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Abstract Product improvement and cost reduction
have always been important goals in the metal forming
industry. The rise of finite element (FEM) simulations
for processes has contributed to these goals in a ma-
jor way. More recently, coupling FEM simulations to
mathematical optimisation techniques has shown the
potential to make a further giant contribution to prod-
uct improvement and cost reduction. Much research on
the optimisation of metal forming processes has been
published during the last couple of years. Although
the results are impressive, the optimisation techniques
are generally only applicable to specific optimisation
problems for specific products and specific metal form-
ing processes. As a consequence, applying optimisation
techniques to other metal forming problems requires a
lot of optimisation expertise, which forms a barrier for
more general industrial application of these techniques.
In this paper, we overcome this barrier by proposing a
generally applicable optimisation strategy that makes
use of FEM simulations of metal forming processes.
It consists of a structured methodology for modelling
optimisation problems related to metal forming. Sub-
sequently, screening is applied to reduce the size of
the optimisation problem by selecting only the most
important design variables. Finally, the reduced opti-
misation problem is solved by an efficient optimisation
algorithm. The strategy is generally applicable in a
sense that it is not constrained to a certain type of metal
forming problem, product or process. Also, any FEM
code may be included in the strategy. Furthermore,
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the structured approach for modelling and solving
optimisation problems should enable non-optimisation
specialists to apply optimisation techniques to improve
their products and processes. The optimisation strat-
egy has been successfully applied to a hydroforming
process, which demonstrates the potential of the op-
timisation of metal forming processes in general and
more specific the proposed optimisation strategy.

Keywords Metal forming · Finite element method ·
Optimisation

1 Introduction

During the past few decades, finite element (FEM)
simulations of metal forming processes have be-
come important tools for designing feasible production
processes. In more recent years, coupling FEM simula-
tions to mathematical optimisation techniques evolved
to address two industrial needs: (1) designing optimal
metal forming processes instead of only feasible ones
(better products, lower costs) and (2) solving problems
in manufacturing.

The basic concept of mathematical optimisation is
presented in Fig. 1. Basically, it consists of two major
phases: the modelling and the solving of the optimisa-
tion problem. The modelling phase consists of:

1. Selecting a number of design variables the user is
allowed to adapt

2. Choosing an objective function, i.e. the optimisa-
tion aim

3. Taking into account possible constraints
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Fig. 1 The basic concept of mathematical optimisation:
modelling and solving

The solving phase comprises applying a suitable
optimisation algorithm to the modelled optimisation
problem.

The arrows between the modelling and the solving
parts in Fig. 1 denote that both phases cannot be seen
separately from each other. One should select the right
optimisation algorithm for a certain modelled optimi-
sation problem and one should model the optimisa-
tion problem cleverly to adjust it to the optimisation
algorithm one is planning to apply. If the optimisation
model does not match the algorithm, it is likely that the
optimisation problem is not solved efficiently or cannot
be solved at all (Papalambros and Wilde 2000).

Academic research on the field of optimisation of
metal forming using time-consuming FEM simulations
has been going on now for several years, yielding a
large number of scientific publications. Ben Ayed et al.
(2004a, b, 2005), Breitkopf et al. (2005), Cao et al.
(2001), Debray et al. (2004), Jansson (2002), Jansson
et al. 2005, Kim et al. (2001a), Kleinermann (2001),
Kleinermann and Ponthot (2003), Lenoir and Boudeau
(2003), Liew et al. (2004), Naceur et al. (2001, 2003,
2004a, b, c), Ponthot and Kleinermann (2005), Schenk
and Hillmann (2004), Sheng et al. (2004), Shi et al.
(2004), Lin et al. (2002) and Strano and Carrino
(2004) apply optimisation techniques to deep draw-
ing; Abedrabbo et al. (2004), Aydemir et al. (2005),
Di Lorenzo et al. (2004), Endelt (2003), Endelt and
Nielsen (2001), Fann and Hsiao (2003), Jirathearanat
and Altan (2004), Johnson et al. (2004), Labergère and
Gelin (2004a, b), Ray and Mac Donald (2004), Sillekens
and Werkhoven (2001), Weyler et al. (2004) and Yang
et al. (2001) to hydroforming; Carrino et al. (2003a, b)
and Kim et al. (2001b) to superplastic forming;
Byon and Hwang (2001) and Lin et al. (2003) to ex-
trusion; and António et al. (2004), Castro et al. (2004),
Do et al. (2004), Duan and Sheppard (2002), Fourment
et al. (2005a, b), Poursina et al. (2003), Repalle and
Grandhi (2004), Sousa et al. (2003), Thiyagarajan and
Grandhi (2004) and Zhao et al. (2004) to forging. Other
processes are subject to optimisation in Breitkopf et al.

(2004), Labergère et al. (2004), Ohata et al. (2003),
Palaniswamy et al. (2004) and Sahai et al. (2004).

In general, one can conclude that most research until
now has been focussing on the solving part of optimi-
sation, i.e. the selection and application of a suitable
optimisation algorithm. Modelling is mostly done in
an arbitrary way, addressing the specific problem of
the considered metal forming process only. Further-
more, the selection of the optimisation algorithm is also
mainly related to that specific problem.

