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Abstract. One of the critical issues in wireless sensor network is the design of a proper routing protocol. One 
possible approach is utilizing a virtual infrastructure, which is a subset of sensors to connect all the sensors in the 
network. Among the many virtual infrastructures, the connected dominating set is widely used. Since a small 
connected dominating set can help to decrease the protocol overhead and energy consumption, it is preferable to 
find a small sized connected dominating set. Although many algorithms have been suggested to construct a 
minimum connected dominating set, there have been few exact approaches. In this paper, we suggest an 
improved optimal algorithm for the minimum connected dominating set problem, and extensive computational 
results showed that our algorithm outperformed the previous exact algorithms. Also, we suggest a new heuristic 
algorithm to find the connected dominating set and computational results show that our algorithm is capable of 
finding good quality solutions quite fast. 
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1.  INTRODUCTION 

Due to the recent rapid advances in digital techno-
logies and the mass production, developments of multi-
functional, low-cost and low-power sensors become 
possible. Generally, sensor is composed of four major 
units: power unit, sensing unit, processing unit and trans-
ceiver unit, and each unit performs a unique function. 
The power unit provides power to all the other units, and 
the sensing unit takes charge of the monitoring task and 
data converting task. Thus, if a certain phenomenon hap-
pens, the sensing unit detects the phenomenon changes, 
such as temperature, light, sound and humidity, and then 
converts the sensed analog data to digital data. The pro-
cessing unit can manipulate the collected data and store 
the collected data in the storage device for transmitting. 
The transceiver unit can transmit/receive information 
over a wireless network. 

Typically, a large number of sensors collaborate 
using wireless communication, and the sensors gather, 
process and transmit information over a wireless network 
to a remote running application that makes decisions 
based on this information. Since the deployed sensors 
are clustered and communicate in wireless channels, we 
call it wireless sensor network (WSN). Nowadays, WSN 
has many applications, such as habitat monitoring, forest- 
fire detection, patient status monitoring, home appliance, 
inventory tracking and battlefield monitoring. 

WSN is featured by no fixed infrastructure, multi-
hop communication and limited resources (battery capa-
city and bandwidth). These characteristics pose new 
difficulties in designing a routing protocol. Some exis-
ting routing protocols for ad hoc networks (Ng and Lu, 
1999; Pei et al., 2000) are based on flooding mechanism 
(i.e., upon receiving a packet, transmit the packet to all 
of its neighbors). Therefore if we use these protocols, it 
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not only devastates the resources of the sensors, but 
gives negative effect on the throughput of the whole net-
work. Furthermore, it probably causes broadcasting storm 
problem as indicated in Ni et al. (2002), which results in 
excessive data redundancy, contention and collision. 

In Sinha et al. (2001), a new routing protocol based 
on an overlaying virtual infrastructure, so called virtual 
backbone, is proposed and the authors showed that, 
using the backbone can reduce the routing overhead 
dramatically. Simply, a virtual backbone is defined as a 
subset of sensors, which can connect all the sensors in 
the network. This concept is frequently used to simplify 
the network and improves the efficiency of the routing. 

In many existing virtual backbone schemes which 
can be found in Alzoubi et al. (2002), Chen et al. (2002), 
Dai and Wu (2004), Stojmenovic et al. (2002) and Wu 
and Dai 2004, a connected dominating set (CDS) is 
suggested to use as a backbone. To simplify our discu-
ssion, we use a connected graph G = (V, E) to represent 
the network, where V and E represent the set of vertices 
and the set of edges, respectively. Each vertex v ∈ V 
indicates a sensor, and there is an edge e(= uv) ∈ E 
which denotes that sensor u is within sensor v's com-
munication range and vice versa. A set of sensors is 
called a dominating set if each of the sensors in the 
network is either in this set or has a neighbor (sensor u 
is neighbor of sensor v if there exists an edge between 
the two vertices) in the set. Typically, the sensors in the 
dominating set are called dominators, and the other 
sensors are called dominatees. A dominating set is cal-
led a CDS if the subgraph induced by the dominating set 
is connected, and the connectivity among the domi-
nators is required for proper routing of signals. There-
fore if any dominatee want to send a message to domi-
nator(or dominatee), it first send a message to connected 
neighbor dominator. If CDS is used as a backbone, we 
can obtain the following good characteristics of the 
network. 

