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An Optimization Approach for
Approximate Nash Equilibria
Haralampos Tsaknakis and Paul G. Spirakis

Abstract. In this paper we propose a new methodology for determining approximate
Nash equilibria of noncooperative bimatrix games, and based on that, we provide an
efficient algorithm that computes 0.3393-approximate equilibria, the best approxima-
tion to date. The methodology is based on the formulation of an appropriate function
of pairs of mixed strategies reflecting the maximum deviation of the players’ payoffs
from the best payoff each player could achieve given the strategy chosen by the other.
We then seek to minimize such a function using descent procedures. Because it is un-
likely to be able to find global minima in polynomial time, given the recently proven
intractability of the problem, we concentrate on the computation of stationary points
and prove that they can be approximated arbitrarily closely in polynomial time and
that they have the above-mentioned approximation property. Our result provides the
best ε to date for polynomially computable ε-approximate Nash equilibria of bimatrix
games. Furthermore, our methodology for computing approximate Nash equilibria has
not been used by others.

1. Introduction

Ever since it was proved that the problem of finding exact Nash equilibria is in-
tractable in the sense that it is PPAD-complete even for two-player games [Chen
and Deng 06], attention has been focused on finding ε-approximate such equi-
libria for ε > 0. In this respect, simple algorithms have recently been provided
for finding approximate equilibria for constant ε = 3

4 and ε = 1
2 [Daskalakis et

al. 06, Kontogiannis et al. 06] for general bimatrix games (and for positively
normalized payoff matrices) based on examining small supports of 1 or 2 for
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either player. A well-known result provides 0.38-approximate Nash equilibria of
normalized bimatrix games in polynomial time [Daskalakis et al. 07]. Concur-
rently with us, [Boss et al. 07] gave an approach based on [Kontogiannis and
Spirakis 07] that provides 0.36-approximate Nash equilibria of normalized bi-
matrix games. Furthermore, it has been shown [Chen et al. 06] that the more
general approximation problem of finding a fully polynomial-time approximation
scheme for any ε > 0 has similar complexity with the problem of finding exact
Nash equilibria.

For a different, stronger, notion of approximation, i.e., the well-supported
approximate Nash equilibria, the best known result so far provides 0.658-approxi-
mate well-supported equilibria for normalized bimatrix games in polynomial time
[Kontogiannis and Spirakis 07].

Most of the reported investigations of finding approximate equilibria for con-
stant ε are based on the examination of small supports of the strategy sets of
the players, and the algorithms presented are based on brute-force search over
all such supports.

In this work we adopt a different approach that does not rely on any pre-
specified small supports nor on an indiscriminate search over all small support
strategies. We define an equivalent optimization problem in the strategy spaces
of both players and attempt to obtain a stationary point of a specific function
that measures the maximum deviation of the players’ payoffs from the best pay-
off each player could achieve given the strategy chosen by the other. We do so
through a descent procedure along feasible directions in the strategy spaces of
both players simultaneously.

Feasible descent directions are computed by solving linear programming prob-
lems. Also, by solving similar linear programs we can determine whether there is
a descent direction at any given point in the strategy spaces. If a descent direc-
tion does not exist, then we have reached a stationary point. We prove that at
any stationary point of that function we obtain strategy pairs such that at least
one of them is an 0.3393-approximate Nash equilibrium. We also prove that an
almost stationary point of the function can be reached in polynomial time with
respect to the input data of the game, and that point suffices to get arbitrarily
close to 0.3393. Our work can also be accessed as a full technical report (revised)
in [Tsaknakis and Spirakis 07].

2. Definitions and Notation

Let R, C denote the m×n row and column players’ payoff matrices respectively,
for m, n any positive integers. We assume that both payoff matrices are posi-
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tively normalized, i.e., all their entries belong to [0, 1] (without loss of generality
any game can be equivalently transformed to a positively normalized game by
appropriate shifting and scaling each of the payoff matrices).

