
RESEARCH ARTICLE

An optimisation approach for pre-runtime scheduling

of tasks and communication in an integrated modular

avionic system

Mathias Blikstad1 • Emil Karlsson1,2 • Tomas Lööw1
•

Elina Rönnberg
1,2

Received: 1 June 2017 / Revised: 28 January 2018 / Accepted: 24 April 2018 /

Published online: 15 June 2018

� The Author(s) 2018

Abstract In modern integrated modular avionic systems, applications share hard-

ware resources on a common avionic platform. Such an architecture necessitates

strict requirements on the spatial and temporal partitioning of the system to prevent

fault propagation between different aircraft functions. One way to establish a

temporal partitioning is through pre-runtime scheduling of the system, which

involves creating a schedule for both tasks and a communication network. While

avionic systems are growing more and more complex, so is the challenge of

scheduling them. The scheduling of the system has an important role in the

development of new avionic systems, since functionality is typically added to the

system over a period of several years and a scheduling tool is used both to detect if

the platform can host the new functionality and, if this is possible, to create a new

schedule. For this reason an exact solution strategy for avionics scheduling is

preferred over a heuristic one. In this paper we present a mathematical model for an

industrially relevant avionic system and present a constraint generation procedure

for the scheduling of such systems. We apply our optimisation approach to instances

provided by our industrial partner. These instances are of relevance for the devel-

opment of future avionic systems and contain up to 20,000 tasks to be scheduled.

The computational results show that our optimisation approach can be used to create

schedules for such instances within a reasonable time.

Keywords Avionic system � Scheduling � Discrete optimisation � Integer
programming � Multiprocessor scheduling � Constraint generation

& Elina Rönnberg

elina.ronnberg@liu.se

Emil Karlsson

emil.karlsson@liu.se

1 Saab AB, 581 88 Linköping, Sweden

2 Department of Mathematics, Linköping University, 581 83 Linköping, Sweden

123

Optim Eng (2018) 19:977–1004

https://doi.org/10.1007/s11081-018-9385-6

http://orcid.org/0000-0002-9498-1924
http://orcid.org/0000-0002-2081-2888
http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-018-9385-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-018-9385-6&domain=pdf
https://doi.org/10.1007/s11081-018-9385-6

1 Introduction

For an avionic system (the electronic system in an aircraft) it is not sufficient that

the logical result of a computation is correct, it is also crucial that the result is

produced at the correct time. Such systems, where the consequences are severe if a

computational result is not delivered on time, are called hard real-time systems. For

an introduction to real-time systems, see Kopetz (2011). The scheduling of real-time

systems can refer both to on-line scheduling where the scheduling decisions are

made at runtime and to pre-runtime scheduling where the schedule is created at

compile time. This paper addresses a pre-runtime multiprocessor scheduling

problem for an avionic system with periodic tasks, where each task is beforehand

assigned to a processor.

During the last 2 decades, most of the avionics industry has gone from using

federated systems to using an integrated architecture called Integrated Modular

Avionics (IMA), where applications share hardware resources. This architecture

necessitates strict requirements on the spatial and temporal partitioning of the

system to achieve fault containment; a common standard for this partitioning is

ARINC 653. For more information about IMA and ARINC 653, see Radio

Technical Commission for Aeronautics (RTCA) (2005) and Airlines Electronic

Engineering Committee (AEEC) (2006), respectively. Typically the IMA architec-

ture give rise to multiprocessor scheduling-type problems that become computa-

tionally demanding for large-scale instances. The introductory sections of the PhD

thesis by Al-Sheikh (2011) provide an extensive introduction to the scheduling of

avionic systems.

In the process of designing an avionic system, new software functionality is

developed and added to the system iteratively during a project of several years.

Whenever a change is made in a software component, the scheduling tool has to

provide a new schedule for the system or, if it cannot, preferably produce a proof of

infeasibility. If no feasible schedule exists, either changes to the software or

upgrades of the avionics platform are needed. Because of the rigid certification

processes in the aircraft industry, it is extremely costly to upgrade the platform, and

therefore it is important to utilise the existing platform in an efficient way and make

upgrades only when necessary. The frequency of use and the importance of the

outcome of the scheduling gives the scheduling tool a vital role in the process of

designing an avionic system.

Most methods for the pre-runtime scheduling of large-scale real-time systems are

of a heuristic nature; see for example the references in Sect. 1.2. For many types of

real-time systems, a primal heuristic might be an efficient and sound way to provide

a schedule. However, this does not hold for an avionic scheduling problem when the

scheduling also involves determining whether or not a desired software function-

ality can be implemented with the existing platform. If a primal heuristic method is

applied to such a problem setting and the heuristic fails to provide a solution, one

does not know if this results from shortcomings of the heuristic or if no feasible

solution exists. This paper contributes to the development of optimisation-based

approaches for the scheduling of large and complex future avionics systems, and the

978 M. Blikstad et al.

123

research was carried out in collaboration with the Swedish defence and security

company Saab.

Our scheduling problem can be considered as a multiprocessor scheduling

problem with precedence relations and a communication network. In Sect. 2 this

problem is presented from a mathematical modelling point of view rather than from

an avionics point of view. An overview of the technical design of the system is

summarised in the following section, but it is not discussed to the same extent as in

the real-time system research papers referred to in Sect. 1.2.

1.1 System characteristics

There is a diversity in the type of scheduling required for different IMA systems,

even if they are designed in compliance with the same ARINC standard. This

section summarises the characteristics of the system considered in this paper.

The system is distributed, and at each node there is a set of processors, called

modules. One of these is responsible for both the inter-node and the intra-node

communication as well as the communication with external systems. The

responsibility of the other modules is to run applications (software processes).

The system is partitioned in the sense that all the tasks are a priori assigned to

modules, and no migration is allowed.

At the communication modules, tasks that deal with the communication need to

be scheduled. For the modules running applications, the software processes that

share functionality are grouped into partitions by the engineers designing the

system, and the tasks to be scheduled are these partitions. Processes executing in the

same partition are locally scheduled by rate monotonic scheduling; see Sec-

tion 28.4.3, Part IV of Leung (2004). It is within the partitions that the real-time

aspect of the process scheduling is captured, with the rate monotonic scheduling

assuring that all deadlines are respected. Since the assignment of processes to

partitions is made independently of the pre-runtime scheduling and the scheduling

within the partitions, the scheduling is referred to as being hierarchical.

The nodes communicate via a switched Ethernet which supports multicast. The

Ethernet considered in this paper is such that messages are assigned to, and sent in,

discrete time slots. Within a time slot, the full bandwidth can be used for the

messages assigned to it. Hence, the way the communication capacity is made

available to different resources within the system deviates from what is studied in

previously published work.

In the well-established Avionics Full Duplex Switched Ethernet (AFDX) network

(see Al-Sheikh et al. 2013) used by, for example, the Airbus A380 and Boeing

Dreamliner B787, a dedicated virtual link with limited bandwidth is created for each

communication flow. The communication is assured to be separated by respecting a

Bandwidth Allocation Gap (BAG) and a Maximum Frame Size (MFS). For more

information see Kopetz (2011) and Al-Sheikh et al. (2013); the latter suggests a

strategy for the optimal design of the virtual links. For the network considered in our

paper, the communication is separated by assigning the messages to time slots in

which they are allowed to use the full bandwidth, facilitating very fast commu-

nication at that instant. The introduction of time slots does however make the

An optimisation approach for pre-runtime scheduling of... 979

123

communication capacity sharing a part of the temporal partitioning of the system,

and thereby the message scheduling becomes more intricately integrated with the

scheduling of partitions. For further information about the communication network

used in this paper, see the patent by Danielsson et al. (2016).