 
• Routing overhead can be reduced as shown in Wu and 

Li (1999) because only the sensors in CDS need to 
maintain the routing information. Thus, if a domina-
tee wants to send a packet to another dominatee, it 
sends the packet to its dominator. Then the dominator 
will deliver the packet to the destination dominatee.  

• Energy efficient area coverage is possible as indicated 
in Carle and Simplot (2004) and Chen et al. (2002). 
Since CDS is a good approximation of an area, do-
minators in CDS can take over the dominatees’ sens-
ing task. Thus, if the dominators are actively perfor-
ming the sensing task, all of its dominatees probably 
enter into a low-battery sleep state to save energy for 
future use.  

 
Usefulness of the CDS in WSN has been demon-

strated in many communication protocols such as media 
access coordination, unicast, multicast/broadcast, locat-
ion-based routing, energy conservation, resource disco-

very and topology control (More comprehensive review 
can be found in Blum et al. (2004)). 

Since the number of sensors forming the virtual 
backbone needs to be as small as possible to decrease 
the protocol overhead and energy consumption, it is 
desirable to form a minimum sized CDS. Finding a 
minimum sized CDS problem is referred to as the mini-
mum connected dominating set (MCDS) problem. For 
example, vertex set {a, b, c} in Figure 1 forms a CDS, 
thus the dominators are {a, b, c} and the dominatees are 
{d, e, f}. 

 

 
Figure 1. Example of the CDS. 

 
Finding an MCDS is an NP-Hard problem Garey 

and Johnson (1979), and many researches have been 
performed on the MCDS problem and a comprehensive 
review on the algorithms can be found in Blum et al. 
(2004). In this paper, we review the centralized CDS 
construction algorithms only (Although CDS can be 
constructed in a distributed manner (Chen et al., 2009; 
Wang et al., 2009), it is beyond the scope of this paper). 

We review the performance guaranteed approxima-
tion algorithms first. In Guha and Khuller (1998), two 
algorithms are suggested. One forms a CDS of size at 
most 2(1 ( ))+ Δ ⋅H MCDS  and the other one constructs a 
CDS of size (3 ( ))+ Δ ⋅ln MCDS , where H, MCDS  and 
Δ  represent the harmonic function, size of the MCDS 
and the maximum degree of the given graph, respecti-
vely. The authors in Li et al. (2005), Min et al. (2006) 
and Ruan et al. (2004) reported (4.8 5)+ ⋅ln MCDS , 6.8 

MCDS⋅  and (3 ( ))+ Δ ⋅ln MCDS  approximation algori-
thms, respectively. 

There exist many heuristic algorithms for the MCDS 
problem. Relatively latest ones can be found in Chen et 
al. (2010) and Morgan and Grout (2008). However, these 
algorithms cannot guarantee the quality of the obtained 
solutions because no information on the lower bound 
can be obtained. 

Although solving the MCDS problem exactly is an 
important research goal, there have been few exact ap-
proaches. One simple scheme is enumerating all subset 
of the vertices, and the algorithm shown in Fomin et al. 
(2008) breaks the 2 V

 barrier by suggesting (1.9407) VO  
algorithm. However, no implementation and performance 
test of the algorithm can be found. 

Other two optimal approaches used mathematical 
formulations to obtain MCDS (Morgan and Grout, 2008; 
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Yuan, 2005). However, the performances of the algo-
rithms reported by the authors were not impressive. In 
this paper, we propose an improved optimal algorithm 
using the mathematical formulation in Yuan (2005) and 
compare the performances with the previous two app-
roaches. The computational results showed that, our 
algorithm outperforms the previous optimal approaches 
in terms of the running time to obtain an optimal 
solution. Also, we propose a new heuristic which use the 
formulation and the idea of our improved optimal algo-
rithm. 