Let us denote by ek the k-dimensional column vector having all its entries
equal to 1 (for positive integer k). Let

Δk = {u : u ∈ Rk, u ≥ 0, eτ
ku = 1}

be the k-dimensional standard simplex (superscript τ denotes transpose).
Also, for any vector u ∈ Rk, we define the following:

supp(u) = {i ∈ (1, k) : ui �= 0}

is the support index subset of u ∈ Rk, and also

suppmax(u) = {i ∈ (1, k) : ui ≥ uj ∀j ∈ (1, k)}

is the index subset for which all entries are equal to the maximum entry of
u ∈ Rk.

We also denote by

max(u) = {ui : ui ≥ uj , for all j}

the value of the maximum entry of the vector, and by

max
S

(u) = {ui, i ∈ S : ui ≥ uj , for all j ∈ S}

the value of the maximum entry of the vector within an index subset S ⊂ (1, k).
Finally, we denote by S the complement of an index set S, i.e., S = {i ∈

(1, k), i /∈ S}.
The problem of finding an ε-approximate Nash equilibrium in the game (R, C),

for some ε ≥ 0, is to compute a pair of strategies x in Δm and y in Δn such that
the following relationships hold:

xτRy ≤ xτRy + ε for all x ∈ Δm

and

xτCy ≤ xτCy + ε for all y ∈ Δn.
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3. Optimization Formulation

Key to our approach is the definition of the following continuous function map-
ping Δm × Δn into [0, 1]:

f(x, y) = max{max(Ry) − xτRy, max(Cτx) − xτCy}.

It is evident that f(x, y) ≥ 0 for all (x, y) ∈ Δm × Δn and that exact Nash
equilibria of (R, C) correspond to pairs of strategies such that f(x, y) = 0.
Furthermore, ε-approximate equilibria correspond to strategy pairs that satisfy
f(x, y) ≤ ε. This function represents the maximum deviation of the players’
payoffs from the best payoff each player could achieve given the strategy chosen
by the other.

An optimization formulation based on mixed integer programming methods
was suggested in [Sandholm et al. 05]. However, no approximation results were
obtained there.

The function f(x, y) is not jointly convex with respect to both x and y. How-
ever, it is convex in x alone if y is kept fixed and vice versa.

Let us define the two ingredients of the function f(x, y) as follows: fR(x, y) =
max(Ry) − xτRy and fC(x, y) = max(Cτ x) − xτCy.

From any point in (x, y) ∈ Δm × Δn we consider variations of f(x, y) along
feasible directions in both players’ strategy spaces of the following form:

(1 − ε)
[

x
y

]
+ ε

[
x′

y′

]
,

where, 0 ≤ ε ≤ 1, (x′, y′) ∈ Δm × Δn (the vectors in brackets are (m + n)-
dimensional column vectors). The variation of the function along such a feasible
direction is defined by the following relationship:

Df(x, y, x′, y′, ε) = f(x + ε(x′ − x), y + ε(y′ − y)) − f(x, y).

We have derived an explicit formula for Df(x, y, x′, y′, ε) (see the appendix,
Section 8), which is a piecewise quadratic function of ε, and the number of
switches of the linear terms of the function is at most m+n. Therefore, for fixed
(x′, y′) this function can be minimized with respect to ε in polynomial time.
Furthermore, there always exists a positive number, say ε�, such that for any
ε ≤ ε� the coefficient of the linear term of this function of ε coincides with the
gradient, as defined below. The number ε� generally depends on both (x, y) and
(x′, y′). (See Section 8.3.)
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We define the gradient of f at the point (x, y) along an arbitrary feasible
direction specified by another point (x′, y′) as follows:

Df(x, y, x′, y′) = lim
ε→0

1
ε
Df(x, y, x′, y′, ε).

The gradient Df(x, y, x′, y′) of f at any point (x, y) ∈ Δm ×Δn along a feasible
direction (determined by another point (x′, y′) ∈ Δm × Δn) provides the rate
of decrease (or increase) of the function along that direction. For fixed (x, y),
Df(x, y, x′, y′) is a convex polyhedral function in (x′, y′). In fact, we have derived
the explicit form of Df(x, y, x′, y′) as the maximum of two linear forms in the
(x′, y′) space (see the derivations below and in Section 8.1). At any point (x, y) we
wish to minimize the gradient function with respect to (x′, y′) to find the steepest
possible descent direction, or to determine that no such descent is possible.