The schedule is created pre-runtime and made with knowledge of the duration

(worst-case execution time) and the period of all tasks to be executed as well as the

precedence relations and communication messages between them. There are two

types of scheduling decisions to be made; communication is scheduled by assigning

messages to time slots and tasks are sequenced and assigned a start time. The

solution approach we suggest in this paper is applied to instances with up to 8

application modules with 25 partitions repeated 64 times, 96 communication

messages, and 7 communication modules with 19,894 tasks.

1.2 Related research

There are many papers on the scheduling of real-time systems that consider runtime

scheduling, which is different to pre-runtime scheduling. The reader interested in

the schedulability analysis and runtime scheduling of avionic systems is referred to,

for example, Rufino et al. (2010), Davis and Burns (2011), and Easwaran et al.

(2009). A comparison of runtime and pre-runtime scheduling is provided by Xu and

Parnas (2000), and they suggest pre-runtime scheduling as the preferred choice for

applications similar to that in this paper. They conclude in part that pre-runtime

scheduling is better suited for handling complex application constraints, makes it

easier to verify that all deadlines and constraints are complied with, and also

improves the chances of finding a feasible schedule when the resource utilisation is

high and feasibility might be a challenge. Comparing the runtime and the pre-

runtime approach shows that the latter can be considered as a constructive sufficient

schedulability test; see Section 10.3 of Kopetz (2011).

The pre-runtime scheduling of IMA systems is addressed in Al-Sheikh et al.

(2012), who consider the scheduling of strictly periodic tasks on a multiprocessor

system. Their model integrates two types of decisions, the allocation of tasks to

processors (respecting both hardware capacity constraints and conditions that

prevent the allocation of pairs of tasks to the same hardware) and the assignment of

start times to tasks (respecting the strict periodicity conditions), with the objective

of creating a schedule with maximum idle time between tasks (proportional to the

processing time of the task) to provide robustness. That they assign tasks to

processors adds an additional complexity compared to the problem we consider.

However, in Al-Sheikh et al. (2012) it is sufficient to satisfy precedence relations

between the tasks in order to ensure communication. From that point of view, their

setting is significantly less complex than that in this paper. To solve the problem,

they suggest a heuristic inspired by game theory principles, and they successfully

apply it to instances, supplied by industrial partners, with up to 48 processors and

636 tasks.

For a problem setting of the same type, an exact integer programming method

based on a bin-formulation of the problem is presented by Eisenbrand et al. (2010).

They provide computational results for instances with up to 177 tasks and 16

980 M. Blikstad et al.

123

machines and show that their approach outperforms other integer programming

formulations. Another, later work studying a similar setting as in Al-Sheikh et al.

(2012) is by Balashov et al. (2014), who propose a greedy heuristic for solving the

problem of allocating tasks to processors and another heuristic for the scheduling of

tasks. They apply their algorithm to a system with 3 nodes, 9 partitions with a total

of 164 periodic tasks, and 163 communication messages.

An early work suggesting a scheduling tool for an IMA system is Lee et al.

(2000), but they address significantly less complex problems than those in this

paper. The same holds for the approach of Tavares et al. (2012), which generates

schedules using a time Petri net model (a graph representation of concurrent

processes) and develops a specially designed depth-first search over the order in

which to place the tasks. Their strategy takes into account intertask relations

(precedence and mutual exclusion) and overhead. They evaluate their strategy only

for uni-processor systems with at most 12 tasks (real-world applications and

custom-built instances), which are significantly smaller than those of interest in our

context.

Another related paper on the pre-runtime scheduling of IMA systems is by Beji

et al. (2014). In their system, a TTEthernet (see Kopetz 2011) is used for the

communication, and the scheduling is assumed to be carried out iteratively when

new tasks are added to the system. The objective of this repeated re-scheduling is to

minimise the integration cost while developing the system. They apply a

Satisfiability Modulo Theory (SMT) solver to create schedules, and they evaluate

their approach on an application with 5 nodes and 7 partitions.

Various methods for the scheduling of distributed systems with time-triggered

communication can be found in the literature, applying either heuristic methods

(Theis et al. 2013; Tămaş-Selicean et al. 2012; Pop et al. 1999), a Mixed Integer

Programming (MIP) solver (Zhang et al. 2014), or an SMT-solver (Beji et al. 2014;

Craciunas and Oliver 2014). None of these approaches are viable in our setting, and

typically the exact approaches are applicable only to relatively small instances, as

seen from the examples above.

1.3 Contributions and outline of the paper

A system model, described from a mathematical modelling point of view, is given

in Sect. 2. The main computational challenge of the problem stems from the huge

number of tasks to be sequenced on the communication modules, and a key

contribution of this paper is our constraint generation procedure to handle this.

Section 3 introduces the characteristics of the problem that facilitate the design of

the constraint generation procedure. Our resulting MIP formulation is presented in

Sect. 4, and the constraint generation procedure and some preprocessing compo-

nents are introduced in Sect. 5. Computational results to verify that our approach

can be used to solve instances of practical relevance are presented in Sect. 6,

followed by concluding comments in Sect. 7.

An optimisation approach for pre-runtime scheduling of... 981

123

2 System model

This section introduces the concepts and notations needed to create a modelling

framework for the system, which is illustrated in Fig. 1. The system executes

periodically, meaning that the schedule for the system is repeated over and over

again. One occurrence of such repetition is called a major frame, and its duration,

denoted by P, is the least common multiple of the periods of the tasks in the system.

A schedule for a major frame is the result of two types of decisions, one assigning

communication messages to time slots and the other assigning start times to tasks.

The system design is such that adjacent major frames are not independent, and

therefore a schedule for a major frame needs to be created such that it becomes valid

for an infinite repetition of major frames.

2.1 Periodic task system

The system consists of a set of nodes, where each contains a set of modules that host

tasks. The set of all tasks in the system is denoted by I . Each task is a priori

assigned to a specific module, and no migration of tasks between modules is

allowed. The release time and deadline of task i is denoted by tri and t
d
i , respectively,

i 2 I . Between its release time and deadline, task i must be given an exclusive and

non-preempted execution interval of the duration of its execution requirement,

denoted by ei, i 2 I .
A task i is executed periodically with period pi, generating a number of instances

in a major frame that have to scheduled at the same time offset by the start of the

period of task i, i 2 I . Further, job k refers to all instances of a task that are

scheduled at the same time offset by the start of a major frame.

Fig. 1 An overview of a system with n nodes. The structure of the content is the same for all nodes, and
therefore it is displayed only for nodes 1 and n

982 M. Blikstad et al.

123

On each node there exists a single module called the communication module

(CM) that handles the system external, intra-node and inter-node communication of

this node. Both the system external and intra-node communication appear as tasks

on a CM, while the inter-node communication is made via the communication

network to be introduced in Sect. 2.3. The set of all CMs in the system is denoted by

HCM. The set of tasks assigned to CM h is denoted by Ih, h 2 HCM, and each task

on a CM has a period equal to the duration of a major frame, meaning that each task

has only one job.