This paper is organized in the following way. In 
Section 2, we review notation and definition. In Section 
3, the existing mathematical formulations and algori-
thms for the MCDS problem will be discussed, and an 
improved optimal approach will be introduced in the 
same section. Section 4.1 shows the performance of the 
improved optimal approach suggested in this research. 
Section 4.2 includes description of the heuristic which is 
suggested in this research for computing the connected 
dominating set efficiently, and shows the performance 
of the heuristic. Finally, in Section 5, we conclude this 
paper. 

2.  PRELIMINARIES 

This section provides some background informa-
tion to understand the rest part of the paper. As noted 
before, WSN can be represented by a simple graph G = 
(V, E) and the following definition and notation from 
graph theory will be used throughout the paper. 

 
• Open neighbor set, { }( ) ( ) ,= ∈N u v uv E  is the set of ver-

tices adjacent to vertex u.  
• Closed neighbor set, [ ] { }( ) ,= ∪N u N u u  is the set of ver-

tices adjacent to vertex u and u itself.  
• Independent set is a subset of V such that no two 

vertices are adjacent in G. For example, {d}, {d, e} 
and {d, e, f} are independent sets in Figure 1.  

• Maximal independent set is an independent set such 
that adding any vertex not in the set breaks the pro-
perty of the independent set. For example, in Figure 1, 
the independent set {d, e, f} is a maximal independent 
set since addition of any other vertices (a or b or c) 
makes some vertices in the set are connected.  

• Dominating set is a subset of V such that each vertex 
is either in the set or has a neighbor in the set. Note 
that every maximal independent set is a dominating 
set, but the converse is not true.  

• Connected dominatig set is a dominating set whose in-
duced subgraph is connected. For example, {a, b, c} 
is a CDS in Figure 1.  

• Steiner tree is a tree which, for a given subset T of V, 
connects the vertices of T possibly using the vertices 
in V\T. For example, in Figure 1, if T is given as {d, e, 
f}, a Steiner tree can be constructed by adding the 
remaining vertices {a, b, c} and the edges ab, ac, ad, 

be and cf.  
• Vertex cut is a subset of V whose removal disconnects 

the graph.  
 
If we use maximal independent set and Steiner tree, 

the following simple procedure can construct a CDS. 
We first form a maximal independent set to identify a 
dominating set, and let the generated dominating set 
from the first step be the vertex set T in Steiner tree. 
Then CDS can be constructed by finding a Steiner tree. 
Many heuristic algorithms and approximation algori-
thms have been developed using this idea, and the latest 
one can be found in Min et al. (2006). 

3.  MATHEMATICAL FORMULATIONS AND 
OPTIMAL ALGORITHMS 

To the best of our knowledge, two different mathe-
matical formulations exist for the MCDS problem, first 
one is shown in Morgan and Grout (2008) and the se-
cond one is suggested in Yuan (2005). Two formula-
tions used different modeling techniques. The first one 
used a 2 2V E+  number of variables with 3 2V E+  
number of constraints, approximately. The second one 
used a V  number of variables, but it required an expo-
nential number of constraints to represent the connec-
tivity of the induced subgraph. At first sight, the first 
formulation seems to be better. However, after perfor-
ming extensive computational experiments, we concluded 
that, if an improved optimal algorithm developed in this 
paper is used, the second formulation may be used to find 
an optimal solution much faster than the first formula-
tion. 

Generally, representing the connectivity require-
ment for the graph problems asks for an exponential 
number of inequalities. To avoid this, the first formula-
tion used the flow variables in the formulation. The main 
idea of the formulation is, when the vertices are selected 
to form a CDS, any vertex included in the CDS can send 
a flow to each of the other vertices in the CDS (using 
only the selected vertices). Each vertex included in the 
CDS requires at least one unit of flow, and the root 
vertex (vertex 1) contains enough flows to supply the 
required flows in each vertex in the CDS. Thus, if the 
root vertex is not included in the CDS, it transfers all of 
its flows to one of its neighboring vertices which is 
selected to be included in the CDS. We first construct a 
directed graph G = (V, A) by replacing each edge e(= ij) 
∈ E by two arcs ij and ji, and define the decision 
variables as the following. 