Let us define the following index sets:

SR(y) = suppmax(Ry), SC(x) = suppmax(Cτx).

By definition, SR(y) ⊂ (1, m) and SC(x) ⊂ (1, n). From Section 8.1 we get the
following: (a) If fR(x, y) = fC(x, y) then

Df(x, y, x′, y′) = max(T1(x, y, x′, y′), T2(x, y, x′, y′)) − f(x, y),

where

m1(y′) = max(Ry′) over the subset SR(y),

m2(x′) = max(Cτx′) over the subset SC(x),

T1(x, y, x′, y′) = m1(y′) − xτRy′ − (x′)τRy + xτRy,

T2(x, y, x′, y′) = m2(x′) − xτCy′ − (x′)τ Cy + xτCy.

(b) If fR(x, y) > fC(x, y), then Df(x, y, x′, y′) = T1(x, y, x′, y′) − f(x, y); (c) If
fR(x, y) < fC(x, y), then Df(x, y, x′, y′) = T2(x, y, x′, y′) − f(x, y). In cases (b)
and (c) the functions T1 and T2 are as defined in case (a).

The problem of finding Df(x, y) as the minimum over all (x′, y′) ∈ Δm × Δn

of the function Df(x, y, x′, y′) is a linear programming problem.
This problem can be equivalently expressed as the following minimax prob-

lem by introducing appropriate dual variables (we derive it for (x, y) such that
fR(x, y) = fC(x, y), since this is the most interesting case and the cases in which
the two terms are different can be reduced to this by solving a linear programming
problem, as we shall see below) as follows: Minimize (over x′, y′) the maximum
(over w, z, ρ) of the function

[ρwτ , (1 − ρ)zτ ]G(x, y)
[

y′

x′

]
,
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where

(a) the maximum is taken with respect to dual variables w, z, ρ such that w ∈
Δm, supp(w) ⊂ SR(y) and z ∈ Δn, supp(z) ⊂ SC(x) and ρ ∈ [0, 1];

(b) the minimum is taken with respect to (x′, y′) ∈ Δm × Δn;

(c) the matrix G(x, y) is the following (m + n) × (m + n) matrix:

G(x, y) =
[

R − emxτR −emyτRτ + emem
τxτRy

−enxτC + enen
τxτCy Cτ − enyτCτ

]
.

The probability vectors w and z play the role of price vectors (or penalty
vectors) for penalizing deviations from the support sets SR(y) and SC(x), and
the parameter ρ plays the role of a tradeoff parameter between the two parts of
the function f(x, y). In fact, w, z, and ρ are not independent variables, but they
are taken all together to represent a single (m+n)-dimensional probability vector
on the left-hand side (the maximizing term) of the linear minimax problem.

Solving the above minimax problem, we obtain w, z, ρ, x′, and y′ that are
all functions of the point (x, y) and take values in their respective domains of
definition. Let us denote by V (x, y) the value of the solution of the minimax
problem at the point (x, y). The solution of this problem yields a feasible de-
scent direction (as a matter of fact, the steepest feasible descent direction) for
the function f(x, y) if Df(x, y) = V (x, y) − f(x, y) < 0. Following such a de-
scent direction, we can perform an appropriate line search with respect to the
parameter ε and find a new point that gives a lower value of the function f(x, y).
Applying repeatedly such a descent procedure, we will eventually reach a point
where no further reduction is possible. Such a point is a stationary point that
satisfies Df(x, y) ≥ 0.

In the next section we examine the approximation properties of stationary
points. In fact, we prove that given any stationary point we can determine
pairs of strategies such that at least one of them is a 0.3393-approximate Nash
equilibrium.

4. Approximation Properties of Stationary Points

Let us assume that we have a stationary point (x�, y�) of the function f(x, y).
Then, based on the above analysis and notation, the following relationship should
be true:

Df(x�, y�) = V (x�, y�) − f(x�, y�) ≥ 0.
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Let (w�, z�) ∈ Δm ×Δn, ρ� ∈ [0, 1], be a solution of the linear minimax problem
(with matrix G(x�, y�)) with respect to the dual variables corresponding to the
pair (x�, y�). Such a solution should satisfy the relations supp(w�) ⊂ SR(y�)
and supp(z�) ⊂ SC(x�).

