Tj, the Euclidean distance is defined as follows:

d
(
Si, T j

)
=
√

(x i − xj
)2

+ (y i − yj)2, (1)

where d
(
Si, Tj

)
is the distance from node Si(xi, yi) to node Tj(xj, yj). The node sensing

model is set on the sensing radius if Rs is greater than or equal to d
(
Si, Tj

)
—the probability
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p that the target is set to 1; otherwise, it is set to 0. The probability formula is given
as follows:

p
(
Si, Tj

)
=

{
1, Rs ≥ d

(
Si, Tj

)
0, Rs < d

(
Si, Tj

) , (2)

where p
(
Si, Tj

)
is the probability between the sensor node Si and goal monitoring point Tj.

The sensor nodes can work cooperatively by affecting the neighbor nodes of the deployed
two-dimensional WSN monitoring area. Whenever any target monitoring point can be
covered by more than one sensor simultaneously, the probability of monitoring the target
point Tj is given by the following formula:

P
(
S, Tj

)
= 1−

M

∏
i=1

(
1− p

(
Si, Tj

))
, (3)

The ratio of the total area covered by all sensor nodes in the monitoring area to that
area’s overall size is known as the coverage rate. Accordingly, the probability ratio to the
network’s surface 2D WSN monitoring area is used to calculate the coverage ratio.

CovR =
∑M

j=1 P
(
S, Tj

)
W × L

, (4)

where CovR is the WSN nodes’ coverage ratio in the target point reaching area, P
(
S, Tj

)
is the probability of the target point reaching sensed node monitoring, and W × L is the
deployed area of the desired surface 2D network.

2.2. Archimedes Optimization Algorithm (AOA)

The AOA is a recent metaheuristic optimization algorithm based on Archimedes’
buoyancy principle’s physical principles [41]. The position of its object is updated by
imitating the process of the object gradually exhibiting neutral buoyancy following a
collision. The AOA algorithm provides the individual population by immersing objects
with volume, density, and acceleration properties. The items can determine their position in
the fluid based on these attributes. The characteristics and places of the object are randomly
initialized at the start of the process. The AOA updates the object’s volume, density, and
acceleration during processing optimization. The object’s position is updated based on its
individual qualities. Initialization, updating object properties, updating the object’s status,
and evaluation are the significant processing steps of the AOA.

Initialization of the position and attributes of the object is conducted as follows:

Xi= lbi+rand()·(ubi − lbi), (5)

where Xi is a candidate solution vector i-th of the object population size N, i = 1, 2, . . . , N;
the boundaries lbi and ubi are the upper and lower boundaries, respectively; and the vari-
able rand() is a d-dimensional vector generated randomly between [0, 1]. The variables of
acceleration, volume, and density of the i-th object are noted as aci, voi, and dei, respectively;
voi= rand(), dei= rand(), and acci = lbi + rand()·(ubi − lbi). The position and attributes of
the optimal object—such as Xbest, debest, vobest, and acbest—are the selected objects with the
best fitness values according to the evaluation of each object.

Updating object properties phase: During the iteration, the volume and density of the
object are updated according to the following formula:

vot+1
i = vot

i+rand·
(
vobest − vot

i
)
, (6)

det+1
i = det

i+rand·
(

debest − det
i

)
, (7)

where vot+1
i and det+1

i denote the volume and density of the i-th object in the t + 1 iteration,
respectively. The simulated collisions between objects in the AOA are mimicked for the
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optimization process; as time goes on with iterations, the algorithm gradually reaches
equilibrium. A transform variable is used as a simulation of the process to realize the
algorithm’s transformation from searching exploration to exploitation, as follows:

TF = exp
(

t− tmax

tmax

)
(8)

where TF is the transition transform variable, while tmax and t are the maximum number
of iterations and the current number of iterations, respectively. TF gradually increases to 1
over time. TF ≤ 0.5, meaning that one second of the iteration is in the exploration phase.
The update acceleration of object attributes is related to the collision objects.

act+1
i =


demr + vomr·acmr

det+1
i · vot+1

i
, if TF ≤ 1/2

debest + volbest·acbest
det+1

i · vot+1
i

, otherwise
(9)

where demr, vomr, and acmr are the density, volume, and acceleration of random material
(mr), respectively. If TF ≤ 0.5, there is a collision between objects, and the acceleration
updates the formula of object i in iteration t; otherwise, there is no collision between objects.
The normalization strategy for the acceleration can be updated as follows:

act+1
i,norm= ur·

act+1
i −min(ac)

max(ac) −min(ac)
+lr, (10)

where act+1
i,norm represents the normalized acceleration of the i-th object in the t + 1 iteration,

while ur and lr are the normalized ranges, which are set to 0.8 and 0.2, respectively.
Updating the objects’ position is conducted as follows: If TF ≤ 1/2 (exploration

phase), the position update formula of object i at the t + 1 iteration is helpful to search from
global to local and converge in the region where the optimal solution exists; otherwise, it
is a searching exploitation phase for the positional updating. When the object is far from
the best position, the acceleration value is enormous, and the object is in the exploration
phase. When the acceleration value is small, the object is close to the optimal solution. The
exploitation phase can be described as follows:

Xt+1
i = Xt

i + C1·rand·act+1
i,norm·d·

(
Xrand − Xt

i
)

(11)

where C1 is a constant that is set to 2, and d is the density factor that decreases over time,
i.e., d = exp

(
t − tmax

tmax

)
−
(

t
tmax

)
. The acceleration changes from big to small, indicating the

algorithm’s transition from exploration to exploitation, respectively, which helps the object
approach the optimal global solution.

Xt+1
i = Xt

best+F·C2·rand·act+1
i,norm·d·

(
T·Xbest − Xt

i
)

(12)

where C2 represents the constant t; T is a variable proportional to the transfer operator—the
percentage used to attain the best position—T = C3 × TF; and F is the direction of motion,
and its expression is as follows:

F =

{
+1, if P ≤ 0.5
−1, if P > 0.5

(13)

where P is set to 2·rand− C4.
Evaluating objective function involves computing the fitness values for the objective

function after updating the object’s position each iteration time. The model with objective
function is used for fitness value evaluation by evaluating each object that is recorded with
the best fitness value found in each position, e.g., Xbest, debest, vobest, and acbest are updated
for the next iterations or generations.
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3. Enhanced Archimedes Optimization Algorithm

In order to enhance the population of diverse objects, an enhanced version of the
Archimedes optimization algorithm (EAOA) based on the opposing learning and diversity
guiding techniques is presented in this section. The suggested processes are offered first,
followed by a detailed presentation of the evaluation and discussion findings.

3.1. Enhanced Archimedes Optimization Algorithm

The AOA is a new metaheuristic algorithm with several advantages, including ease
of understanding and implementation, along with local search capability. Still, it has
drawbacks, such as jumping out of the optimal local operation, slow convergence, or
vulnerability to local optima when dealing with complex problems, such as optimal WSN
node coverage issues.

A multiverse-directing strategy: In the original expression in Equation (13), the direc-
tion of motion F has just two motion directions. For complicated problems, the space may
have more scales in terms of motion in space. We can exploit this to increase the number of
search directions in complex spaces. A variable of the direction guiding factor G is used
as an equivalent to the direction value. An alternative formula of motion direction can be
expressed as follows:

Fnew =

{
+G·rand(), if P ≤ 0.5
−tG·rand(), otherwise

, (14)

where Fnew is an alternative direction guiding factor, and rand() is a random number ∈ [0,
1] for making the different search values of directions.