In addition to the CM, each node also has a set of application modules (AMs) that

host partitions. The set of all AMs in the system is denoted byHAM. The set of tasks

assigned to AM h is denoted I h, and these tasks have period P/64, meaning that

each task has 64 jobs, h 2 HAM. For each pair of tasks i and j there is a minimum

idle time lidleij between the end of task i and the start of task j, if task j follows task i

on AM h, where i; j 2 Ih, h 2 HAM. This idle time ensures that there is enough time

to handle intra-node communication related to the two tasks. For a summary of the

notation introduced in this section, see Table 1.

2.2 Precedence relations

There is a set of precedence relations called dependencies, which is denoted by D. A

dependency restricts the duration between two jobs to be within a given interval;

these jobs can be executed on the same or on different modules. Formally this

means that dependency d restricts the time from the start of job kd of task id to the

next occurring start of job ld of task jd to be between l
min�dep
d and l

max�dep
d , d 2 D.

Since the order of the jobs in a major frame is not known in advance, the duration

between the jobs of a dependency can be measured within a major frame or from

one major frame to the next.

Table 1 The parameters and

sets of the entities introduced in

Sect. 2.1

Entity Parameter Notation

System Duration of a major frame P

CMs HCM

AMs HAM

Tasks I

Dependencies D

Chains C

AM h Tasks I h

Idle time between task i and task j lidleij

CM h Tasks I h

Task i Execution requirement ei

Period pi

Release time tri

Deadline tdi

An optimisation approach for pre-runtime scheduling of... 983

123

There are also restrictions called chains, which are denoted by C. A chain c

specifies that a group of jobs, linked by dependencies in the set Dchain
c , have to be

executed in a given order from the start of one of the jobs in a major frame to the

start of the same job in the following major frame, c 2 C. For a summary of the

notation introduced in this section, see Table 2.

2.3 Communication network

The nodes in the system communicate through a single communication network

(CN). Each node is connected to the CN through its CM. Let M denote the set of

CN-messages that have to be transmitted through the CN. CN-message m is

transmitted from a single CM to a set of receiving CMs, requiring a capacity lmsg
m ,

m 2 M. For transmission, a CN-message must be assigned to a CN-slot. Denote the

set of CN-slots by N . The total capacity requirement of the CN-messages assigned

to the same CN-slot n cannot exceed the capacity lslotn , n 2 N . This paper considers

the case where each CM can send only one CN-message in each CN-slot and receive

only one CN-message in each CN-slot.

To transmit a CN-message on a CN, there are four types of tasks and they must

be executed in a particular order. On the sending CM, there is first a task responsible

for preparing the CN-message followed by a task responsible for sending the CN-

message. After the CN-message has been sent there is, on each receiving CM, a task

responsible for dequeuing the message followed by a task for reading the data. The

set of tasks required to transmit and receive CN-message m is denoted Imsg
m . If CN-

message m is assigned to CN-slot n, then task i has to obey the release time trin and

deadline tdin for CN-slot n, i 2 Imsg
m , n 2 N , m 2 M. For a summary of the notation

introduced in this section, see Table 3.

3 Sequencing approach

The computational challenge of the problem instances of practical interest stems

primarily from the large number of tasks to be sequenced on the CMs. This section

describes our strategy for the sequencing of CM-tasks followed by an introduction

of the notation needed. Finally, we confirm the validity of our sequencing approach.

Table 2 The parameters and

sets of the entities introduced in

Sect. 2.2

Entity Parameter Notation

Dependency d Minimum length l
min�dep
d

Maximum length l
max�dep
d

From task and job id ; kd

To task and job jd ; ld

Chain c Dependencies Dchain
c

984 M. Blikstad et al.

123

3.1 Strategy

An important characteristic of the industrially relevant avionics instances under

consideration is that the CMs have a huge number of tasks, many of which are fixed.

It is also known that most of the technical restrictions, like release times and

deadlines of tasks, precedence relations and CN-scheduling, are not particularly

tight. With this knowledge in mind, our approach to sequencing on the CMs is to:

• Create a section for each part of a major frame that is not occupied by a fixed

task and require that each non-fixed task is assigned to a section.

• Create a subset for each set of non-fixed tasks that can be assigned to the same

section and require that there is no overlap between tasks in this subset.

This modelling approach introduces a large number of constraints, but since each

constraint has an impact only if a subset of tasks is assigned to the same section, this

approach lends itself to constraint generation. This strategy for sequencing will be

used in the model presented in Sect. 4 and exploited in the constraint generation

procedure in Sect. 5.

3.2 Notation

For CM h, let I fix
h denote the set of tasks that are fixed, h 2 HCM. Divide the major

frame of CM h into a set of sections Rh, where only non-fixed tasks are allowed to

be scheduled, h 2 H. Let lsecr denote the duration of section r and let I sec
r denote the

set of tasks that can be assigned to section r, r 2 Rh, h 2 HCM. Also, letRtask
i be the

set of sections where task i can be scheduled, i 2 ICM
h nI fix

h , h 2 HCM. For section r

let trir be the release time and tdir be the deadline of task i, i 2 I sec
r , r 2 R. Introduce

the set Sh such that each subset of tasks I sub
s , s 2 Sh, h 2 HCM, includes non-fixed

tasks that can, for at least one section, be assigned together in the same section. For

a summary of the notation introduced in this section, see Table 4.

Table 3 The parameters and sets of the entities introduced in Sect. 2.3

Entity Parameter Notation

CN CN-messages M

CN-slots N

CM CN-messages that are received on CM h Mrecv
h

CN-messages that are sent on CM h Msend
h

CN-message m Required capacity lmsg
m

Tasks Imsg
m

CN-slot n Capacity lslotn

Task i Release time in CN-slot n trin

Deadline in CN-slot n tdin

An optimisation approach for pre-runtime scheduling of... 985

123

3.3 Validity of the strategy for sequencing

In the mathematical model, to be introduced in Sect. 4, Constraints (4.1.6)–(4.1.10)

assign each non-fixed task to a section and make the fixed tasks comply with their

release time, while Constraints (4.1.11)–(4.1.14) require that there is no overlap

between non-fixed tasks belonging to the same subset of tasks. The following

proposition states the correctness of our strategy for sequencing.

Proposition 1 (Sequencing strategy) Given a feasible scheduling instance and a

solution to the mathematical model presented in Sect. 4, we have for each h,

h 2 HCM, that no tasks in the set I h overlap.

Proof For each h 2 HCM it is confirmed that no tasks in I h overlap by showing

that each ordered pair of tasks (i, j), i; j 2 Ih is non-overlapping. Three cases of

possible overlaps need to be evaluated.

• Case i 2 I fix
h , j 2 I fix

h : It follows from the feasibility of the instance that i and

j cannot overlap.

• Case i 2 I fix
h , j 2 IhnI

fix
h : There is no overlap between task i and task j since

task j is assigned to a section by Constraints (4.1.6)–(4.1.8) and task i can,

according to the definition of a section, not be scheduled in a section.