Most optimisation results are very impressive, which
demonstrates the large potential of optimisation tech-
niques to optimise metal forming processes. However,
modelling an optimisation problem well, selecting a
suitable optimisation algorithm, and proper application
of this algorithm to a specific metal forming problem re-
quires a lot of expertise on mathematical optimisation.
Unfortunately, most professionals in metal forming do
not have this expertise, which is a barrier for exploiting
the full potential of optimising metal forming processes.

To overcome this barrier, there is a need for a gen-
erally applicable optimisation strategy for metal form-
ing processes: a structured method that assists metal
forming professionals in modelling and solving a variety
of metal forming problems, regardless of the type of
problem, product or process they are facing. Such an
optimisation strategy is presented in this paper.

In the next section, certain aspects of mathematical
optimisation using time-consuming FEM simulations
will be reviewed first. In Section 3, an optimisation
strategy for metal forming processes is proposed. This
strategy is applied to a hydroforming example in
Section 4. Section 5 draws some conclusions.

2 Mathematical optimisation of metal forming
using FEM

The basic concept of mathematical optimisation has
been presented in Fig. 1. This section covers some
aspects of the application of mathematical optimisation
to metal forming processes using time-consuming FEM
simulations. Both the modelling and solving parts are
addressed.

2.1 Modelling

Two aspects of modelling are treated: the effect of
arbitrary modelling on the optimised results and the
relation between optimisation modelling and FEM
simulations.
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The effect of arbitrary modelling As mentioned be-
fore, the optimisation modelling comprises defining the
objective function, constraints and design variables.
These three items are closely related to each other as
depicted in Fig. 1. Both the objective function and the
constraints should be quantified by the design variables.
The objective function and constraints are also related
to each other in the sense that they are often exchange-
able. Consider for example that we would like to make
a metal formed product and two relevant properties are
the product quality and the costs. Then two approaches
can be followed: either the quality is maximised while
putting a certain limit on the allowed production costs,
or the costs could be minimised while ensuring a certain
minimum level of the product quality. In the former
case, the quality is clearly the optimisation objective
and the costs are constraints, whereas it is just the
other way around in the latter case. Which property
to select as an objective and which as a constraint is
a very fundamental question because it strongly in-
fluences the final outcome of optimisation. Moreover,
coincidentally missing an essential property to take into
account may have devastating consequences for the
optimised results: minimising the costs while leaving
out the quality in the above example will yield a very
cheap but very poor product regarding quality.

The relation between optimisation and FEM Figure 2
schematically presents the relation between optimisa-
tion and FEM. Running a FEM simulation can be
seen as an input–throughput–response model. Certain
quantities are known beforehand: there is no necessity
to run a FEM calculation for evaluating them. The
design variables are clear examples of these quantities
and there can also be constraints that explicitly depend
on the design variables. These constraints are called
explicit constraints. In case of metal forming, explicit
constraints are related to the undeformed product, e.g.
constraints on the initial shape of a blank.

Quantities that depend on the response require a
FEM simulation for evaluating them: they implicitly de-
pend on the design variables. The objective function is
generally such an implicit quantity and it is also possible
to have implicit constraints. For metal forming, implicit
constraints are related to the deformed product, e.g.
thinning is not allowed to exceed a specified limit.

Fig. 2 FEM as an input–throughput–response model

2.2 Solving

Next to the modelling phase, mathematical optimisa-
tion’s second phase is solving the optimisation problem.
This comprises applying an optimisation algorithm to
the modelled optimisation problem.

Scientific publications mainly focus on this solving
part of mathematical optimisation. In the remainder
of this section, we will review four major groups of
algorithms that can be applied for optimisation using
FEM simulations:

– Iterative algorithms
– Evolutionary and genetic algorithms
– Approximate optimisation algorithms
– Adaptive optimisation algorithms

We will also indicate the extensive application of
these groups of algorithms to optimise metal forming
processes.

Iterative algorithms One way of optimising metal
forming processes is using classical iterative opti-
misation algorithms (conjugate gradient, Broyden–
Fletcher–Goldfarb–Shanno algorithm, etc.). Using
these iterative algorithms, there is a direct coupling
between the FEM software and the optimisation
algorithm as depicted in Fig. 3a: each function eval-
uation of the algorithm means running a FEM calcu-
lation. In case of metal forming, these FEM calculations
can be extremely time consuming and need to be
sequentially evaluated. Furthermore, many classical
algorithms require sensitivities, of which the efficient
calculation is not straightforward for FEM simulations.
A third difficulty concerning iterative algorithms is
the risk to be trapped in local optima. Advantages
of this group of algorithms comprise the fact that
they are well-known and widely spread. Additionally,

Fig. 3 a Direct optimisation; b approximate optimisation
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convergence to a local optimum generally requires
relatively few iterations and is, hence, fairly efficient.
Due especially to the former advantage, iterative
algorithms are quite often applied to optimise metal
forming processes, see, e.g. Byon and Hwang (2001),
Cao et al. (2001), Debray et al. (2004), Duan and
Sheppard (2002), Endelt and Nielsen (2001); Endelt
(2003), Fann and Hsiao (2003), Jirathearanat and
Altan (2004), Kim et al. (2001a, b), Kleinermann
(2001), Kleinermann and Ponthot (2003), Lin et al.
(2002, 2003), Naceur et al. (2001, 2004c), Ponthot
and Kleinermann (2005), Shi et al. (2004), Sillekens
and Werkhoven (2001), Yang et al. (2001), Zhao
et al. (2004).