Opposite direction strategy: The original and reversed solutions are sorted fitness
values based on objective function issues to convert objects in a seeking, forward-exploiting
procedure in the optimization problem space. The agents in the optimization space can
swiftly converge to the task of the ideal solution by identifying new objects with the best
fitness ratings by using direct vetting or other optimization strategies to establish new
things in the solution space. A new solution set can be generated by applying reverse
learning with a specific rate to join the original for further optimization.

Let S(x1, x2, . . . , xi, . . . , xD), and S′
(
x′1, x′2, . . . , x′D

)
be solutions of forwarding and

corresponding inverse sets, where xi ∈ [ai, bi], (i = 1, 2, . . . , d). A range [a, b] of the
opposite solution set can be expressed as x′i = ai + bi − xi. The same idea of the opposite
learning applied to a new solution is as follows:

S′inew = S·βr, (15)

where βr is a variable as an adjustment coefficient for generating and affecting a new
solution object set. A portion of the worst solution—e.g., about 15% of sorting values of
evaluation object positions—is eliminated to be used for generating a new object set in
dimension d of the solution space. The adjustment coefficient is calculated as follows:

βr= Ristar·
rand(β, γ)

D
, (16)

where rand() is a random function in the range from β to γ. In the experiment, β can be set
to −0.5 and γ set to 0.5. D is the dimension of problem space, while Ristar is the distance
between the ideal solution and the one that is closest to optimal. The adjustment coefficient
can be applied to the exploiting search of the algorithm for generating and affecting a new
solution object set merged into Equation (17).

The strategies and equations of reverse learning βr and multiverse-directing Fnew
can be hybridized into updated formulas for generating new solutions. An update of the
position of the objects is conducted as follows:

xt+1
i =

{
xt

i + βr·C1·rand·act+1
i,norm·d·

(
xrand − xt

i
)
, i f TF ≤ 0.5

xt
best + Fnew·C2·rand·act+1

i,norm·d·
(
T × xbest − xt

i
)
, otherwise

(17)
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Algorithm 1 depicts the pseudocode of the enhanced Archimedes optimization algo-
rithm (EAOA).

Algorithm 1 A pseudocode of the EAOA.

1. Input: NP: The population size, D: dimensions, T: the Max_iter, C1, C2, C3, C4: variables, and
ub, lb: upper and lower boundaries.

2. Output: The global best optimal solution.

3.
Initialization: Initializing the locations, vol., de., and acc. of each object in the population of
Equation (8); obtaining each object’s position by calculating the objective function, and the
best object in the population is selected; the iteration t is set to 1.

4. While t < T do
5. For i = 1 : Np do
6. Updating vol., and de., of the object by Equations (6) and (7).
7. Updating TF- transfer impactor and d-de., variables are by Equation (8).

If TF ≤ 1/2 then
8. Updating acc. the object acceleration by Equation (10).
9. Updating the local solution by Equation (11).
10. Else
11. Updating the object accelerations by Equations (9) and (10).
12. Updating global solution position by Equation (17).
13. End-if
14. End-for
15. End-while
16. Evaluating each object with the positions and
17. Selecting the best object of the whole population.
18. Recording the best global outcome of the optimal object.
19. t-iteration is set to t + 1
20. Output: The best object optimization of the whole population size.

3.2. Experimental Results for Global Optimization

The suggested algorithm’s potential performance needs to be tested and verified with
the benchmark functions. The CEC 2017 [43] test suite has 29 different test functions to
evaluate the EAOA algorithm. There are various types of complexity and dimension
functions in the test suite, e.g., f1~f3: unimodal, f4~f10: multimodal, f11~f20: hybrid, and
f21~f29: compound test functions. The achieved results of the EAOA are compared not
only with the original AOA [41], but also with other selected popular algorithms in the
literature, e.g., genetic algorithms (GAs) [25], simulated annealing (SA) [24], particle swarm
optimization (PSO) [27], moth–flame optimization (MFO) [34], improved MFO (IMFO) [35],
flower pollination algorithm (FPA) [37], sine–cosine algorithm (SCA) [39], enhanced SCA
(ESCA) [40], parallel PSO (PPSO) [29], and parallel bat algorithm (PBA) [33]. An expression
of ∆ f = fi − f ∗i is a different error value between the function minimum value f ∗i and the
obtained result value fi of the i-th function. The fundamental conditions are set for all
algorithms to ensure that the experiment is fair, e.g., the population size is set to 40; the
maximum number of iterations is set to 1000; the number of dimensions is set to 30; the
solution range of all of the test functions is set to [−100, 100]; and the number of runs is set
to 25. Table 1 lists the basic parameters of each algorithm.

The obtained outcomes of the proposed EAOA approach can be verified by several
cases—such as the affected strategies with the original algorithm—and compared with the
other algorithms. First, the outcomes of several implemented tactics are contrasted with
those of the original AOA algorithm. The findings from the EAOA are then contrasted
with those from other algorithms. Table A1 compares the affected strategies in applying
the EAOA with the original AOA algorithm, and verifies the impact of the suggested
techniques used in the EAOA compared to the original AOA algorithm. The data values of
the mean outcomes of 25 runs show the best obtained global optimal results, as well as the
data on runtime and CPU execution. It can be seen that in some cases strategies 1 and 2 are
better than the original algorithm. In most test function cases, the combined strategies 1



Entropy 2022, 24, 1018 8 of 22

and 2 in the proposed EAOA can produce better results than the AOA, and the runtime is
not much longer than that of the AOA.

Table 1. Algorithm settings for parameters and variables.

Algorithms Setting Parameters

EAOA C1 = 2.1, C2 = 5.6, C3 = 1.95, C4 = 0.65

AOA [41] C1 = 2.1, C2 = 5.6, C3 = 1.95, C4 = 0.65

GA [25] Rmu = 0.1, Rcr = 0.9

SA [24] P = 0.6, α = 0.8, τ = 0.05, SN = 14.41

PSO [27] Vmax = 10, Vmin = −10, ω = 0.9 to 0.4, c1 = c2 = 1.49455

PPSO [29] G = 2, R = 10, Vmax = 10, Vmin = −10, ω = 0.9 to 0.4, c1 = c2 = 1.49465

PBA [33] G = 2, R = 10, A0 = 0.7, r0= 0.15, α = 0.25, γ = 0.16

FPA [37] Pswitch = 0.65, λ = 1.5, s0 = 0.1

MFO [34] a = −1, b = 1

IMFO [35] a = −1, b = 1, ω = 0.9 to 0.4

WOA [36] a = 2 to 0, b = 1, l = [−1, 1]

SCA [39] r1, r3, = rand(0, 2), r2 ∈ [0, 2π], r4 = rand(0, 1)

ESCA [40] r1, r3, = rand(0, 2), r2 ∈ [0, 2π], r4 = rand(0, 1), ω = 0.9 to 0.5

Moreover, the obtained results from the EAOA were also further evaluated to verify the
proposed approach’s performance in the presentation. The findings of the EAOA compared
with the other algorithms—e.g., GA [25], PSO [27], BA [32], PPSO [29], MFO [34], and
WOA [36] algorithms—are presented in Tables A2–A5 and Figure A1. The data values in
Tables A2–A4 are the Mean, Best, and Std.—a standard deviation that measures variables for
analyzing the algorithm’s performance. The values of Mean, Best, and Std. are for assessing
the search capability, quality, and resilience of the algorithm, respectively. Tables A2–A4
compare the results of the proposed EAOA with the other popular metaheuristic algorithms
in the literature, e.g., the GA [25], PSO [27], BA [32], PPSO [29], MFO, [34], and WOA [36]
algorithms. The highlighted data values in each row of Tables A2–A4 are the best in each
pair comparing the EAOA-obtained results with the others for testing functions with a
suitable format and layout. The symbols Win, Loss, and Draw at the end of each table
provide a brief statistical summary. It can be seen that the proposed EAOA algorithm has
the highest number of ‘Wins’. This means that the EAOA produces better results than the
other algorithms, and that the EAOA has an excellent optimization performance.