• Case i 2 I hnI
fix
h , j 2 IhnI

fix
h : If task i and task j are assigned to different

sections, they do not overlap since the sections are disjoint. If task i and task j

are assigned to the same section, there exists a subset s, s 2 Sh, such that I sub
s

contains task i and task j and they are thereby ensured not to overlap by

Constraints (4.1.11)–(4.1.14). h

4 Mixed-integer programming formulation

In this section we present a MIP model for the scheduling of one major frame. The

technical restrictions that can span more than one major frame will be formulated in

order to propagate to the decisions made within a major frame.

Table 4 The parameters and sets of the entities introduced in Sect. 3.2

Entity Parameter Notation

CM h Sections on CM h Rh

Subsets on CM h Sh

Section r Duration lsecr

Tasks I sec
r

Subset s Tasks I sub
s

Task i Release time in section r trir

Deadline in section r tdir

Sections Rtask
i

986 M. Blikstad et al.

123

4.1 Tasks and sequencing

For task i, i 2 I , introduce a continuous variable

xi ¼ start time of task i:

The start time of a specific job k of task i becomes xi þ kpi, where 0� xi þ kpi �P,

i 2 I . To simplify the notation we introduce two tasks, ~p and ~q, with execution

requirement 0. These will be the first and last tasks, respectively, of all the

sequences.

4.1.1 AM-scheduling

For each AM, a single sequence of all its tasks is created. Let the set Iþ
i denote all

tasks that can be the immediate successor of task i and the set I�
i denote all tasks

that can be the immediate predecessor of task i, i 2 IAM
h , h 2 HAM. Introduce, for

h 2 HAM, i 2 IAM
h , j 2 Iþ

i , a binary variable

yij ¼
1; if task i is the immediate predecessor of task j;

0; otherwise.

�

In order to create a sequence of the tasks on the AMs we will apply a Manne

formulation (Manne 1960) to handle the idle times:

X

j2Iþ
i

yij ¼ 1; i 2 IAM
h nf~qg; h 2 HAM

;

ð4:1:1Þ

X

j2I�
i

yji ¼ 1; i 2 IAM
h nf~pg; h 2 HAM

; ð4:1:2Þ

xi þ ei þ lidleij � xj þ ðtdi � trj þ lidleij Þð1� yijÞ;

j 2 Iþ
i ; i 2 IAM

h ; h 2 HAM
;

ð4:1:3Þ

tri � xi � tdi � ei; i 2 IAM
h ; h 2 HAM

; ð4:1:4Þ

yij 2 f0; 1g; j 2 Iþ
i ; i 2 IAM

h ; h 2 HAM
; ð4:1:5Þ

where Constraints (4.1.1) and (4.1.2) ensure that each AM-task has one successor

and predecessor, respectively. Constraint (4.1.3) prevents two adjacent AM-tasks

from overlapping, taking idle times into account, while Constraint (4.1.4) makes

each AM-task obey its release time and deadline.

4.1.2 CM-scheduling

Each task on a CM shall be assigned to one section. Introduce, for h 2 HCM,

i 2 ICM
h nI fix

h , r 2 Rtask
i , a binary variable

An optimisation approach for pre-runtime scheduling of... 987

123

air ¼
1; if task i is assigned to section r;

0; otherwise.

�

To handle the fixed tasks and the assignment of non-fixed tasks to sections, we

introduce the constraints

X

r2Rtask
i

air ¼ 1; i 2 ICM
h nI fix

h ; h 2 HCM
;

ð4:1:6Þ

X

i2I sec
r

eiair � lsecr ; r 2 Rh; h 2 HCM
; ð4:1:7Þ

X

r2Rtask
i

trirair � xi �
X

r2Rtask
i

tdirair � ei; i 2 ICM
h nI fix

h ; h 2 HCM
;

ð4:1:8Þ

xi ¼ tri ; i 2 I fix
h ; h 2 HCM

; ð4:1:9Þ

air 2 f0; 1g; r 2 Rtask
i ; i 2 ICM

h nI fix
h ; h 2 HCM

; ð4:1:10Þ

where Constraint (4.1.6) assigns each non-fixed task to one section, Con-

straint (4.1.7) ensures that the capacity of each section is respected, Con-

straint (4.1.8) makes each non-fixed task obey its release time and deadline within

its section, and Constraint (4.1.9) makes the fixed tasks comply with their release

time.

Further, a sequence for each subset of tasks that can be assigned to the same

section is created. Let the set Iþ
is denote all tasks that can be the immediate

successor of task i in subset s and the set I�
is denote all tasks that can be the

immediate predecessor of task i in subset s, i 2 I sub
s , s 2 Sh, h 2 HCM. Introduce,

for h 2 HCM, s 2 Sh, i 2 I sub
s nf~qg, j 2 Iþ

is , a binary variable

yijs ¼
1; if task i is the immediate predecessor of task j in subset s;

0; otherwise.

�

For the sequencing of tasks, we apply to each subset of tasks a Miller–Tucker–

Zemlin formulation (Miller et al. 1960):

X

j2Iþ
is

yijs ¼ 1; i 2 I sub
s nf~qg; s 2 Sh; h 2 HCM

;

ð4:1:11Þ

X

j2I�
is

yjis ¼ 1; i 2 I sub
s nf~pg; s 2 Sh; h 2 HCM

; ð4:1:12Þ

xi þ ei � xj þ ðtdi � trjÞð1� yijsÞ;

j 2 Iþ
is ; i 2 I sub

s ; s 2 Sh; h 2 HCM
;

ð4:1:13Þ

yijs 2 f0; 1g; j 2 Iþ
is ; i 2 I sub

s ; s 2 Sh; h 2 HCM
: ð4:1:14Þ

988 M. Blikstad et al.

123

Constraints (4.1.11) and (4.1.12) ensure that each CM-task has one successor and

predecessor, respectively, and for each subset Constraint (4.1.13) prevents adjacent

CM-tasks from overlapping.

4.2 Precedence relations

For dependency d, between job kd of task id 2 I and the next occurence of job ld of

task jd 2 I , introduce a continuous variable

ud ¼ time from job kd of task id to the next occurrence of job ld of task jd;

which will be referred to as the length of the dependency, d 2 D. Also, for d 2 D,

introduce a binary variable

vd ¼
1; if job kd of task id precedes job ld of task jd in a major frame,

0; otherwise,

�

referred to as the dependency indicator variable. We ensure that the duration

between the two jobs of a dependency is within its interval by introducing the

constraints

ud ¼ ðxid þ kdpidÞ þ Pvd � ðxjd þ ldpjd Þ; d 2 D; ð4:2:1Þ

l
min�dep
d � ud � l

max�dep
d ; d 2 D; ð4:2:2Þ

vd 2 f0; 1g; d 2 D; ð4:2:3Þ

where Constraint (4.2.1) defines the length of the dependency, while Con-

straint (4.2.2) restricts the length of a dependency to be within its minimum and

maximum length.