Evolutionary and genetic algorithms A second group
of algorithms for which there is a direct coupling be-
tween the algorithm and the FEM software (Fig. 3a) are
genetic and evolutionary optimisation algorithms. Ge-
netic and evolutionary algorithms look promising be-
cause of their tendency to find the global optimum and
the possibility for parallel computing. Furthermore, it
is not difficult to calculate sensitivities with them. How-
ever, the rather large number of function evaluations
that is expected to be necessary using these algorithms
is regarded as a serious drawback (Emmerich et al.
2002). Several authors have applied genetic and evolu-
tionary algorithms to optimise metal forming processes,
see Abedrabbo et al. (2004), António et al. (2004),
Castro et al. (2004), Do et al. (2004), Fourment et al.
(2005a, b), Poursina et al. (2003), Schenk and Hillmann
(2004), Sousa et al. (2003), and Weyler et al. (2004).

Approximate algorithms A third way of optimisation
in combination with time-consuming function evalua-
tions is using approximate optimisation algorithms, of
which response surface methodology (RSM) is a well-
known representative. RSM is based on fitting a low-
order polynomial metamodel through response points,
which are obtained by running FEM calculations for
carefully chosen design variable settings and finally
optimising this metamodel (Myers and Montgomery
2002). Hence, for approximate optimisation, the di-
rect coupling between the optimisation algorithm and
the FEM calculations is removed and a metamodel
is placed in between as a buffer. This is schemati-
cally presented in Fig. 3b. Metamodels are sometimes
also referred to as response surface models or surro-
gate models. Next to RSM, other metamodelling tech-
niques are Kriging [or design and analysis of computer

experiments (DACE)] and neural networks. Allow-
ing for parallel computing and lacking the necessity
for sensitivities, approximate optimisation is appeal-
ing to many authors in the field of metal forming,
see Ben Ayed et al. (2004a, b, 2005), Breitkopf et al.
(2004, 2005), Jansson (2002), Jansson et al. (2005), Koc
et al. (2000), Lenoir and Boudeau (2003), Liew et al.
(2004), Naceur et al. (2003, 2004a, b), Ohata et al.
(2003), Repalle and Grandhi (2004), Revuelta and
Larkiola (2004), Sahai et al. (2004), and Thiyagarajan
and Grandhi (2004). Disadvantages include an approx-
imate optimum as a result rather than the real global
optimum and the curse of dimensionality: these algo-
rithms tend to become very time consuming if many
design variables are present.

Adaptive algorithms A fourth group is formed by so-
called adaptive algorithms. Adaptive algorithms are not
coupled to FEM in the same way as the other three
groups of algorithms. Adaptive algorithms are incor-
porated within the FEM code and generally optimise
the time-dependent load paths of the metal forming
process during each increment of the FEM calculation.
An advantage is that the optimum is obtained in only
one FEM simulation. However, access to the source
code of the FEM software is necessary and only time-
dependent design variables can be taken into account.
These disadvantages seriously limit the general applica-
bility of these kinds of algorithms. Literature describes
several applications of these algorithms to metal form-
ing (Aydemir et al. 2005; Carrino et al. 2003a, b; Di
Lorenzo et al. 2004; Johnson et al. 2004; Labergère
et al. 2004; Labergère and Gelin 2004a, b; Ray and
Mac Donald 2004; Sheng et al. 2004; Sillekens and
Werkhoven 2001; Strano and Carrino 2004) especially
to optimise the internal pressure and axial feeding load
paths in hydroforming.

All groups of optimisation algorithms introduced in
the previous section have been applied to optimisation
problems in metal forming. In general, one can con-
clude from literature that specific problems for specific
metal forming processes are – sometimes quite arbi-
trarily – modelled and subsequently solved using an
algorithm suitable for that specific application. In our
opinion, a generally applicable optimisation strategy
for modelling and solving optimisation problems in
metal forming problems is lacking. As a consequence,
we developed such an optimisation strategy which can
be applied to model and solve all kinds of optimisation
problems for all kinds of metal forming processes using
any simulation code.
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3 Optimisation strategy for industrial metal
forming processes

In this section, we will propose an optimisation
strategy for industrial metal forming processes. In
Section 3.1, the requirements for the optimisation strat-
egy are shortly introduced. Subsequently, the optimisa-
tion strategy is presented in Sections 3.2 to 3.4.

3.1 Requirements

Our aim has been to develop an optimisation strategy
for metal forming processes using FEM models of these
processes, but which processes? For which (type of)
product? And which FEM codes should be included?
We have tried to develop a strategy which is as gen-
erally applicable as possible. In this context, general
applicability has four dimensions, as schematically pre-
sented in Fig. 4:

– Processes: the strategy should be able to model
and solve all kinds of optimisation problems for all
kinds of different metal forming processes.

– Products: the same holds for different products.
The products mentioned in Fig. 4 are all deep-
drawn products, but quite different demands are set
for them.

– Users: although both can be related to metal form-
ing, a product designer is confronted with totally
different challenges from those of a manufacturing
engineer.

