
An optimistic checkpointing and selective message logging approach for
consistent global checkpoint collection in distributed systems

Qiangfeng Jiang and D. Manivannan
Department of Computer Science

University of Kentucky
Lexington, KY 40506

{richardj,mani}@cs.uky.edu

Abstract

In this paper, we present an asynchronous consistent

global checkpoint collection algorithm which prevents con-

tention for network storage at the file server and hence

reduces the checkpointing overhead. The algorithm has

two phases: In the first phase, a process initiates consis-

tent global checkpoint collection by saving its state tenta-

tively and asynchronously (called tentative checkpoint) in

local memory or remote stable storage if there is no con-

tention for stable storage while saving the state; in the

second phase, the message log associated with the tenta-

tive checkpoint is stored in stable storage (checkpoint fi-

nalization phase). The tentative checkpoint together with

the associated message log stored in the stable storage be-

comes part of a consistent global checkpoint. Under our

algorithm, two or more processes can concurrently initi-

ate consistent global checkpoint collection. Every tentative

checkpoint will be finalized successfully unless a failure oc-

curs. The finalized checkpoints of each process is assigned

a unique sequence number in ascending order. Finalized

checkpoints with same sequence number form a consistent

global checkpoint.

1 Introduction

Checkpointing and rollback recovery are popular ap-

proaches for handling failures in distributed systems. A

well designed checkpointing algorithm allows a failed pro-

cess recover from the recently saved state (called check-

1-4244-0910-1/07/$20.00 c©2007 IEEE.

point) instead of restarting from the very beginning. Ex-

isting checkpointing algorithms can be classified into three

main categories – asynchronous, synchronous [2, 5], and

quasi-synchronous [1, 8]. In asynchronous checkpointing,

processes take local checkpoints without any coordination.

To recover from a failure, a failed process rolls back to its

latest checkpoint cpf and communicates with other pro-

cesses to find a global checkpoint that is consistent with

cpf . If the current state of some other process P is causally

dependent on the checkpoint cpf , the process P needs to

roll back to an earlier checkpoint. When a process other

than the failed process needs to roll back to an earlier check-

point, it may cause further rollbacks of other processes (in-

cluding the failed process) and this can continue. Therefore,

recovery may suffer from domino effect in which processes

roll back recursively in order to find a consistent global

checkpoint. Therefore, asynchronous checkpointing is not

a storage resource efficient approach. Message logging [4]

has been suggested in the literature to cope with the domino

effect.

In order to achieve domino-free recovery, synchronous

checkpointing schemes have been proposed [2, 5]. In this

approach, processes synchronize their checkpointing activ-

ities by passing explicit control messages so that a globally

consistent checkpoint set is always maintained in the sys-

tem. In many synchronous checkpointing algorithms [5],

processes may need to block during checkpointing. There-

fore, synchronous checkpointing has the following disad-

vantages: Processes have to exchange extra control mes-

sages for checkpointing. Some or all processes may have to

block their computations for checkpointing, which may de-

grade the system performance. It may result in several pro-

cesses taking and storing checkpoints at the stable storage

concurrently. Usually, the stable storage is at the network

file server and hence it can cause contention for access to

stable storage.

However, recovery in synchronous checkpointing

schemes is simple since processes need only to roll back

to the last committed global checkpoint when a failure

occurs. Only limited storage space is required for storing

the checkpoints. All checkpoints taken before the latest

committed global checkpoint can be deleted to save space.

Quasi-synchronous checkpointing (also called

communication-induced checkpointing) is a hybrid of

asynchronous and synchronous checkpointing schemes.

Under quasi-synchronous checkpointing algorithms [1, 8],

processes are allowed to take local checkpoints indepen-

dently, and the number of useless checkpoints is minimized

by forcing processes to take communication-induced

(forced) checkpoints under certain situations. Hence,

this class of algorithms overcome the disadvantages of

asynchronous and synchronous checkpointing algorithms,

and has the advantages of both types of the algorithms.

Quasi-synchronous checkpointing appears to be an at-

tractive approach for checkpointing in distributed systems.

However, existing algorithms in this category have the

following drawbacks: Several processes may take check-

points simultaneously which can cause network contention

and hence impact the checkpointing overhead and extend

the overall execution time [11]. Communication-induced

checkpoints have to be taken in general before processing

a received message, which may significantly prolong the

response time of some received messages. Communica-

tion pattern may induce large number of communication-

induced checkpoints. Processes have to take their lo-

cal checkpoints (including communication-induced check-

points) immediately after specified conditions hold.

Our algorithm reduces/eliminates contention for stable

storage by allowing processes to take checkpoints optimisti-

cally and store them at stable storage at their own conve-

nience. Moreover, no process needs to take a checkpoint

before processing any received message. Each checkpoint

taken by our algorithm is composed of a tentative check-

point and a set of messages logged optimistically after tak-

ing the tentative checkpoint. This mechanism gives pro-

cesses the liberty of choosing the time to take tentative

checkpoints and hence no checkpoint needs to be taken be-

fore processing any received message. Furthermore, pro-

cesses are able to choose their convenient time for writing

the tentative checkpoints and the associated message logs

to stable storage at the network file server. This helps in

minimizing network contention for access to stable storage.

Moreover, our algorithm does not incur additional check-

pointing overhead due to communication-induced check-

points unlike the existing algorithms. For example, if each

process is required to take checkpoints once in every time

interval of t seconds, no process takes more than one check-

point in any time interval of t seconds.