The dependencies in a chain ensure that each pair of jobs linked by a dependency

has a particular order in a major frame. Constraint (4.2.4) ensures that the cycle of

these dependencies finishes within the duration of a major frame.
X

d2Dchain
c

vd ¼ 1; c 2 C
ð4:2:4Þ

4.3 CN-scheduling

For each pair of CN-message m and CN-slot n, m 2 M, n 2 N , introduce a binary

variable

znm ¼
1; if CN-messagem is assigned to CN-slot n;

0; otherwise.

�

The CN-scheduling is handled by introducing

An optimisation approach for pre-runtime scheduling of... 989

123

X

n2N

znm ¼ 1; m 2 M; ð4:3:1Þ

X

m2M

lmsg
m znm � lslotn ; n 2 N ; ð4:3:2Þ

X

m2Msend
h

znm � 1; n 2 N ; h 2 HCM
;

ð4:3:3Þ

X

m2Mrecv
h

znm � 1; n 2 N ; h 2 HCM
; ð4:3:4Þ

X

n2N

trinznm � xi �
X

n2N

tdinznm � ei; i 2 Imsg
m ; m 2 M; ð4:3:5Þ

znm 2 f0; 1g; n 2 N ; m 2 M; ð4:3:6Þ

where Constraint (4.3.1) assigns each message to a slot and Constraint (4.3.2)

makes sure that the capacity of a slot is respected. Constraint (4.3.3) and Con-

straint (4.3.4) ensure that at most one message can be sent or received in a slot for

each CM, respectively. Further, Constraint (4.3.5) makes the tasks involved in

transmitting a message respect the release times and deadlines induced by assigning

their message to a specific slot.

5 Solution approach

This section presents our constraint generation procedure, the preprocessing

components used, and a brief description of the scheduling tool.

5.1 Constraint generation procedure

Since the number of subsets of CM-tasks to be sequenced is typically huge, and not

all of them are likely to be needed to solve the problem, the problem is initially

solved without them and those needed are added iteratively in a constraint

generation procedure.

This section introduces the two models, a relaxed problem and a subproblem, that

are used in the constraint generation procedure. The relaxed problem is obtained by

removing Constraints (4.1.11)–(4.1.14) (that require subsets of CM-tasks to be

sequenced), and its purpose is to assign non-fixed CM-tasks to sections. The

subproblem attempts to sequence non-fixed CM-tasks given their assignment to

sections according to a solution of the relaxed problem. The solution to the

subproblem is either a valid schedule or it provides information about which

constraints to generate and add to both models. In that sense it acts as a separation

problem. The generated constraints are referred to as generated sequences.

990 M. Blikstad et al.

123

In practice, any feasible solution to the model introduced in Sect. 4 is a valid

schedule, and therefore the model does not include an objective function. The

purpose of the constraint generation procedure is to find a feasible solution to the

model in Sect. 4. In the relaxed problem and the subproblem, objectives are

introduced to guide the search to find such feasible solutions.

5.1.1 Relaxed problem

The aim of the relaxed problem is to assign CM-tasks to a section while respecting

all other constraints. The objective functions used are described in Sect. 5.1.3.

min/max Objective function

s.t. Objective constraints

AM-scheduling ðConstraints ð4:1:1Þ � ð4:1:5ÞÞ

Generated sequences ðConstraints ð4:1:11Þ � ð4:1:14ÞÞ

CM-assignment ðConstraints ð4:1:6Þ � ð4:1:10ÞÞ

Precedence relations ðConstraints ð4:2:1Þ � ð4:2:4ÞÞ

CN-scheduling ðConstraints ð4:3:1Þ � ð4:3:6ÞÞ

In the first iteration there are no generated sequences, but in later iterations those

that are identified by the subproblem are included in the model.

5.1.2 Subproblem

The subproblem is obtained from a solution of the relaxed problem as follows. For

section r, let the subset of tasks that was assigned to this section be denoted by �sr,

r 2 Rh, h 2 HCM. Restrict the release time and the deadline of task i to be trir and t
d
ir,

respectively, i 2 I sub
�sr
, r 2 Rh, h 2 HCM. Introduce, for h 2 HCM, r 2 Rh, i 2 I sub

�sr
,

a binary variable

bi�sr ¼
1; if task i is successfully sequenced in subset �sr;

0; otherwise.

�

The following formulation is referred to as b-sequences. A value of bi�sr ¼ 0 indi-

cates that task i cannot be guaranteed not to overlap another task in section r,

i 2 I sub
�sr
, r 2 Rh, h 2 HCM.

X

j2Iþ
i�sr

yij�sr ¼ bi�sr ; i 2 I sub
�sr
nf~qg; r 2 Rh; h 2 HCM

;

ð5:1:1Þ

X

j2I�
i�sr

yji�sr ¼ bi�sr ; i 2 I sub
�sr
nf~pg; r 2 Rh; h 2 HCM

; ð5:1:2Þ

An optimisation approach for pre-runtime scheduling of... 991

123

xi þ ei � xj þ ðtdir � trjrÞð1� yij�sr Þ;

j 2 Iþ
i�sr

; i 2 I sub
�sr

; r 2 Rh; h 2 HCM
;

ð5:1:3Þ

trir � xi � tdir � ei; i 2 I sub
�sr

; r 2 Rh; h 2 HCM
; ð5:1:4Þ

xi ¼ tri ; i 2 I fix
h ; h 2 HCM

; ð5:1:5Þ

bi�sr 2 f0; 1g; i 2 I sub
�sr

; r 2 Rh; h 2 HCM
; ð5:1:6Þ

yij�sr 2 f0; 1g; j 2 Iþ
i�sr

; i 2 I sub
�sr

; r 2 Rh; h 2 HCM ð5:1:7Þ

The objective of the subproblem, formulated as follows, is to maximize the number

of tasks that are successfully sequenced.

max
X

h2HCM

X

r2Rh

X

i2I sub
�sr

bi�sr

s.t. AM-scheduling ðConstraints ð4:1:1Þ � ð4:1:5ÞÞ

Generated sequences ðConstraints ð4:1:11Þ � ð4:1:14ÞÞ

b� sequences ðConstraints ð5:1:1Þ � ð5:1:7ÞÞ

Precedence relations ðConstraints ð4:2:1Þ � ð4:2:4ÞÞ

CN-scheduling ðConstraints ð4:3:1Þ � ð4:3:6ÞÞ

The objective value corresponds to the number of tasks that have been successfully

sequenced. If the objective value is the same as the number of b-variables, a valid

schedule has been found. If it is lower, there is at least one section where at least one

task has not been successfully sequenced.

Convergence of the method is ensured by adding at least one generated sequence

(Constraints (4.1.11)–(4.1.14)) in each iteration as long as a valid schedule is not

found. If a task has not been successfully sequenced within its subset, this implies

that the sequencing constraints of this subset were not previously generated, and

progress, with respect to convergence, can be obtained by adding at least one such

generated sequence.

5.1.3 Objective functions of the relaxed problem

The practical behaviour of the above constraint generation procedure relies heavily

on the tasks being assigned to appropriate sections in the relaxed problem. Early

empirical results indicated that it would be best to use one objective in the first

iteration and another in the following iterations, to stabilise the search.

In the first iteration, the section-slack-objective,

max X

s.t. X� lsecr �
X

i2I sec
r

eiair; r 2 Rh; h 2 HCM
;

ð5:1:8Þ

992 M. Blikstad et al.

123

that maximises the smallest slack in Constraint (5.1.8) is one of the objectives used.

