
Final thesis

An optimising SMV to CLP(B)
compiler

by
Mikael Asplund

LITH-IDA-EX–05/018–SE

2005-02-24

Final thesis

An optimising SMV to CLP(B) compiler

by Mikael Asplund

LITH-IDA-EX–05/018–SE

Supervisor: Ulf Nilsson
Department of Computer and Information
Science
at Linköpings universitet

Examiner: Ulf Nilsson
Department of Computer and Information
Science
at Linköpings universitet

i

Abstract

This thesis describes an optimising compiler for translating from SMV to
CLP(B). The optimisation is aimed at reducing the number of required
variables in order to decrease the size of the resulting BDDs. Also a par-
titioning of the transition relation is performed. The compiler uses an
internal representation of a FSM that is built up from the SMV descrip-
tion. A number of rewrite steps are performed on the problem description
such as encoding to a Boolean domain and performing the optimisations.

The variable reduction heuristic is based on finding sub-circuits that
are suitable for reduction and a state space search is performed on those
groups. An evaluation of the results shows that in some cases the compiler
is able to greatly reduce the size of the resulting BDDs.

Keywords: SMV, CLP, BDD, FSM, CTL, compiler, optimisation, vari-
able reduction, partitioning

iii

iv

Acknowledgements

First of all I would like to thank my supervisor Ulf Nilsson for helping me
and answering all my questions. Vladislavs Jahundovics has also been of
help with ideas and explanations. It has been very rewarding to discuss dif-
ferent matters of logic with Marcus Eriksson who will also be the opponent
of this thesis.

When I have been stuck with the project it has been very nice to talk
with my room mates at IDA. And of course my girlfriend Ulrika who has
helped me get going and finishing this thesis instead of sitting and waiting
for it to finish itself.

v

Contents

1 Introduction 1
1.1 Background . 1
1.2 The need for a SMV to CLP compiler 2
1.3 Purpose . 2
1.4 Structure of the report . 3

2 Preliminaries 5
2.1 Logic concepts . 5
2.2 Kripke structure . 5
2.3 Computation Tree Logic CTL 7
2.4 An example . 8
2.5 Symbolic Model Verifier SMV 9
2.6 Fairness . 10
2.7 BDDs . 12
2.8 BDD size . 15
2.9 Constraint Logic Programming CLP 16
2.10 Synchronous and asynchronous 17
2.11 Partitioning the transition relation 19

2.11.1 Disjunctive partitioning 19
2.11.2 Conjunctive partitioning 20

3 Literature Survey 21
3.1 Compilation . 21
3.2 State encoding . 22

vii

viii CONTENTS

3.3 Variable removal . 22
3.4 Clustering and ordering of partitions 23
3.5 Partial-Order Reduction . 24
3.6 Variable ordering . 24
3.7 Don’t Care sets . 24

4 Compiler basics 27
4.1 Architecture . 27
4.2 Programming language . 28
4.3 Intermediate Representation 28
4.4 SMV Language constructs 29

4.4.1 Modules . 29
4.4.2 Declarations . 30
4.4.3 Types . 30

Arrays . 31
4.4.4 Running . 31

4.5 Compiler stages . 31
4.5.1 Simple reductions 32
4.5.2 Lift case expressions 33
4.5.3 Lift (reduce) set expressions 33
4.5.4 Solve finite domain constraints 34
4.5.5 Create Boolean encoding 34
4.5.6 Reduce INVAR . 35
4.5.7 Optimisation . 35
4.5.8 Handle running . 36
4.5.9 Synchronise . 36

4.6 Output . 37
4.6.1 CLP . 37
4.6.2 SMV . 38

5 Optimisations 39
5.1 Clustering and ordering . 39
5.2 State space reduction . 40

5.2.1 Finding suitable reduction groups 42
5.2.2 Finding reachable states 43
5.2.3 Reencoding . 44

CONTENTS ix

6 Results 47
6.1 Metric . 47
6.2 Comparisons . 48
6.3 Interpretation . 49

7 Discussion 51
7.1 The compiler . 51
7.2 Performance . 52
7.3 Applicability in real world cases 52
7.4 Future work . 53

A CLP syntax 55

B Predicates 57

C Unsupported SMV constructs 61

List of Figures

2.1 Example of a Kripke structure 7

2.2 The Kripke structure from Figure 2.1 converted to an in-
complete infinite computation tree 8

2.3 CTL expressions . 9

2.4 SMV example . 11

2.5 (2.1) represented as a BDD 13

2.6 (2.1) represented as a ROBDD with ordering a < b < c . . 14

2.7 (2.1) represented as a ROBDD with order a < c < b 15

2.8 Two processes . 17

2.9 Kripke structure for synchronous and asynchronous combi-
nation . 18

2.10 Synchronised processes . 18

4.1 Data flow . 27

4.2 Translation of Boolean only case statement 33

4.3 Translation of case statement 33

4.4 Set encoding algorithm for comparison expressions 34

5.1 SMV example with one redundant variable 41

5.2 Algorithm for variable reduction 42

5.3 Algorithm for finding reduction groups 43

A.1 CLP-syntax on token level 56

A.2 CLP-syntax on string level 56

x

LIST OF FIGURES xi

C.1 Example of parameters not handled by smv2clp 62
C.2 Equivalent of example in Figure C.1 handled by smv2clp . 62

List of Tables

4.1 Operator translation . 32

5.1 No redundant variables . 42
5.2 Three variables, with reachable state space of size three . . 44
5.3 A more efficient representation of the state space 44

6.1 Comparison between original problem and compiled problem 49
6.2 Effect of variable reduction 50

xii

Chapter 1

Introduction

1.1 Background

In computer science and electrical engineering the concept of a discrete sys-
tem or finite state machine (FSM) is of central importance. In essence it is
a representation of a system that has a state and can move between differ-
ent states depending on the input. This very simple concept can be used
to describe very complex systems. All hardware construction is done using
FSMs as basic building blocks. It is also widely used in communication
protocols and software design.

It should not come as a surprise that there is a need to make certain
that these systems do not contain any errors. Furthermore it is important
to find these errors as early as possible. If an error is discovered late in
the development process it will be very costly to fix. In some cases it is
not only a question of development cost, but crucial that the system does
not malfunction when in use. Typical areas include aviation, automobile
systems and hospital equipment.

Traditionally testing has been the method used to verify discrete sys-
tems. Test cases that try to cover all possible cases are applied. However
in most cases this is a daunting task and it is practically impossible to test
all cases. Therefore it is often the case that errors go undetected through

1

2 Introduction

the testing phase and emerge in production use. Intel’s Pentium processor
was discovered to be erroneous in its floating point division. This error cost
Intel approximately 500 million US dollars [16]

To fully eliminate the possibility of undetected errors one must use some
kind of formal verification method. That is, a formal proof that the system
fulfils some specification. The systems that are to be verified are often very
complex and it has been considered more or less impossible to formally
verify such complex systems. However in recent years there has been a lot
of improvement in this area and it is now possible to formally verify quite
complex systems. As an example Intel used formal verification during the
construction of the Pentium IV processor [4].

There are several systems that verify a given system description with
some specification. SMV [20] is one of those systems and that is also the
name of the input language.

1.2 The need for a SMV to CLP compiler

In Linköping there is a project investigating the possibilities of doing formal
verification using methods from logic programming [25]. There is currently
a system that takes a constraint logic program (CLP) as input and check-
ing the CTL specification. The framework uses constructive negation and
tabled resolution. A compiler that translates from SMV to CLP would
make it possible to check the performance of the system for problems spec-
ified in SMV.

1.3 Purpose

The aim of the project is to develop an optimising compiler for translation
of SMV code into a CLP program. The compiler is subsequently called
smv2clp.

The syntax of the CLP-program is specified in Appendix A. The main
task is to develop a compiler that translates objects and their states and
state transition in SMV into a transition relation in CLP. Since the sys-
tem is intended to be used as a testing environment it is important that

1.4. Structure of the report 3

its behaviour is easily modified and that it is easy to extend with more
functionality.

The main requirements on the project are:

• The code should be written in such a way that it is possible to replace
the front-end of the compiler to support also other input languages.

• The input should support the full SMV syntax possibly with some
exceptions.

• The output should be a limited CLP-language describing the transi-
tion relation.

• To allow for future experimentation it should be possible to specify,
in a simple way, how much to partition the transition relation.

• The report should also contain a literature survey of what has been
previously done to reduce the size of BDDs when compiling system
descriptions (not necessarily expressed in SMV).

1.4 Structure of the report

The project is mainly concerned with constructing a compiler with cer-
tain properties. The report is a reflection of this; the concepts introduced
are those that are necessary to know to understand the workings of the
compiler.

Some prerequisites are naturally required. First of all a good under-
standing of logic is required and some basic mathematic notions. The
concept of model checking and CTL is explained in Chapter 2.

The research in the area is summarily described in Chapter 3 with em-
phasis on the literature that is relevant to the project. Chapter 4 contains
a description of the compiler with its architecture and description on how
different language constructs in SMV are handled.

Chapter 5 is dedicated to the optimisations performed by the compiler.
This includes one method which is described in the literature, and also
a way of reducing the number of variables. Finally Chapter 6 and seven
contain the results obtained with optimisation and a discussion along with
ideas of future work.

Chapter 2

Preliminaries

This chapter is dedicated to explaining the theoretical concepts related to
the compiler. It is not by any means exhaustive but should cover the most
important aspects.

2.1 Logic concepts

Normal forms are very useful when dealing with propositional logic. Con-
junctive normal form (CNF) and disjunctive normal form (DNF) are used
throughout this thesis. Loosely formulated a formula in CNF is a conjunc-
tion of disjunctions, e.g. (a ∨ b ∨ c) ∧ (¬a ∨ b). And a formula in DNF is a
disjunction of conjunctions, e.g. (a ∧ b ∧ c) ∨ (¬a ∧ b). Any logic formula
can be converted into one of these normal forms using an algorithm which
is polynomial in time and space.