 
1, ,
0,
⎧

= ⎨
⎩

i

if vertex i is included in the MCDS
x

otherwise
 

.=ijf amount of flow from vertex i to j  
1,
0,
⎧

= ⎨
⎩

i

if flow is permitted from root vertex to vertex
x

otherwise
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Then the formulation can be given as the following.  
 

∈∑ ii V
Minimize x       (1) 
Subjectto  

{ } 1, 1, ,
∈

+ ≥ =∑i jj ij A
x x i V      (2) 

{ }{ } 1 11 1
1

∈ ∈
− = −∑ ∑j jj j A j j A

f f V      (3) 

{ }{ } , 2, ,
∈ ∈

− ≥ =∑ ∑ji ijj ji A j ij A
f f xi i V   (4) 

{ }1 1( ), 1≥ × + ∀ ∈j jf V x x j j A       (5) 

{ }, 1 2≤ × ∀ ∈ ≥ ≥ij if V x ij A i and j       (6) 

{ }1 , 1≤ × ∀ ∈j if V y j j A                (7) 

{ } 11
1

∈
≤ + ×∑ jj j A

y x V                (8) 

{ }0, 1 , 1, ,∈ =ix i V         (9) 

{ } { }0, 1 , 1∈ ∀ ∈jy j j A        (10) 
 
Constraints (1) minimize the number of vertices 

which are selected to be included in the CDS. Constra-
ints (2) guarantee that, if the vertex is not included in the 
CDS, it has at least one neighboring vertices which are 
selected to be included in the CDS to satisfy the domi-
nance requirement. Constraints (3) assure that the root 
vertex in the CDS may produce sufficient flows to 
provide at least one unit flow to the other vertices which 
are chosen to be included in the CDS. Constraints (4) 
state that, if any vertex is chosen to be included in the 
CDS, it consumes at least one unit flow. Constraints (5) 
and (6) set upper bounds for the flows. Constraints (7) 
guarantee that flows from the root vertex to the other 
vertex j can be sent only if jy  is one. While constraint 
(8) forces that, if the root vertex is not included in the 
CDS, at most one of its neighbor vertices can be sel-
ected in the CDS to send the flows. Constraints (9) and 
(10) state the binary integer requirements on the variables. 

The authors in Morgan Grout (2008) reported that, 
when ILOG CPLEX (2008) was used as an optimization 
software to solve the formulation, they could obtain the 
optimal solutions for the graphs of up to 100 vertices in 
1000 seconds. 

 

 
Figure 2. Example of the minimal vertex cut. 

 
Now we review the formulation and the optimal 

algorithm shown in Yuan (2005). Before giving a deta-
iled explanation, we introduce notation which will be 
used in the formulation. Let C be a minimal vertex cut 
(=whose removal disconnects the graph and removing 

any vertex in the cut fails to form the vertex cut), and 
 be a collection of C. For example, in Figure 2, vertex 

cut {a, c, d} is not a minimal vertex cut, but c or d is a 
minimal vertex cut. 

The author in Yuan (2005) proved that, if at least 
one vertex is selected from C, ,∀ ∈C  the set of sel-
ected vertices form a CDS. Using this characteristic, the 
authors suggested the following formulation for the 
MCDS problem (The decision variable ix  indicates that 
whether the vertex i is included in the CDS or not).  

 
∈∑ ii V

Minimize x      (11) 
Subjectto  

1,
∈

≥ ∀ ∈∑ ji C
x C            (12) 

{ }0, 1 , .∈ ∀ ∈ix i V            (13) 
 
Since the number of constraints (12) can be huge, 

representing the formulation in full is impractical. There-
fore the author in Yuan (2005) suggested the following 
constraint generation scheme to identify the violated 
constraint of (12) only when needed. 

 
Optimal approach in Yuan (2005): 
Step 1: Construct the initial formulation using constra-

ints (11) and (13) only.  
Step 2: For each vertex v ∈ V, form a subset S of V by 

setting S = [v]. For each S, construct a minimal 
vertex cut by finding the vertices which has one 
or several neighbor vertices in V\S. Then add the 
corresponding inequalities of (12) to the formu-
lation.  

Step 3: Solve the formulation optimally and let the set 
of vertices which are selected as D. If D forms a 
CDS, stop the procedure and output the obtained 
MCDS. Otherwise, goto Step 4.  