The rest of the paper is organized as follows. In Section 2

we present the system model and background. Section 3

describes our quasi-synchronous checkpointing algorithm.

Thereafter, we discuss related work in Section 4 and con-

clude in Section 5.

2 Background

2.1 System Model

A distributed computation consists of N sequential pro-

cesses denoted by P0, P1, P2, · · ·, and PN−1 running con-

currently on a set of computers in the network. Processes

do not share a global memory or a global physical clock.

Message passing is the only way for processes to communi-

cate with one another. The computation is asynchronous:

each process evolves at its own speed and messages are

transmitted through communication channels, whose trans-

mission delays are finite but arbitrary. Channels need not

be FIFO. Messages generated by the underlying distributed

computation will be referred to as application messages.

Explicit control messages generated by the checkpointing

algorithm will be referred to as control messages. In our al-

gorithm, limited amount of control messages are generated

only when necessary.

2.2 Consistent Global Checkpoint

Execution of a process is modeled by three types of

events – the send event of a message, the receive event of

a message and an internal event. The states of processes

depend on one another due to interprocess communication.

Lamport’s happened before relation [6] on events,
hb−→, is

defined as the transitive closure of the union of two other

relations:
hb−→ = (xo−→ ∪ m−→)+. The

xo−→ relation cap-

tures the order in which local events of a process are exe-

cuted. The ith event of any process Pp (denoted ep,i) al-

ways executes before the (i + 1)st event: ep,i
xo−→ ep,i+1.

The
m−→ relation shows the relation between the send and

receive events of the same message: if a is the send event

of a message and b is the corresponding receive event of the

same message, then a
m−→ b.

A local checkpoint of a process is a recorded state of the

process. A checkpoint of a process is considered as a lo-

cal event of the process for the purpose of determining the

existence of happened before relation among states of pro-

cesses. Each checkpoint of a process is assigned a unique

sequence number. The checkpoint of process Pp with se-

quence number i is denoted by Cp,i. We assume that each

process takes an initial checkpoint before its execution be-

gins and a final checkpoint after the execution finishes.

The send and the receive events of a message M are

denoted respectively by send(M) and receive(M). So,

send(M) hb−→ Cp,i if message M was sent by process Pp

before taking the checkpoint Cp,i. Also, receive(M) hb−→
Cp,i if message M was received and processed by Pp before

taking the checkpoint Cp,i. send(M) hb−→ receive(M) for

any message M . The set of events in a process that lie be-

tween two consecutive checkpoints is called a checkpoint-

ing interval.

A global checkpoint of a distributed computation is a set

of checkpoints containing one checkpoint from each pro-

cess involved in the distributed computation. An orphan

message M with respect to a global checkpoint is a message

whose receive(M) is recorded in the global checkpoint but

the corresponding send(M) is not. A global checkpoint is

said to be consistent if there is no orphan message with re-

spect to that global checkpoint. Figure 1 shows two global

checkpoints S1 and S2. Clearly S1 is a consistent global

checkpoint while S2 is NOT a consistent global checkpoint

since M5 is an orphan message with respect to the global

checkpoint S2. Next, we present our algorithm.

P0

M1

P1

2

P3

M2

M3

M4

M5

M6
P Checkpoint

Checkpoint Checkpoint

Checkpoint Checkpoint

Checkpoint

Checkpoint Checkpoint

S1 2S

Figure 1. Global checkpoints

3 Algorithm

3.1 Notations

Following are the notations used to describe the algo-

rithm and correctness proof.

Ci,k denotes the (permanent local) checkpoint taken by

Pi. It is composed of two parts – a tentative checkpoint

CTi,k recording the state of the process and a set of logged

messages logSeti,k associated with the checkpoint.

CTi,k denotes the tentative checkpoint taken by Pi with

checkpoint sequence number k. It is usually saved in mem-

ory first and then flushed to stable storage after recording

the associated log, namely, logSeti,k.

logSeti,k denotes the set of all messages sent and re-

ceived by Pi after taking the tentative checkpoint CTi,k and

before the checkpoint Ci,k is finalized. Note that messages

are logged optimistically in memory and then flushed to sta-

ble storage. Moreover, only messages sent and received af-

ter taking a tentative checkpoint and before finalizing the

tentative checkpoint. We refer to the operation of flushing

the tentative checkpoint and the log of messages to stable

storage as finalizing the tentative checkpoint. We explain

the steps taken for finalizing a tentative checkpoint in Sec-

tion 3.4.4. Thus, we have Ci,k = CTi,k ∪ logSeti,k.

CFEi,k denotes the event that represents the finalizing

operation of checkpoint Ci,k. Therefore, all sending and/or

receiving events of messages in logSeti,k happen before

CFEi,k. For any event e of Pi, we have

e
hb−→ Ci,k ⇐⇒ e

hb−→ CFEi,k. (1)

Sk denotes the global checkpoint composed of check-

points with sequence number k from each process. Thus,

Sk = {Ci,k|i ∈ {0, 1, · · · , N − 1}}.

3.2 Basic Idea

The basic idea behind our algorithm is as follows: Any

process can initiate taking a consistent global checkpoint.