Another is the centre-task-objective,

min
X

i2I c

ci

s.t. ci �
2MD

1� D

1� D

2
�

xi � tri
tdi � ei � tri

� �

; i 2 I c
;

ci �
2MD

1� D

xi � tri
tdi � ei � tri

�
1þ D

2

� �

; i 2 I c
;

ci � 0; i 2 I c
;

where the set I c contains the non-fixed CM-tasks that have tri � tdi . This objective

directs tasks to be placed near the middle of their task interval by minimising the

value of a penalty function illustrated in Fig. 2. The parameter D gives the part of

the task interval where there is no penalty for placing the task. The continuous

variable ci 2 ½0; 1�, i 2 I c, is the linearly increasing penalty for placing a task

outside this interval, and MD is the maximum penalty.

From the second iteration onwards, the stabilise-objective,

max
X

h2HCM

X

r2Rh

X

i2I sub
�sr

air; ð5:1:9Þ

is used to maximise the number of non-fixed CM-tasks that stay in their previously

assigned section.

Fig. 2 An illustration of the penalty function used in the centre-task-objective

An optimisation approach for pre-runtime scheduling of... 993

123

5.2 Preprocessing components

This section gives an overview of the preprocessing components implemented in the

scheduling tool; for additional details see ‘‘Appendix 1’’. The purpose of

Algorithm 2 is to restrict the release times and deadlines of tasks, while

Algorithm 3 and Algorithm 4 are used to avoid creating variables and constraints

that are redundant with respect to the data of a particular instance.

The observation behind Algorithm 2 is that, even if a task is allowed to start in

the interval between its release time and deadline, dependencies with other tasks can

imply that this interval is smaller. Algorithm 2 iteratively tightens the intervals of

tasks to comply with the minimum and maximum length of dependencies without

omitting feasible solutions.

Algorithm 3 determines the tasks that can be the immediate successor or

predecessor of a task based on their release times, deadlines, and execution

requirements. This translates to reducing the sets Iþ
i and I�

i for tasks on the AMs

and the sets Iþ
is and I�

is for all subsets of tasks on the CMs. Algorithm 4 determines

whether or not two jobs linked by a dependency can precede each other in a major

frame. This translates to assigning a value to the variable vd, d 2 D, that indicates if

job kd of task id precedes job ld of task jd in a major frame.

5.3 Overview of scheduling tool

Algorithm 1 provides an overview of the implemented scheduling tool with

references to descriptions of the algorithm components and the models that have

been introduced. The tool is implemented in Python Version 3.6.0, and the models

are solved by Gurobi Optimizer Version 6.5.2. The choice of the objective function

and parameter settings are further discussed in Sect. 6.

994 M. Blikstad et al.

123

5.4 Benchmark formulation

In an early stage of the project we created a benchmark formulation where, instead

of our constraint generation procedure, all CM-tasks were to be sequenced by a

Miller–Tucker–Zemlin formulation. The purpose of this formulation was to make

comparisons for small instances and evaluate our preprocessing components.

6 Test results

This section presents our results showing that the solution strategy presented in this

paper can be used to schedule avionic systems of industrial relevance. For this

purpose Saab has provided three instances, named I, II, and III. Instance I

corresponds to a minimum viable example of an avionic system with 2 nodes and a

total of about 6500 tasks. Instance II has 5 nodes and a total of about 14,000 tasks

and Instance III is the largest with 7 nodes and a total of about 20,000 tasks; see

Tables 5, 6, and 7 for detailed information about each of the instances. In these

tables, the numbers of dependencies, chains, and CN-messages are given for the

complete system while the number of tasks is given for each module. In Instance II

and Instance III there are two AMs that belong to the same CM, and this is

presented by putting the number of AM-tasks for these two modules in parentheses

in Tables 6 and 7, respectively.

An important characteristic of all the instances is that a large portion of the tasks

at the CMs have fixed start times. For Instances I, II, and III, this portion is 65, 54,

and 53%, respectively.

All the tests are carried out on a computer with two Intel Xeon E5-2640-v3

Processors (8 cores, 2.6 GHz) and 64 GB RAM. The scheduling tool is

implemented to use a single core, with the exception that Gurobi is allowed to

use all cores.

Early in the project we tried to solve Instance I with our benchmark formulation

by using Gurobi after applying all our preprocessing components. Within a time

limit of one week, no integer feasible solution was found.

Table 5 Characteristics of

Instance I
Entities Number of

CMs 2

CM-tasks [3701, 2835]

Fixed tasks [2816, 1404]

AMs 2

AM-tasks [1, 1]

Dependencies 1457

CN-messages 64

Chains 998

An optimisation approach for pre-runtime scheduling of... 995

123

6.1 Preprocessing effect

The purpose of our preprocessing components is to avoid creating variables that are

redundant for a particular instance, and the effect of the preprocessing is

summarised in Table 8.

The first step is to use Algorithm 2 to reduce the interval in which the tasks can

be placed with respect to dependencies to other tasks. For Instance I, the effect is a

Table 6 Characteristics of

Instance II
Entities Number of

CMs 5

CM-tasks [5871, 2388, 2260, 1860, 1788]

Fixed tasks [2832, 1408, 1408, 1408, 584]

AMs 6

AM-tasks [7, 3, 3, 2, (3, 1)]

Dependencies 11779

CN-messages 96

Chains 1458

Table 7 Characteristics of

Instance III
Entities Number of

CMs 7

CM-tasks [5871, 3867, 2388, 2260, 1860, 1860, 1788]

Fixed tasks [2832, 1452, 1408, 1408, 1408, 1408, 584]

AMs 8

AM-tasks [7, 4, 3, 3, 2, 2, (3, 1)]

Dependencies 15155

CN-messages 96

Chains 2002

Table 8 Effect of preprocessing components

Measurement Instance

I II III

Complete number of y-variables 22� 106 52� 106 70� 106

Reduction of task intervals by Alg. 2 5% 18% 17%

Time for Alg. 2 27 s 103 s 123 s

Number of y-variables after Algs. 2 and 3 0:2� 106 0:9� 106 1:2� 106

Reduction of v-variables by Alg. 4 47% 90% 92%

The numbers of y-variables are counted for the benchmark model (Sect. 5.4) with an earlier version of the

scheduling tool, and the other results are from the scheduling tool running the constraint generation

procedure

996 M. Blikstad et al.

123

reduction of about 5%. This indicates that for this instance the tasks are not

particularly restricted by their release times, deadlines and dependencies with other

tasks. For Instances II and III, the reduction is about 18%, and the preprocessing has

practical relevance. For all instances, Algorithm 2 requires at most a few minutes of

computational time.

The last row of Table 8 shows the percentage of v-variables for which

Algorithm 4 detects that the value is fixed. For Instance I, 47% of the v-variables

are fixed, and for Instances II and III, about 90% of the v-variables are fixed.

6.2 Solution approach evaluation

An important contribution of this paper, and the key that enables us to schedule the

instances under consideration, is the reformulation of sequencing and the constraint

generation procedure using the relaxed problem and the subproblem. Table 9

illustrates the impact of this decomposition in terms of the number of variables in

the respective models. The first row gives the number of a-variables. An a-variable

is created for a task-section pair only if a task can be scheduled in that section with

respect to its release time and deadline.