Let us define the following quantities:

λ = min
y′:supp(y′)⊂SC(x�)

{(w� − x�)T Ry′}

and

μ = min
x′:supp(x′)⊂SR(y�)

{x′T C(z� − y�)}.

From the fact that R, C are positively normalized, it follows that both λ and μ

are less than or equal to 1.
At any point (x�, y�) these quantities basically define the rates of decrease (or

increase) of the function f along directions of the form (1− ε)(x�, y�) + ε(x�, y′)
and (1 − ε)(x�, y�) + ε(x′, y�), i.e., the rates of decrease that are obtained when
we keep one player’s strategy fixed and move the probability mass of the other
player into his own maximum support, toward decreasing his own deviation from
the maximum payoff he can achieve.

From the stationarity property of the point (x�, y�) it follows that both λ

and μ are nonnegative. Indeed, in the opposite case there would be a descent
direction, which contradicts the stationarity condition.

Let us define a pair of strategies (x̂, ŷ) ∈ Δm × Δn as follows:

(x̂, ŷ) =

{
(x�, y�) if f(x�, y�) ≤ f(x̃, ỹ),
(x̃, ỹ) otherwise,

where

(x̃, ỹ) =

⎧⎨
⎩
(

1
1+λ−μw� + λ−μ

1+λ−μx�, z�
)

if λ ≥ μ,(
w�, 1

1+μ−λz� + μ−λ
1+μ−λy�

)
if λ < μ.

We now express the main result of this paper in the following theorem.

Theorem 4.1. The pair of strategies (x̂, ŷ) defined above is a 0.3393-approximate
Nash equilibrium.

Proof. From the definition of (x̂, ŷ) we have

f(x̂, ŷ) ≤ min{f(x�, y�), f(x̃, ỹ)}. (4.1)



�

�

“imvol5” — 2010/1/6 — 11:24 — page 372 — #8
�

�

�

�

�

�

372 Internet Mathematics

Using the stationarity condition for (x�, y�), we obtain

f(x�, y�) ≤ V (x�, y�).

But V (x�, y�) is less than or equal to

ρ�E1 + (1 − ρ�)E2,

where

E1 = (w�τRy′ − x�τRy′ − x′τRy� + x�τRy�)

and

E2 = (z�τCτx′ − x�τCy′ − x′τCy� + x�τCy�),

and this holds for all (x′, y′) ∈ Δm × Δn.
Setting x′ = x� and y′ : supp(y′) ⊂ SC(x�) in the above inequality, we get

f(x�, y�) ≤ ρ�λ. (4.2)

Next, setting y′ = y� and x′ : supp(x′) ⊂ SR(y�) in the same inequality, we get

f(x�, y�) ≤ (1 − ρ�)μ. (4.3)

Now using the definition of the strategy pair (x̃, ỹ) above and exploiting the
inequalities

(w� − x�)T Rz� ≥ λ, since supp(z�) ⊂ SC(x�),

w∗T C(z� − y�) ≥ μ, since supp(w�) ⊂ SR(y�),

we obtain (assume λ ≥ μ)

fR(x̃, ỹ) = max{Rỹ} − x̃T Rỹ

= max{Rz�} −
(

1
1 + λ − μ

w� +
λ − μ

1 + λ − μ
x�

)T

Rz�

= max{Rz�} − 1
1 + λ − μ

w∗T Rz� − λ − μ

1 + λ − μ
x∗T Rz�

≤ max{Rz�} − x∗T Rz� − λ

1 + λ − μ
≤ 1 − μ

1 + λ − μ
.
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Similarly, setting D = CT yields

fC(x̃, ỹ) = max{Dx̃} − x̃T Cỹ

= max
{

1
1 + λ − μ

Dw� +
λ − μ

1 + λ − μ
Dx�

}
− 1

1 + λ − μ
w∗T Cz�

− λ − μ

1 + λ − μ
x∗T Cz�

≤ 1
1 + λ − μ

max{Dw�} +
λ − μ

1 + λ − μ
max{Dx�} − 1

1 + λ − μ
w∗T Cz�

− λ − μ

1 + λ − μ
max{Dx�}

=
1

1 + λ − μ
(max{Dw�} − w∗T Cy�) − 1

1 + λ − μ
(w∗T Cz� − w∗T Cy�)

≤ 1 − μ

1 + λ − μ
.