– FEM codes: many FEM codes are available. The
choice for specific simulation software depends
heavily on the process, the product and the pref-
erence of the user.

Whereas the general applicability is the first require-
ment, a second requirement is the application of math-
ematical optimisation techniques: the modelling needs
to result in a specific, mathematically formulated opti-

Fig. 4 General applicability of the optimisation strategy

misation problem to subsequently solve it by a mathe-
matical optimisation algorithm. Both requirements are
quite contradictory: the optimisation strategy needs to
be generally applicable, yet solving it mathematically
requires a detailed and specific optimisation model.

We propose a three-stage optimisation strategy that
lives up to both of the above requirements:

1. Modelling the optimisation problem
2. Screening to determine the most important design

variables
3. Solving the optimisation problem

The different stages are presented in Sections 3.2
to 3.4.

3.2 Modelling

The first stage is to model the optimisation problem.
It is quite a challenge to design a structured method-
ology that is, on the one hand, generally applicable to
any kind of metal forming problem but, on the other
hand, yields a specific mathematical formulation of the
optimisation problem.

We adopted the following approach for tackling
this problem:

1. Brainstorming for industrially relevant objectives,
constraints and design variables.

2. Structuring these quantities by means of the gener-
ally applicable product development cycle.

3. Applying this product development cycle to metal
products and their forming processes.

4. Defining a seven-step methodology for modelling
optimisation problems. This methodology is gen-
erally applicable to any metal forming problem
for any process, product, FEM code and user.
However, after having followed the seven steps, it
results in a specific mathematical optimisation
model.

Brainstorming Several brainstorm sessions have been
organised at several large metal forming compa-
nies. Different users joined the sessions and different
products and processes have been considered. The
brainstorming sessions resulted in a large number of
industrially relevant objectives, constraints and design
variables.

Product development cycle At the basis of the struc-
tured methodology for modelling optimisation prob-
lems for industrial metal forming processes is the
product development cycle, which is a part of the prod-
uct life cycle. A schematic of the product life cycle
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Fig. 5 The product life cycle

is presented in Fig. 5 (Yang and El-Haik 2003). The
product development cycle is the stages 0 through 5,
i.e. the product life cycle of Fig. 5 minus the stages 6
(product consumption) and 7 (product disposal).

Three groups of quantities are indicated in Fig. 5:

– Functional requirements (FRs): these are product
properties that are critical to customer satisfaction
and product functionality.

– Design parameters (DPs): these define the product
design.

– Process variables (PVs): these are process settings
necessary to manufacture the product.

The product life cycle and product development cy-
cle are both very generally applicable. The next step
is to make this generally applicable concept somewhat
more specific by applying it to metal forming. This has
been done by confronting the product development
cycle to the metal forming quantities resulting from the
brainstorm sessions.

Product development cycle applied to metal forming
The industrially relevant metal forming quantities –
which are possible objective functions, constraints and
design variables for optimisation – have been cate-
gorised in FRs, DPs and PVs. Two additional categories
are costs and defects. They have been added to the
product development cycle as presented in Fig. 6.

Fig. 6 The product life cycle applied to metal forming

Subsequently, top-down structures have been de-
fined for each of the five categories. The top-down
structures for the DPs and PVs are presented in Figs. 7
and 8, respectively. Typical examples of FRs for metal
forming are crashworthiness properties, fatigue prop-
erties, stiffness, strength, etc. Examples of the category
costs are material and process costs. Metal forming
defects such as necking and wrinkling in sheet metal
forming are comprised in the category defects.

7 step methodology The product development cycle
applied to metal forming is the basis for a seven-step
methodology for the modelling of optimisation prob-
lems in metal forming:

1. Determine the appropriate optimisation situation.
2. Select only the necessary responses.
3. Select one response as objective function, the oth-

ers as implicit constraints.
4. Quantify the objective function and implicit con-

straints.
5. Select possible design variables.
6. Define the ranges on the design variables.
7. Identify explicit constraints.

Fig. 7 Design parameters of metal formed parts



An optimisation strategy for industrial metal forming processes 577

Fig. 8 Process variables for metal forming processes

The first step is to determine the appropriate op-
timisation situation. Four situations in which the op-
timisation of metal products and their manufacturing
processes can play a role are distinguished:

– Part design, where it is aimed to optimise the metal
formed product’s FRs by determining the DPs.

– Process design type 1, where it is aimed to ex-
actly obtain the DPs set by the part designer by
determining the PVs. Alternatively, one can aim
to manufacture a defect-free product or minimise
production costs by determining the PVs.

– Process design type 2, where it is aimed to optimise
the metal formed product’s FRs by determining the
PVs. DPs, defects and costs can still play a role in
parallel to the FRs.

– Production, where optimisation techniques can be
used to solve manufacturing problems.

These situations and their relations to the product
development cycle are presented in the left part of
Fig. 6. To demonstrate how optimisation can be applied
to one of these four situations, compare the input–
response model for optimisation in Fig. 2 (repeated in
Fig. 9) to that for a process design type 1 problem in
Fig. 10. Note the resemblance: one can immediately
observe that, for a process design type 1 problem, the
objective function and implicit constraints are the DPs,
defects and costs, whereas the design variables are
related to the PVs.