In the subproblem, the b-variables are created only for tasks that are placed in a

section with at least two tasks besides ~p and ~q. For this reason, the number of b-

variables can differ somewhat between iterations for the same instance. Table 9

presents the average number of b-variables over all iterations.

The outcome of the scheduling of Instances I, II, and III is summarised in

Tables 10, 11, and 12, respectively. For each instance, we present the results for

four choices of objective functions in the first relaxed problem. The solution times

are given in seconds. The total time refers to the complete execution time for our

scheduling tool, while the times for the relaxed problem and the subproblem refer to

the time spent by Gurobi only. The difference between the complete execution time

and the time to solve the models includes setup times and preprocessing. The most

important parameter settings are:

• The time limit in the relaxed problem is 8 h.

• The relative MIP-gap in the relaxed problem is 0.10 for all runs.

Table 9 Characterisation of subproblem

Measurement Instance

I II III

Number of sections 2� 103 4� 103 6� 103

Number of a-variables 3� 104 11� 104 15� 104

Average number of b-variables in subproblem 2� 103 6� 103 8� 103

Average number of y-variables in subproblem 2� 104 5� 104 7� 104

An optimisation approach for pre-runtime scheduling of... 997

123

• The time limit in the subproblem is initially 2 h, and whenever an improved

integer solution is found, it is reset to 4 h.

• The relative MIP-gap in the subproblem is 0. This strict gap is required to ensure

that all tasks are successfully sequenced.

• The value of MD is 1000.

• In an iteration, at most 5 new generated sequences are added to the relaxed

problem and the subproblem. If more than 5 sequences are generated, 5 of them

are chosen at random.

Table 10 Results for Instance I

Measurement Section-slack Centre-task

D ¼ 0:10 D ¼ 0:50 D ¼ 0:75

Total time 164 243 467 182

Iterations 1 1 1 1

Generated sequences – – – –

Time relaxed problem 6 31 23 23

Time subproblem 1 53 283 2

Time is measured in seconds

Table 11 Results for Instance II

Measurement Section-slack Centre-task

D ¼ 0:10 D ¼ 0:50 D ¼ 0:75

Total time 1025 29676 2484 1623

Iterations 1 1 1 1

Generated sequences – – – –

Time relaxed problem 111 28800 946 483

Time subproblem 449 416 1081 680

Time is measured in seconds

Table 12 Results for Instance III

Measurement Section-slack Centre-task

D ¼ 0:10 D ¼ 0:50 D ¼ 0:75

Total time 2438 52269 7882 2210

Iterations 4 3 2 1

Generated sequences [14, 9, 4] [1, 1] 1 –

Time relaxed problem [178, 33, 36, 82] [28800, 41, 195] [503, 34] 569

Time subproblem [30, 38, 33, 356] [49, 15609, 6294] [42, 6369] 1079

Time is measured in seconds

998 M. Blikstad et al.

123

The choices that have to be made with the most care are the objective function in the

relaxed problem, the MIP-gap in the relaxed problem, and the time limit in the

subproblem. The objective function and the MIP-gap in the relaxed problem are

important because these choices impact in which sections the tasks are initially

placed. The time limit in the subproblem is important because it has a large impact

on the total running time and the quality of the feedback information in terms of

subsets. If this time limit is too high, much time will be spent in the subproblem

trying to include tasks in the b-sequences even if this is not possible, and if it is too

low there is a risk that a solution with all the tasks included in a b-sequence might

not be found even if such a solution exists.

For Instance I, a schedule is obtained within 10 min no matter which objective is

used, and in all cases the section assignment made in the first relaxed problem

makes it possible to include all the tasks in a b-sequence in the subproblem step.

This exceptionally good outcome likely occurs because many feasible solutions

exist for this instance, and the task intervals and the bounds on the dependency

lengths are not very tight. This result can be contrasted with the benchmark

formulation that we ran for one week without obtaining a solution.

For Instance II, the solution times range between 17 and 41 min, except when the

centre-task-objective with D ¼ 0:10 was used. In that case the running time was

495 min. The reason for this long running time is that no solution with the required

MIP-gap is obtained within the maximum running time of the first relaxed problem.

Instance III requires more than one iteration for all choices of objective function

except for the centre-task objective with D ¼ 0:75. Also, as for Instance II, the

centre-task objective for D ¼ 0:1 does not find a solution that meets the required

MIP-gap of the first relaxed problem, which gives a significantly longer running

time, 871 min. The total running times for the other objectives range between 37

and 131 min.

A conclusion that can be drawn about the choice of objective function in the first

relaxed problem is that the section-slack objective and the centre-task objective with

D ¼ 0:75 have provided the best results for the instances presented and that the

performance of the solution strategy is sensitive to the choice of objective.

A general observation is that very few iterations are needed to solve each

instance regardless of the choice of objective function. We believe that this is

because we have chosen a suitable relaxation of the problem with respect to the

characteristics of the industrially relevant instances, as described in Sect. 3.1.

7 Concluding remarks

This paper describes an avionics scheduling problem of industrial relevance and

suggests a mathematical model for this problem. The exact solution strategy that we

present is based on constraint generation and exploits known characteristics of our

problem. Our computational results verify that we can solve industrially relevant

instances that are significantly larger than those described in the literature within a

reasonable time. We conclude that our approach is viable for this type of problem.

An optimisation approach for pre-runtime scheduling of... 999

123

Our continued research aims to improve the components used in this strategy to

further enhance the computational performance and thus solve even larger

instances.

In the current model we have introduced the restriction that, for each

communication module, at most one message can be sent or received in a slot.

This means that the only way for us to handle the co-allocation of messages in a slot

is to make this decision before the scheduling is carried out and then treat co-

allocated messages as a single message. In practice, it would be highly relevant to

integrate the co-allocation decisions with the scheduling. To introduce this degree of

freedom makes the problem even more computationally challenging, since co-

allocation of messages affects the tasks used for transmitting and receiving the

messages. We leave this to future research.

The work of this paper is part of a long-term project on exact solution methods

for avionics scheduling problems since they are expected to be important for future

avionic development. In this paper we consider the scheduling of a system where all

requirements are given, but it would also be of interest to develop decision support

tools for the dimensioning of avionic systems and tools that can suggest which

changes to make if no feasible solution is found by the scheduler.

Acknowledgements This work was supported by the Swedish Armed Forces, the Swedish Defence

Materiel Administration and the Swedish Governmental Agency for Innovation Systems under Grant No.

NFFP6-2014-00917. The work is also part of the project Operations research methods for large scale

scheduling and resource allocation problems funded by the Center for Industrial Information Technology

(CENIIT). The work of Emil Karlsson is supported by the Research School in Interdisciplinary

Mathematics at Linköping University. The authors thank the reviewers for their valuable comments that

helped improve the paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give appropriate credit to the original

author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were

made.

Appendix 1 Preprocessing

This section presents further details about the preprocessing components that were

briefly introduced in Sect. 5.2.