A process accomplishes this by saving its state (called ten-

tative checkpoint) and then piggy-backing this information

with each application message it sends after that. When a

process Pi receives a message from a process Pj , it comes

to know whether Pj has taken a tentative checkpoint as a

result of its own consistent global checkpoint initiation or

as a result of the initiation of some other process Pk. When

Pi comes to know about the initiation of consistent global

checkpoint, it takes a tentative checkpoint if it has not al-

ready taken a tentative checkpoint corresponding to this

initiation or a concurrent initiation by some other process

Pm. Each checkpoint taken is assigned a sequence number

which is one more than that assigned to its previous check-

point. After a process takes a tentative checkpoint, it logs

all the messages sent and received in its local memory un-

til it comes to know that all other processes have taken a

tentative checkpoint corresponding to its current tentative

checkpoint. When a process comes to know that all the pro-

cesses have taken a tentative checkpoint that corresponds

to its current tentative checkpoint, it flushes the associated

message log to stable storage; the tentative checkpoint is

also flushed to stable storage if it has already done so. Note

that the tentative checkpoint can be flushed to stable stor-

age any time after it was taken and before it was finalized.

We call the process of flushing a tentative checkpoint and

its associated message log into stable storage as “Finalizing

the Checkpoint”. A process is not allowed to initiate a new

consistent global checkpoint until it finalizes its current ten-

tative checkpoint. A process, initially, starts in the normal

status. After a process takes a tentative checkpoint, its status

changes from normal to tentative. After a tentative check-

point is finalized, its status changes back to normal. The

set of finalized checkpoints with a given sequence number

m, denoted by Sm, forms a consistent global checkpoint

as proved in Theorem 2. Next, we illustrate the basic idea

behind our algorithm with an example.

P0

M1

C3,0

C2,0

C1,0

C0,0 CT0,1

CT1,1

CT2,1

CT3,1

F

F

F

F

1

P2

P3

2

3M

4M

5M

6M

7M

8M

9M

M

P

Figure 2. An example illustrating the basic
idea behind our algorithm

An Example For explaining the basic idea behind the

working of our algorithm, we use the space-time diagram

of a distributed computation consisting of four processes

shown in Figure 2. P0, P1, P2 and P3 are the four pro-

cesses involved in the computation. Initially, their status is

normal and their initial checkpoints, with sequence num-

ber 0, are marked by solid rectangular boxes in the fig-

ure. Suppose P0 initiates consistent global checkpointing

by taking a tentative checkpoint CT0,1. After taking check-

point CT0,1, it changes its status from normal to tentative

and starts logging all messages sent and received by it un-

til it finalizes this checkpoint. Then, P0 sends message M2

to P1. Upon receiving M2, P1 notices that P0 has taken

tentative checkpoint CT0,1. Therefore, P1 takes a tenta-

tive checkpoint CT1,1 after processing M2 and P1’s status

changes from normal to tentative. Similarly, P2 and P3 take

tentative checkpoints CT2,1 and CT3,1 after receiving mes-

sages M4 and M3 respectively. P1 knows that the status

of P0 and P1 is tentative before sending the message M3;

P1 piggy-backs this information with M3. Therefore, P3

knows that the status of P0, P1, and P3 is tentative before

sending the message M5. Upon receiving M5, P2 knows

that the status of all processes is tentative. At this point, P2

finalizes the checkpoint with sequence number 1 by flush-

ing the tentative checkpoint CT2,1 and the set of logged

messages {M5,M6} into the stable storage. And we have

C2,1 = CT2,1 ∪ {M5,M6}. An “F” mark in the figure

indicates the event that finalizes the current tentative check-

point. After a process finalizes its tentative checkpoint, its

status becomes normal (after a process takes a tentative

checkpoint, it is allowed to take another tentative check-

point only after finalizing the already taken tentative check-

point). Similarly, P1 finalizes its tentative checkpoint after

the message M7 is received. When message M8 is received,

P3 knows that P1 has finalized its checkpoint, which indi-

cates that all processes have taken a tentative checkpoint

corresponding to its current tentative checkpoint. There-

fore, P3 finalizes its current tentative checkpoint. Note that

M8 should not be included in the set of logged messages

in C3,1 since it was sent after P1 finalized C1,1. Similarly,

P0 finalizes the checkpoint C0,1 upon receiving M9 with-

out including M9 in the message log. Now, a consistent

global checkpoint S1 = {C0,1, C1,1, C2,1, C3,1} has been

recorded.

Some comments In the example given above, there is

only one initiator of the consistent global checkpoint S1.

This is primarily to make the example easily understand-

able. However, under our algorithm, multiple processes

can concurrently initiate consistent global checkpointing. A

problem with this basic algorithm is that a tentative check-

point may never be finalized by a process if it does not re-

ceive (sufficient) messages from other processes. For ex-

ample, messages such as M5, M7, M8 and M9 are needed

for the four processes to finalize their checkpoints in Fig-

ure 2. So, the basic checkpointing algorithm will not work

in the absence of sufficient number of application messages

that help each process to know the status of every other pro-

cess in a timely manner. We call this as a consistent global

checkpoint convergence problem and explain how it can

be addressed by using limited number of control messages

when necessary in Section 3.5.1. Next, we introduce the

data structures needed for presenting the basic algorithm.

3.3 Data Structures

Each process Pi maintains the following data structures.

csni: An integer variable containing the sequence num-

ber of the current checkpoint of process Pi. The checkpoint

representing the initial state of Pi has sequence number 0.