2.2 Kripke structure

When doing model checking on a given system one must have some way
to represent the specifications that the system should fulfil. This project
is mainly concerned with systems whose properties can be expressed in

5

6 Preliminaries

CTL which is described in Section 2.3. The compiler is also able to handle
fairness constraints which are explained in Section 2.6.

CTL is not concerned with FSMs but rather with a very similar con-
struct called Kripke structure.

A Kripke structure is formally defined as follows:

Definition 1 A Kripke Structure is a four tuple M = (S, s0, R, L) where

• S is a finite set of states

• s0 ∈ S is a set of initial states

• R ⊆ S × S is a transition relation for which it holds that ∀s ∈ S :
∃s′ ∈ S : (s, s′) ∈ R.

• L : S → 2AP is a labelling with the atomic propositions (AP) that
hold in that state.

An example of a Kripke structure with three states can be seen in
Figure 2.1. As can be seen from the definition of the transition relation a
Kripke structure is not allowed to have any deadlock states. A deadlock
occurs when there is not transition going away from the current state.
Unfortunately deadlock states often occur in system descriptions and most
verification systems find them.

There are some differences between a Kripke structure and a (nonde-
terministic) FSM:

• In a Kripke structure there are no accept states as in a FSM. Or
rather all states can be seen as accept states.

• A Kripke structure has no input alphabet. However input can be
modeled using Kripke structures.

These are not major differences and it is possible to convert between
the two representations.

The monolithic Kripke structure of a system tends to be very com-
plex and it is seldom constructed directly. Instead a system is usually
constructed by creating groups of automata that are combined in a syn-
chronous or asynchronous manner.

2.3. Computation Tree Logic CTL 7

a,−b

−a,−b

−a,b

Figure 2.1: Example of a Kripke structure

2.3 Computation Tree Logic CTL

CTL is a form of temporal logic. Temporal logic is useful for specifying
properties of systems whose state changes through time. Ordinary logic
is not concerned with change and some kind of time concept is needed to
make a formal logic system handle that a proposition can be true at time
t but false at time t+1.

The time concept in CTL is that of steps in an infinite execution tree.
Therefore the time concept is somehow implicit and hidden but it should
be remembered that it is a form of temporal logic.

The CTL language is constructed of state formulas with the following
syntax:

• A proposition p ∈ AP is a state formula.

• If F1 and F2 are state formulas, then F1 ∧ F2, F1 ∨ F2 and ¬F1 are
state formulas.

• If F1 and F2 are state formulas, then ax(F1), ex(F1), ag(F1), eg(F1),
au(F1, F2), and eu(F1, F2) are state formulas.

In Figure 2.2 the Kripke structure from Figure 2.1 is converted to an
incomplete infinite execution tree. Each path along the tree represents a
possible path through the Kripke structure.

8 Preliminaries

a,-b

a,-b

-a,-b

-a,-b

-a,-b

-a,b

Figure 2.2: The Kripke structure from Figure 2.1 converted to an incom-
plete infinite computation tree

Model checking in CTL is the problem of deciding whether a Kripke
structure, called model satisfies a CTL specification. The semantics of the
CTL expressions are listed in Figure 2.3. M, σ0 ` F should be interpreted
as that the CTL expression F is true for the Kripke structure M in state
σ0.

2.4 An example

Consider a pedestrian crossing with traffic lights. It consists of the following
processes:

Traffic lights for cars, states: red, yellow, green

Traffic lights for pedestrians: red, green

Pedestrians button states: active, inactive.

The pedestrians are only allowed to pass if the car lights are red. If the
button is pressed then the car lights will go from green to yellow and from

2.5. Symbolic Model Verifier SMV 9

M, σ0 � p iff p ∈ L(σ0) where p ∈ AP

M, σ0 � F1 ∧ F2 iff M, σ0 � F1 and M, σ0 � F2

M, σ0 � F1 ∨ F2 iff M, σ0 � F1 or M, σ0 � F2

M, σ0 � ¬F iff M, σ0 2 F1

M, σ0 � ex(F) iff there is a path σ0, σ1 . . . ∈M s.t. M, σ1 � F

M, σ0 � eg(F) iff there is a path σ0, σ1 . . . ∈M s.t.

M, σi � F, ∀i ≥ 0

M, σ0 � eu(F1, F2) iff there is a path σ0, σ1 . . . ∈M and an i ≥ 0 s.t.

M, σi � F2 and M, σj � ∀j ∈ [0, i)

M, σ0 � ax(F) iff for all paths σ0, σ1 . . . ∈M it holds that

M, σ1 � F

M, σ0 � ag(F) iff for all paths σ0, σ1 . . . ∈M it holds that

M, σi � F, ∀i ≥ 0

M, σ0 � au(F1, F2) iff for all paths σ0, σ1 . . . ∈M it holds that

∃i ≥ 0 s.t. M, σi � F2 and M, σj � F1∀j ∈ [0, i)

Figure 2.3: CTL expressions

yellow to red. Then the button will be inactivated and the pedestrians are
allowed to pass.

In the next section this description will be presented in a more formal
way.

2.5 Symbolic Model Verifier SMV

The SMV system was developed at Carnegie Mellon University by McMil-
lan et al.[20]. The language SMV is used to describe the transition relation
for a Kripke structure and a specification in CTL. The SMV system then
takes this description and checks the supplied specification.

10 Preliminaries

The example in Section 2.4 is expressed using SMV in Figure 2.4. The
description is expressed using two modules, “main” and “button”. In the
main module the state variables are declared along with the instantiation of
the module “button”. The “process” keyword means that the assignments
in the“button”module are performed asynchronously with the assignments
in the main module.

In the “ASSIGN” section the initial values are set for “cl” and “pl”.
Observe that “bp” is not assigned an initial value. The next state of each
variable is decided by the following assignments.

2.6 Fairness

Consider the traffic light example and the following, quite reasonable, spec-
ification: ag((pedlight = red)→ af(pedlight = green)). This translates to
“for all paths whenever the pedestrians have a red light then all paths will
eventually lead to the pedestrians having a green light”. Or even simpler
“the pedestrians always gets green light eventually”.

The problem with this specification is that it is false. Since there are
always paths where the pedestrians button never gets active. To fix this
we would like to say: The pedestrians button is pressed infinitely often but
not always and not necessarily regularly.

There is no way of expressing this in CTL. Instead the concept of fair-
ness is introduced. A fairness constraint is a constraint that should be
fulfilled infinitely often. Formally:

Definition 2 Let S be the set of states. A path π is called fair with respect
to one fairness constraint F i ⊆ S iff some state in F i occurs infinitely
often on π.

Definition 3 Let F be a possibly empty list of fairness constraints F =
(F 1, . . . , F m). A path π is fair with respect to F iff π is fair with respect to
every F i.

2.6. Fairness 11

MODULE main

VAR

cl : {red, yellow, green}; --Car light

pl : {red, green}; --Pedestrian light

pb : {active, inactive}; --Pedestrian button

pedestrians_button : process button(pb);

ASSIGN

--Car light initially green

init(cl) := green;

--Pedestrian light initially red

init(pl) := red;

--Determine the next state of the car light

next(cl) := case (cl = green & pb = active) : yellow;

(cl = green & pb = inactive) : green;

(cl = yellow & pb = active) : red;

(cl = yellow & pb = inactive) : green;

(cl = red & pb = active) : red;

(cl = red & pb = inactive) : green;

esac;

--Pedestrians light is only green if car light is red

next(pl) := case (cl = red) : green;

1 : red;

esac;

--Set pb inactive if the light is green

next(pb) := case (pl = green) : inactive;

1 : pb;

MODULE button(b)

ASSIGN

next(b) = active;

Figure 2.4: SMV example

12 Preliminaries

2.7 BDDs

The compiler is not directly concerned with BDDs. However they are
relevant since the performance of the compiler is partly measured by the
size of the BDD that is produced from its output. Therefore this section
briefly introduces the concept and how it is relevant to this thesis.

Originally BDDs were introduced by Bryant [7]; however this introduc-
tion is based on [3].

Some concepts will be introduced and in order to demonstrate them the
following Boolean expression will be used as illustration:

(a ∧ c) ∨ (a ∧ ¬b ∧ ¬c) ∨ (¬a ∧ ¬b) (2.1)

First the logic formula should be in if-then-else normal form, which is
defined by the if-then-else operator:

Definition 4 let x → y0, y1 be the if-then-else operator defined by: x →
y0, y1 = (x ∧ y0) ∨ (¬x ∧ y1)

Definition 5 A Boolean expression is in INF (If-then-else Normal Form)
if the expression consists entirely of Boolean variables, constants (0 and
1) and the if-then-else operator such that the tests are only performed on
variables.

Proposition 1 Any Boolean expression is equivalent to an expression in
INF.

This simply means that we can rewrite any Boolean expression to INF.
(2.1) can be written as:

a→ (c→ 1, (b→ 0, 1)), (b→ 0, 1) (2.2)

Using this representation it is possible to create a binary graph. For
each if-then-else operator a node is created. The name of the node is
labelled with the if-variable. The then-expression is represented as the solid
branch and the else-expression as the dotted branch. Figure 2.5 shows (2.1)
represented as a BDD.

2.7. BDDs 13

Definition 6 A Binary Decision Diagram (BDD) is a binary tree where
all internal nodes are labelled with binary variables and all leafs are Boolean
constants. The outgoing edges of a node u are given by the functions low(u)
and high(u) and the variable by var(u).

01
1

01

a

b c

b

Figure 2.5: (2.1) represented as a BDD

The graph in Figure 2.5 has no specific ordering of the nodes. This can
be changed. The nodes b and c can change places. In general a BDD can
be transformed into a tree where all nodes are ordered. This is called an
OBDD.

Definition 7 An Ordered Binary Decision Diagram is a BDD if for all
nodes u given some ordering of the nodes: u < low(u) and u < high(u).

If the graph contains several equivalent sub-graphs (Like the two trees
with b as root in Figure 2.5) the graph can be reduced to contain only one
of them. If also all nodes with the same high and low successor are removed
the result is called a ROBDD.