From the above relationships we obtain

f(x̃, ỹ) ≤ 1 − μ

1 + λ − μ
for λ ≥ μ. (4.4)

(A similar inequality can be obtained if λ < μ and we interchange λ and μ.)
In all cases, combining inequalities (4.2), (4.3), (4.4) and using the definition of
(x̂, ŷ) above, we get the following:

f(x̂, ŷ) ≤ min
{

ρ�λ, (1 − ρ�)μ,
1 − min{λ, μ}

1 + max{λ, μ} − min{λ, μ}
}

. (4.5)

We can prove that the quantity in (4.5) cannot exceed the number 0.3393 for
any ρ�, λ, μ ∈ [0, 1]. For the proof see Section 8.2.

This concludes the proof of our main theorem.

Using the above analysis, we can consider some special cases of bimatrix games
and obtain the following results:

Corollary 4.2. For bimatrix games R, C such that Rij +Cij ≤ 1 for all entries (i, j) ∈
(1, m) × (1, n), any stationary point yields a 1

4 -approximate Nash equilibrium.

Proof. This result follows from

λ + μ ≤ w∗T (R + C)z� ≤ 1
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and
λμ

λ + μ
≤ λ + μ

4
, for λ, μ ≥ 0.

Notice that the conditions of the above corollary contain the category of win–
lose games (whose payoffs are either 0 or 1) that do not have trivial pure Nash
equilibria.

Corollary 4.3. For constant-sum bimatrix games (Rij + Cij = constant for all
(i, j) ∈ (1, m)X(1, n)), a stationary point is an exact Nash equilibrium.

Proof. This result follows from

(w� − x�)T (R + C)(z� − y�) = 0

(which holds because w�, x�, z�, y� are probability vectors) and the relationships

(w� − x�)T Rz� ≥ λ,

w∗T C(z� − y�) ≥ μ,

(w� − x�)T Ry� = x∗T C(z� − y�) = f(x, y).

Notice that at a stationary point for a constant-sum game we should always have
λ = μ = 0.

5. Descent Procedure

A stationary point of any general linear complementarity problem can be approx-
imated arbitrarily close in polynomial time via the method presented in [Ye 93].
We give here an alternative approach, directly applicable to our problem.

We present here an algorithm for finding a pair of strategies that achieve the
0.3393 approximation bound. The algorithm is based on a descent procedure of
the function f(x, y), (x, y) ∈ Δm × Δn, and consists of the following steps (set
b = 0.3393):

1. Start with an arbitrary (x, y) = (x0, y0) in Δm × Δn (e.g., the uniform
distribution). Produce another pair (x, y) with lower value of f(x, y) and
for which fR(x, y) = fC(x, y) as follows:

(a) If fR(x0, y0) > fC(x0, y0), keep y0 fixed and solve the linear program-
ming problem to minimize (over x ∈ Δm)

max(Ry0) − xτRy0
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under the constraints

max(Cτx) − xτCy0 ≤ max(Ry0) − xτRy0.

(b) If fR(x0, y0) < fC(x0, y0), keep x0 fixed and solve the linear program-
ming problem to minimize (over y ∈ Δn)

max(Cτx0) − x0
τCy

under the constraints

max(Ry) − x0
τRy ≤ max(Cτx0) − x0

τRy.

2. Solve the linear minimax problem with the matrix G(x, y) as defined in
Section 3. Compute the value of V (x, y), the pair of strategies (x′, y′), the
index sets SR(y) ⊂ (1, m), SC(x) ⊂ (1, n), the vectors w, z, the parameter
ρ, and the values of λ, μ as defined in Sections 3 and 4 for the current point
(x, y). Also determine the pair of strategies (x̃, ỹ) as defined in Section 4.