Step 4: For each vertex v ∈ V, construct a subset S of 
V using the vertices that v can reach via vertices 
in D, including v itself. For each S, if we can 
construct a minimal vertex cut by finding the 
vertices which has one or several neighbor ver-
tices in V\S, store the corresponding inequality 
of (12).  

Step 5: Perform a pair-wise check for the stored inequ-
alities in Step 4 to identify the inequalities which 
are not dominated by the other inequalities (i.e., 
for given two vertex cuts 1C  and 2,C if 1C  is a 
subset of 2,C 2C  is dominated by 1C ). Only those 
inequalities are added to the formulation, and 
goto Step 3.  

 
The authors in Yuan (2005) reported that, when the 

time limit was set to 1 hour and ILOG CPLEX 7.0 was 
used as the optimization software, they could obtain the 
optimal solutions for the graph of up to 80 vertices. 

Up to this part of the section, we reviewed two 
different mathematical formulations and the optimal ap-
proaches to solve the formulations, but the performances 
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of the algorithms reported by the authors seem to be not 
impressive and the approaches have rooms for more 
improvements. However, since the primary purposes of 
their researches were developing good heuristic algori-
thms, no more efforts in optimal approaches could be 
found. Comparisons of the algorithm in Morgan Grout 
(2008), original algorithm in Yuan (2005), and our im-
proved algorithm will be given in Section 4.1. 

Note that if it is guaranteed that the number of 
vertices selected in an MCDS is greater than or equal to 
two, the following additional inequalities can be added 
to the formulation.  

 
( )

1,
∈

≥ ∀ ∈∑ jj N i
x C V     (14) 

 
Constraints (14) indicate that any selected vertex has at 
least one or more neighboring vertices to establish the 
connectivity. Actually, constraints (14) are not required 
in a correct formulation of the MCDS problem, but 
adding the constraints to the formulation strengthens the 
formulation and it reduces the computation time to solve 
the problem. 

Now we discuss our optimal algorithm for the MCDS 
problem based on the formulation from Yuan (2005). To 
solve the MCDS problem for a given graph, we used a 
different constraint generation scheme and this difference 
results in improvements in the computation times to 
obtain the optimal solutions. 

As noted before, since the number of constraints 
(12) can be exponential, the constraints (12) need to be 
dealt implicitly rather than explicitly. We first solve the 
formulation optimally without constraints (12) and con-
struct the graph using the vertices which are selected. 
When the current solution is not a CDS, the optimal 
approach in Yuan (2005) identifies one vertex cut which 
is violated by the current solution. On the other hand, 
when there exist several vertex cuts which are violated 
by the current solution, this approach does not guarantee 
to identify the smallest sized vertex cut. Since using a 
minimum vertex cut among the violated vertex cuts may 
tighten the formulation the most, it probably reduces the 
computation time to solve the problem. 

In this paper, when the constructed subgraph from 
the current solution consists of several disconnected 
components, we suggest a procedure to find a minimum 
vertex cut which separates one component from the 
other components. We first explain how to find a vertex 
cut using an example, and then, a procedure which iden-
tifies the minimum vertex cut will be discussed. 

Assume that, when we solved the formulation with-
out constraints (12) using the example given in Figure 3, 
two vertices a and c are selected (for this example, 
suppose that we replaced constraints (14) by 

[ ]∈∑ vv N u
x  

1, ,≥ ∀ ∈u V  otherwise a and c cannot be chosen). How-
ever, since the resulting subgraph is not a CDS, we want 
to identify a vertex cut which is violated by the current 
solution a and c. 

 
Figure 3. Example of the MCDS problem. 

 
Clearly, since we want to find a vertex cut which 

separates the two vertices a and c, vertices b and d form 
a vertex cut which is violated by the current solution. 
Now we add the corresponding inequality 1+ ≥b dx x  to 
the formulation. When we solve the enlarged formula-
tion, we can obtain the CDS as {a, b} and the procedure 
stops. 