Definition 8 A Reduced Ordered Binary Decision Diagram is an OBDD
where the following holds:

14 Preliminaries

• uniqueness: no two distinct nodes have the same variable name and
low- and high-successor.

var(u) = var(v) ∧ low(u) = low(v) ∧ high(u) = high(v)⇒ u = v

• non-redundancy: tests no variable node u has identical low- and high-
successor:

low(u) 6= high(u)

b b

0 1

a

c c

Figure 2.6: (2.1) represented as a ROBDD with ordering a < b < c

A ROBDD is a directed acyclic graph and it turns out that it is often
a very compact representation of a Boolean function. And there is yet
another advantage with this structure as stated in Proposition 2.

Let tu represent the Boolean expression associated with a ROBDD, then
let fu be a function that maps (b1, b2, . . . , bn) ∈ B

n to the truth value of
tu.

Proposition 2 (Canonicity Lemma) For any function f : B
n → B

there is exactly one ROBDD u with variable ordering x1 < x2 < . . . < xn

such that fu = f(x1, . . . , xn).

2.8. BDD size 15

In the rest of the report I will adhere to the convention to use the term
BDD even though it is really ROBDD that is intended. The reason being
that ROBDD is a bulky term.

BDDs are used in symbolic model checking because besides supplying a
unique and concise representation of Boolean functions they allow for good
performance in the required operations.

2.8 BDD size

Although there is a unique BDD for every Boolean function that is not to
say that there is a unique BDD for every finite state machine. A Boolean
function f(x1, . . . , xn) supplies a specific ordering of the variables. If the
ordering is changed, the resulting BDD will also change. In fact the num-
ber of nodes can change exponentially given different variable orderings.
Figure 2.7 shows (2.1) as a BDD with ordering a < c < b. This requires
three internal nodes as opposed to five in Figure 2.6.

1 0

b

c

a

Figure 2.7: (2.1) represented as a ROBDD with order a < c < b

The state space of the expression can sometimes be changed without
affecting the result of the model checking. The state space of the transition
relation is the set of possible transitions. All transitions that go to or from
unreachable states do not affect the result of the model checking. Therefore

16 Preliminaries

one tries to change the state space in order to reduce the number of nodes
in the BDD. How to change the state space is not obvious. The smallest
BDD is created when the state space is maximal (BDD = true) or minimal
(BDD = false).

When describing the transition relation using non Boolean variables
the expressions must be encoded with a Boolean representation in order to
create a BDD. The way this is done will also affect the size of the BDD.

2.9 Constraint Logic Programming CLP

The output of the compiler is a set of CLP(B) clauses. An exact definition
of CLP can be found in [17]. This section will just briefly demonstrate the
concept.

Each clause in a CLP(B) program will have the form:

A0 : − C, L1, . . . , Ln

where A0 is an atomic formula, C a Boolean constraint and L1, . . . , Ln

literals; that is, an atomic formula or the negation of an atomic formula.
For example a step relation can be expressed as:

step([S1, S2, T1, T2]) : − step0(S1, T1) ∧ step1(S2, T2).

step0([S1, T1]) : − sat((S1 ∧ ¬T1) ∨ (¬S1)).

step1([S2, T2]) : − sat((S2 ∧ T2) ∨ (¬S2 ∧ T2)).

where the sat() predicate contains the Boolean constraints. This can
for example be used to check if there is a transition between states (0, 1)
and (1, 0). So step([0, 1, 1, 0]) is true if step0([0, 1]) is true (which it is) and
step1([1, 0]) is true (which it is not). Therefore no such transition exists.
This process can be carried out by a CLP-solver program such as SICStus
Prolog.

The full syntax of the output is a subset of SICStus Prolog syntax and
is defined in appendix A.

2.10. Synchronous and asynchronous 17

2.10 Synchronous and asynchronous

As per the definition of the Kripke structure given above it seems void
to discuss whether a system is synchronous. However most systems are
described using modules that interact with each other.

−a

a

−b

b

Figure 2.8: Two processes

Figure 2.1 shows two processes. The transitions are unconditional but
this is often not the case. In order to express these transitions as a relation
two new variables a′ and b′ are introduced. These represent the next state of
the respective variable. Now each process can be described by a transition
relation:

R1(a, a′) = ((¬a ∧ a′) ∨ (a ∧ ¬a′)) (2.3)

R2(b, b
′) = ((¬b ∧ b′) ∨ (b ∧ ¬b′)) (2.4)

If we combine the two processes in a synchronous manner the final
Kripke structure will have the following transition relation:

Rs(a, b, a′, b′) = R1(a, a′) ∧ R2(b, b
′) (2.5)

However if we combine them asynchronously the result is:

Ra(a, b, a′, b′) = ((R1(a, a′) ∧ b = b′) ∨ (R2(b, b
′) ∧ a = a′)) (2.6)

Figure 2.9 shows the final Kripke structure for Rs and Ra respectively.
In both cases the number of states is m · n where m and n are the states

18 Preliminaries

a,b a,-b

-a,-b -a,b

a,-ba,b

-a,b-a,-b

Figure 2.9: Kripke structure for synchronous and asynchronous combina-
tion

in each process (in this case two). However the asynchronous case results
in a lot more transitions and also reachable states.

Given a set of asynchronous processes it is possible to transform them
into a set of synchronous processes without having to construct the final
Kripke structure. This is done by adding a transition to each state in the
process that goes back to itself. Suppose that the processes in Figure 2.8
are asynchronous. The two synchronous processes can then be seen in
Figure 2.10.

−a

a

−b

b

Figure 2.10: Synchronised processes

If these two processes are combined synchronously then the result will
be the same as if the two original processes in Figure 2.8 were combined

2.11. Partitioning the transition relation 19

asynchronously.

2.11 Partitioning the transition relation

The transition relation for the structure in Figure 2.1 can be written:

R(a, b, a′, b′) =(¬a ∧ b ∧ ¬a′ ∧ ¬b′)∨

(¬a ∧ b ∧ a′ ∧ ¬b′)∨

(a ∧ ¬b ∧ ¬a′ ∧ b′)∨

(a ∧ ¬b ∧ ¬a′ ∧ ¬b′)∨

(¬a ∧ ¬b ∧ a′ ∧ ¬b′)

(2.7)

Where the primed variables represent the next state variables.
The relation in this case consists of a number of disjuncted relations.

In general the transition relation can be written:

R(X, X ′) =
∨

∀i

Ri(X, X ′) (2.8)

Where X is the set of variables in the current state and X ′ the set of
variables in the next state. Also the transition can be partitioned conjunc-
tively:

R(X, X ′) =
∧

∀i

Ri(X, X ′) (2.9)

Now let S(X) be a so that it is true if X is in the current state set.
Then the next state is:

S(X ′) = ∃X[S(X) ∧ R(X, X ′)] (2.10)

2.11.1 Disjunctive partitioning

Using disjunctive partitioning this can be written:

S(X ′) =
∨
∃X[S(X) ∧ Ri(X, X ′)] (2.11)

20 Preliminaries

This is because the ∃ operator distributes over disjunction. This means
that the next state can be computed for each asynchronous process sepa-
rately. The monolithic BDD for the transition relation does not need to be
constructed and this saves a lot of memory.

2.11.2 Conjunctive partitioning

Unfortunately the above can not be used for conjunctive partitioning. How-
ever it is possible to split the computation up by using a technique intro-
duced by Burch et al. [19]. They showed that by using partitioning it
was possible to find a much larger reachable state space than previously
achieved.

First the n partitions are ordered according to some heuristic. Then let
Di be the variables that the partition Ri is dependent on. And let:

Ei = Di \
n−1⋃

k=i+1

Dk (2.12)

Now S(X ′) in Figure 2.10 can be calculated using the following itera-
tion:

S1(X, X ′) = ∃xj∈E0
[S(X) ∧ R0(X, X ′)]

S2(X, X ′) = ∃xj∈E1
[S1(X, X ′) ∧ R1(X, X ′)]

...

S(X ′) = ∃xj∈E1
[Sn−1(X, X ′) ∧ Rn−1(X, X ′)]

The only trick is to keep the BDD for Si(X, X ′)“small”during the whole
iteration. More on ways to accomplish this can be found in Section 3.4

Chapter 3

Literature Survey

This chapter contains a survey of the literature written on the topic of
optimising the transition relation with respect to the size of the resulting
BDDs. Actually optimising is not a correct term since most of the methods
described are heuristics that do not guarantee an optimal result.

Not much work has been done aimed specifically at compilation of dis-
crete systems with the purpose of reducing the BDD size. However most
of the methods used for reducing the size of the BDD are applicable at the
compilation stage. Therefore some of them are described here.

Also there is of course quite some research done with the purpose of
optimising certain properties of hardware synthesised from a given descrip-
tion. These will not be covered here because it is difficult to see how these
methods could be applicable.

3.1 Compilation

This section introduces a couple of papers concerned with optimisation of
BDDs during the compilation stage.

Aloul et al. [1] have made a compiler for CNF-clauses that changes the
variable ordering with good results. They convert a CNF formula into a
hyper-graph and reorder the variables using a cut minimisation method.

21

22 Literature Survey

Finally the result is converted back to CNF. This method seems related to
cut minimisation in BDDs but it is applied at an earlier stage.

Cheng and Brayton [10] have constructed a compiler for translating
from a subset of Verilog into automata. Verilog is a hardware descrip-
tion language and therefore similar to SMV. However Cheng had to deal
with a lot of issues relating to timing which is implicit in SMV. Also no
optimisation or partitioning was performed.

3.2 State encoding

The source language SMV supports variables over finite domains other than
the Boolean one. These variables must be translated to a set of Boolean
variables. However there is no obvious way to do this and furthermore the
encoding affects the size of the transition relation and hence also the BDD.
There are heuristics [24, 12] that will try to find a good encoding or to
change an existing encoding iteratively to reduce the size of the BDD.