Figure A1 compares the convergence outcome curves of the EAOA with the ESCA [40],
IMFO [35], AOA [41], PPSO [29], WOA [36], and PBA [33] algorithms for the selected
functions. The Y coordinate axis represents the average of 25 runs of the best output of the
algorithms thus far. The X coordinate shows the iteration in the generation of searching
methods. It can be seen from the figure that the EAOA performance curve shows a faster
convergence rate than the other algorithms.

Furthermore, for another view of the evaluation results of the proposed approach, we
applied the Wilcoxon signed-rank technique for ranking the outcomes. This test compares
the pairwise algorithms’ results between the EAOA and other enhanced methods—e.g.,
PBA, WOA, PPSO, AOA, IFMO, and ESCA algorithms—under the Wilcoxon signed-rank
test. Table A5 lists the results of comparison of the pairwise algorithms’ results between
the EAOA and other algorithms when applying the Wilcoxon signed-rank test. The bold-
highlighted results in Table A5 are the outcomes with p < 0.05. It can be seen that most
values have p < 0.05, indicating that the optimization results of the EAOA are significantly
different from those of the other algorithms. The average ranking value is 2.25204, and the
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lowest output of the EAOA is superior to that of the other algorithms. In general, it can be
seen that the proposed EAOA can compete with some of the other popular algorithms.

4. Optimal WSN Node Coverage Based on EAOA

This section demonstrates how the EAOA algorithm can be used to deploy a WSN
with the best node coverage possible, followed by a subsection covering the majority of the
processing stages, analysis, and discussion of the findings.

4.1. Optimal Node Coverage Strategy

The feasible solution to the optimal node coverage problem is the deployment of each
node with a limited sensing radius, where each sensor can only sense and find within its
sensing radius. The finding within its sensing radius is a workable solution to the coverage
optimization problem. Assuming that the sensing radius of all nodes is the same, and the
sensing radius of the node r ≤ R, any point in the monitoring area is covered if it is located
within the sensing radius of at least one sensor node. The monitoring area is divided into
the coverage area and the blind spot. Any point in the coverage area is covered by at least
one sensor node, and the blind spot complements the coverage area. Some applications
need to monitor events with high accuracy. Any point in the coverage area must be at least
within the sensing radius of M nodes simultaneously; otherwise, it will be regarded as a
blind spot, which we call M double-coverage. The location-seeking process of nodes is
abstracted as the process of implementing varied movement behaviors of the object group
toward food or a specific site.

The purpose of WSN coverage optimization utilizing the EAOA approach is to op-
timize the coverage of the target monitoring area by using a limited number of sensor
nodes and optimizing their deployment locations. Let F(x) be the objective function of
the WSN nodes’ coverage optimization; the coverage ratio, which is the maximum ratio
of probability to the network’s deployed surface 2D WSN monitoring area, is used to
determine the objective function for the optimization problem. The maxima are as follows
according to Equation (4):

F(x) = Maximize CovR =
∑M

j=1 P
(
S, Tj

)
W × L

, (18)

where CovR and P
(
S, Tj

)
are the coverage ratio of the WSN nodes and the probability

of the target point reaching W × L in the sensed node of the 2D monitoring network’s
deployed area, respectively. Each individual object in the algorithm represents a coverage
distribution, and the specific steps of the algorithm scheme for the coverage optimization
are listed as follows:

Step 1: Input parameters such as a number of nodes M, perception radius Rs, area of region
W × L, etc.
Step 2: Set the parameters of population size N, the maximum number of iterations max_Iter,
the density factor, and prey attraction, and randomly initialize the object’s positions using
Equations (5)–(7).
Step 3: Enhance the initializing population—the parameters of Equations (8)–(10), (14), and
(15)—and calculate the objective function for initial coverage according to Equation (18).
Step 4: Update the position of objects and the strategy according to Equation (17), and then
compare them to select the best fitness value according to the objective function value.
Step 5: Calculate the individual values of objects and retain the optimal solution of the
global best.
Step 6: Determine whether the end condition is reached; if yes, proceed to the next step;
otherwise, return to Step 4.
Step 7: The program ends and outputs the optimal fitness value and the object’s best
location, representing the node’s optimal coverage rate outputs.
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4.2. Analysis and Discussion of Results

The scenarios assuming that the WSN’s sensor nodes are deployed in a square mon-
itoring area of W × L can be set to scenario areas, e.g., 40 m × 40 m, 80 m × 80 m,
100 m × 100 m, and 160 m × 160 m. Table 2 lists the experimental parameters of the WSN
node deployment areas. The sensing radius of sensor nodes Rs is set to 10 m. The commu-
nication radius Rc is set to 20 m. The number of sensor nodes is denoted by M, consisting
of 20, 40, 50, and 60 sensor nodes. Iter indicates the number of iterations, which may be set
to 500, 1000, or 1500.

Table 2. The parameter settings for the desired WSN node deployment areas.

Description Parameters Values

Desired deployment areas W × L 40 m × 40 m, 80 m × 80 m,
100 m× 100 m, 160 m× 160 m

Sensing radius Rs 15 m

Communication radius Rc 20 m

Number of sensor nodes M 20, 40, 50, 60

Number of iterations Iter 500, 1000, 1500

The optimal results of the EAOA were compared with the other selected schemes—i.e.,
the SSA [44], PSO [45], GWO [46], SCA [47], and AOA [48]—for the coverage optimization
of WSN node deployment to verify the adequate performance of the algorithm. Figure 1
displays a graphical diagram of the nodes’ initialization with the EAOA for the statistical
coverage optimization scheme with different numbers of sensor nodes: (a) 20, (b) 40, (c) 50,
and (d) 60.

Table 3 compares the proposed EAOA approach to other strategies—i.e., the SSA, PSO,
GWO, SCA, and AOA algorithms—in terms of percentage coverage rate, running time,
convergence iterations, and monitoring area size. It can be seen that the EAOA scheme
produces the best global solution in the coverage areas, with a high coverage rate, coverage
of the node’s whole area, and a faster runtime than the other approaches.

Table 3. Comparison of the proposed EAOA method with the other techniques used—i.e., the
SAA, PSO, GWO, SCA, and AOA algorithms—in terms of percentage coverage rate, running time,
iterations to convergence, and monitoring area size.