However, identifying the vertex cut probably be a 
complicating step when the size of the graph is large. 
Furthermore, it may be harder to find the minimum ver-
tex cut among the vertex cuts. Therefore, in this paper, 
we propose an idea which identifies the vertex cut using 
the modified graph of G, then a procedure which can be 
used to find the minimum vertex cut will be illustrated 
(We used the procedure suggested in Thulasiramanand 
Swamy (1992) with some modifications). 

To identify a vertex cut for a given graph G = (V, 
E), we first replace each edge by two antiparallel arcs, 
and then, split a vertex v into two vertices v′  and ,′′v  
and create an arc directed from v′  to .′′v  Then, replace 
an arc that is directed from vertex u to other vertex v by 
an arc directed from u′′  to .′v  Lastly, assign unit capaci-
ties to the generated arcs which are directed from ′v  to 

,′′v  and allocate very large positive (= M) capacities to 
the generated arcs directed from u′′  to .′v  The result of 
applying the procedure to the example in Figure 3 is 
shown in Figure 4. 

 

 
Figure 4. Transformed graph. 

 
Therefore, when we send flows from a source ver-

tex to a sink vertex as much as possible, only the arcs 
which are directed from ′v  to v′′  limit the amount of 
flows. 

Note that in this example, we have two source ver-
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tices a′  and a′′ (from vertex a) and two sink vertices c′  

and c′′ (from vertex c) instead of a single source vertex 
and a single sink vertex. Generally, when we want to 
find a vertex cut using the modified graph, we need to 
solve the multiple sources and multiple sinks maximum 
flow problem instead of the ordinary maximum flow 
problem. However, this problem can be easily reduced 
to the ordinary single source single sink maximum flow 
problem. We first add a vertex (= super-source vertex) 
and create arcs to the source vertices with capacities M. 
Similarly, we add a vertex (= super-sink vertex) and 
create arcs from the sink vertices with capacities M. 
Then, any flow from the super-source vertex to the 
super-sink vertex corresponds to a flow in the multiple 
source vertices and multiple sink vertices problem as 
shown in Cormen et al. (1989). If we identified the 
maximum flow, we also can find the minimum arc cut 
such that the value of the flow is equal to one (arcs are 
directed from ′v  to v′′ ). Then we can obtain a vertex cut 
of the original graph by restoring the vertices corre-
sponding to the cut arcs. 

Suppose that the solution from the formulation with-
out constraints (12) is not a CDS, then the selected 
vertices form several connected components. Now, for 
each component, we want to identify the minimum sized 
vertex cut which separates the current component and 
the other components, and the corresponding inequa-
lities (12) are added to the formulation. Then, the fol-
lowing procedure can be used to find the minimum sized 
violated vertex cut. 

 
Procedure to find the minimum sized violated vertex 
cut: 
Step 1: For a given undirected graph G = (V, E), cons-

truct a directed graph G = (V, A) by replacing 
each edge e(= ij)∈E by two arcs ij and ji.  

Step 2: Replace every vertex v∈V by two vertices ′v  
and v′′  and create an arc directed from ′v  to .′′v   

Step 3: Assign unit capacities to the generated arcs in 
Step 2.  

Step 4: Replace an arc that is directed from vertex u∈V 
to the another vertex v∈V by an arc directed 
from u′′  to .′v   

Step 5: Assign capacities M  to the generated arcs in Step 4.  
Step 6: Set k as 1.  
for all kth component do 
Step 6.1: Create a super-source vertex and create arcs 

joining the super-source vertex to the vertices 
of kth component with capacities M.  

Step 6.2: Create a super-sink vertex and create arcs jo-
ining the vertices of the other components to 
the super-sink vertex with capacities M.  

Step 6.3: Find a maximum flow from the super-source 
vertex to the super-sink vertex.  

Step 6.4: Identify a minimum arc cut, and obtain a 
vertex cut of the original graph by restoring 
the vertices corresponding to the arc cut.  

Step 6.5: Drop the generated vertices and arcs in Step 
6.1 and Step 6.2, and increase k by one.  

end for 
Step 7: Choose the minimum vertex cut among the ver-

tex cuts identified in Step 6.  