Tightening of release times and deadlines of tasks

Algorithm 2 iteratively tightens the release times and deadlines of tasks linked by a

dependency in order to comply with the length of the dependency. The following

notation is used in the algorithm. Let Li be the interval or union of intervals in which

task i 2 I can start. For task id and task jd connected by the dependency d, d 2 D,

1000 M. Blikstad et al.

123

http://creativecommons.org/licenses/by/4.0/

let the function Lidðd; Ljd Þ return the interval or union of intervals in which task id
can be placed with respect to dependency d and the interval or union of intervals Ljd .

Sequencing variables

Since the number of y-variables for each module in the worst case can grow

quadratically with the number of tasks to be sequenced, it is important to not include

an excessive number of variables that anyway cannot take the value one in a model.

This translates to reducing the sets Iþ
i and I�

i for tasks on the AMs and the sets Iþ
is

and I�
is for all subsets of tasks on the CMs. The sets are reduced by using the fact

that two tasks cannot be each other’s immediate predecessor and immediate

successor, respectively, if another task must be executed between them. By

comparing the release times and the deadlines of tasks, such cases can be identified,

and this is the core idea implemented in Algorithm 3, where the tasks are assumed

to be ordered with respect to ascending release time.

An optimisation approach for pre-runtime scheduling of... 1001

123

Dependency indicator variables

By an evaluation of the release times and deadlines of tasks linked by a dependency

d, d 2 D, the variable vd that indicates if job kd of task id precedes job ld of task jd in

a major frame can sometimes be a priori fixed to either 0 or 1. The computations

required to determine the possible values of these variables are given in

Algorithm 4.

1002 M. Blikstad et al.

123

References

Airlines Electronic Engineering Committee (AEEC) (2006) Avionics application software standard

interface, ARINC specification 653 (part 1)

Al-Sheikh A (2011) Resource allocation in hard real-time avionic systems. Scheduling and routing

problems. PhD thesis, INSA de Toulouse

Al-Sheikh A, Brun O, Hladik P-E, Prabhn B (2012) Strictly periodic scheduling in IMA-based

architectures. Real Time Syst 48(4):359–386

Al-Sheikh A, Brun O, Chéramy M, Hladik P-E (2013) Optimal design of virtual links in AFDX networks.

Real Time Syst 49(3):308–336

Balashov VV, Balakhanov VA, Kostenko VA (2014) Scheduling of computational tasks in switched

network-based IMA systems. In: Proceedings of the 1st international conference on engineering and

applied sciences optimization

Beji S, Hamadou S, Gherbi A, Mullins J (2014) SMT-based cost optimization approach for the integration

of avionics functions in IMA and TTEthernet architectures. In: Proceedings of the IEEE/ACM 18th

international symposium on distributed simulation and real time applications, pp 165–174

Craciunas SS, Oliver RS (2014) SMT-based task- and network-level static schedule generation for time-

triggered networked systems. In: Proceedings of the 22nd international conference on real-time

networks and systems, pp 45–54

Danielsson T, Pettersson A, Gripsborn A, Håkegård J (2016) Ethernet for avionics. Patent, 04 2016. EP

2583419

Davis RI, Burns A (2011) A survey of hard real-time scheduling for multiprocessor systems. ACM

Comput Surv 43(4):1–44

An optimisation approach for pre-runtime scheduling of... 1003

123

Easwaran A, Lee I, Sokolsky O, Vestal S (2009) A compositional scheduling framework for digital

avionics systems. In: Proceedings of the 15th IEEE international conference on embedded and real-

time computing systems and applications, pp 371–380

Eisenbrand F, Kesavan K, Mattikalli RS, Niemeier M, Nordsieck AW, Skutella M, Verschae J, Wiese A

(2010) Solving an avionics real-time scheduling problem by advanced IP-methods. In: Algorithms—

ESA 2010. Lecture notes in computer science, vol 6346. Springer, Berlin Heidelberg, pp 11–22

Kopetz H (2011) Real-time systems: design principles for distributed embedded applications. Real-time

systems series. Springer, Berlin

Lee Y-H, Kim D, Younis M, Zhou J (2000) Scheduling tool and algorithm for integrated modular

avionics systems. In: Proceedings of the digital avionics systems conference, pp 1–8

Leung JYT (ed) (2004) Handbook of scheduling: algorithms, models, and performance analysis.

Chapman & Hall/CRC Computer and Information Science Series. Taylor & Francis, Milton Park,

ISBN 9781135438852

Manne AS (1960) On the job-shop scheduling problem. Oper Res 8(2):219–223

Miller CE, Tucker AW, Zemlin RA (1960) Integer programming formulation of traveling salesman

problems. J ACM 7(4):326–329

Pop P, Eles P, Peng Z (1999) Scheduling with optimized communication for time-triggered embedded

systems. In: Proceedings of the seventh international workshop on hardware/software codesign,

pp 178–182

Radio Technical Commission for Aeronautics (RTCA) (2005) Integrated modular avionics (IMA)

development guidance and certification considerations, RTCA DO-297

Rufino J, Craveiro J, Verissimo P (2010) Architecting robustness and timeliness in a new generation of

aerospace systems. In: Casimiro A, de Lemos R, Gacek C (eds) Architecting dependable systems

VII. Lecture notes in computer science, vol 6420. Springer, Berlin, Heidelberg, pp 146–170

Tavares E, Maciel P, Sousa E, Nogueira B, Amorim L, Lira V (2012) A hierarchical pre-runtime

scheduling for hard real-time systems considering fault-tolerance. In: Proceedings of the IEEE

international conference on systems, man, and cybernetics, pp 1207–1212

Theis J, Fohler G, Baruah S (2013) Schedule table generation for time-triggered mixed criticality systems.

In: Proceedings of the workshop on mixed criticality systems at IEEE real-time systems symposium,

pp 79–84

Tămaş-Selicean D, Pop P, Steiner W (2012) Synthesis of communication schedules for TTEthernet-based

mixed-criticality systems. In: Proceedings of the eighth IEEE/ACM/IFIP international conference

on hardware/software codesign and system synthesis, pp 473–482

Xu J, Parnas DL (2000) Priority scheduling versus pre-run-time scheduling. Real Time Syst 18(1):7–23

Zhang L, Goswami D, Schneider R, Chakraborty S (2014) Task- and network-level schedule co-synthesis

of Ethernet-based time-triggered systems. In: Proceedings of the design automation conference

(ASP-DAC), 19th Asia and South Pacific, pp 119–124

1004 M. Blikstad et al.

123

	An optimisation approach for pre-runtime scheduling of tasks and communication in an integrated modular avionic system
	Abstract
	Introduction
	System characteristics
	Related research
	Contributions and outline of the paper

	System model
	Periodic task system
	Precedence relations
	Communication network

	Sequencing approach
	Strategy
	Notation
	Validity of the strategy for sequencing

	Mixed-integer programming formulation
	Tasks and sequencing
	AM-scheduling
	CM-scheduling

	Precedence relations
	CN-scheduling

	Solution approach
	Constraint generation procedure
	Relaxed problem
	Subproblem

	Preprocessing components
	Overview of scheduling tool
	Benchmark formulation

	Test results
	Preprocessing effect
	Solution approach evaluation

	Concluding remarks
	Acknowledgements
	Appendix 1 Preprocessing
	Tightening of release times and deadlines of tasks
	Sequencing variables
	Dependency indicator variables

	References