Approach Factor Variables 40 m × 40 m 80 m × 80 m 100 m × 100 m 160 m × 160 m

SSA

Coverage rate (%) 78% 74% 77% 74%

Consumed execution time (s) 3.09 6.91 7.38 9.34

No. of iterations to convergence 145 256 234 844

WSN node numbers 20 40 50 60

PSO

Coverage rate (%) 79% 77% 79% 76%

Consumed execution time (s) 2.78 6.22 6.65 8.41

No. of iterations to convergence 396 343 578 754

WSN node numbers 20 40 50 60

GWO

Coverage rate (%) 80% 80% 84% 78%

Consumed execution time (s) 3.06 6.84 7.31 9.25

No. of iterations to convergence 334 44 544 755

WSN node numbers 20 40 50 60
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Table 3. Cont.

Approach Factor Variables 40 m × 40 m 80 m × 80 m 100 m × 100 m 160 m × 160 m

CSA

Coverage rate (%) 78% 79% 82% 78%

Consumed execution time (s) 2.92 6.29 7.23 9.22

No. of iterations to convergence 445 555 665 876

No. of mobile nodes 20 40 50 60

AOA

Coverage rate (%) 80% 79% 80% 79%

Consumed execution time (s) 3.12 6.98 7.46 9.44

No. of iterations to convergence 665 333 563 954

WSN node numbers 20 40 50 60

EAOA

Coverage rate (%) 80% 82% 87% 80%

Consumed execution time (s) 2.75 6.15 6.57 8.31

No. of iterations to convergence 135 503 556 765

WSN node numbers 20 40 50 60
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Figure 2 indicates the graphical coverage of six different metaheuristic algorithms—
i.e., the AOA, SSA, PSO, GWO, SCA, and EAOA approaches—for the WSN node area
deployment scenarios for optimal coverage rates, with the same density and environmental
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setting conditions. Because the EAOA algorithm can avoid premature phenomena, its
coverage rate is reasonably high, with less overlap. It can better alter the node configuration
than the other competitors for the monitoring area’s network coverage. The graphics show
the differences in the distribution of coverage; the differences are so small that the graphics
look very similar, with the graph of node coverage distribution showing seemingly identical
results. Furthermore, Figures 3 and 4 show that the convergence curves of the proposed
EAOA approach can provide higher percentages of statistical coverage than the other
methods used.
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Figure 3 indicates four different sizes of WSN monitoring node area deployment
scenarios of the metaheuristic approaches for optimal coverage rates. The convergence
curves of the proposed EAOA approach can provide higher percentages of statistical
coverage than the other methods used.

Figure 4 shows the coverage rate of the EAOA compared against the SSA, PSO,
GWO, SCA, and AOA algorithms for statistical sensor node count deployment for the 2D
monitoring of different areas. It can be seen the EAOA algorithm produces a coverage rate
that is reasonably high in the monitoring area’s network coverage. The results show that
the EAOA approach provides a reasonably high coverage rate, with less overlap and better
alteration of the sensor nodes’ configuration, compared to the average coverage rate under
the same test conditions.

5. Conclusions

This paper suggests an enhanced Archimedes optimization algorithm (EAOA) to solve
the wireless sensor network (WSN) nodes’ uneven distribution and low coverage issues
in random deployment. Each divided sub-area of the monitoring area of the entire WSN
was subjected to node coverage optimization based on the EAOA. The objective function
of the optimal node coverage was modeled mathematically by calculating the distance
between nodes by measuring each sensor node’s sensing radius and its communication
capability in the deployed WSN. The optimization results of multiple sub-areas were
fused, combining the sub-areas’ coverage with the complete network node coverage via a
mapping mechanism. The updated equations of the EAOA were modified with reverse
learning and multidirection strategies to avoid the original drawbacks of the AOA, e.g.,
slow convergence speed and ease of falling into local extrema whenever dealing with
complicated situations. The compared results of the optimal findings on the selected
benchmark functions and the WSN node coverage show that the proposed EAOA makes
the optimal solution effective for both coverage and benchmark problems. The suggested
algorithm will be applied in future works to address WSN node localization [49,50] and
optimal WSN deployment [51,52].
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Appendix A
Table A1. Verifying the impact of the suggested techniques used in the EAOA in comparison with
the original AOA algorithm.

Fun
Test

Original Suggested
Strategy 01

Suggested
Strategy 02

Suggested
Strategies 01 and 02

AOA Multidirection Opposite Learning EAOA

Mean
CPU

Runtime
(s)

Mean
CPU

Runtime
(s)

Mean
CPU

Runtime
(s)

Mean
CPU

Runtime
(s)