The approach of Forth et al. [12] is to locate subtrees within the state
transition graph and using them to create an encoding for the states. The
drawback of this method is that the transition graph must be constructed.

Meinel and Theobald [24] used a local re-encoding approach. It is ap-
plied for two variables neighbouring at a time and the operation is a com-
bination of level exchange and xor-replacement. They have shown how this
effects the size of the BDD and it can be used to reduce the BDD size
effectively. However since the compiler does not create the BDDs from the
transition relation it can not apply this method.

Quer et al. [27] introduced methods for reencoding of a FSM with the
purpose of checking equivalence with another FSM.

3.3 Variable removal

There has been some research on removal of redundant variables. Berthet
et al. [5] proposed the first algorithm for state variable removal. The
algorithm is based on a reencoding of the reachable state space so that
redundant variables can be removed.

3.4. Clustering and ordering of partitions 23

Sentovich et al. [29] proposed algorithms for variable removal aimed
at synthesis. In [8] Eijk and Jess uses functional dependencies to remove
variable during state space traversal.

There are many problem descriptions where there are time-invariant
constraints (INVAR construct in SMV). These can be utilised to eliminate
redundant variables. This is what Yang et al. have showed in [32].

3.4 Clustering and ordering of partitions

The idea to use conjunctive partitioning of the transition relation in sym-
bolic model checking was introduced by Burch et al. [19]. They showed that
it was possible to avoid constructing the BDD for the monolithic transition
relation as demonstrated in Section 2.11.2.

However they gave no algorithm that could automate the partitioning.
Geist and Beer [15] presented a heuristic for automatic ordering of the
transition relation.

The heuristic is based on the notion of a unique variable; that is, a
variable that does not exist in the other relations. So given a set of parti-
tions first choose the partition with the largest number of unique variables.
Remove the partition from the set and recalculate the number of unique
variables for each partition in the set. Following this simple heuristic quite
reasonable results were achieved.

The transition relation should not be partitioned as much as possible
because that will make the implementation slow. The important aspect
is to keep the BDDs so small that they are manageable but not smaller.
Therefore the partitions should first be clustered into closely related parti-
tions of suitable size and then the clusters should be ordered.

Ranjan Aziz and Brayton [28] supplied a way to both cluster the tran-
sition relation and to order them. This method has been very popular and
the SMV systems utilises it. An explanation of the heuristic is supplied in
Section 5.1

Cabodi et al. [9] modified the heuristic in [28]. The difference being
not only using the number of support variables as size limit for cluster-
ing but also the actual BDD size. Furthermore the ordering is performed
dynamically.

24 Literature Survey

Meinel and Stangier have constructed some improved algorithms based
on modularity. First in [22] they presented a heuristic that clusters par-
titions within a given module in the input language. They improved this
in [21] producing a hierarchical partitioning of the relation. Also they sup-
plied a heuristic [23] that does not require the modular information to be
given but tries to construct its own modular groups and then clustering
within them.

3.5 Partial-Order Reduction

Asynchronous systems are especially difficult to handle because the number
of transitions explode when several processes are combined. The reason for
this is that any possible interleaving of the transitions must be included.

However most transitions are “independent” of each other in the sense
that the order in which they are activated does not affect the reachable
states.

Partial order reduction formalises this into a method that can be used
to decrease the BDD size quite drastically. Alur et al. [2] showed how this
approach can be applied to symbolic model checking. It essentially includes
a rewrite of the transition relation.

3.6 Variable ordering

The most important aspect of BDD size is the variable ordering. Heuristics
to find good variable ordering have been developed. See [18] for an example
of this and more references to relevant papers.

3.7 Don’t Care sets

Shiple et al. [30] investigated some different possibilities to heuristically
minimise the size of BDDs using the concept of Don’t Cares. Let F be an
incompletely specified function that can be contained by two completely
specified functions c and f such that F ⇒ f ∨¬c and (f ∧c)⇒ F the BDD
for F . This is the same as to say that if c is true then we care and F ≡ f ,

3.7. Don’t Care sets 25

but if c is false then we do not care about the value of F . Since there is a
set of functions that can be used to represent F the idea is to choose the
function with the smallest BDD.

This technique can be used in symbolic model checking. One approach is
to apply the heuristic dynamically when doing reachable state space search.
This is done by Wang et al. in [31] where the next state is computed using
don’t cares. Unfortunately this idea is not directly applicable in the SMV
compiler. As stated previously a static method is required in the compiler.
One could try to minimise the transition relation given the non-reachable
states as a “don’t care”-function.

Chapter 4

Compiler basics

This chapter gives an overview on how the smv2clp compiler works and
what kind of issues that have been dealt with.

4.1 Architecture

The first task that the compiler must perform is to parse the SMV descrip-
tion file into a data structure that allows for future manipulation. Since the
construction of a parser for any language is so similar in structure several
tools have been constructed to automate this process.

SMV Intermediate repr. CLP

Transformations/Optimisations

Figure 4.1: Data flow

27

28 Compiler basics

In this project I have used the tools bison++ (which is bison [13] re-
targeted to C++ by Alain Coetmeur) and flex [26]. These produce C++
code which can be integrated with the rest of the compiler.

One of the main objectives of the compiler is to allow for experimenta-
tion with different types of translations. A technique called visitor design
pattern is used to accomplish this. For an explanation of design patterns
see [14].

The main idea behind this technique is to keep the operations in a sep-
arate structure from the object structure. At first this seems to go against
the usual object oriented philosophy. However this allows for adding new
operations on the structure without changing the object class structure.

It is easy to see how this is useful in this particular case. Each optimisa-
tion technique is implemented as a visitor that inherits from a base visitor
class. Even the step of producing CLP-code from the program structure is
implemented as a visitor.

4.2 Programming language

The compiler is implemented in C++. The reasons for using this language
are:

• It is object oriented and allows for extensive modularity

• There are parser generators available, e.g. flex and bison++

• It is robust and widely used

• There are good library packages such as STL and Boost

4.3 Intermediate Representation

One of the characteristics of the compiler is that it is possible to create
another front end that takes an input language other than SMV. Therefore
all optimisations should be performed on an intermediate representation.

4.4. SMV Language constructs 29

This representation should be at least as powerful as the output lan-
guage. Also it should be a suitable framework for partitioning and ordering
the transition relation.

Modularity is an important aspect in many programming languages
and this is also true when systems describing discrete systems. Complex
systems can more easily be comprehended if divided into modules. Also
modularity allows for reuse of code and makes the system less prone to
error.

If these were the only reasons for modularity then there would be no
reason to let the intermediate representation to be modular. The user
will not have to deal directly with this representation. The advantage of
keeping the modular structure is that it allows clustering based on the
original modular structure such as in [21]. The idea is that the variables
that occur in the same module are probably depedent on each other.

The FSM representation is constituted of the following entities:

Environments contains sub environments and constraints. The environ-
ment can be synchronous or asynchronous.

Constraints there are different types of constrains but all contain one
expression that is either true or false.

Expression can be one of the following: constant, variable, unary, binary
or ternary.

4.4 SMV Language constructs

The compiler is able to parse most SMV programs without any problem
but there are some language constructs that are not supported. These are
listed in Appendix C. This section explains how the compiler deals with
the supported parts of the SMV language.

4.4.1 Modules

The SMV language allows for modularisation and a simple form of inher-
itance. The compiler creates an environment for each module contain-

30 Compiler basics

ing constraints. A module can be instantiated as a synchronous or asyn-
chronous process. The compiler creates an environment for each module.
The environments will have the same hierarchy as the modules in the SMV
program. An environment can be synchronous or asynchronous and contain
a number of constraints.

4.4.2 Declarations

A module is constructed from a number of declarations:

• VAR: All variables must be declared here. Also modules are instan-
tiated.

• SPEC: Contains specifications in CTL. These are represented in the
compiler as a SpecConstraint.

• ASSIGN: Contains assignments to the initial state, the next state or
the current state. These are directly translated into constraints INIT,
TRANS and INVAR statements respectively.

• INIT: Contains an expression that must be true for all initial expres-
sions. Represented in the compiler as an InitConstraint.

• TRANS: Contains a step relation. Represented in the Compiler as a
StepConstraint.

• INVAR: Contains a constraint on variables that must be true in all
states. Represented in the compiler as as InvarConstraint.

• DEFINE: Contains something very similar to macro expressions. These
are expanded during translation to the internal representation.

4.4.3 Types

The SMV language supports the following variable types:

• Integer

• Boolean

4.5. Compiler stages 31

• Set of atoms and integers

• Array of any type

Integer types have an upper and a lower bound. The Boolean type
is really an integer type with 0 and 1 as elements. Sets can have integer
and string members. Unfortunately this creates some inconvenience when
translating to CLP as explained in Section 4.5.5.

Arrays

SMV supports array types in a very restricted way. A variable that is
declared as an array cannot be referenced as is. The only way to set con-
straints on array variables is to use subscripts. Therefore it is natural to
translate the declarations of an array to a set of declaration of variables.

4.4.4 Running

Asynchronous modules can be defined in SMV using the process keyword
and the semantics is that given a set of modules the ASSIGN statements
are “executed” interleaved in an arbitrary order.

This of course means that a process can be neglected for an infinite
number of steps. The interleaving simply chooses some other process to
execute at every step.

The solution to this is a variable that is associated with each asyn-
chronous module called “running”. It is therefore possible to supply the
following fairness constraint for every asynchronous module.

FAIRNESS

running

4.5 Compiler stages

As explained in Section 4.1 the compiler visits the FSM representation a
number of times until the CLP output can be produced. They are presented
in the order which they are performed by the compiler with the exception
of the simple reduction which are performed when needed.

32 Compiler basics

4.5.1 Simple reductions

This section describes some simple reduction that are performed a number
of times during the compilation.

Not reduction All expressions can be negated. This stage reduces ex-
pressions so that negation only occurs in front of a variable. This can
be very useful when transforming expressions.

True and false reduction Many of the compiler stages leave expressions
such as true ∧ a and this stage simply reduces to an equivalent ex-
pression without true or false.