In step 2 of the seven-step methodology, the top-
down structures such as the ones in Figs. 7 and 8 can be
used to select the necessary responses for the specific
problem. These responses are output quantities of the
FE simulation.

Fig. 9 Input–response model for FEM in relation to optimisation

Fig. 10 Input–response model for FEM during the process
design type 1 situation

According to step 3, one of the defined response
quantities is selected as objective function, the others as
implicit constraints. We prefer selecting one objective
and defining other responses as constraints rather than
multi-objective approaches such as a weighted sum of
the responses. The latter approach compares, in our
opinion, difficult to compare quantities and is some-
what arbitrary in the selection of weight factors.

Now, it is clear which FEM responses are formulated
as objectives and which as constraints. However, the
exact mathematical formulation of the responses is still
not clear. This is done in step 4 of the seven-step
methodology. For response quantification, Table 1 is
proposed. It assists in selecting the final mathemati-
cal formulation of the objective function and implicit
constraints. Objective functions are further subdivided
in objectives that aim to reach a target and those that
do not. Upper- and lower-limit implicit constraints are
distinguished. Because the response quantity X is a
FEM output, it can be a nodal or element value or not.
Examples of nodal/element values are strains, stresses,
thickness, etc. Quantities such as forming energy are
not nodal/element related: one number results from
one FEM calculation. Furthermore, Table 1 subdivides
the element/nodal value related responses further into
critical and non-critical values. Critical values are the
values for which none of the nodal/element values are
allowed to exceed a specified level. If it is acceptable
that some of the element/nodal values exceed this spec-
ified level, but important that the average response
value performs well, the response is non-critical. Con-
straints are, by definition, critical values as one can see
in Table 1.

Steps 5, 6 and 7 of the modelling methodology
concern the FEM inputs, the design variables in case
of optimisation. Step 5 comprises the design variable
selection. The optimisation situation selected in step 1
determines the groups of design variables to be taken
into account. For example, Fig. 10 shows that the PVs
are the group of design variables for a process design
type 1 situation. The top-down structure in Fig. 8 can
subsequently be used to select the design variables for
the specific optimisation problem.

Step 6 comprises the selection of the ranges (up-
per and lower bounds) on all design variables. This is
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Table 1 Response quantification

Type of response No nodal/element value Nodal/element value, critical Nodal/element value, non-critical

Objective function, no target min X min maxN X min
∑

N(X)

N

Objective function, target = X0 min |X − X0| min maxN |X − X0| min

∥
∥X−X0

∥
∥

2
N

Implicit constraint, USL X − U SL ≤ 0 maxN(X − U SL) ≤ 0
Implicit constraint, LSL LSL − X ≤ 0 maxN(LSL − X) ≤ 0

something that needs to be done based on the experi-
ence and insight of the user.

Step 7 concludes the input modelling by identifying
explicit constraints. Explicit constraints describe impos-
sible combinations of the design variables, e.g. it is not
possible to run a FEM simulation for those settings, or
the combination is beforehand an infeasible solution of
the problem.

Without going into further detail, we conclude by re-
emphasising that this seven-step methodology is gener-
ally applicable to any metal forming problem and yields
a specific mathematical optimisation model, which can
subsequently be solved using a suitable optimisation al-
gorithm. The seven-step methodology is demonstrated
in the next section when it is applied to a simple hydro-
forming example.

3.3 Screening

After modelling, many design variables may be present,
which makes the problem time-consuming to solve. It is
worthwhile to invest some time in reducing the number
of design variables before applying the optimisation
algorithm. This is done in the screening stage.

We propose to screen the importance of the design
variables by applying factorial DOE strategies (Myers
and Montgomery 2002). Figure 11a shows a well-known
full factorial design for two levels and three factors
(design variables), a so-called 23 full factorial design.
It allows for estimation of the linear and interaction
effects of the design variables and requires 23 = 8 FEM
calculations.

If one likes to estimate quadratic effects, a DOE of
at least three levels is required. Figure 11b shows a 32

full factorial design for two design variables on three
levels each. 32 = 9 FEM calculations are required to
estimate the linear, interaction and quadratic effects
of the design variables. For more design variables, the
number of FEM calculations explodes exponentially,
which makes the application of full factorial designs
prohibitively time-consuming.

However, if one is only interested in linear effects,
the number of necessary FEM calculations can be sig-

nificantly reduced by applying fractional factorial de-
signs. Figure 11c shows a 23−1

III fractional factorial DOE
for three design variables. Resolution III denotes that it
is possible to independently estimate the linear effects.
Interaction effects cannot be independently estimated.
The loss of information with respect to applying the
23 full factorial design returns a decrease in the time-
consuming FEM simulations that need to be run: the
23−1

III fractional factorial design requires only four FEM
calculations in contradiction to the eight calculations
for the full factorial design. For more design variables,
the difference becomes significantly larger in favour of
the resolution III fractional factorial designs.

For screening purposes, we are willing to consider
linear effects only. Of course, neglecting interaction
and other non-linear effects is a crude assumption,
but the increase in efficiency is – at least during the
screening stage – more important than the accuracy.
Moreover, the amount of the linear effects should give
an indication of the importance of the different design
variables and can thus be used to omit the less impor-
tant design variables.

