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ABSTRACT 

We propose an optimality principle for training an unsu

pervised feedforward neural network based upon maximal 

ability to reconstruct the input data from the network out

puts. We describe an algorithm which can be used to train 

either linear or nonlinear networks with certain types of 

nonlinearity. Examples of applications to the problems of 

image coding, feature detection, and analysis of random

dot stereograms are presented. 

1. INTRODUCTION 

There are many algorithms for unsupervised training of neural networks, each of 

which has a particular optimality criterion as its goal. (For a partial review, see 

(Hinton, 1987, Lippmann, 1987).) We have presented a new algorithm for training 

single-layer linear networks which has been shown to have optimality properties 

associated with the Karhunen-Loeve expansion (Sanger, 1988b). We now show 

that a similar algorithm can be applied to certain types of nonlinear feedforward 

networks, and we give some examples of its behavior. 

The optimality principle which we will use to describe the algorithm is based on the 

idea of maximizing information which was first proposed as a desirable property of 

neural networks by Linsker (1986, 1988). Unfortunately, measuring the information 

in network outputs can be difficult without precise knowledge of the distribution 

on the input data, so we seek another measure which is related to information 

but which is easier to compute. If instead of maximizing information, we try to 

maximize our ability to reconstruct the input (with minimum mean-squared error) 

given the output of the network, we are able to obtain some useful results. Note 

that this is not equivalent to maximizing information except in some special cases. 

However, it contains the intuitive notion that the input data is being represented 

by the network in such a way that very little of it has been "lost". 
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2. LINEAR CASE 

We now summarize some of the results in (Sanger, 1988b). A single-layer linear 

feedforward network is described by an M xN matrix C of weights such that if x is 

a vector of N inputs and y is a vector of M outputs with M < N, we have y = Cx. 

As mentioned above, we choose an optimality principle defined so that we can best 

reconstruct the inputs to the network given the outputs. We want to minimize the 

mean squared error E[(x - x)2] where x is the actual input which is zero-mean with 

correlation matrix Q = E[xxT], and x is a linear estimation of this input given the 

output y. The linear least squares estimate (LLSE) is given by 

and we will assume that x is computed in this way for any matrix C of weights 

which we choose. The mean-squared error for the LLSE is given by 

and it is well known that this is minimized if the rows of C are a linear combination of 

the first M eigenvectors of the correlation matrix Q. One optimal choice of C is the 

Singular Value Decomposition (SVD) of Q, for which the output correlation matrix 

E[yyT] = CQCT will be the diagonal matrix of eigenvalues of Q. In this case, the 

outputs are uncorrelated and the sum of their variances (traceE[yyT]) is maximal for 

any set of M un correlated outputs. We can thus think of the eigenvectors as being 

obtained by any process which maximizes the output variance while maintaining 

the outputs uncorrelated. 

We now define the optimal single-layer linear network as that network whose weights 

represent the first M eigenvectors of the input correlation matrix Q. The optimal 

network thus minimizes the mean-squared approximation error E[(x - x)2] given 

the shape constraint that M < N. 

2.1 LINEAR ALGORITHM 

We have previously proposed a weight-update rule called the "Generalized Hebbian 

Algorithm" , and proven that this algorithm causes the rows of the weight matrix C 

to converge to the eigenvectors of the input correlation matrix Q (Sanger, 1988a,b). 

The algorithm is given by: 

C(t + 1) = C(t) + I (y(t)xT(t) - LT[y(t)yT(t)]C(t») (1) 

where I is a rate constant which decreases as l/t, x(t) is an input sample vector, 

yet) = C(t)x(t), and LTD is an operator which makes its matrix argument lower 

triangular by setting all entries above the diagonal to zero. This algorithm can be 

implemented using only a local synaptic learning rule (Sanger, 1988b). 

Since the Generalized Hebbian Algorithm computes the eigenvectors of the input 

correlation matrix Q, it is related to the Singular Value Decomposition (SVD), 
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c. 

Figure 1: (aJ original image. (bJ image coded at .36 bits per pixel. (cJ masks 

learned by the network which were used for vector quantized coding of 8x8 blocks of 

the image. 

Principal Components Analysis (PCA), and the Karhunen-Loeve Transform (KLT). 

(For a review of several related algorithms for performing the KLT, see (Oja, 1983).) 

2.2 IMAGE CODING 

We present one example of the behavior of a single-layer linear network. (This 

example appears in (Sanger, 1988b).) Figure 1 a shows an original 256x256x8bit 

image which was used for training a network. 8x8 blocks of the image were chosen 

by scanning over the image, and these were used as training inputs to a network with 

64 inputs and 8 outputs. After training, the set of weights for each output (figure 

lc) represents a vector quantizing mask. Each 8x8 block of the input image is then 

coded using the outputs of the network. Each output is quantized with a number of 

bits related to the log of the variance, and the original figure is approximated from 

the quantized outputs. The reconstruction of figure 1 b uses a total of 23 bits per 8x8 

region, which gives a data rate of 0.36 bits per pixel. The fact that the image could 

be represented using such a low bit rate indicates that the masks that were found 

represent significant features which are useful for recognition. This image coding 

technique is equivalent to block-coded KLT methods common in the literature. 