f1 2.95 × 10−1 37.93 1.86 × 10−1 36.10 1.91 × 10−1 34.30 1.71 × 10−1 38.52

f2 2.71 × 10+1 32.76 1.94 × 10+1 34.02 1.61 × 10+1 34.12 1.65 × 10+1 38.32

f3 3.66 × 10−1 45.34 2.58 × 10−1 47.09 6.52 × 10−2 47.23 2.44 × 10−1 53.04

f4 3.02 × 10−1 44.16 1.45 × 10−1 45.86 4.59 × 10−2 46.00 1.27 × 10−2 52.12

f5 7.99 × 10−2 40.32 7.84 × 10−3 42.81 1.38 × 10−2 42.00 5.38 × 10−3 48.03

f6 5.58 × 10−1 85.44 2.11 × 10−1 88.73 6.21 × 10−2 89.00 1.92 × 10−1 98.89

f7 2.21 × 10−1 203.52 1.07 × 10−1 221.31 2.44 × 10−1 212.10 1.26 × 10−1 237.18

f8 6.32 × 100 117.12 6.61 × 10−1 121.41 1.97 × 100 122.00 7.25 × 10−1 136.23

f9 7.20 × 100 229.60 4.82 × 100 234.61 4.25 × 100 235.010 4.36 × 100 251.72

f10 2.25 × 100 224.61 2.63 × 10−1 233.42 2.05 × 10−1 234.10 2.10 × 10−2 263.69

f11 4.95 × 10+3 274.65 1.77 × 10+3 275.31 8.09 × 10+3 278.01 1.06 × 10+3 278.59

f12 1.66 × 10+2 229.44 3.65 × 10+1 238.28 8.09 × 10+1 239.00 2.29 × 10+1 268.40

f13 3.58 × 10+1 120.01 2.87 × 100 124.61 3.30 × 10+1 125.10 1.53 × 100 140.28

f14 2.96 × 10+1 96.26 1.62 × 100 100.71 1.09 × 10+1 101.10 1.26 × 100 113.41

f15 2.05 × 100 221.76 7.88 × 10−1 231.31 4.74 × 10−1 231.10 7.27 × 10−1 259.42

f16 4.73 × 10−1 126.72 1.85 × 10−1 131.61 2.59 × 10−1 132.01 1.30 × 10−1 148.34

f17 4.04 × 10+2 223.69 5.63 × 10+1 232.31 5.53 × 10+2 233.10 7.90 × 10+1 262.71

f18 2.49 × 10+2 100.81 3.70 × 10−1 104.35 1.46 × 10+1 105.10 1.09 × 100 117.92

f19 4.06 × 10−1 206.40 3.24 × 10−1 214.36 3.79 × 10−1 215.00 3.86 × 10−1 241.45

f20 5.87 × 10−1 298.56 4.11 × 10−1 310.07 4.34 × 10−2 311.00 3.98 × 10−2 349.25

f21 6.51 × 10−1 327.36 2.25 × 10−1 339.98 8.29 × 10−2 341.00 2.10 × 10−1 384.15

f22 8.94 × 10−1 312.96 6.22 × 10−1 325.76 7.03 × 10−1 326.00 6.34 × 10−1 367.09

f23 1.02 × 10 303.36 7.63 × 10−1 315.05 5.72 × 10−2 316.00 7.59 × 10−2 354.87

f24 7.38 × 10−1 282.24 6.63 × 10−1 294.32 4.75 × 10−1 294.00 4.12 × 10−1 331.25

f25 3.28 × 100 206.40 7.26 × 10−1 215.36 1.51 × 100 215.00 7.74 × 10−1 243.15

f26 8.53 × 10−1 253.44 8.03 × 10−1 263.22 2.78 × 10−2 264.00 7.78 × 10−1 297.17

f27 7.28 × 10−1 273.44 7.74 × 10−1 265.45 5.19 × 10−1 284.00 7.41 × 10−2 295.92

f28 2.37 × 100 225.60 1.09 × 100 234.30 3.34 × 10−1 235.00 9.39 × 10−1 263.91

f29 2.15 × 10+3 221.76 8.37 × 10+1 230.31 3.14 × 10+2 231.12 4.67 × 10+1 259.82

Avg. 1.72 × 10−1 198.01 6.88 × 10−1 199.91 3.15 × 10−1 199.47 4.45 × 10−2 219.12

The bold data values in each row of the Table are the best ones in each pair compared with the EAOA approach.

Table A2. The performance presentation of the EAOA, SA, and GA for the CEC 2017 test suite with
each paired comparison.

Funs
GA SA EAOA

Mean Best Std. Mean Best Std. Mean Best Std.

f1 5.66 × 10−5 1.46 × 10−5 5.19 × 10−5 7.16 × 10−5 1.25 × 10−5 2.38 × 10−5 1.29 × 10−5 2.71 × 10−5 1.11 × 10−5

f2 3.72 × 10−1 1.54 × 10−1 1.01 × 10−1 3.78 × 10+1 2.21 × 10+1 9.86 × 10+1 3.57 × 10−1 1.85 × 10−1 1.11 × 10−1

f3 2.57 × 10−1 1.58 × 10−1 5.11 × 10−2 4.92 × 10−1 2.66 × 10−1 1.28 × 10−1 2.33 × 10−1 1.44 × 10−1 5.52 × 10−2
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Table A2. Cont.

Funs
GA SA EAOA

Mean Best Std. Mean Best Std. Mean Best Std.

f4 2.31 × 10−1 1.45 × 10−1 4.84 × 10−2 4.58 × 10−1 3.02 × 10−1 4.34 × 10−2 1.91 × 10−1 1.11 × 10−1 4.59 × 10−2

f5 3.90 × 10−2 7.86 × 10−3 1.68 × 10−2 1.12 × 10−2 7.99 × 10−2 1.63 × 10−2 2.57 × 10−2 5.38 × 10−3 1.38 × 10−2

f6 3.28 × 10−1 2.11 × 10−1 7.81 × 10−2 8.30 × 10−1 5.58 × 10−1 1.26 × 10−1 2.68 × 10−1 1.92 × 10−1 6.21 × 10−2

f7 1.95 × 10−1 1.07 × 10−1 3.69 × 10−2 3.59 × 10−1 2.21 × 10−1 8.33 × 10−2 1.66 × 10−1 1.26 × 10−1 2.44 × 10−2

f8 3.43 × 100 1.21 × 10+1 1.64 × 100 1.32 × 100 6.32 × 100 4.29 × 100 3.23 × 100 7.17 × 10−1 1.97 × 100

f9 6.43 × 100 4.81 × 100 1.19 × 100 8.79 × 100 7.20 × 100 1.09 × 100 6.53 × 100 4.36 × 100 1.25 × 100

f10 3.99 × 10−1 2.03 × 10−1 1.03 × 10−1 5.33 × 100 1.20 × 100 4.24 × 100 3.81 × 10−1 2.10 × 10−1 1.01 × 10−1

f11 1.02 × 10+4 1.77 × 10+3 9.36 × 10+3 2.81 × 10+5 4.45 × 10+4 1.90 × 10+5 7.58 × 10+3 1.06 × 10+3 8.09 × 10+3

f12 9.53 × 10+2 3.65 × 10+1 1.07 × 10+2 9.30 × 10+2 1.66 × 10+2 1.10 × 10+3 9.47 × 10+1 2.29 × 10+1 8.09 × 10+1

f13 3.62 × 10+1 9.87 × 100 3.51 × 10+1 9.11 × 10+3 9.80 × 100 2.89 × 10+2 9.23 × 10+1 9.83 × 100 3.30 × 10+1

f14 1.21 × 10+1 1.62 × 100 7.68 × 100 1.66 × 10+2 2.96 × 10+1 1.15 × 10+2 1.05 × 10+1 1.26 × 100 1.09 × 10+1

f15 1.57 × 100 7.88 × 10−1 4.83 × 10−1 3.69 × 100 2.05 × 100 4.63 × 10−1 1.66 × 100 7.27 × 10−1 4.74 × 10−1

f16 5.97 × 10−1 1.85 × 10−1 2.70 × 10−1 1.30 × 100 4.73 × 10−1 3.87 × 10−1 5.77 × 10−1 1.30 × 10−1 2.59 × 10−1

f17 6.05 × 10+2 5.63 × 10+1 7.15 × 10+2 1.01 × 10+4 4.04 × 10+2 1.60 × 10+4 4.81 × 10+2 7.90 × 10+1 5.53 × 10+2

f18 9.73 × 100 3.70 × 10−1 1.74 × 10+1 2.11 × 10+4 2.49 × 10+2 1.87 × 10+4 1.10 × 10+1 1.09 × 100 1.46 × 10+1

f19 7.95 × 10−1 3.24 × 10−1 3.13 × 10−1 1.29 × 10−1 4.06 × 10−1 3.70 × 10−1 7.97 × 10−1 3.86 × 10−1 2.79 × 10−1

f20 4.87 × 10−1 4.11 × 10−1 3.48 × 10−2 7.39 × 10−1 5.87 × 10−1 8.77 × 10−2 4.80 × 10−1 3.98 × 10−1 4.34 × 10−2

f21 3.46 × 10−1 2.25 × 10−1 6.95 × 10−2 8.38 × 100 6.51 × 10−1 2.32 × 100 2.95 × 10−1 2.10 × 10−1 8.29 × 10−2

f22 7.69 × 10−1 6.22 × 10−1 5.70 × 10−2 1.21 × 100 9.94 × 10−1 1.04 × 10−1 7.46 × 10−1 6.79 × 10−1 4.63 × 10−2

f23 8.64 × 10−1 7.63 × 10−1 6.44 × 10−2 1.26 × 100 1.02 × 10−1 1.34 × 10−1 8.49 × 10−1 7.59 × 10−1 5.72 × 10−2