Pi sets csni to 0 initially. csni is increased by one when a

new tentative checkpoint is taken.

stati: A variable representing the current status of pro-

cess Pi. The status of a process can be tentative or normal.

The status of a process Pi is updated as follows: Pi’s sta-

tus is set to normal initially. Pi’s status changes to tentative

immediately after Pi takes a tentative checkpoint. After Pi

knows that the status of all processes is tentative (through

the information piggy-backed on the application messages),

Pi sets its status back to normal after finalizing its current

tentative checkpoint.

logSeti: The set of messages logged at Pi after it takes a

tentative checkpoint. When stati is set to tentative, logSeti
is set to empty. Thus logSeti contains messages sent and

received by Pi after a tentative checkpoint is taken. When

the status of the process changes from tentative to normal,

the tentative checkpoint and the corresponding logSeti are

flushed to the stable storage.

tentSeti: The tentative process set maintained at Pi.

When stati is set to normal, tentSeti is set to empty.

When Pi takes a tentative checkpoint, Pi sets tentSeti to

{Pi}. Upon receiving a message, Pi sets tentSeti to be

the union of its current value and the tentative process set

piggy-backed with the message. This set contains the set

of processes that have taken a tentative checkpoint, to the

knowledge of Pi.

allPSet: This is the set of all processes, namely,

{P0, P1, · · · , PN−1}.

3.4 The Checkpointing Algorithm

We assume that each process takes an initial checkpoint

representing the initial state of the process. The sequence

number of the initial checkpoint is set to 0. Moreover, no

process is allowed to take a new checkpoint when its status

is tentative.

3.4.1 Consistent Global Checkpointing Initiation

Any process whose status is normal can take a new tenta-

tive checkpoint and thereby initiate consistent global check-

pointing. When a process Pi takes a tentative checkpoint, it

changes its status to tentative, increases the checkpoint se-

quence number csni by one and assigns it as the sequence

number for the tentative checkpoint, sets logSeti to empty,

and initializes tentSeti to {Pi}. After Pi takes a tentative

checkpoint, it starts logging all the messages sent and re-

ceived into logSeti until its status changes back to normal.

Csni and tentSeti are piggy-backed with each application

message.

3.4.2 Sending Messages

Each process Pi piggy-backs with each application message

the current value of csni, stati and tentSeti. The value

of csni piggy-backed with messages helps the receiver de-

termine if the sender has initiated a new consistent global

checkpointing process. These values piggy-backed with a

message M are denoted by M.csn, M.stat and M.tentSet

respectively. A process receiving a message uses this infor-

mation piggy-backed with the message to find out about a

new checkpoint initiation as well as the processes that have

already taken a tentative checkpoint corresponding to this

initiation.

3.4.3 Receiving Messages

When process Pi receives a message M from process Pj ,

it processes the message first and then takes the following

actions:

Case (1) M.stat = stati = normal. In this case, no ad-

ditional action needs to be taken because neither Pi nor Pj

is aware of any new consistent global checkpoint initiation.

Case (2) M.stat = stati = tentative. Four sub-cases

arise:

Sub-case (a) M.csn < csni. In this case, Pi has already

taken and finalized a tentative checkpoint with sequence

number M.csn at the time of receiving M . Therefore, no

action needs to be taken.

Sub-case (b) M.csn = csni. In this case, Pi and

Pj have taken checkpoints that belong to the same global

checkpoint Scsni
. In order to know how many processes

have taken a tentative checkpoint that belongs to the global

checkpoint Scsni
, Pi updates tentSeti to be the union of

tentSeti and M.tentSet. If the updated tentSeti equals

to allPSet, Pi finalizes its tentative checkpoint since all

processes have taken a tentative checkpoint with the same

sequence number (i.e., tentative checkpoints that belong to

the global checkpoint Scsni
). Section 3.4.4 gives the de-

tailed procedure for finalizing a tentative checkpoint.

Sub-case (c) M.csn = csni + 1. In this case, Pj

finalized the checkpoint with sequence number csni be-

fore sending the message M and also has taken a tenta-

tive checkpoint with sequence number M.csn. Therefore,

Pi knows that all processes already took a tentative check-

point that belongs to the global checkpoint Scsni
. Recall

that a process is not allowed to take a new tentative check-

point until it knows all other processes have taken a tentative

checkpoint with sequence number equal to that of its cur-

rent tentative checkpoint and has finalized its current ten-

tative checkpoint. Thus, Pi finalizes its current tentative

checkpoint with sequence number csni and initiates next

consistent global checkpointing by taking a new tentative

checkpoint with sequence number M.csn.

Sub-case (d) M.csn > csni + 1. In this case, Pj has

finalized the checkpoint with sequence number csni + 1.

Since Pj could have finalized that checkpoint only after all

other processes including Pi have taken a tentative check-

point with sequence number csni + 1, Pi must have a

checkpoint with sequence number greater than or equal to

csni + 1. This is not possible because csni is the sequence

number of the last tentative checkpoint of Pi. So, this case

does not arise.

Case (3) M.stat = normal and stati = tentative.

Three sub-cases arise:

Sub-case (a) M.csn < csni. In this case, Pi has already

taken and finalized a tentative checkpoint with sequence

number M.csn at the time of receiving M . Therefore, no

further action needs to be taken in this case.

Sub-case (b) M.csn = csni. In this case, Pj has fi-

nalized taking the checkpoint with sequence number csni.