14 Sanger 

3. NONLINEAR CASE 

In general, training a nonlinear unsupervised network to approximate nonlinear 

functions is very difficult. Because of the large (infinite-dimensional) space of pos

sible functions, it is important to have detailed knowledge of the class of functions 

which are useful in order to design an efficient network algorithm. (Several peo

ple pointed out to me that the talk implied such knowledge is not necessary, but 

unfortunately such an implication is false.) 

The network structure we consider is a linear layer represented by a matrix C (which 

is perhaps an interior layer of a larger network) followed by node nonlinearities (1'(Yi) 
where Yi is the ith linear output, followed by another linear layer (perhaps followed 

by more layers). We assume that the nonlinearities (1'0 are fixed, and that the only 

parameters susceptible to training are the linear weights C. 

If z is the M-vector of outputs after the nonlinearity, then we can write each com

ponent Zi = (1'(Yi) = (1'(CiX) where Ci is the ith row of the matrix C. Note that 

the level contours of each function Zi are determined entirely by the vector Ci, and 

that the effect of (1'0 is limited to modifying the output value. Intuitively, we thus 

expect that if Yi encodes a useful parameter of the input x, then Zi will encode the 

same parameter, although scaled by the nonlinearity (1'0. 

This can be formalized, and if we choose our optimality principle to again be min

imum mean-squared linear approximation of the original input x given the output 

z, the best solution remains when the rows of C are a linear combination of the first 

M eigenvectors of the input correlation matrix Q (Bourlard and Kamp, 1988) . 

In two of the simulations, the nonlinearity (1'0 which we use is a rectification non

linearity, given by 

{ Yi 
(1'(Yd = 0 

if Yi 20 
if Yi <0 

Note that at most one of {(1'(Yi), (1'( -Yi)} is nonzero at any time, so these two values 

are uncorrelated. Therefore, if we maximize the variance of y (before the nonlin

earity) while maintaining the elements of Z (after the nonlinearity) uncorrelated, 

we need 2M outputs in order to represent the data available from an M-vector y. 

Note that 2M may be greater than the number of inputs N, so that the "hidden 
layer" Z can have more elements than the input. 

3.1 NONLINEAR ALGORITHM 

The nonlinear Generalized Hebbian Algorithm has exactly the same form as for 

the linear case, except that we substitute the use of the output values after the 

nonlinearity for the linear values. The algorithm is thus given by: 

C(t + 1) = C(t) + 'Y (z(t)xT(t) - LT[z(t)zT(t)]C(t)) (2) 

where the elements of z are given by Zi(t) = (1'(Yi(t)), with y(t) = C(t)x(t). 

Although we have not proven that this algorithm converges, a heuristic analysis 

of its behavior (for a rectification nonlinearity and Gaussian input distribution) 
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shows that stable points may exist for which each row of C is proportional to 

an eigenvector of Q, and pairs of rows are either the negative of each other or 

orthogonal. In practice, the rows of C are ordered by decreasing output variance, 

and occur in pairs for which one member is the negative of the other. This choice 

of C will maximize the sum of the output variances for uncorrelated outputs, so 

long as the input is Gaussian. It also allows optimal linear estimation of the input 

given the output, so long as both polarities of each of the eigenvectors are present. 

3.2 NONLINEAR EXAMPLES 

3.2.1 Encoder Problem 

We compare the performance of two nonlinear networks which have learned to 

perform an identity mapping (the "encoder" problem). One is trained by back

propagation, (Rumelhart et a/., 1986) and the other has two hidden layers trained 

using the unsupervised Hebbian algorithm, while the output layer is trained using 

a supervised LMS algorithm (Widrow and Hoff, 1960). The network has 5 inputs, 

two hidden layers of 3 units each, and 5 outputs. There is a sigmoid nonlinearity at 

each hidden layer, but the thresholds are all kept at zero. The task is to minimize 

the mean-squared difference between the inputs and the outputs. The input is a 

zero-mean correlated Gaussian random 5-vector, and both algorithms are presented 

with the same sequence of inputs. The unsupervised-trained network converged to a 

steady state after 1600 examples, and the backpropagation network converged after 

2400 (convergence determined by no further decrease in average error). The RMS 

error at steady state was 0.42 for both algorithms (this figure should be compared to 

the sum of the variances of the inputs, which was 5.0). Therefore, for this particular 

task, there is no significant difference in performance between backpropagation and 

the Generalized Hebbian Algorithm. This is an encouraging result, since if we can 

use an unsupervised algorithm to solve other problems, the training time will scale 

at most linearly with the number of layers. 