After having applied the resolution III fractional
factorial design and having run the corresponding FEM
simulations, the linear effects can be estimated by ap-
plying statistical techniques such as analysis of variance
(ANOVA), see e.g. Myers and Montgomery (2002).
The amount and direction of the effect of each variable
on each response can be nicely displayed in Pareto and
effect plots (Yang and El-Haik 2003).

Using these techniques, the variables with the largest
effects may be kept in the optimisation model, whereas
the variables having less effect may be omitted. In

Fig. 11 a 23 full factorial design; b 32 full factorial design;
c 23−1

III fractional factorial design
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such a way, the amount of design variables may be
significantly decreased while maintaining control over
objective function and constraints during optimisation.
Screening and the use of Pareto and effect plots is
further demonstrated in Section 4.

3.4 Solving

The final stage of the optimisation strategy is to solve
the optimisation problem by a suitable algorithm.

Based on the literature study presented in Section
2.2, we propose to use an approximate optimisation
algorithm: it is efficient because several calculations can
be run at the same time on parallel processors and it
converges to the global optimum, which mostly results
in better results than local algorithms. The disadvan-
tage that this type of algorithm is not efficient in case
many design variables are present is overcome by the
screening stage of the optimisation strategy. Addition-
ally, the algorithm is applicable to all kinds of metal
forming processes, products and problems because the
FEM simulations are included as a black-box.

An overview of the algorithm is presented in Fig. 12.
Here, we will shortly summarise the different steps of
the algorithm. For more details, refer to publications
on the sequential approximate optimisation (SAO)
algorithm (Bonte et al. 2005a, b, 2007; Bonte 2007).

DOE After having modelled – and perhaps screened–
the optimisation problem, the first step of the algo-
rithm is to apply another DOE strategy. This DOE
strategy indicates for which design variable settings

Fig. 12 Sequential
approximate optimisation
(Bonte et al. 2005a, b,
2007; Bonte 2007)

to run the first FEM simulations for optimisation. A
spacefilling Latin hypercubes design (LHD) is a good
and popular DOE strategy for constructing metamod-
els from deterministic computer experiments such as
FEM calculations (McKay et al. 1979; Santner et al.
2003). The developed DOE takes into account explicit
constraints and uses a so-called maximin criterion for
spacefillingness (Bonte 2007).

Running the FEM simulations For the design variable
settings determined by the LHD, FEM simulations are
performed on parallel processors. Although FEM sim-
ulations for metal forming processes can be very time-
consuming, running the FEM simulations in parallel is
quite time-efficient. Any FEM code for any product
and any process may be applied, which guarantees the
general applicability of the SAO algorithm.

Fitting the metamodels The FEM simulations result
in a number of measurement points for each one of
the modelled responses (objective function and implicit
constraints). For each response, several metamodels
are constructed using response surface methodology
(RSM) (Myers and Montgomery 2002) and Kriging
(Sacks et al. 1989a, b, Santner et al. 2003) metamod-
elling techniques. Both RSM and Kriging are statistical
techniques: the metamodels of the responses can be
interpreted as means. Additionally, it is also possible
to determine a standard deviation at any design vari-
able setting. To explain this, Fig. 13 presents a Kriging
metamodel fitted through three response points y(i) that
resulted from running three FEM calculations for the
design variable settings x(i). At an untried design vari-
able setting x, the predicted objective function value
is ŷ, which can be interpreted as a mean value at
that location. Because we have not run a simulation
at that location, there is a probability that the value is
different. For both Kriging and RSM, a standard devi-
ation s can be calculated that reflects this uncertainty,
see Santner et al. (2003) for Kriging and Myers and
Montgomery (2002) for RSM. Figure 13 visualises this
standard deviation at the untried design variable setting
x. For Kriging, being an interpolative technique, the
standard deviation equals 0 at the DOE points.

Validating the metamodels For each response, differ-
ent metamodels have been fitted now. Metamodel val-
idation techniques are employed to assess the accuracy
of the different metamodels. Metamodel validation for
RSM is based on analysis of variance (ANOVA) and
residual plots, see e.g. Myers and Montgomery (2002).



580 M.H.A. Bonte et al.

Fig. 13 A Kriging metamodel and its standard deviation

Metamodel validation for Kriging is based on cross vali-
dation (Bonte 2007; Bonte et al. 2007). Using these vali-
dation techniques, the best metamodels (either RSM or
Kriging) for each response are selected and included as
an approximation in the optimisation problem.

Optimisation The optimisation problem is subsequent-
ly optimised using a standard sequential quadratic
programming (SQP) algorithm. In case constraints or
Kriging metamodels are present in the final optimi-
sation problem, there is a risk of ending up in a lo-
cal optimum. This problem is overcome by initialising
the SQP algorithm at multiple locations. This implies
performing many function evaluations, but this is
hardly a problem because both RSM and Kriging meta-
models – being explicit mathematical functions – can
be evaluated thousands of times within a second. The
DOE points are used as initial locations for the SQP
algorithm.

The obtained approximate optimum is finally
checked by running one last FEM calculation with the
approximated optimal settings of the design variables.
Next to metamodel validation, the difference between
the approximate objective function value and the real
value of the objective function calculated by the last
FEM run is an additional measure for the accuracy of
the obtained optimum. If the user is not satisfied with
the accuracy, the SAO algorithm allows for sequential
improvement, as can be seen in Fig. 12.