Operator reduction Once all expressions and variables are mapped into
the Boolean domain there is only a small step left to be done before
the relations can be written as CLP(B) sentences. SMV supports a
wide range of operators but the target language only supports: and,
or, xor, not and exists.

Some operators are eliminated during the state encoding (such as multi-
plication, division, set union, etc.). The rest are treated as in table 4.1

Operator Translated
a = b not(xor(a,b))
a⇔ b not(xor(a,b))
a 6= b xor(a,b)
a ≤ b or(not(a),b)
a⇒ b or(not(a),b)
a < b and(not(a),b)
a > b and(a, not(b))
a ≥ b or(a, not(b))

Table 4.1: Operator translation

4.5. Compiler stages 33

4.5.2 Lift case expressions

A case statement containing Boolean expressions can easily be converted
to a Boolean expression as shown in Figure 4.2.

INVAR

case a : b;

c : d;

esac;

(a ∧ b) ∨ (¬a ∧ c ∧ d) ∨ (¬a ∧ ¬c)

Figure 4.2: Translation of Boolean only case statement

In SMV however the case statement can be of any type. This makes it
harder to do the encoding properly and therefore the case statements are
“lifted”so that the case statements are always Boolean-valued. An example
of this is shown in Figure 4.3.

VAR

a : {1,2,3,4};

b : Boolean;

c : Boolean;

ASSIGN

a := case b : 1;

c : 2;

1 : {3,4};

esac;

INVAR

case b : a = 1;

c : a = 2;

1 : a = {3,4};

esac;

Figure 4.3: Translation of case statement

4.5.3 Lift (reduce) set expressions

Set expressions can easily be converted to a disjunction of equalities. For
example:

next(a) ∈ {1, 2, X} ≡ (next(a) = 1) ∨ (next(a) = 2) ∨ (next(a) = X)

34 Compiler basics

GetAssignments(expr)
1 lhsDomain← GetDomain(expr.lhs)
2 rhsDomain← GetDomain(expr.rhs)
3 returnExpr ← false

4 for i← lhsDomain.first to lhsDomain.last

5 do for j ← rhsDomain.first to rhsDomain.last

6 do if Eval(i expr.operator j)
7 then returnExpr ←
8 (returnExpr∨
9 ((expr.lhs = i) ∧ (expr.rhs = j)))

10 return returnExpr

Figure 4.4: Set encoding algorithm for comparison expressions

4.5.4 Solve finite domain constraints

It is possible to supply arithmetic expressions in SMV. These expressions
can be converted directly to Boolean expressions but it is not a trivial task
to do so. Instead the solution used by smv2clp is to “Solve” the constraints
by first converting them to a number of assignments. This is done using the
algorithm in Figure 4.4. The algorithm basically goes through all possible
values for the expressions right hand side (expr.rhs) and the left hand side
(expr.lhs). If the expression is true then this combination is added to the
possible assignments.

4.5.5 Create Boolean encoding

In order to convert all expressions into Boolean expressions it is necessary
to decide what encoding to use. In some cases the expression can not
easily be converted into a Boolean expression without first rewriting the
expression

Naturally we do not want to add more variables than absolutely neces-
sary because of state explosion. A variable with a domain of size n results
in at least dlog2(n)e Boolean variables.

SMV is not a strongly typed language and allows comparison and as-

4.5. Compiler stages 35

signment between variables of different types. Also integer arithmetic is
supported. The following section is OK in SMV

VAR

a : {A,B};

b : {B,C};

ASSIGN

a := B;

b := B;

It is easy to see that the two assignments must be converted using differ-
ent encodings. Fortunately the stage described in Section 4.5.4 ensures that
all non Boolean expressions have been reduced to these simple assignments.

When creating a Boolean encoding for a non-Boolean variable the num-
ber of new variables is dlog2(n)e where n is the size of the source domain.
This results in a number of illegal values that must be considered. So for
each variable that create these illegal values a constraint is constructed
saying that the variables cannot take this value.

This constraint must be added in all modules where the variable is
updated. The reason for this is that the description can be asynchronous.

4.5.6 Reduce INVAR

Usually a Kripke structure is specified by initial states and a transition
relation. However one can given a specification reduce the Kripke struc-
ture by specifying constraints on the states. In SMV this is done using
declarations in INVAR or by using the ASSIGN and assigning to current
state.

The compiler replaces all INVAR constraints with one INIT and one
TRANS constraint. If the constraint Ri(x1, x2, . . . , xn) is an INVAR con-
straint it is replaced by R(next(x1), next(x2), . . . , next(xn)) as a TRANS
constraint and Ri(x1, x2, . . . , xn) as an INIT constraint.

4.5.7 Optimisation

There are two optimisation stages. One that tries to reduce the variables
involved in the transition relation. (See Section 5.2.)

36 Compiler basics

The other optimisation stage is aimed at partitioning the transition
relation and ordering the partitions according to a given heuristic. (See
Section 5.1.)

4.5.8 Handle running

As described in Section 4.4.4 each asynchronous process is associated with
one running variable. This step ensures that this is included in the FSM
representation. In every asynchronous environment a running variable is
created. All running variables are false initially. Then in every environment
i the following constraint is added:

∀inext(runningi)→ (
∧

∀j 6=i

¬runningj)

This means that only one running variable can be true at any given
step. Also if one running variable is true then all the constraints in the
associated environment must also be true.

This step is also responsible for adding non-change constraints to the
environment. In SMV the step relation in an asynchronous module can only
be described using the“ASSIGN”construct. This means that only assigned
variables are changed. This must be reflected in the CLP program and so
the following constraint is added to each asynchronous environment i:

∧

∀varj /∈NS(i)

varj = next(varj)

where NS (i) are all variables that are constrained in the next state in
environment i.

4.5.9 Synchronise

This is an optional step which will transform all asynchronous processes
into synchronous. This is again done using the “running”variable. Replace
each step constraint Rj in the asynchronous environment i with:

Rj ∨ ¬runningi

4.6. Output 37

One must also ensure that one of the processes is always running. This
is achieved by adding the following transition relation:

∨

∀i

next(runningi)

4.6 Output

The final step is to produce the output. Currently the compiler supports
two types of output: CLP(B) and SMV.

4.6.1 CLP

The CLP output consists of a number of clauses. For a resolution engine
to successfully check the model a number of predicates are also needed.

This section introduces some of the predicates needed to solve the CLP
programs that the compiler produces. Moreover it contains a description
of the predicates that are produced.

The Kripke structure is expressed using the step and sat predicates.
An example of this can be seen in Section 2.9. The sat relation will only
contain Boolean constraints over state variables.

The CTL specifications are expressed using the holds predicate. Each
state variable is considered a property. The name of this property is the
same as the name of the Boolean variable in SMV. Finally a query is
produced that asks if the specifications are true for the initial states.

38 Compiler basics

holds(var1) : − sat(S1).

holds(var2) : − sat(S2).

holds(init, [S1, S2]) : − sat(and(S1, S2))

spec0([S1, S2]) : − holds(ag(var1 ∧ var2), [S1, S2]).

query([S1, S2]) : − holds(init, [S1, S2]), spec0([S1, S2]).

The CLP(B) syntax is described in appendix A and the predicates nec-
essary are listed in appendix B.

4.6.2 SMV

Producing SMV output is only possible for synchronous systems. This
is due to SMV not being able to handle the TRANS construct in asyn-
chronous modules. SMV requires the transition relation to be specified us-
ing ASSIGN statements and the translation required is not implemented.
Therefore the compiler always transforms the model into a synchronous
equivalent before creating the SMV representation.

Note that the resulting output is not nearly as readable as the in-
put. This is partly because the output is always expressed using Boolean
variables but also because the variable names are automatically generated
rather than chosen for readability.

Chapter 5

Optimisations

The compiler uses two optimisation techniques: clustering and ordering
of conjunctive partitions and state space reduction. The clustering and
ordering is implemented according to the heuristic supplied by [28] which
has proved to be quite successful and is utilised by NuSMV [11] and VIS
[6]. The variable reduction is in essence a rewrite of the problem into a
simpler one which should allow for faster verification.

5.1 Clustering and ordering

The partitioning technique used by the compiler is based on [28]. The
algorithm maintains two sets of partitions, one with the already ordered
partitions and one with those not yet ordered. In each step all partitions
in the unordered set are evaluated using a heuristic function which takes
into account the number of quantifiable variables, next state variables and
the variable ordering. The partition with the best value is moved to the
ordered set.

Then the partitions in the ordered set are merged until a given limit of
the BDD representing them is reached. Since the smv2clp compiler does
not keep a BDD representation of the relations the limit is not set by BDD
size but by the number of variables. This is a crude substitute since the

39

40 Optimisations

BDD size can vary significantly using the same number of variables but it
keeps the BDDs bounded.

5.2 State space reduction

This optimisation is aimed at reducing the Kripke structure so that the
number of variables needed is reduced. Section 3.3 mentions some articles
written on the subject of removing variables by finding redundant variables.
The approach taken here is somewhat different even though the results can
be very similar.

• Let M = (S, s0, R, L) be a Kripke structure and APM the set of
atomic propositions that is associated with it.

• Then let APM ′ ⊂ APM and let H : S → 2APM′ be such that H(s) =
L(s) ∩ APM ′ .

• Create a set S′ = {s′ : s′ ∈ 2S ∧ (si, sj ∈ s′ ⇔ H(si) = H(sj))} and
let L′ : S′ → 2APM′ be such that L′(s′) = H(si) for si ∈ s.

• Then create the Kripke structure M ′ = (S′, s′0, R
′, L′) where s′0 ∈ S′

contains S0 and R′ ⊆ S′ × S′ is defined as ((si ∈ s′i) ∧ (sj ∈ s′j) ∧
R(si, sj))⇒ (R′(s′i, s

′
j)).

• The structure M ′ will be called a sub-circuit of M.

Intuitively a sub-circuit is constructed by taking a subset of the variables
and all the transition relations that update these variables. The idea of
the heuristic is to locate a small sub-circuit that can be minimised and
reencoded and thereby saving variables.