This means Pj knows that all processes have taken a ten-

tative checkpoint with sequence number csni. Hence Pi

finalizes its current tentative checkpoint and changes its sta-

tus back to normal.

Sub-case (c) M.csn > csni. This means Pj has taken a

new checkpoint with sequence number M.csn > csni and

has finalized that checkpoint before Pi finalized the check-

point with sequence number csni. This is impossible be-

cause a process cannot finalize a checkpoint with sequence

number csn before other processes finalize their checkpoint

with sequence number csn− 1. So, this case does not arise.

Case (4) M.stat = tentative and stati = normal.

Three sub-cases arise:

Sub-case (a) M.csn ≤ csni. In this case, Pi has al-

ready taken and finalized a tentative checkpoint with se-

quence number M.csn at the time of receiving M . So, the

message is simply processed without taking any additional

action.

Sub-case (b) M.csn = csni + 1. In this case, Pj has

taken a new tentative checkpoint about which Pi comes

to know through M for the first time. Therefore, Pi

takes a tentative checkpoint with sequence number M.csn.

The procedure for taking a new tentative checkpoint is

same as that in Section 3.4.1. In addition to that, Pi up-

dates tentSeti to be the union of tentSeti(= {Pi}) and

M.tentSet in the message. Thus, Pi gets Pj’s knowledge

about the processes that have taken a tentative checkpoint

with sequence number csni + 1.

Sub-case (c) M.csn > csni + 1. This is similar to the

sub-case (d) under case (2).

3.4.4 Finalizing a Tentative Checkpoint that belongs to
a Consistent Global Checkpoint with a Given Se-
quence Number

If the status of a process Pi is tentative and it knows

(through the messages received from other processes) that

the status of all processes in the system is tentative (i.e.

tentSeti = allPSet), it flushes its current tentative check-

point (the most recent tentative checkpoint taken) and also

the associated message log logSeti, into the stable storage

and makes it permanent. The tentative checkpoint together

with the message log stored is called a checkpoint of the

process and it is assigned the same sequence number as the

tentative checkpoint stored. This checkpoint together with

the checkpoints with same sequence number from all other

processes forms a consistent global checkpoint, as proved

in Theorem 2.

Formal description of the basic checkpointing algorithm

is given in Figure 3.

When Pi starts
csni = 0; stati = normal; /* Initialization */

Procedure: takeTentativeCheckpoint(i: integer)
csni = csni + 1; stati = tentative;
tentSeti = {Pi}; /* Include the process id in the set */
logSeti = Ø; /* Initialize the message log to empty set */
Take tentative checkpoint CTi,csni

;

When Pi starts to take a checkpoint
takeTentativeCheckpoint(i);

When Pi sends a message M to Pj

M.csn = csni; /* Piggy-back current info with the message */
M.stat = stati;
M.tentSet = tentSeti;
if stati == tentative then logSeti = logSeti ∪ {M};

When Pi receives a message M from Pj

Process M ;

if stati == normal then

if M.stat == tentative then

if M.csn == csni + 1 then /* a new consistent global ckpt */

takeTentativeCheckpoint(i);

tentSeti = M.tentSet ∪ tentSeti;

else if stati == tentative then

logSeti = logSeti ∪ {M}; /* Log the received message */

if M.stat == normal then

if M.csn == csni then /* Pj has finalized the ckpt Cj,csni
*/

stati = normal;

Flush logSeti − {M} and CTi,csni
to the stable storage;

else if M.stat == tentative then

if M.csn == csni then /* took ckpt before sending the msg */

tentSeti = M.tentSet ∪ tentSeti;

if tentSeti == allPSet then /* Each proc took the ckpt */

stati = normal;

Flush logSeti and CTi,csni
to the stable storage;

else if M.csn == csni + 1 then /* took a new tentative ckpt */

stati = normal;

Flush logSeti − {M} and CTi,csni
to the stable storage;

takeTentativeCheckpoint(i);

tentSeti = M.tentSet ∪ tentSeti;

Figure 3. The Basic Checkpointing Algorithm

3.5 Optimizations

3.5.1 A Convergence Problem

As we noted earlier, the basic checkpointing algorithm pre-

sented in the previous section may not converge if enough

messages are not exchanged. To address this problem, we

present a mechanism that utilizes control messages to ex-

pedite convergence when necessary. So, control messages

are used only if a tentative checkpoint has not been finalized

within a predetermined period of time. In the following, we

discuss a mechanism to introduce limited amount of con-

trol messages to expedite convergence when necessary. We

introduce three types of control messages – checkpoint be-

gin CK BGN message, checkpoint request (CK REQ) and

checkpoint end (CK END) messages. A process Pi sets a

timer when it takes a tentative checkpoint. If Pi does not

finalize its tentative checkpoint before the timer expires, it

sends a CK BGN message to a pre-specified process, e.g.