3. If at least one of the following conditions is true, stop and exit: a pair of
strategies achieving the approximation bound b has been found.

(i) V (x, y) − f(x, y) ≥ 0 (stationary condition: either f(x, y) or f(x̃, ỹ)
is ≤ b);

(ii) f(x, y) ≤ b;

(iii) f(x̃, ỹ) ≤ b;

(iv) f(x′, y′) ≤ b;

(v) f(x′, y) ≤ b;

(vi) f(x, y′) ≤ b.

4. If none of the conditions of step 3 is satisfied, compute the minimum with
respect to ε of the function f(x+ε(x′−x), y+ε(y′−y)) along the direction
specified by the pair (x′, y′) found in step 2, and set (x, y) = (x + ε(x′ −
x), y + ε(y′ − y)) (such a minimization with respect to ε can be performed
in polynomial time, as mentioned earlier, since the number of switches of
the linear terms of the piecewise quadratic function cannot exceed m+n).
Furthermore, if for the new pair (x, y) we have fR(x, y) �= fC(x, y), solve
the linear programming problem specified in step 1 and compute the new
(x, y) with lower value of the function f(x, y) and for which fR(x, y) =
fC(x, y).

Go to Step 2. End of descent.



�

�

“imvol5” — 2010/1/6 — 11:24 — page 376 — #12
�

�

�

�

�

�

376 Internet Mathematics

In regard to the number of steps that are required for convergence and exit,
we provide a convergence analysis in Section 8.3 that shows that the algorithm
converges in a polynomial number of iterations.

6. The Complexity of Our Algorithm

Our algorithm is basically the procedure descent of the function f(x, y). As
proven in Section 8.3, the number q of descent steps required for convergence to
a δ-stationary point, given any δ > 0, is less than O( 1

δ2 ), and that suffices to get
a 0.3393 + δ-approximate equilibrium. In fact, the latter complexity bound has
recently been improved [Tsaknakis et al. 08] to O

(
1
δ log(1

δ )
)
.

So, the total time complexity of our method is O
(

1
δ log(1

δ )
)
TLP(n) time (when

n ≥ m), where TLP(n) is the time to solve a linear program of size n. Thus,
our method is an FPTAS with respect to approximating a stationary point and
hence an approximate equilibrium of the stated quality.

An arbitrary point (x, y) ∈ Δm × Δn can be used to initialize the algorithm.

7. Discussion and Future Work

It is known from [Bellare and Rogaway 95] that (even in a weaker sense) there
is no polynomial-time μ-approximation of the optimal value of the problem
min{xτQx, | Bx = b, 0 ≤ x ≤ e} for some μ ∈ (0, 1

3 ), unless P = NP. Of
course, here μ is a multiplicative relative accuracy, and the reduction that they
use involves matrices that are different from those in our case. However, this
gives evidence that going below 1

3 in the approximation of equilibria will proba-
bly require a radically different approach (if any), perhaps probabilistic. We are
currently working on this.

8. Appendix: Proofs of Some Results

8.1. Derivation of the Gradient Function

Using the definitions for any (x, y) ∈ Δm × Δn, i.e.,

fR(x, y) = max(Ry) − xτRy,

fC(x, y) = max(Cτx) − xτCy,

f(x, y) = max{fR(x, y), fC(x, y)},
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we have, for any (x′, y′) ∈ Δm × Δn and any ε ∈ [0, 1], that

Df(x, y, x′, y′, ε) = f(x + ε(x′ − x), y + ε(y′ − y)) − f(x, y).