4.  DESCRIPTION OF THE HEURISTIC 

We suggested an optimal approach and tested the 
performance of the algorithm in Section 5.1. However, 
when the size of the problem becomes large, solving the 
MCDS using the formulation failed to provide an opti-
mal solution within an hour. Therefore, we propose a 
heuristic which can be used to find the CDS. Major 
characteristics of the heuristic are linear programming 
relaxation of the mathematical formulation and minimum 
vertex cut identification procedure explained in Section 
3. The detailed procedure of the heuristic can be given 
as follows. 

 
Heuristic to compute connected dominating set: 
Step 1: Prepare an empty set, and construct the formula-

tion which consists of (11), (13) and (14).  
Step 2: Drop the integrality conditions and let the lower 

bound for the objective value as z  
Step 3: Solve the linear programming relaxation.  
Step 4: Identify the most fractional variable ix  variable 

which is close to one, and assign the correspon-
ding vertex to the set.  

Step 5: If the set satisfy the dominance requirement and 
size of the set is greater than or equal to ,z  go 
to Step 7.  

Step 6: Fix the identified ix  variables in Step 5 to one in 
the formulation and return to Step 3.  

Step 7: Check the connectivity among the vertices which 
are included in the set. If the set is connected, 
stop the algorithm and output the vertices in the 
set. Otherwise, go to Step 8.  

Step 8: Since the vertices in the set consists of several 
disconnected components, identify the minimum 
vertex cut which separates one component from 
the other components using the procedure des-
cribed in Section 3.  

Step 9: Add the corresponding inequality which is viola-
ted by the current solution, and let z  := Set + 
1 and return to Step 3.  

 
In Step 4, if the several variables are assigned the 

same values, we choose the variable whose sum of dis-
tances to other vertices included in the set is the mini-
mum. 

Note that the number of iterations is finite, and 
since solving the linear programming relaxation, separa-
ting the minimum vertex cut and finding the distances 
can be done in polynomial times, our heuristic runs in 
polynomial time. 



 An Optimization Algorithm for Minimum Connected Dominating Set Problem in Wireless Sensor Network 227 

 

5.  COMPUTATIONAL RESULTS 

5.1 Performance of the optimal algorithms 

We tested the performances of the optimal approa-
ches for the MCDS problem suggested in Morgan Grout 
(2008), Yuan (2005) and in this paper. We implemented 
the three approaches and tested them on randomly gen-
erated graphs. For each of the approaches, the algorithm 
run times are reported. For the approaches given in 
Yuan (2005) and this research, the number of generated 
inequalities (12) to obtain the MCDS are also reported. 
The purpose of the experiment is, to observe the diffe-
rences in the run times for the three exact approaches. 

We used the code obtained from http://www.bran 
donparker.net/graph_gen.php to generate the connected 
random graphs. The code can generate three types of 
connected graphs: sparse, medium and dense graphs for 
a given number of vertices .V  The graph classification 

criterion is the number of edges. The number of edges of 
the sparse graph is less than ( 1) / 4V V× − , the number 
of edges of the medium graph is approximately ×V  
( 1) / 4−V , and the number of edges of the dense graph 
is greater than ( 1) / 4V V× − . 

For each type of the graphs, we generated 10 
random graphs with the number of vertices ranging from 
100 to 1000 with an increment of 100. The three appro-
aches were implemented in C++ and ILOG CPLEX 11.0 
was used as optimization software. All experiments 
were run on an AMD AthlonTM 64 X2 Dual Core (2.70 
GHz) with 2GB RAM, and running time is given in 
seconds. 

Computational results are given in Table 1, 2 and 3 
for each type of the graphs. Note that MCDS  denotes 
the size of the minimum connected dominating set and * 
indicates the problem on which the algorithm failed to 
obtain the solution within an hour. Also, comparison of 
the run time is illustrated in Figure 5, 6 and 7. 

 
Table 1. Comparison of the optimal approaches for sparse graph problems. 