P0. Upon receiving the message, P0 takes a tentative check-

point if it has not taken yet taken and then sends a CK REQ

message to P1, P1 does the same and sends it to P2, etc.

and finally CK REQ reaches back to P0. After P0 receives

the message back, it sends CK END message to all the pro-

cesses. When a process receives the CK END message, it

finalizes its local checkpoint with the sequence number con-

tained in the CK END message if it has not already finalized

it; it ignores the message if it has already finalized. Con-

trol messages are not sent if each global checkpoint can be

finalized within the timeout interval. The tentative process

set can be used to further reduce the number of control mes-

sages as follows:

Case (1) Limiting the number of CK BGN messages. As

we know, one CK BGN message is enough to notify P0 to

initiate CK REQ messages for each global checkpoint. In

the method described above every process that times out

sends CK BGN to P0. Such redundant messages can be re-

duced using the information contained in tentative process

set. Suppose it is time for Pi to send a CK BGN message

to P0. Before sending the message, it checks if there is a

process Pj that belongs to tentSeti such that j < i. If

such a Pj exists, Pi does nothing since it knows that Pj or

some other process with process id smaller than j will send

a CK BGN message to P0. Otherwise, Pi sends a CK BGN

message to P0. Clearly, this method reduces the number

of CK BGN messages. However, it introduces a new prob-

lem, namely, the process with lower id may have finalized

the checkpoint already and has not exchanged any message

afterwards. This way, Pi may not be able to finalize the

checkpoint. This problem can be solved by requiring P0 al-

ways broadcast a CK END message to all other processes

when it finalizes a checkpoint.

Case (2) Saving CK REQ messages. Under the simple

version of the approach of forwarding the CK REQ mes-

sage, every process needs to forward it once. However, the

number of CK REQ messages can be further reduced by the

following method. Suppose it is time for Pi to forward the

message. If it has finalized this checkpoint, it forwards the

message to P0 directly. Otherwise, Pi looks for a process

Pj for which the following condition holds.

(j > i) AND (Pj /∈ tentSeti) AND (∀k ∈ {z|i < z <

j}, Pk ∈ tentSeti)

If such a process Pj is found, Pi forwards the message to Pj

because all processes with process numbers greater than i

and less than j have already taken a tentative checkpoint and

there is no need to ask them to take it again. Otherwise, all

processes with process numbers greater than i have already

taken a tentative checkpoint. Therefore, Pi forwards the

message to P0 directly.

Figure 4 gives the formal description of how control

messages can be used to augment the basic algorithm to

help convergence. In this we use CM to denote a con-

trol message. A CM has two fields, namely, type and

csn. CM.type can have one of the three values, namely,

CK BGN, CK REQ or CK END. CM.csn is the sequence

number of the current tentative checkpoint of the sender

when it sends the control message CM . CM(atype, acsn)
refers to the control message CM with CM.type = atype

and CM.csn = acsn. For example, CM(CK BGN, 3)
refers to a control message CK BGN with csn = 3 piggy-

backed with it.

A timer is used by each process to determine when to

send control messages as follows: A process sets a timer

when it takes a tentative checkpoint. When the timer ex-

pires, it initiates sending a control message CM . The timer

is canceled when a process finalizes the checkpoint or it re-

ceives a CM with sequence number equal to that of its cur-

rent tentative checkpoint.

We illustrate how control messages help in convergence

with the help on the example shown in Figure 5. Suppose

P1 takes a tentative checkpoint CT1,1 first and sends a mes-

sage M2 to P2. Upon receiving M2, P2 takes a tentative

checkpoint CT2,1. When the timer set for CT1,1 expires, P1

sends a CK BGN message (CK BGN1) to P0 (P2 does not

send a CK BGN message since it knows that P1 will send

such message to P0). Upon receiving CK BGN1, P0 takes

a tentative checkpoint CT0,1 and sends a CK REQ message

CK REQ1 to P1. Thereafter, P1 sends a CK REQ mes-

sage CK REQ2 to P3 since it knows that P2 has already

taken CT2,1. Finally, the CK REQ message CK REQ3

returns to P0. Now, P0 knows that all processes have al-

ready taken a tentative checkpoint with sequence number 1.

Therefore, it finalizes its current tentative checkpoint and

broadcasts a CK END message to every other process and

flushes logged application messages and CT0,1 to the sta-

When the timer for finalizing the tentative checkpoint on Pi expires
if i == 0 then /* P0 initiates CK REQ messages directly */

forwardCheckpointRequest(P0, CM);
else /* i = 1, 3, · · · , orN − 1 */

for each Pk ∈ tentSeti do
if k < i then return;

Send CM(CK BGN, csni) to P0;
Procedure: forwardCheckpointRequest(Pi, CM)

if i == N − 1 then k = 0; /* PN−1 forwards CK REQ message to P0 */
else /* looks for Pj such that status of Pi+1, · · · , and Pj−1 is tentative */

for k = i + 1 to N − 1 do
if Pk /∈ tentSeti then break;

if Pk ∈ tentSeti then k = 0;
Send CM(CK REQ, csni) to Pk;

When Pi receives CM from Pj

if CM.csn == csni + 1 then
if stati == tentative then

Flush logSeti and CTi,csni
to the stable storage;

takeTentativeCheckpoint(i);
forwardCheckpointRequest(Pi, CM);

else if CM.csn == csni then

if CM.type == CK BGN then

if stati == tentative then

if CM(CK REQ, csni) has been sent then return;

forwardCheckpointRequest(Pi, CM);

else if CM(CK END, csni) has not been sent then

Send CM(CK END, csni) to P1, P2, · · · , and PN−1;

else if CM.type == CK REQ then

if i == 0 then /* P0 initiates CK END if necessary */

if CM(CK END, csni) has been sent then return;

Send CM(CK END, csni) to P1, P2, · · · , and PN−1;

if stati == tentative then

stati = normal;