This can be written (analytically) as

max{fR(x + ε(x′ − x), y + ε(y′ − y)), fC(x + ε(x′ − x), y + ε(y′ − y))}
− max{fR(x, y), fC(x, y)},

and this is actually max(K1, K2), where

K1 = εDfR + ΛfR − ε2HfR − (1 − ε)max{0, fC(x, y) − fR(x, y)}
and also

K2 = εDfC + ΛfC − ε2HfC − (1 − ε)max{0, fR(x, y) − fC(x, y)},
where now the functions DfR, ΛfR, HfR, DfC , ΛfC , HfC are as defined below:

DfR(x, y, x′, y′) = {max(Ry′) over SR(y)} − xτRy′ − x′τRy + xτRy − f(x, y),

HfR(x, y, x′, y′) = (x′ − x)τR(y′ − y),

DfC(x, y, x′, y′) = {max(Cτx′); over SC(x)} − xτCy′ − x′τCy + xτCy − f(x, y),

HfC(x, y, x′, y′) = (x′ − x)τC(y′ − y).

In order to define ΛfR, ΛfC we remind the reader that SR(y) = suppmax(Ry)
and that SC(x) = suppmax(Cτx), and we will also use their complements, where
S̄R(y) is the complement of SR(y) in the index set {1, m} and S̄C(x) is the
complement of SC(x) in the index set {1, n}.

Now let My be the maximum of Ry over SR(y), My′ the maximum of Ry′

over SR(y), Mx the maximum of Cτx over SC(x), Mx′ the maximum of Cτx′

over SC(x), and ΛfR(x, y, x′, y′, ε) the maximum of 0 and the maximum over
S̄R(y) of (I(y, y′) + J(y)), where I(y, y′) = ε((Ry′ − emMy′) + (Myem − Ry))
and J(y) = −(Myem − Ry).

Also, ΛfC(x, y, x′, y′, ε) is also the maximum of 0 and the maximum over S̄C(x)
of (I(x, x′) + J(x)), where I(x, x′) = ε((Cτx′ − enMx′) + (Mxen − Cτx)) and
J(x) = −(Mxen − Cτx).

From the above equations, the gradient at the point (x, y) ∈ Δm × Δn along
a feasible direction specified by some (x′, y′) ∈ Δm × Δn can be determined by
letting ε go to 0, and we obtain, finally,

Df(x, y, x′, y′) =

⎧⎪⎨
⎪⎩

max(DfR, DfC) if fR(x, y) = fC(x, y),
DfR if fR(x, y) > fC(x, y),
DfC if fR(x, y) < fC(x, y).
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8.2. Proof of the Approximation Bound

We first observe that min{ρ�λ, (1 − ρ�)μ} ≤ λμ
λ+μ . Indeed, if we assume that

ρ�λ > λμ
λ+μ and (1 − ρ�)μ > λμ

λ+μ for some ρ�, λ, μ ∈ [0, 1], we would have
ρ� > μ

λ+μ and (1 − ρ�) > λ
λ+μ , a contradiction. So

f(x̂, ŷ) ≤ min
{

λμ

λ + μ
,

1 − min{λ, μ}
1 + max{λ, μ} − min{λ, μ}

}
.

Set μ = min{λ, μ}. For μ ≤ 1
2 and since μ ≤ λ, we have

λμ

λ + μ
≤ λmin{1/2, λ}

λ + min{1/2, λ} ≤ 1
3

< 0.3393.

Also, for μ ≥ 2
3 we have 1 − μ ≤ 1

3 and 1−μ
1+λ−μ ≤ 1 − μ ≤ 1

3 < 0.3393, since
λ ≥ μ ≥ 2

3 .
Consider now cases for which 1

2 < μ < 2
3 . If 1

2 < μ ≤ λ ≤ 2
3 , then λμ

λ+μ ≤ λ
2 ≤

1
3 < 0.3393.

For μ, λ such that 1
2 < μ < 2

3 < λ, let us define ξ = 1−μ
μ . Obviously, 1

2 < ξ < 1.
Set b = 0.3393.

Let us assume that there are μ and λ satisfying the above relationships and
also satisfying

λμ

λ + μ
> b and

1 − μ

1 + λ − μ
> b.

Expressing these inequalities in terms of ξ and λ, we get

ξ(1 − b)
b(1 + ξ)

> λ >
b

1 − b(1 + ξ)
.

Since b < 1
2 , the above inequality is equivalent to

ξ(1 − b)(1 − b(1 + ξ)) − b2(1 + ξ) > 0 ⇔ −ξ2b(1 − b) + ξ(1 − 2b)− b2 > 0.