f24 7.34 × 10−1 6.63 × 10−1 3.85 × 10−2 8.77 × 10−1 7.38 × 10−1 7.48 × 10−2 7.00 × 10−1 6.12 × 10−1 4.75 × 10−2

f25 2.79 × 100 7.26 × 10−1 1.62 × 100 8.04 × 100 3.28 × 100 1.63 × 100 3.45 × 100 7.74 × 10−1 1.51 × 100

f26 8.44 × 10−1 8.03 × 10−1 2.31 × 10−2 1.13 × 100 8.53 × 10−1 1.82 × 10−1 8.29 × 10−1 7.78 × 10−1 2.78 × 10−2

f27 8.55 × 10−1 7.74 × 10−1 5.76 × 10−2 1.02 × 100 8.28 × 10−1 1.38 × 10−1 8.17 × 10−1 7.41 × 10−1 5.19 × 10−2

f28 1.74 × 100 1.09 × 100 3.76 × 10−1 3.66 × 100 2.37 × 10−1 6.31 × 10−1 1.49 × 100 9.39 × 10−1 3.34 × 10−1

f29 1.12 × 10+3 8.37 × 10+1 1.16 × 10+3 4.33 × 10+4 4.15 × 10+3 3.70 × 10+4 3.55 × 10+2 4.89 × 10+1 3.14 × 10+2

Win 5 9 7 6 5 5 20 18 19

Lose 21 18 20 22 22 22 9 11 10

Draw 3 4 4 3 2 4 0 0 0

The bold data values in each row of the Table are the best ones in each pair compared with the EAOA approach.

Table A3. The performance presentation of the EAOA, FPA, and PSO for the CEC 2017 test suite with
each paired comparison.

Funs
FPA PSO EAOA

Mean Best Std. Mean Best Std. Mean Best Std.

f1 2.24 × 10−2 1.19 × 10−2 5.79 × 10−2 4.37 × 10−2 2.25 × 10−2 1.36 × 10−2 1.34 × 10−3 2.83 × 10−2 1.16 × 10−2

f2 1.15 × 100 7.23 × 10−1 2.60 × 10−1 8.74 × 10−1 5.18 × 10−1 6.01 × 10−1 7.58 × 10−1 3.92 × 10−1 4.36 × 10−1

f3 2.11 × 10−1 1.43 × 10−1 3.47 × 10−1 2.34 × 10−1 1.21 × 10−1 3.40 × 10−1 2.43 × 10−1 1.50 × 10−1 5.77 × 10−2

f4 3.45 × 10−1 2.40 × 10−1 5.46 × 10−2 2.55 × 10−1 1.63 × 10−1 3.90 × 10−2 2.00 × 10−1 1.16 × 10−1 4.80 × 10−2

f5 6.68 × 10−2 2.54 × 10−2 1.98 × 10−2 7.62 × 10−2 4.46 × 10−2 1.20 × 10−2 2.68 × 10−2 5.63 × 10−3 1.44 × 10−2

f6 4.30 × 10−1 3.80 × 10−1 2.70 × 10−2 3.26 × 10−1 2.50 × 10−1 4.61 × 10−2 2.81 × 10−1 2.01 × 10−1 6.49 × 10−2

f7 2.59 × 10−1 1.96 × 10−1 3.70 × 10−2 1.98 × 10−1 1.36 × 10−1 2.82 × 10−2 1.73 × 10−1 1.32 × 10−1 1.25 × 10−1

f8 4.69 × 100 1.11 × 10−1 2.95 × 100 4.42 × 100 1.83 × 100 1.59 × 100 3.37 × 100 7.49 × 10−1 2.06 × 100

f9 9.68 × 100 7.43 × 100 1.17 × 100 7.17 × 100 4.82 × 100 5.09 × 100 6.82 × 100 4.56 × 100 1.30 × 100

f10 4.07 × 10−1 2.77 × 10−1 6.08 × 10−2 3.14 × 10−1 2.25 × 10−1 4.61 × 10−2 3.98 × 10−1 2.19 × 10−1 1.06 × 10−1

f11 3.01 × 10+1 3.25 × 10+1 3.26 × 10+1 3.13 × 10+1 3.15 × 10+1 3.15 × 10+1 3.40 × 10+1 3.11 × 10+1 3.10 × 10+1

f12 7.20 × 10+2 3.72 × 10+2 8.30 × 10+2 1.11 × 10+2 4.52 × 10+1 4.62 × 10+1 9.90 × 10+1 2.39 × 10+1 8.46 × 10+1

f13 7.34 × 10+1 8.89 × 100 6.28 × 10+1 2.59 × 10+1 5.45 × 10−1 2.66 × 10+1 3.06 × 10+1 1.59 × 100 3.44 × 10+1
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Table A3. Cont.

Funs
FPA PSO EAOA

Mean Best Std. Mean Best Std. Mean Best Std.

f14 3.03 × 10+2 8.32 × 10+1 2.17 × 10+2 4.57 × 10+1 1.92 × 10+1 2.71 × 10+1 1.10 × 10+1 1.32 × 100 1.14 × 10+1

f15 2.01 × 100 1.09 × 100 3.70 × 10−1 2.01 × 100 1.26 × 100 4.51 × 10−1 1.73 × 100 7.59 × 10−1 4.95 × 10−1

f16 7.50 × 10−1 2.41 × 10−1 2.38 × 10−1 6.40 × 10−1 1.93 × 10−1 2.80 × 10−1 6.03 × 10−1 1.36 × 10−1 2.70 × 10−1

f17 9.05 × 10+1 5.47 × 10+1 1.23 × 10+2 9.08 × 10+1 1.09 × 10+1 8.55 × 10+1 1.02 × 10+2 1.68 × 10+1 1.17 × 10+2

f18 1.50 × 10+2 4.30 × 10+1 1.32 × 10+2 2.42 × 10+1 1.64 × 100 2.35 × 10+1 1.38 × 100 1.37 × 10−1 1.84 × 100

f19 7.85 × 10−1 4.36 × 10−1 2.39 × 10−1 7.69 × 10−1 5.01 × 10−1 1.78 × 10−1 8.33 × 10−1 4.03 × 10−1 2.91 × 10−1

f20 6.30 × 10−1 5.39 × 10−1 4.59 × 10−2 5.71 × 10−1 4.96 × 10−1 4.14 × 10−2 5.02 × 10−1 4.16 × 10−1 4.53 × 10−2

f21 1.45 × 100 2.33 × 10−1 3.18 × 100 7.42 × 10−1 2.04 × 10−1 2.02 × 100 3.08 × 10−1 2.20 × 10−1 8.66 × 10−2

f22 1.03 × 100 7.09 × 10−1 9.12 × 10−1 9.97 × 10−1 8.73 × 10−1 9.76 × 10−1 7.80 × 10−1 7.10 × 10−1 4.83 × 10−2

f23 1.09 × 100 9.27 × 10−1 7.47 × 10−2 1.05 × 100 8.69 × 10−1 8.62 × 10−2 8.87 × 10−1 7.93 × 10−1 5.98 × 10−2

f24 7.17 × 10−1 6.52 × 10−1 3.44 × 10−2 7.17 × 10−1 6.61 × 10−1 3.69 × 10−2 7.32 × 10−1 6.39 × 10−1 4.96 × 10−2

f25 3.91 × 100 6.47 × 10−1 2.82 × 100 3.26 × 100 5.36 × 10−1 2.80 × 100 3.60 × 100 8.08 × 10−1 1.57 × 100

f26 9.56 × 10−1 8.58 × 10−1 8.74 × 10−2 9.93 × 10−1 8.44 × 10−1 7.07 × 10−2 8.66 × 10−1 8.12 × 10−1 2.90 × 10−2

f27 7.98 × 10−1 7.24 × 10−1 3.70 × 10−2 7.86 × 10−1 6.96 × 10−1 4.20 × 10−2 8.54 × 10−1 7.74 × 10−1 5.43 × 10−2

f28 2.03 × 100 1.31 × 100 4.27 × 10−1 2.38 × 100 1.47 × 100 4.32 × 10−1 1.56 × 100 9.81 × 10−1 3.49 × 10−1

f29 5.47 × 10+3 1.89 × 10+3 2.54 × 10+3 2.89 × 10+3 4.93 × 10+2 1.89 × 10+3 3.71 × 10+2 1.01 × 10+2 3.28 × 10+2