To exemplify the simple but unrealistic system in Figure 5.1 is used.
Each combination of variables and updating transition relations constitutes
a sub-circuit. It should not take long to realise that in the example the
variables a and b always have the same value, a = b in all states. Therefore
we could remove one of the variables by substituting all occurrences of it
with the other variable. Thus we save one variable. If the example given is

5.2. State space reduction 41

MODULE cproc

VAR

c : Boolean;

ASSIGN

init(c) := 0;

next(c) := !c;

MODULE main

VAR

a : Boolean;

b : Boolean;

d : process cproc;

ASSIGN

init(a) := 0;

init(b) := 0;

next(a) := case a&b : 0;

!a & !b : 1;

esac;

next(b) := case a&b : 0;

!a & !b : 1;

esac;

Figure 5.1: SMV example with one redundant variable

part of a bigger system then that saved variable can have a very significant
effect on the final result.

The variable reduction performed by the compiler is not just aimed at
redundant variables as described in Section 3.3. The simple example in
Table 5.1 illustrates this. None of the variables are redundant but still
there is one variable more than needed.

The algorithm used for the variable reduction is shown in Figure 5.2.
The partitions are collected in groups such that for each variable that is
updated there is a group containing all partitions that are active in that
update. For the example in Figure 5.1 there is one relation for each variable.

42 Optimisations

var1 var2 var3

0 0 1
0 1 0
1 0 0
0 0 0

Table 5.1: No redundant variables

But in some cases there are several constraints for the same varilable in
the next state and then the reachable states cannot be calculated without
including all of these constraints. In the following subsections the rest of
the algorithm is described in more detail.

ReduceVariables()
1 P ← { The set of step constraints }
2 V ← { The set of variables }
3 S ← {s ⊆ P : ∃v ∈ V [(p ∈ s)⇔ v ∈ Updates(p)]}
4 R← FindPossibleReductionGroups(S)
5 for i← R.begin to R.end

6 do States← FindReachableStates(InitConstraints, i)
7 SavedVars[i] = GetSavedVars(States)
8 ReEncoding[i] = GetReEncoding(States)
9 ReducedVars← {}

10 while |SavedVars| 6= 0
11 do x← i : Max(|SavedVars[i]|)
12 ReEncode(ReEncoding[x])
13 ReducedVars← ReducedVars ∪GetVariables(x)
14 SavedVars← SavedVars \ {SavedVars[x]}

Figure 5.2: Algorithm for variable reduction

5.2.1 Finding suitable reduction groups

The goal of this step is to find sub-circuits where the number of reachable
states is less than half of the total number of states. This is done by merging

5.2. State space reduction 43

partitions into clusters. The overall algorithm is shown in Figure 5.3.

In each step the two clusters with the highest pairing heuristic value
are merged. The heuristic that determines the value of merging two parti-
tions simply measures how the number of non-updated variables decreases.
There is also a check so that the partitions do not grow too large.

For every non-updated variable in the cluster it must be assumed that
it can take any value at any time during the state space search. Therefore
if the non-updated variables are as few as possible the chance of finding a
small state space increases.

FindPossibleReductionGroups(S)
1 R← ∅
2 Rsize ← 0
3 for i← S.begin to S.end

4 do if CheckLimits(i)
5 then R← R ∪ {i};
6 while |R| 6= Rsize

7 do Rsize ← |R|
8 for i← R.begin to R.end

9 do for j ← R.begin to R.end

10 do if i 6= j

11 then Pairing(i, j)← Heuristic(i, j)
12 [a, b]← [i, j] : Max(Pairing(i, j))
13 R← R ∪Merge(a, b)
14 R← R \ {a, b}
15 return R

Figure 5.3: Algorithm for finding reduction groups

5.2.2 Finding reachable states

First of all constraints are converted into DNF. Starting with the init con-
straints each DNF term can be translated into a set of states fulfilling that
particular term. This is done for all DNF terms describing the initial states.

44 Optimisations

Then the step relations are translated into a set of step rules each con-
taining just one state in its pre-image and one state in the image. These
are applied to the current set of reachable states until no more reachable
states can be found.

5.2.3 Reencoding

Once the reachable state set for a given set of constraints has been found the
question arises how to take advantage of this. Consider the simple example
in Table 5.2. Since we have only three states we should be satisfied with
only two variables. Again we cannot simply remove one of them since none
of them is constant for all reachable states.

var1 var2 var3

0 0 1
0 1 0
1 0 1

Table 5.2: Three variables, with reachable state space of size three

Instead we create a new encoding of the state space using variables
nvar1 and nvar2 as in Table 5.3.

var1 var2 var3 nvar1 nvar2

0 0 1 0 0
0 1 0 0 1
1 0 1 1 0

Table 5.3: A more efficient representation of the state space

Now it is possible to say that for all reachable states:

var1 ≡ (nvar1 ∧ ¬nvar2)

var2 ≡ (¬nvar1 ∧ nvar2)

var3 ≡ (¬nvar1 ∧ ¬nvar2) ∨ (nvar1 ∧ ¬nvar2)

5.2. State space reduction 45

So for each variable we get a DNF expression that we can replace it with
in the contexts where it is referenced. Also the step-relations that were
analysed must of course be replaced. Hopefully several of the reduction
clusters result in reencodings of the variables. If this is the case then
there can be an overlap of variables that are to be reduced in the different
reencodings. Therefore the reencoding which saves the most variables is
applied first and then the next encoding is chosen so that no variable is
removed twice.

Chapter 6

Results

This chapter contains some comparisons of BDD size and execution time
when verifying the output of the compiler.

6.1 Metric

Although the compiler is aimed at producing efficient CLP(B) output there
are currently no systems that are suitable for using as benchmarking utili-
ties. Therefore the compiler is also able to produce SMV output.

The SMV output is very similar to the CLP(B) output. All variables
are Boolean. There are no INVAR expressions and the modular structure is
similar to the way the CLP description is built up from clauses. Moreover
all problems are converted to synchronous equivalents.

In the report the focus has been on minimising the size of the BDDs
produced during the fix-point evaluation. The reason of course being that
if the BDDs grow too large the computer will run out of memory and model
checking will not be possible.

However it is also interesting to look at the execution time needed to
perform the model checking. This is apparent when doing conjunctive
clustering where there is a tradeoff between memory usage and execution
speed.

47

48 Results

When doing variable reduction on a given system the problem is con-
verted into an equivalent but simpler description. This will take some time
to do for the compiler. Now if the compiler takes a longer time to convert
the problem than for SMV to solve it one could argue that the optimisation
is void. However the compiler is not designed for speed and the variable re-
duction can be done more efficiently. The interesting part is to see whether
it is possible to perform these reductions without too much effort.

6.2 Comparisons

The results obtained when the compiler does not perform any optimisations
at all can be seen in Table 6.1. Or at least no optimisations with the purpose
to affect the size of the BDDs constructed. The reason for this comparison
is to see how the results differ from when the compiler must transform the
problem considerably to be able to convert it to CLP(B).

Table 6.2 shows the results from SMV1 when verifying the unoptimised
as well as the optimised output from the compiler. The “-” indicates that
the execution timed out after an hour.

Unfortunately there was no easy way to get SMV to accept the partition
produced with the clustering and ordering heuristic described in Section 5.1.
Therefore there are no results from that optimisation step. However this
is a well known heuristic and the results should be similar. Most of the
problems are the examples that come bundled with the NuSMV package.

A short description of each problem follows:

abp4 Alternating Bit Protocol, four agents

abp ctl Alternating Bit Protocol, sender and receiver

counter A synchronous three bit counter.

dme1 A synchronous version of a distributed mutual exclusion algorithm
with three cells

1SMV was used for all problems except dme2 where NuSMV was used because of

incompability

6.3. Interpretation 49

dme2 A asynchronous version of a distributed mutual exclusion algorithm
with three cells

mutex A simple mutual exclusion algorithm.

mutex1 Another simple mutual exclusion algorithm

p-queue A priority queue example.

ring An asynchronous three bit counter.

semaphore A model of two processes synchronized using a semaphore.

syncarb5 A model of a synchronous arbiter with 5 elements.

Original Compiled
Problem BDD size (nodes) time (s) BDD size (nodes) time (s)

abp4 20420 0.84 216108 2.42
abp ctl 2348 0 1689 0
counter 830 0 968 0
dme1 478575 4.51 - -
dme2 269472 0.68 421051 1.11
mutex 619 0 766 0
mutex1 2582 0 3662 0
p-queue 1054613 32.79 97524 0.4

ring 268 0 680 0
semaphore 685 0 2112 0
syncarb5 1830 0 2982 0

Table 6.1: Comparison between original problem and compiled problem

6.3 Interpretation

From Table 6.1 one can see that there is no obvious way on how the com-
pilation affects the size of the problem. No specific variable ordering has
been applied in any of the cases. Since a new set of variables are created

50 Results

No optimisation Reduced
Problem BDD size (nodes) time (s) BDD size (nodes) time (s)

abp4 216108 2.42 110062 12.71
abp ctl 1689 0 1689 0
counter 968 0 968 0
dme1 - - 292254 4.34
dme2 421051 1.11 170848 0.473
mutex 766 0 822 0.1
mutex1 3662 0 3654 0
p-queue 97524 0.4 97524 0.4

ring 680 0 680 0
semaphore 2112 0 2328 0
syncarb5 2982 0 2982 0

Table 6.2: Effect of variable reduction

during the compilation this is probably one of the main reasons for the
different results.

The “dme1” example shows that in some cases the compiler makes the
situation much worse than in the original case. On the other hand one
sees that the “p-queue” case is drastically improved by the compiler. Both
these cases could be the result of different variable ordering. In the “p-
queue” case it is also possible that the finite domain solver has helped
boost performance since there are some arithmetic constraints involved.