Sequential improvement Three possible ways of se-
quential improvement have been presented and com-
pared to each other by (Bonte et al. 2006; Bonte 2007).
The basic idea of sequential improvement is to increase
the accuracy of the optimum by adding new DOE
points to the original spacefilling LHD. In this paper,

we employ sequential improvement by minimising a
merit function (SAO-MMF). The merit function is:

fmerit = ŷ − w · s (1)

where ŷ and s are, for both RSM and Kriging, given by
metamodels from previous iterations of the algorithm,
see Fig. 13. w is a weight factor. If one selects w = 0, the
new DOE points equal the optima of the metamodel
ŷ. If w → ∞, the new DOE points are simply added
in a spacefilling way. We found that w = 1 provides
a good compromise between both extreme cases. The
merit function is minimised by the same multistart SQP
algorithm introduced in the previous section. Again,
the DOE points are used to initiate the SQP algorithm.
Because the merit function in (1) is also a metamodel,
minimising the merit function is very time-efficient.

Implementation The optimisation algorithm presented
in Fig. 12 and the previous sections was imple-
mented in MATLAB and can be used in combination
with any FEM code for any metal forming process.
It may also be applied to other applications for
which performing many function evaluations is time-
consuming or otherwise prohibitive. For the fitting of
the DACE/Kriging metamodels, use was made of the
MATLAB Kriging toolbox implemented by Lophaven,
Nielsen and Søndergaard (Nielsen 2002; Lophaven
et al. 2002a, b). The efficiency of the algorithm has
been assessed by comparing it to other optimisation
algorithms and applying all algorithms to two forging
processes, see (Bonte et al. 2006; Bonte 2007).

4 Application to hydroforming

We will demonstrate the proposed optimisation strat-
egy – and the potential of optimisation in general –
by applying it to a simple hydroforming example, see
Fig. 14.

4.1 Modelling

We follow the seven-step methodology for modelling
the optimisation problem.

Step 1: Determine the appropriate optimisation situation
Aim of optimisation is to design the manufacturing
process to produce the part presented in Fig. 14. This
is a process design type 1 situation.

Step 2: Select only the necessary responses The pos-
sible groups of responses for a process design type 1
situation are indicated in Fig. 10. These are DPs, defects
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Fig. 14 a A simple hydroformed product; b dimensions

and costs. In this case we are interested in obtaining
the intended part, which is contained in the category
DPs. Defects and costs are, in this case, of less interest.
Figure 7 assists in selecting the necessary responses.
The part material is fixed; hence, the part geometry is
the only relevant category. The essential geometrical
parameters of the part are the wall thickness distribu-
tion and the outer shape accuracy of the part. Assuming
the tools represent the perfect outer shape of the part,
the latter response can be quantified as the distance
between the part and the die after hydroforming.

Step 3: Select objective and implicit constraints The
uniform wall thickness distribution is the objective, the
constraint is the outer shape accuracy.

Step 4: Quantify the responses Table 1 is used to obtain
the mathematical formulation of both responses. In
this case, the objective function (thickness) is a non-
critical nodal value. The constraint (distance between
the final product and the die) is a critical nodal value.
Following these observations, the final formulation is
easily obtained from the table.

Step 5: Select possible design variables After having
determined that we are dealing with a process design

type 1 situation, it is known (Fig. 10) that possible
design variables are the process variables or PVs. The
PVs have been subdivided further in the top-down
structure in Fig. 8. What are we allowed to adapt?
First of all, we are allowed to adapt the workpiece
geometry. Figure 15a shows the initial tube and its
geometrical parameters, which we can include as design
variables. Because the part is formed by a one-stage
hydroforming process, the tool geometry equals the
final part geometry. In a process design type 1 situation,
it is mostly not allowed to change the part geome-
try; hence, the tool geometry is also fixed. Following
Fig. 8 to the material parameters, we can reason that
the workpiece material is also fixed and that the tools
are rigidly modelled in FEM. Hence, material-related
design variables are not taken into account. Process
parameters are the typical hydroforming load paths,
which can be described by four design variables as can
be seen in Fig. 15b. The most important design variable
from the category “other process parameters” is the
friction coefficient between part and tools, which can
be influenced by adapting the lubrication.

The two geometrical parameters, four load path pa-
rameters and the friction coefficient add up to a seven-
design variable optimisation problem.

Step 6: Define the ranges on the design variables Upper
and lower bounds have been defined on all seven design
variables.