3.2.2 Nonlinear Receptive Fields 

Several investigators have shown that Hebbian algorithms can discover useful image 

features related to the receptive fields of cells in primate visual cortex (see for 

example (Bienenstock et a/., 1982, Linsker, 1986, Barrow, 1987». One of the more 

recent methods uses an algorithm very similar to the one proposed here to find the 

principal component of the input (Linsker, 1986). We performed an experiment to 

find out what types of nonlinear receptive fields could be learned by the Generalized 

Hebbian Algorithm if provided with similar input to that used by Linsker. 

We used a single-layer nonlinear network with 4096 inputs arranged in a 64x64 

grid, and 16 outputs with a rectification nonlinearity. The input data consisted of 

images of low-pass filtered white Gaussian noise multiplied by a Gaussian window. 

After 5000 samples, the 16 outputs learned the masks shown in figure 2. These 

masks possess qualitative similarity to the receptive fields of cells found in the visual 

cortex of cat and monkey (see for example (Andrews and Pollen, 1979». They are 

equivalent to the masks learned by a purely linear network (Sanger, 1988b), except 

that both positive and negative polarities of most mask shapes are present here. 



16 Sanger 

Figure 2: Nonlinear receptive fields ordered from left-to-right and top-to-bottom. 

3.2.3 Stereo 

We now show how the nonlinear Generalized Hebbian Algorithm can be used to 

train a two-layer network to detect disparity edges. The network has 128 inputs, 

8 types of unit in the hidden layer with a rectification nonlinearity, and 4 types of 

output unit. A 128x128 pixel random-dot stereo pair was generated in which the 

left half had a disparity of two pixels, and the right half had zero disparity. The 

image was convolved with a vertically-oriented elliptical Gaussian mask to remove 

high-frequency vertical components. Corresponding 8x8 blocks of the left and right 

images (64 pixels from each image) were multiplied by a Gaussian window function 

and presented as input to the network, which was allowed to learn the first layer 

according to the unsupervised algorithm. After 4000 iterations, the first layer had 

converged to a set of 8 pairs of masks. These masks were convolved with the images 

(the left mask was convolved with the left image, and the right mask with the right 

image, and the two results were summed and rectified) to produce a pattern of 

activity at the hidden layer. (Although there were only 8 types of hidden unit, we 

now allow one of each type to be centered at every input image location to obtain a 

pattern of total activity.) Figure 3 shows this activity, and we can see that the last 

four masks are disparity-sensitive since they respond preferentially to either the 2 

pixel disparity or the zero disparity region of the image. 
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Figure 3: Hidden layer response for a two-layer nonlinear network trained on stereo 

images. The left half of the input random dot image has a 2 pixel disparity, and the 

right half has zero disparity. 

Figure 4: Output layer response for a two-layer nonlinear network trained on stereo 

Images. 

Since we were interested in disparity, we trained the second layer using only the last 

four hidden unit types. The second layer had 1024 (=4x16x16) inputs organized as 

a 16x16 receptive field in each of the four hidden unit "planes". The outputs did not 

have any nonlinearity. Training was performed by scanning over the hidden unit 

activity pattern (successive examples overlapped by 8 pixels) and 6000 iterations 

were used to produce the second-layer weights. The masks that were learned were 

then convolved with the hidden unit activity pattern to produce an output unit 

activity pattern, shown in figure 4. 

The third output is clearly sensitive to a change in disparity (a depth edge). If we 

generate several different random-dot stereograms and average the output results, 
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Figure 5: Output layer response averaged over ten stereograms with a central 2 pixel 

disparity square and zero disparity surround. 

we see that the other outputs are also sensitive (on average) to disparity changes, but 

not as much as the third. Figure 5 shows the averaged response to 10 stereograms 

with a central 2 pixel disparity square against a zero disparity background. Note 

that the ability to detect disparity edges requires the rectification nonlinearity at 

the hidden layer, since no linear function has this property. 

4. CONCLUSION 

We have shown that the unsupervised Generalized Hebbian Algorithm can produce 

useful networks. The algorithm has been proven to converge only for single-layer 

linear networks. However, when applied to nonlinear networks with certain types 

of nonlinearity, it appears to converge to good results. In certain cases, it operates 

by maintaining the outputs uncorrelated while maximizing their variance. We have 

not investigated its behavior on nonlinearities other than rectification or sigmoids, 

so we can make no predictions about its general utility. Nevertheless, the few 

examples presented for the nonlinear case are encouraging, and suggest that further 

investigation of this algorithm will yield interesting results. 
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