The effects of the variable reductions that are seen in Table 6.2 also
varies for different problems. Here it seems as if the greatest savings are
achieved for asynchronous systems however some saving can be achieved
for synchronous systems too. Also bigger problems tend to be easier to op-
timise than smaller ones. For many problems the heuristic fails to find suit-
able reduction groups and thus the problem remains unchanged. Whether
this is due to an inefficient heuristic or that the problem contains no such
groups is hard to say.

If the uncompiled problems (first two columns of Table 6.1) are com-
pared with the compiled and optimised ones (the last two columns of Ta-
ble 6.2) the compiler seems to do well enough.

Chapter 7

Discussion

This chapter contains a discussion on the compiler and the results presented
in Chapter 6. It also contains a presentation what kind of improvements
that can be done to the compiler.

7.1 The compiler

The SMV language is not very complex but is very good for describing
discrete systems. Unfortunately there is no complete description of the
language since the manual lacks some constructs that are supported by
the SMV system. The architecture used has turned out to work very well.
Different rewrites can be applied independently of each other and new
optimisations can be introduced without having to change the intermediate
representation.

The lack of strong typing is a problem when translating into Boolean
expressions. The solution used by smv2clp to solve all finite domain con-
straints works well for small problems but could be a problem for complex
arithmetic constraints. Complex arithmetic constraints should probably be
avoided anyway because of the blowup in BDD size for integer multiplica-
tion.

Although SMV is modular in its appearance there is no encapsulation

51

52 Discussion

and it would probably have been easier to flatten the structure entirely
before translating it. The advantage of the current implementation is that
a partitioning strategy based on modularity could very easily be added.

7.2 Performance

As seen in Table 6.1 the execution time and BDD size can be greatly affected
by the translation done by the compiler. There are several possible reasons
for this.

Encoding NuSMV utilises a different encoding scheme than this compiler
and therefore there will be some differences.

Integer arithmetic The finite domain solver translates into equalities
and Boolean connectives which should improve performance.

Variable ordering The translated description uses a different set of vari-
ables and therefore the ordering probably differs.

INVAR reduction The compiler converts these into init and step con-
straints and the SMV system could handle them differently.

In general it seems that the compiler in some cases makes the problem
harder and in some cases easier. This is expected and though it would
be better if the complexity was not altered at all it can be considered
acceptable.

Fortunately it seems that there is little risk in applying the variable
reduction optimisation. The reduction will if successful in most cases make
the problem easier to verify.

7.3 Applicability in real world cases

The compiler has no difficulty translating complex problems into CLP. The
heuristic however is not always able to find partitions so that the number
of variables can be reduced. The compiler has a limit set on the size of
the possible reduction groups. This is to ensure that the state space search
does not take too much resources in time and space.

7.4. Future work 53

The heuristic does not suffer much from the global size of the problem
but rather the size of the smallest partitions. If the partitions themselves
are greater in size than the heuristic allows then obviously no reduction
groups will be found. So the limitation is primarily due to the structure of
the problem rather than the total size.

7.4 Future work

When doing the variable reduction optimisation the state space is explored
using explicit state space traversal. One of the main bottlenecks of the
compiler seems to be to the DNF representation. But obviously the state
space search itself is also a major limitation.

A symbolic approach would allow for reduction of larger groups and
thus probably would allow for more variables to be reduced. However since
the compiler is not intended to take over the job of the fix point engine but
merely to rewrite the problem description into a less complex one.

Most of the techniques described in Chapter 3 could be applied in this
compiler. The partial-order reduction seems especially suited for the com-
piler since it is possible to apply it using rewrites of the logic formulae.

It would be of interest to see if the heuristic for finding reduction groups
finds all the possible reduction groups below the specified size limit.

Appendix A

CLP syntax

This section describes a slightly modified subset of Prolog. The constraints
are Boolean constraints and the special predicate sat/1 should be used
to express them. The sat should take as argument a constraint expression
which can be either a variable, the constants 0 and 1 or one of the predicates
not/1, or/2, and/2, xor/2, exists/2.

Figure A.1 describes the syntax on token level. That is whitespace and
newlines are ignored.

Figure A.2 describes the syntax on string level. The character types
referenced are specified as:

small-letter character codes 97..122 (a-z)

capital-letter character codes 65..90 (A-Z)

digit character codes 48-57 (0-9)

underline caracter code 95 ()

55

56 CLP syntax

〈clause〉 → 〈non-unit-clause〉 | 〈unit-clause〉
〈non-unit-clause〉 → 〈head〉 ’:-’ 〈body〉 ’.’
〈unit-clause〉 → 〈head〉 ’.’

〈head〉 → 〈atom〉
〈literal〉 → 〈atom〉 | ’\+’ 〈atom〉
〈body〉 → 〈literal〉

| 〈literal〉 ’,’ 〈body〉
〈atom〉 → 〈name〉 ’(’ 〈arguments〉 ’)’
〈term〉 → 〈atom〉

| 〈list〉
| 〈constant〉
| 〈variable〉

〈arguments〉 → 〈term〉
| 〈term〉 ’,’ 〈arguments〉

〈list〉 → ’[’ ’]’
| ’[’ 〈listexpr〉 ’]’

〈listexpr〉 → 〈term〉
| 〈term〉 ’,’ 〈listexpr〉
| 〈term〉 ’|’ 〈term〉

〈constant〉 → 〈name〉 | 〈number〉
〈number〉 → 〈unsigned-number〉

〈unsigned-number〉 → 〈natural-number〉

Figure A.1: CLP-syntax on token level

〈name〉 → 〈word〉
〈word〉 → 〈small-letter〉 ?〈alpha〉 . . .

〈natual-number〉 → 〈digit〉 . . .
〈variable〉 → 〈capital-letter〉 ?〈alpha〉 . . .
〈alpha〉 → 〈capital-letter〉

| 〈small-letter〉
| 〈digit〉
| 〈underline〉

Figure A.2: CLP-syntax on string level

57

58 Predicates

Appendix B

Predicates

holds(and(F1, F2), S) ← holds(F1, S), holds(F2, S).

holds(or(F1, F2), S) ← holds(F1, S).

holds(or(F1, F2), S) ← holds(F2, S).

holds(not(F1), S) ← \+ holds(F1, S).

holds(xor(F1, F2), S) ← holds(F1, S), \+ holds(F2, S).

holds(xor(F1, F2), S) ← holds(F2, S), \+ holds(F1, S).

holds(eg(F), S) ← holds(not(af(not(F))), S).

holds(ex(F), S1) ← step(S1, S2), holds(F, S2).

holds(eu(F, G), S) ← holds(G, S).

holds(eu(F, G), S) ← holds(F, S), holds(ex(eu(F, G)), S).

holds(ax(F), S) ← holds(not(ex(not(F))), S).

holds(ef(F), S) ← holds(eu(true, F), S).

holds(af(F), S) ← holds(F, S).

holds(af(F), S) ← holds(ax(F), S).

holds(ag(F), S) ← holds(not(ef(not(F))), S).

holds(au(F1, F2), S) ← holds(and(not(eu(not(F2), and(not(F1), not(F2)))),

not(eg(not(F2)))), S).

59

holds(ecg(F), S) ← fairness(L), holds(ecg(F, L), S).

holds(ecx(F), S) ← fairness(L), holds(ecx(F, L), S).

holds(ecf(F), S) ← fairness(L), holds(ecf(F, L), S).

holds(ecu(F1, F2), S) ← fairness(L), holds(ecu(F1, F2, L), S).

holds(acg(F), S) ← fairness(L), holds(acg(F, L), S).

holds(acx(F), S) ← fairness(L), holds(acx(F, L), S).

holds(acf(F), S) ← fairness(L), holds(acf(F, L), S).

holds(acu(F1, F2, S) ← fairness(L), holds(ecu(F1, F2, L), S).

holds(ecg(F, []), S) ← holds(eg(F), S).

holds(ecg(F, [H |T]), S) ← path(F, S1, S2), holds(H, S2), step(S2, S3),

path(F, S3, S2), holds(ecg(F, T), S).

holds(true, S).

equal([], []).

equal([H1|T1], [H2|T2]) ← sat(not(xor(H1, H2))), equal(T1, T2).

path(F, S1, S2) ← equal(S1, S2), holds(F, S1).

path(F, S1, S3) ← holds(F, S1), step(S1, S2), path(F, S2, S3).

holds(fair(L), S) ← holds(ecg(true, L), S).

holds(ecx(F1, L), S) ← holds(ex(and(F1, fair(L))), S).

holds(ecu(F1, F2, L), S) ← holds(eu(F1, and(F2, fair(L))), S).

holds(acx(F, L), S) ← holds(not(ecx(not(F), L)), S).

holds(ecf(F, L), S) ← holds(ecu(true, F, L), S).

holds(acf(F, L), S) ← holds(not(ecg(not(F), L)), S).

holds(acg(F, L), S) ← holds(not(ecf(not(F), L)), S).

holds(acu(F1, F2, L), S) ← holds(and(not(ecu(not(F2), and(not(F1),

not(F2)), L)), not(ecg(not(F2), L))), S).

Appendix C

Unsupported SMV
constructs

This appendix lists the SMV language constructs that are not supported
by the smv2clp compiler. Most of these are not mentioned in the SMV
manual but nevertheless seems supported by the SMV system.

• Linar Time Temporal Logic (LTL) specifications

• Real time CTL specification (ABU, COMPUTE, etc)

• PRINT declaration

Moreover the compiler is not able to handle undefined out parameters
when instantiating modules. The example in Figure C.1 shows this. The
reason is that the “outpar” symbol is never declared in the main module.
The same problem can be expressed as in Figure C.2

61

62 Unsupported SMV constructs

MODULE m(a)

VAR

b : boolean;

DEFINE

a := !b;

MODULE main

VAR

testmod : m(outpar);

SPEC

EF(outpar)&EF(!outpar)

Figure C.1: Example of parameters not handled by smv2clp

MODULE m

VAR

b : boolean;

DEFINE

a := !b;

MODULE main

VAR

testmod : m;

SPEC

EF(testmod.a)&EF(!testmod.a)

Figure C.2: Equivalent of example in Figure C.1 handled by smv2clp

Bibliography

[1] Fadi A. Aloul, Igor L. Markov, and Karem A. Sakallah. Faster sat and
smaller bdds via common function structure. In ICCAD ’01: Proceed-
ings of the 2001 IEEE/ACM international conference on Computer-
aided design, pages 443–448. IEEE Press, 2001.