Approach in Morgan Grout (2008) Approach in Yuan (2005) Ahn and Park’s approach V  
Run time (sec) Inequalities Run time (sec) Inequalities Run time (sec) 

MCDS

100 0.55 15 47.52 4 0.047 31 
200 61.08 330 505.55 207 4.71 61 
300 12.94 174 1442.94 66 1.42 89 
400 56.45 * * 674 22.15 131 
500 1420.75 * * 501 32.76 155 
600 * * * 774 52.92 194 
700 * * * 675 72.31 215 
800 * * * 1749 446.68 248 
900 * * * 978 98.26 281 
1000 * * * 314 122 309 

 
 

Table 2. Comparison of the optimal approaches for medium graph problems. 

Approach in Morgan Grout (2008) Approach in Yuan (2005) Ahn and Park’s approach V  
Run time (sec) Inequalities Run time (sec) Inequalities Run time (sec) 

MCDS

100 11.34 0 4.34 0 0.37 3 
200 * 0 31.16 0 6.68 4 
300 * 0 92.43 0 23.71 4 
400 * 0 233.97 0 108.26 4 
500 * 0 1531 0 2228.91 4 
600 * * * * * * 
700 * * * * * * 
800 * * * * * * 
900 * * * * * * 
1000 * * * * * * 
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When we compared the optimal approaches in 
terms of the algorithm run time, each approach showed 
different performance depending on the types of the 
graphs. For sparse graphs, our approach obtained MCDS 
in the shortest run time, then the approach given in 
Morgan Grout (2008) follows the next, and lastly, the 
approach proposed in Yuan (2005) showed the longest 
run time. On the other hand, for medium and dense 
graphs, the approach proposed in Morgan Grout (2008) 
showed the longest run time to obtain the MCDS, and 
the other two approaches showed equivalent performa-
nces. Also, for the given medium and dense graphs, our 
approach and the approach shown in Yuan (2005) re-
quired no additional constraints (12) to obtain the opti-
mal solution. This probably due to the density of the gi-

ven graphs. 

5.2 Performance of heuristic 

In Table 4, we use the same problems from Table 1, 
Table 2 and Table 3 and test the performance of our 
heuristic. Run time column denotes the running time of 
the heuristic, CDS  indicates the size of the connected 
dominating set obtained from the heuristic and MCDS  
means the size of the minimum connected dominating 
set. 

We can observe that, our heuristic algorithm show-
ed good performance in medium and dense graph pro-
blems, but showed relatively poor performance in sparse 
graph problems. 

 

 
Figure 5. Comparison of run time in medium graph. 

 
Table 3. Comparison of the optimal approaches for dense graph problems. 

Approach in Morgan Grout (2008) Approach in Yuan (2005) Ahn and Park’s approach 
V  

Run time (sec) Inequalities Run time (sec) Inequalities Run time (sec)
MCDS

100 22.31 0 3.25 0 0.53 2 

200 895.913 0 19.27 0 8.64 3 

300 * 0 79.2 0 38.31 3 

400 * 0 247.97 0 192.35 3 

500 * 0 626.33 0 669.75 3 

600 * 0 2101.14 0 1989.63 3 

700 * * * * * * 

800 * * * * * * 

900 * * * * * * 

1000 * * * * * * 

Run time(sec) 
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6.  CONCLUSIONS 

Designing a routing protocol is one of the im-
portant issues in wireless sensor network. Many virtual 
infrastructure based protocols have been suggested, and 
one of them is utilizing the CDS. Since forming a small 
sized CDS is preferable, many researches have been 
devoted on this issue. 

In this paper, we proposed an improved optimal 
algorithm for the MCDS problem, and extensive com-

putational experiments showed that our algorithm out-
performs the previous approaches in terms of the run-
ning time to obtain an optimal solution. Also, we pro-
posed the heuristic in this research which uses the 
mathematical formulation for the MCDS problem, and 
the computational experiments show that our algorithm 
obtains an quite good solution in a reasonable amount of 
time.Since constructing an MCDS is an important issue 
in wireless sensor networks, further approach such as 
branch-and-cut or meta-heuristic methods (genetic algo-

 

Figure 6. Comparison of run time in medium graph. 

 

 

Figure 7. Comparison of run time in dense graph. 

Run time(sec) 

Run time(sec) 
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rithm, simulated annealing, tabu search, ant colony opti-
mization) can be applied to solve the MCDS problem.  
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