Win 5 5 6 7 7 10 18 18 13

Lose 23 23 21 21 21 12 11 10 16

Draw 3 3 2 1 1 1 0 1 0

The bold data values in each row of the Table are the best ones in each pair compared with the EAOA approach.

Table A4. The performance presentation of the EAOA, MFO, and SCA for the CEC 2017 test suite
with each paired comparison.

Funs
MFO SCA EAOA

Mean Best Std. Mean Best Std. Mean Best Std.

f1 4.60 × 10−1 2.99 × 10−1 7.04 × 10−1 2.41 × 10−1 1.23 × 10−1 4.80 × 10−1 1.34 × 10−1 2.83 × 10−1 1.16 × 10−1

f2 2.33 × 10+2 9.80 × 10+1 1.30 × 10+2 1.41 × 10+1 9.03 × 10+1 2.65 × 10+1 3.73 × 10+1 1.93 × 10+1 1.16 × 10+1

f3 6.57 × 100 4.83 × 100 1.17 × 100 2.97 × 10−1 1.36 × 10−1 8.95 × 10−1 2.43 × 10−1 1.50 × 10−1 5.77 × 10−2

f4 6.23 × 10−1 5.46 × 10−1 4.52 × 10−2 5.24 × 10−1 4.54 × 10−1 3.69 × 10−2 2.00 × 10−1 1.16 × 10−1 4.80 × 10−2

f5 1.38 × 10−1 1.21 × 10−1 1.43 × 10−2 6.61 × 10−2 6.50 × 10−2 1.54 × 10−2 6.68 × 10−2 5.63 × 10−3 1.44 × 10−2

f6 1.79 × 100 1.34 × 10−1 1.66 × 100 9.48 × 10−1 7.89 × 10−1 9.52 × 10−2 2.81 × 10−1 2.01 × 10−1 6.49 × 10−2

f7 5.83 × 10−1 5.16 × 10−1 2.83 × 10−2 4.86 × 10−1 3.81 × 10−1 2.13 × 10−2 1.73 × 10−1 1.32 × 10−1 2.54 × 10−2

f8 2.38 × 10−1 1.78 × 100 3.28 × 100 1.17 × 10+1 5.84 × 100 3.05 × 100 3.37 × 100 7.49 × 10−1 2.06 × 100

f9 9.99 × 100 9.31 × 100 3.36 × 10−1 1.23 × 10+1 1.05 × 10+1 6.06 × 10−1 6.82 × 100 4.56 × 100 1.30 × 100

f10 7.53 × 100 3.80 × 100 1.73 × 100 3.00 × 10−1 1.14 × 10−1 9.63 × 10−1 3.98 × 10−1 2.19 × 10−1 1.06 × 10−1

f11 2.90 × 10+6 1.62 × 10+6 5.79 × 10+5 1.78 × 10+6 9.66 × 10+5 5.17 × 10+5 7.92 × 10+5 1.10 × 10+5 8.45 × 10+5

f12 7.12 × 10+5 3.18 × 10+5 2.50 × 10+5 3.12 × 10+5 8.18 × 10+4 2.17 × 10+5 9.90 × 10+4 8.39 × 10+4 8.46 × 10+4

f13 2.14 × 10+2 2.04 × 10+1 9.37 × 10+1 7.63 × 10+2 2.93 × 10+1 5.99 × 10+2 3.06 × 10+1 2.59 × 10+1 3.44 × 10+1

f14 1.93 × 10+4 1.54 × 10+3 9.89 × 10+3 7.40 × 10+3 9.60 × 10+2 4.59 × 10+3 1.10 × 10+1 1.32 × 100 1.14 × 10+1

f15 3.58 × 100 3.14 × 10−1 2.28 × 100 3.76 × 10−1 2.59 × 100 4.23 × 100 1.73 × 100 7.59 × 10−1 4.95 × 10−1

f16 1.42 × 100 1.09 × 100 1.39 × 10−1 1.43 × 100 6.64 × 10−1 3.42 × 10−1 6.03 × 10−1 1.36 × 10−1 2.70 × 10−1

f17 3.40 × 10+2 8.93 × 10+2 1.31 × 10+3 9.63 × 10+3 1.88 × 10+3 7.49 × 10+3 5.03 × 10+2 8.25 × 10+1 5.78 × 10+2

f18 5.66 × 10+4 2.32 × 10+4 2.43 × 10+4 1.32 × 10+4 3.22 × 10+3 7.60 × 10+3 1.15 × 10+1 1.14 × 100 1.53 × 10+1

f19 1.17 × 100 9.15 × 10−1 1.15 × 10−1 1.17 × 100 6.21 × 10−1 2.66 × 10−1 8.33 × 10−1 4.03 × 10−1 2.91 × 10−1

f20 8.92 × 10−2 8.28 × 10−2 9.98 × 10−1 8.06 × 10−1 7.10 × 10−1 4.72 × 10−2 5.02 × 10−1 4.16 × 10−2 4.53 × 10−2

f21 9.34 × 100 7.19 × 100 1.04 × 100 3.19 × 100 1.95 × 10−1 5.98 × 10−1 3.08 × 10−1 2.20 × 10−1 8.66 × 10−2

f22 1.28 × 100 1.22 × 10−1 4.01 × 10−1 1.14 × 100 1.05 × 100 4.84 × 10−2 7.80 × 10−1 7.10 × 10−1 4.83 × 10−1
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Table A4. Cont.