[2] Rajeev Alur, Robert K. Brayton, Thomas A. Henzinger, Shaz Qadeer,
and Sriram K. Rajamani. Partial-order reduction in symbolic state
space exploration. In CAV ’97: Proceedings of the 9th International
Conference on Computer Aided Verification, pages 340–351. Springer-
Verlag, 1997.

[3] Henrik Reif Andersen. An introduction to binary decision diagrams,
1997.

[4] Bob Bentley. Validating the intel pentium 4 microprocessor. In DAC
’01: Proceedings of the 38th conference on Design automation, pages
244–248. ACM Press, 2001.

[5] C. Berthet, O. Coudert, and J. C. Madre. New ideas on symbolic ma-
nipulation of finite state machines. In ICCD, pages 224–227, October
1990.

[6] Robert K. Brayton, Gary D. Hachtel, Alberto L. Sangiovanni-
Vincentelli, Fabio Somenzi, Adnan Aziz, Szu-Tsung Cheng,
Stephen A. Edwards, Sunil P. Khatri, Yuji Kukimoto, Abelardo Pardo,
Shaz Qadeer, Rajeev K. Ranjan, Shaker Sarwary, Thomas R. Shiple,

63

64 BIBLIOGRAPHY

Gitanjali Swamy, and Tiziano Villa. Vis: A system for verification and
synthesis. In CAV, pages 428–432, 1996.

[7] Randal E. Bryant. Graph-based algorithms for Boolean function ma-
nipulation. IEEE Transactions on Computers, C-35(8):677–691, Au-
gust 1986.

[8] C. A. J. van Eijk and J. A. G. Jess. Exploiting functional dependencies
in finite state machine verification. In Proceedings of The European
Design and Test Conference (ED & TC), pages 9–14, Paris, France,
1996. IEEE Computer Society Press (Los Alamitos, California).

[9] Gianpiero Cabodi, Paolo Camurati, and Stefano Quer. Dynamic
scheduling and clustering in symbolic image computation.

[10] S. Cheng. Compiling verilog into automata, 1994.

[11] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV Version 2: An
OpenSource Tool for Symbolic Model Checking. In Proc. International
Conference on Computer-Aided Verification (CAV 2002), volume 2404
of LNCS, Copenhagen, Denmark, July 2002. Springer.

[12] Riccardo Forth and Paul Molitor. An efficient heuristic for state en-
coding minimizing the bdd representations of the transistion relations
of finite state machines. In Proceedings of the 2000 conference on Asia
South Pacific design automation, pages 61–66. ACM Press, 2000.

[13] Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. Bison.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[15] Daniel Geist and Ilan Beer. Efficient model checking by automated
ordering of transition relation partitions. In Proceedings of the 6th
International Conference on Computer Aided Verification, pages 299–
310. Springer-Verlag, 1994.

BIBLIOGRAPHY 65

[16] John Harrison. Formal verification at intel. In LICS ’03: Proceedings
of the 18th Annual IEEE Symposium on Logic in Computer Science,
page 45. IEEE Computer Society, 2003.

[17] J. Jaffar and J.-L. Lassez. Constraint logic programming. In POPL
’87: Proceedings of the 14th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, pages 111–119. ACM Press,
1987.

[18] Jawahar Jain, William Adams, and Masahiro Fujita. Sampling
schemes for computing obdd variable orderings. In ICCAD ’98:
Proceedings of the 1998 IEEE/ACM international conference on
Computer-aided design, pages 631–638. ACM Press, 1998.

[19] J.R. Burch, E.M. Clarke, and D.E. Long. Symbolic model checking
with partitioned transition relations. In A. Halaas and P.B. Denyer, ed-
itors, International Conference on Very Large Scale Integration, pages
49–58, Edinburgh, Scotland, 1991. North-Holland.

[20] K.L. McMillan. The SMV system. Technical Report CMU-CS-92-131,
Carnegie Mellon University, 1992.

[21] C. Meinel and C. Stangier. Hierarchical image computation with dy-
namic conjunction scheduling, 2001.

[22] Christoph Meinel and Christian Stangier. Speeding up image com-
putation by using rtl information. In Proceedings of the Third Inter-
national Conference on Formal Methods in Computer-Aided Design,
pages 443–454. Springer-Verlag, 2000.

[23] Christoph Meinel and Christian Stangier. A new partitioning scheme
for improvement of image computation. In Proceedings of the 2001
conference on Asia South Pacific design automation, pages 97–102.
ACM Press, 2001.

[24] Christoph Meinel and Thorsten Theobald. Local encoding transfor-
mations for optimizing obdd-representations of finite state machines.
Form. Methods Syst. Des., 18(3):285–301, 2001.

[25] Ulf Nilsson and Johan Lübcke. Constraint logic programming for local
and symbolic model-checking. In Proceedings of the First International
Conference on Computational Logic, pages 384–398. Springer-Verlag,
2000.

[26] Vern Paxson. Flex. Free Software Foundation, Inc., 59 Temple Place
- Suite 330, Boston, MA 02111-1307, USA.

[27] Stefano Quer, Gianpiero Cabodi, Paolo Camurati, Luciano Lavagno,
Ellen Sentovich, and Robert K. Brayton. Verification of similar fsms
by mixing incremental re-encoding, reachability analysis, and combi-
national checks. Formal Methods in System Design, 17(2):107–134,
2000.

[28] R. Ranjan, A. Aziz, R. Brayton, B. Plessier, and C. Pixley. Efficient
bdd algorithms for fsm synthesis and verification, 1995.

[29] Ellen Sentovich, Horia Toma, and Gérard Berry. Latch optimization
in circuits generated from high-level descriptions. In ICCAD, pages
428–435, 1996.

[30] Thomas R. Shiple, Ramin Hojati, Alberto L. Sangiovanni-Vincentelli,
and Robert K. Brayton. Heuristic minimization of BDDs using don’t
cares. In Design Automation Conference, pages 225–231, 1994.

[31] Chao Wang, Gary D. Hachtel, and Fabio Somenzi. The compositional
far side of image computation. In ICCAD ’03: Proceedings of the 2003
IEEE/ACM international conference on Computer-aided design, page
334. IEEE Computer Society, 2003.

[32] B. Yang, R. Simmons, R. E. Bryant, and D. R. O’Hallaron. Optimizing
symbolic model checking for constraint-rich models. In N. Halbwachs
and D. Peled, editors, Eleventh Conference on Computer Aided Verifi-
cation (CAV’99), pages 328–340. Springer-Verlag, Berlin, 1999. LNCS
1633.

Avdelning, Institution
Division, Department

Institutionen för datavetenskap
581 83 LINKÖPING

Datum
Date
2005-02-24

Språk
Language

Rapporttyp
Report category

ISBN

Svenska/Swedish
X Engelska/English

Licentiatavhandling
X Examensarbete

ISRN LITH-IDA-EX--05/018--SE

C-uppsats
D-uppsats

Serietitel och serienummer
Title of series, numbering

ISSN

 Övrig rapport

URL för elektronisk version
http://www.ep.liu.se/exjobb/ida/2005/dd-d/018/

Titel
Title

En optimierande kompilator för SMV till CLP(B)

An optimising SMV to CLP(B) compiler

Författare
 Author

Mikael Asplund

Sammanfattning
Abstract
This thesis describes an optimising compiler for translating from SMV to CLP(B). The optimisation is aimed
at reducing the number of required variables in order to decrease the size of the resulting BDDs. Also a
partitioning of the transition relation is performed. The compiler uses an internal representation of a FSM that
is built up from the SMV description. A number of rewrite steps are performed on the problem description
such as encoding to a Boolean domain and performing the optimisations.

The variable reduction heuristic is based on finding sub-circuits that are suitable for reduction and a state
space search is performed on those groups. An evaluation of the results shows that in some cases the compiler
is able to greatly reduce the size of the resulting BDDs.

Nyckelord
Keyword
SMV, CLP, BDD, FSM, CTL, compiler, optimisation, variable reduction, partitioning

Copyright

Svenska
Detta dokument h̊alls tillgängligt p̊a Internet - eller dess framtida ersättare - under en län-
gre tid fr̊an publiceringsdatum under förutsättning att inga extra-ordinära omständigheter
uppst̊ar.

Tillg̊ang till dokumentet innebär tillst̊and för var och en att läsa, ladda ner, skriva ut
enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning
och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva
detta tillst̊and. All annan användning av dokumentet kräver upphovsmannens medgivande.
För att garantera äktheten, säkerheten och tillgängligheten finns det lösningar av teknisk och
administrativ art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den om-
fattning som god sed kräver vid användning av dokumentet p̊a ovan beskrivna sätt samt
skydd mot att dokumentet ändras eller presenteras i s̊adan form eller i s̊adant sammanhang
som är kränkande för upphovsmannens litterära eller konstnärliga anseende eller egenart.
För ytterligare information om Linköping University Electronic Press se förlagets hemsida
http://www.ep.liu.se/

English
The publishers will keep this document online on the Internet - or its possible replacement -
for a considerable time from the date of publication barring exceptional circumstances.

The online availability of the document implies a permanent permission for anyone to
read, to download, to print out single copies for your own use and to use it unchanged for any
non-commercial research and educational purpose. Subsequent transfers of copyright cannot
revoke this permission. All other uses of the document are conditional on the consent of the
copyright owner. The publisher has taken technical and administrative measures to assure
authenticity, security and accessibility.

According to intellectual property law the author has the right to be mentioned when
his/her work is accessed as described above and to be protected against infringement. For
additional information about the Linköping University Electronic Press and its procedures
for publication and for assurance of document integrity, please refer to its WWW home page:
http://www.ep.liu.se/

c© Mikael Asplund

69