Flush logSeti and CTi,csni
to the stable storage;

else forwardCheckpointRequest(Pi, CM);

else if stati == tentative then /* CM.type == CK END */

stati = normal;

Flush logSeti and CTi,csni
to the stable storage;

Figure 4. Augmenting the Basic Algorithm
with Control Messages to Speed up Conver-
gence

ble storage. Upon receiving CK END, P1, P2 and P3

flush their logged messages and tentative checkpoints with

sequence number 1 respectively. This way, all processes fi-

nalize the checkpoints with sequence number 1 and return

to normal status in finite time. Without these control mes-

sages, the original algorithm does not converge in this ex-

ample. Although P3 sends out messages such as M5 and

M6, it does not receive any message. Therefore, P3 is un-

able to obtain the status information of other processes, and

hence P3 can not finalize its tentative checkpoint CT3,1.

3.6 Correctness Proof

We refer to the checkpointing algorithm with control

messages as the generalized checkpointing algorithm. With

this definition, we have Theorem 1.

Theorem 1 The generalized checkpointing algorithm con-

P0

M1

C3,0

C2,0

C1,0

C0,0

CT1,1

CT2,1

4M

3M

F

F

F

F

CT0,1

CT3,1

2M

5M 6M

7M1CK_BGN 1CK_REQ
1CK_END

2CK_END

3CK_END

2CK_REQ

3CK_REQ

1

2

P3

P

P

Figure 5. An example illustrating the use of
control messages in the algorithm

verges, i.e. after a process takes a tentative checkpoint with

a given sequence number csn, every process eventually fi-

nalizes a checkpoint with sequence number csn.

Proof. We prove this by contradiction. Suppose the

generalized checkpointing algorithm does not converge. In

other words, there is at least one process, say Pi, that takes

a tentative checkpoint CTi,k but never finalizes the check-

point Ci,k. Depending upon why Pi takes CTi,k, the fol-

lowing two cases arise.

Case (1) Pi takes CTi,k because it receives a message

CM(CK REQ, k) from a process Pi. Upon receiving

such a message, Pi needs to forward the message to a pro-

cess Ph and assure that all processes with process number

greater than i and less than h have already taken a tentative

checkpoint with sequence number k. This is repeated until

the message returns to P0 (PN−1 forwards the message to

P0 or some process Pj (j < N − 1) forwards it to P0 di-

rectly since Pj knows that all processes with process num-

ber greater than j have taken a tentative checkpoint with

sequence number k). Once P0 receives the message, it final-

izes C0,k and broadcasts a message CM(CK END, k) to

all other processes. Upon receiving this message, each pro-

cess finalizes its tentative checkpoint with sequence number

k if appropriate. In particular, Pi finalizes Ci,k which is a

contradiction to our assumption.

Case (2) Pi takes CTi,k due to other reasons. Then

a timer is set when CTi,k is taken at Pi. If the timer

is canceled due to receiving a CK REQ or CK END mes-

sage with sequence number k, P0 has initiated a mes-

sage CM(CK REQ, k). Otherwise, Pi or some process

with process number smaller than i will send a message

CM(CK BGN, k) to P0. Therefore, P0 will receive at

least one CK BGN message with sequence number k. Then

P0 initiates the process of forwarding CK REQ messages.

Similar to Case(1), Pi finalizes the checkpoint Ci,k which

is a contradiction to our assumption.

Hence the theorem. �

Theorem 2 For each k, the set Sk = {Ci,k|i ∈
0, 1, · · · , N − 1} forms a consistent global checkpoint.

Proof. We prove this by contradiction. Suppose Sk is

not consistent. Then, there exists a message M , sent from

Pi to Pj (for some i, j ∈ {0, 1, · · · , N − 1}, i �= j), such

that Ci,k
hb−→ send(M) AND receive(M) hb−→ Cj,k.

Depending on the receiving time of the message M , the

following two cases arise.

Case (1) receive(M) hb−→ CTj,k (a). Since Ci,k
hb−→

send(M), CFEi,k
hb−→ send(M) (b). Since Pi has final-

ized Ci,k before sending M , Pi already knew that all pro-

cesses have taken tentative checkpoints with sequence num-

ber k. In particular, before finalizing Ci,k, Pi knew that Pj

took CTj,k. Hence, CTj,k
hb−→ CFEi,k (c). From (a), (b)

and (c), we have receive(M) hb−→ CTj,k
hb−→ CFEi,k

hb−→
send(M), i.e. receive(M) hb−→ send(M), a contradiction.

Case (2) CTj,k
hb−→ receive(M) hb−→ CFEj,k (a).

Similar to Case (1), we have CFEi,k
hb−→ send(M). Upon

receiving M , Pj knows that Pi has finalized the checkpoint

Ci,k. Therefore, it knows that all other processes have taken

a tentative checkpoint with sequence number k. Based on

this information, Pj finalizes the checkpoint Cj,k not in-

cluding message M in the checkpoint. Therefore, we have

CFEj,k
hb−→ receive(M) (b). From (a) and (b) we have

receive(M) hb−→ receive(M) which is a contradiction.

Hence the theorem. �

4 Related Work

In this section, we briefly review previously proposed al-

gorithms related to our checkpointing algorithm.