Funs
MFO SCA EAOA

Mean Best Std. Mean Best Std. Mean Best Std.

f23 1.38 × 100 1.27 × 100 6.06 × 10−2 1.26 × 100 1.13 × 100 5.20 × 10−2 8.87 × 10−1 7.93 × 10−1 5.98 × 10−2

f24 3.78 × 100 2.27 × 100 5.41 × 10−1 1.72 × 10−1 1.28 × 10−1 2.58 × 10−1 7.32 × 10−1 6.39 × 10−2 4.96 × 10−1

f25 8.23 × 100 5.94 × 100 9.24 × 10−1 6.57 × 100 3.22 × 100 1.84 × 100 3.60 × 100 8.08 × 10−1 1.57 × 100

f26 1.20 × 100 1.13 × 100 3.57 × 10−1 1.20 × 10−1 8.15 × 10−1 1.74 × 10−1 8.66 × 10−1 8.12 × 10−2 2.90 × 10−1

f27 3.39 × 100 2.15 × 10−1 6.11 × 10−1 2.06 × 100 4.31 × 10−1 8.16 × 10−1 8.54 × 10−1 7.74 × 10−1 5.43 × 10−1

f28 3.20 × 100 2.76 × 100 2.16 × 10−1 3.17 × 100 1.92 × 100 4.95 × 10−1 1.56 × 100 9.81 × 10−1 3.49 × 10−1

f29 8.17 × 10+4 5.16 × 10+4 2.12 × 10+4 4.90 × 10+4 1.70 × 10+4 2.05 × 10+4 3.71 × 10+2 1.51 × 10+2 3.28 × 10+2

Win 4 5 6 7 6 6 21 20 17

Lose 23 21 21 21 22 23 8 9 14

Draw 2 3 2 1 1 0 0 0 0

The bold data values in each row of the Table are the best ones in each pair compared with the EAOA approach.

Table A5. Wilcoxon signed-rank results of the test pairs of the pairwise algorithms’ results between
the EAOA and other algorithms, i.e., PBA [33], WOA [36], PPSO [29], AOA [41], IFMO [35], and
ESCA [40].

Funs PBA [33] WOA [36] PPSO [29] AOA [41] IFMO [35] ESCA [40] EAOA-Itself

f1 2.4018 × 10−7 1.4018 × 10−11 1.7018 × 10−11 1.1205 × 10−5 6.9641 × 10−8 2.5668 × 10−7 ~N/A

f2 1.4018 × 10−11 1.4018 × 10−11 1.4018 × 10−11 2.2080 × 10−7 7.1665 × 10−3 1.3749 × 10−2 ~N/A

f3 1.4018 × 10−11 1.4018 × 10−11 8.5710 × 10−11 1.8717 × 10−2 1.8717 × 10−2 4.6578 × 10−3 ~N/A

f4 1.4018 × 10−11 1.4018 × 10−11 1.4018 × 10−11 4.8753 × 10−11 1.5456 × 10−2 2.7237 × 10−5 ~N/A

f5 1.4018 × 10−11 1.5447 × 10−11 1.4018 × 10−11 1.8376 × 10−9 5.3326 × 10−5 4.0332 × 10−11 ~N/A

f6 1.4018 × 10−11 1.4018 × 10−11 1.4018 × 10−11 4.4659 × 10−10 6.5678 × 10−4 9.8637 × 10−4 ~N/A

f7 1.4018 × 10−11 1.4018 × 10−11 1.7018 × 10−11 9.4096 × 10−11 1.6922 × 10−3 6.2370 × 10−4 ~N/A

f8 1.4018 × 10−11 3.6674 × 10−11 1.8745 × 10−11 8.0856 × 10−2 1.0244 × 10−1 1.2706 × 10−2 ~N/A

f9 4.8753 × 10−11 1.4018 × 10−11 1.2873 × 10−8 2.0041 × 10−9 3.9045 × 10−1 2.6004 × 10−1 ~N/A

f10 1.4018 × 10−11 1.4018 × 10−11 1.4018 × 10−11 5.8296 × 10−1 9.7754 × 10−1 1.5366 × 10−3 ~N/A

f11 1.4018 × 10−11 1.4018 × 10−11 1.4018 × 10−11 1.5439 × 10−9 1.4703 × 10−1 3.1620 × 10−6 ~N/A

f12 1.4018 × 10−11 1.4018 × 10−11 6.4699 × 10−11 1.5447 × 10−11 1.3749 × 10−2 4.1212 × 10−2 ~N/A

f13 7.1071 × 10−11 7.8055 × 10−11 7.1071 × 10−11 1.2847 × 10−4 8.7693 × 10−1 8.2178 × 10−1 ~N/A

f14 1.4018 × 10−11 1.4018 × 10−11 2.5021 × 10−11 1.4018 × 10−11 3.7194 × 10−2 3.6588 × 10−9 ~N/A

f15 1.4018 × 10−11 1.4018 × 10−11 4.0332 × 10−11 2.9096 × 10−2 7.2487 × 10−1 7.3779 × 10−2 ~N/A

f16 1.4018 × 10−11 3.7291 × 10−10 6.1854 × 10−1 2.7082 × 10−2 7.3779 × 10−2 6.3217 × 10−1 ~N/A

f17 7.1071 × 10−11 1.8745 × 10−11 1.6408 × 10−10 1.4729 × 10−6 9.8877 × 10−1 7.2487 × 10−1 ~N/A

f18 1.4018 × 10−11 1.4018 × 10−11 1.4018 × 10−11 1.4018 × 10−11 6.1228 × 10−1 6.4699 × 10−11 ~N/A

f19 2.7567 × 10−6 5.3326 × 10−5 1.8183 × 10−6 4.8148 × 10−1 8.9917 × 10−1 4.6412 × 10−1 ~N/A

f20 1.4018 × 10−11 1.4018 × 10−11 1.8745 × 10−11 1.0328 × 10−10 2.5189 × 10−2 4.3218 × 10−7 ~N/A

f21 1.4018 × 10−11 1.4018 × 10−11 1.4018 × 10−11 3.3134 × 10−1 7.4745 × 10−3 6.9641 × 10−8 ~N/A

f22 1.4018 × 10−11 1.4018 × 10−11 1.4018 × 10−11 2.7539 × 10−11 3.7194 × 10−2 2.5021 × 10−11 ~N/A

f23 1.4018 × 10−11 1.4018 × 10−11 1.4018 × 10−11 9.4096 × 10−11 2.2599 × 10−1 2.5970 × 10−9 ~N/A

f24 1.4018 × 10−11 1.4018 × 10−11 7.8055 × 10−11 2.0014 × 10−1 1.8717 × 10−2 1.7206 × 10−1 ~N/A

f25 2.2729 × 10−11 1.3989 × 10−7 1.3643 × 10−10 4.4711 × 10−1 8.2178 × 10−1 3.1751 × 10−1 ~N/A

f26 1.4018 × 10−11 3.9843 × 10−9 3.0304 × 10−11 1.1106 × 10−7 2.8074 × 10−2 2.3679 × 10−10 ~N/A

f27 1.4018 × 10−11 9.4096 × 10−11 5.8443 × 10−10 2.1213 × 10−5 5.9218 × 10−4 2.2408 × 10−6 ~N/A

f28 1.4018 × 10−11 2.2729 × 10−11 1.4018 × 10−11 7.1825 × 10−5 2.0181 × 10−2 4.3379 × 10−9 ~N/A

f29 1.4018 × 10−11 1.4018 × 10−11 1.4018 × 10−11 1.4018 × 10−11 6.2370 × 10−4 7.8055 × 10−11 ~N/A

Avg. 6.5517 5.7241 5.6207 3.6207 2.5138 2.5483 2.25204

Rank 7 6 5 4 2 3 1

The bold data values in each row of the Table are the best ones in each pair compared with the EAOA approach.
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Figure A1. The EAOA’s convergence output curves represented graphically and compared to those 
of the GA, AOA, SA, FPA, PSO, MFO, and SCA algorithms for the selected functions. The green line 
is the set background of the worst one; here, the green line is the GA method. 
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