Step 7: Identify explicit constraints Explicit constraints
describe impossible combinations of the design vari-
ables. The fact that the time when axial feeding ends
should be larger than the time when it begins generates
an explicit constraint. Another explicit constraint has
been defined based on the convergence behaviour of
the FEM calculations for certain combinations of the
load path parameters.

a b
Fig. 15 a The workpiece and its geometrical parameters;
b typical hydroforming load paths
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Fig. 16 a Pareto plot for the objective function; b Pareto plot for the implicit constraint; c effect plot

The structured seven-step methodology yielded
the following mathematically formulated optimisation
model:

min f (t1, t2, α, umax, R, t, μ) = ‖h − h0‖2

N
s.t. gimpl = max

N
(dtool−product) ≤ 0

gexpl1 = t1 − t2 ≤ 0

gexpl2 = umax − 9 (t1 − t2) ≤ 0

0 s ≤ t1 ≤ 5 s

2.5 s ≤ t2 ≤ 10 s

9.5 MPa/s ≤ α ≤ 12 MPa/s

0 mm ≤ umax ≤ 9 mm

40 mm ≤ R ≤ 43.5 mm

0.8 mm ≤ t ≤ 1.5 mm

0.10 ≤ μ ≤ 0.15 (2)

where h is the thickness throughout the final part,
h0 the final thickness defined by the part designer
(1 mm), N the number of nodes throughout the part
and dtool−product the distance between final product and
the die. R and t are the initial tube’s radius and thick-
ness, t1 and t2 are the time when axial feeding starts and
stops, umax is the amount of axial feeding and α is the
increase in internal pressure. μ denotes the coefficient
of friction.

4.2 Screening

Seven design variables is not that many; hence, it
is possible to apply the SAO algorithm immediately.
However, for demonstration purposes, we will perform
screening anyway.

A 2(7−4)

III fractional factorial DOE is applied, which
implies that eight FEM simulations have been run to

screen the importance of the seven design variables. A
2D axisymmetric FEM model has been made of the
product. The in-house FE code DiekA has been used
as FEM solver.

The resulting Pareto plot for the objective function
is presented in Fig. 16a. Based on this plot, one may
estimate that keeping the three most important vari-
ables umax, R and t and omitting the other four variables
will still result in about 80% control over the objective
function. A same Pareto plot has been generated for
the implicit constraint, see Fig. 16b. umax, t2 and t1 were
the most important variables for the filling of the die.
It is important to keep control over all responses: if
the most important variables are taken into account
for the objective function only, it is possible that the
less important variables are set to a level for which
the implicit constraints are not satisfied. If the control
over the constraints has been lost after screening, it is,
during optimisation, not possible anymore to yield a
feasible solution. Without losing too much control over
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Fig. 17 Convergence of the optimisation algorithm
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Table 2 Optimised process
settings t1 t2 α umax R t μ f g1

1.97 2.50 12 4.33 42.32 1.11 0.15 0.615 −0.071

both responses, it is, in this case, possible to reduce the
number of design variables to five.

A question remaining is what to do with the two
unimportant design variables μ and α. For this, there
are two options:

– Set them to a nominal value based on experience of
the user.

– Use effect plots of the objective function.

In this case, we use the effect plots of the objective
function. Figure 16c presents the effect of μ on the
wall thickness. Because we are aiming to minimise the
modelled objective function, one can best set μ to
the maximal value. Analogously, one can set α to the
maximal value, too.

4.3 Solving

The SAO algorithm has been applied to the reduced
optimisation problem. Figure 17 shows the convergence
behaviour of the algorithm. The simulations have been
performed on 16 parallel processors; hence, the total
calculation time was much shorter than running the 110
simulations sequentially. These 110 simulations include
the eight screening simulations.

The optimised design variable settings are displayed
in Table 2. The optimal objective function value is
0.615 and the negative value for the implicit constraint
denotes that the final product properly fills out the die.
Note the optimal initial tube thickness of 1.11 mm. Con-
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Fig. 18 Wall thickness distribution

sidering the perfect wall thickness of 1 mm and material
thinning due to inflation of the tube, this slightly thicker
initial tube thickness is indeed the result one would
intuitively expect to be optimal.

Figure 18 presents the wall thickness distribution
throughout the final product for the perfect product
(uniform wall thickness of 1 mm), some arbitrary set-
tings of the design variables (the eight screening cal-
culations) and the optimised process. The optimised
process yields a significantly better product, which
demonstrates the high potential of optimisation in
metal forming, and specifically the optimisation strat-
egy proposed in Section 3.

5 Conclusions

A generally applicable optimisation strategy for metal
forming processes has been proposed. It includes three
stages: modelling, screening and solving.

The strategy includes a seven-step methodology for
modelling optimisation problems in metal forming. In
literature, this modelling is often done quite arbitrarily
for a specific problem, product, or process. The pro-
posed seven-step methodology is generally applicable
to all kinds of optimisation problems, products and
processes. Moreover, the structured methodology al-
lows also non-optimisation specialists to generate a
proper mathematical optimisation model of the metal
forming problem they are facing.

The second stage is screening to reduce the optimi-
sation problem size by selecting only the most impor-
tant design variables. Resolution III fractional factorial
design-of-experiment strategies provide a nice balance
between effect estimation and efficiency. Analysis of
variance and Pareto and effect plots are employed to
estimate the importance of the design variables. Only
the couple of most important design variables are taken
into account in the final, reduced optimisation problem.

The reduced problem is subsequently solved by a
generally applicable optimisation algorithm. This SAO
algorithm has been developed by the authors to effi-
ciently solve optimisation problems comprising time-
consuming function evaluations, e.g. FEM simulations
for metal forming processes.

The optimisation strategy has been successfully ap-
plied to a hydroforming process. Modelling, screening
and solving this metal forming problem demonstrated
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the potential of the optimisation of metal forming
processes in general and, more specifically, the pro-
posed optimisation strategy.
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