In order to minimize the network contention caused by

storing local checkpoints to the stable storage simultane-

ously, Plank and Vaidya proposed two synchronous check-

pointing algorithms. These algorithms are referred to as

staggered checkpointing algorithms. Plank’s [10] algorithm

is a variation of the Chandy-Lamport algorithm [3] that

staggers a limited number of checkpoints depending on the

network topology. However, a completely connected topol-

ogy would subvert staggering in this algorithm. Based on

Plank’s algorithm, Vaidya proposed a synchronous check-

pointing algorithm that staggers all checkpoints. Simi-

lar to the algorithms of Chandy et al. [3] and Plank [10],

Vaidya’s algorithm uses a coordinator to initiate the con-

sistent global checkpoint collection. Under Plank’s algo-

rithm, the take checkpoint message sent by the coordina-

tor propagates to all processes involved in the distributed

computation one by one and returns back to the coordina-

tor finally. Upon receiving the take checkpoint message,

a process takes a physical checkpoint if it has already not

taken one. After the physical checkpoint is taken, the mes-

sage is forwarded to the next process. This way, no two

processes will take checkpoints simultaneously and hence

prevents contention for stable storage. Manivannan et al.

proposed a quasi-synchronous checkpointing algorithm [7]

which staggers checkpoints to prevent two or more pro-

cesses from taking a checkpoint at the same time. Zhang

et al. [12] and Oliner et al. [9] discussed checkpointing per-

formance issues in large-scale cluster systems.

5 Conclusion

In this paper, we presented a novel quasi-synchronous

checkpointing algorithm that makes every checkpoint be-

long to a consistent global checkpoint. Under this algo-

rithm, every process takes tentative checkpoints and opti-

mistically logs messages received after a tentative check-

point is taken and before the tentative checkpoint is fi-

nalized. Since a tentative checkpoint can be taken any

time in the contention for stable network storage that arises

due to several processes storing the checkpoints simulta-

neously is minimized by allowing processes to store the

tentative checkpoints in local memory; tentative check-

points taken can be flushed to stable storage anytime be-

fore that checkpoint is finalized. Moreover, unlike existing

communication-induced checkpointing algorithms, our al-

gorithm, generally, does not force a process to take a check-

point before processing any received message in order to

prevent useless checkpoints. Thus, a process can first pro-

cess the received message and then take checkpoint. This

improves the response time for messages. It also helps a

process take the regularly scheduled basic checkpoints at

the scheduled times. We did not include the results of our

performance evaluation due to space limitation.

Acknowledgment

The authors thank the reviewers for their valuable com-

ments which helped in improving the content and presen-

tation of the paper. This material is based in part upon

work supported by the US National science Foundation un-

der Grant No. IIS-0414791 and the US Department of Trea-

sury Award #T0505060. Any opinions, findings, and con-

clusions or recommendations expressed in this material are

those of the authors and do not necessarily reflect the views

of the National Science Foundation or the Department of

Treasury.

References

[1] R. Baldoni, J. M. Helary, A. Mostefaoui, and M. Raynal. A
Communication Induced Algorithm that Ensures the Roll-
back Dependency Trackability. In Proceedings of the 27th

International Symposium on Fault-Tolerant Computing, July
1997.

[2] G. Cao and M. Singhal. Checkpointing with mutable check-
points. Theoretical Computer Science, 290(2):1127–1148,
January 2003.

[3] K. M. Chandy and L. Lamport. Distributed Snapshots :
Determining Global States of Distributed Systems. ACM
Transactions on Computer Systems, 3(1), 1985.

[4] D. B. Johnson and W. Zwaenepoel. Recovery in Distributed
Systems Using Optimistic Message Logging and Check-
pointing. Journal of Algorithms, 11(3):462–491, September
1990.

[5] R. Koo and S. Toueg. Checkpointing and Roll-back Recov-
ery for Distributed Systems. IEEE Transactions on Software
Engineering, SE-13(1):23–31, January 1987.

[6] L. Lamport. Time, clocks and ordering of events in dis-
tributed systems. Communications of the ACM., 21(7),
1978.

[7] D. Manivannan, Q. Jiang, J. Yang, K. Persson, and M. Sing-
hal. “An Asynchronous Recovery Algorithm based on a
Staggered Quasi-Synchronous Checkpointing Algorithm”.
In Lecture Notes in Computer Science Series No.3741, pages
117–128, Springer Verlag, December 2005.

[8] D. Manivannan and M. Singhal. Asynchronous Recov-
ery Without Using Vector Timestamps. Journal of Parallel
and Distributed Computing, 62(12):1695–1728, December
2002.

[9] A. J. Oliner, R. K. Sahoo, J. E. Moreira, and M. Gupta. Per-
formance implications of periodic checkpointing on large-
scale cluster systems. In IPDPS ’05: Proceedings of the
19th IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS’05) - Workshop 18, page 299.2,
Washington, DC, USA, 2005. IEEE Computer Society.

[10] J. S. Plank. Efficient Checkpointing on MIMD Architectures.
PhD thesis, Priceton University, June 1993.

[11] N. Vaidya. Staggered Consistent Checkpointing. IEEE
Transactions on Parallel and Distributed Systems,
10(7):694–702, January 1999.

[12] Y. Zhang, M. S. Squillante, A. Sivasubramaniam, and R. K.
Sahoo. Performance Implications of Failures in Large-Scale
Cluster Scheduling. In JSSPP ’04: Job Scheduling Strate-
gies for Parallel Processing, 10th International Workshop,
pages 233–252, 2004.