It can be verified by direct calculation that the discriminant of the above
quadratic is zero for b = 0.3393, and the inequality becomes

−b(1 − b)
(

ξ − 1 − 2b

2b(1 − b)

)2

> 0,

a contradiction.
In fact, the constant b is the smallest real solution of the equation

4b(1 − b)(1 + b2) = 1.

The bound is attained at μ = 0.582523 and λ = 0.81281.
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8.3. Proof of Polynomial Convergence of the Descent Algorithm

Let δ > 0. Let (x, y) be the current pair of strategies obtained during the descent
procedure for which fR(x, y) = fC(x, y). Define the following index sets:

SR(y, δ) = {i ∈ (1, m) : (Ry)i ≥ max(Ry) − δ},
SC(x, δ) = {j ∈ (1, n) : (Cτx)j ≥ max(Cτx) − δ}.

Denoting by SR(y, δ) and SC(x, δ) the complements of the above sets in the
index sets (1, m) and (1, n) respectively, it is evident that max(Ry) − (Ry)i > δ

for all i ∈ SR(y, δ), and max(Cτ x) − (Cτx)j > δ for all j ∈ SC(x, δ).
Now let x′, y′) be a descent direction, i.e., a pair of strategies that is a solution

of the linear minimax problem as defined in Section 3, whose computation is now
based on the larger index sets SR(y, δ) and SC(x, δ) (as defined above) instead
of SR(y) and SC(x). We also consider all quantities defined in Sections 3 and
8.1 based on the index sets SR(y, δ) and SC(x, δ) (we use the same notation for
all of them for simplicity).

Considering the variation of the function f(x, y) along the direction (x′, y′),
we obtain the following relationship for any ε ∈ [0, 1]:

f(x + ε(x′ − x), y + ε(y′ − y)) − f(x, y)

≤ max{ε(VR(x, y) − f(x, y)) + ΛfR − ε2HfR, ε(VC(x, y) − f(x, y)) + ΛfC

− ε2HfC},
where HfR, HfC , ΛfR, ΛfC are as defined in Section 8.1, and

VR(x, y) = {max(Ry′) over SR(y, δ)} − xτRy′ − x′τRy + xτRy,

VC(x, y) = {max(Cτx′) over SC(x, δ)} − xτCy′ − x′τCy + xτCy.

Let

V (x, y) = max{VR(x, y), VC(x, y)}.
The quantities ΛfR, ΛfC are both piecewise linear convex functions of ε and are
equal to 0 for ε ≤ ε�, where ε� is given by ε� = min{ε�

1, ε
�
2, 1}, and ε�

1 is the
minimum over i ∈ SR(y, δ) of

max(Ry) − (Ry)i

max(Ry) − (Ry)i + (Ry′)i − maxSR(y)(Ry′)
for some i ∈ SR(y, δ),

and ε�
2 is the minimum over j ∈ SC(x, δ) of

max(CT x) − (CT x)j

max(CT x) − (CT x)j + (CT x′)j − maxSC(x)(CT x′)
for some j ∈ SC(x, δ).
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Since max(Ry) − (Ry)i > δ for all i ∈ SR(y, δ) and max(Cτx) − (Cτx)j > δ

for all j ∈ SC(x, δ), we must have

ε� >
δ

1 + δ
.

The quantities HfR, HfC appearing in the quadratic terms of ε are bounded
from below by VR(x, y)−1 and VC(x, y)−1 respectively. Defining the new value
of f as fnew and dropping the arguments (for simplicity), we deduce that the
minimum possible descent that can be achieved for the function f(x, y) can be
computed from the following relationship:

fnew − f ≤ ε(V − f) + ε2(1 − V ),

which holds for every ε such that 0 ≤ ε ≤ δ
1+δ . From the last relationship, setting

ε = δ
1+δ , we obtain the following:

(a) If V − f ≤ −δ, then

fnew ≤
(

1 −
(

δ

1 + δ

)2
)

f.

(b) If V − f > −δ, then we have a δ-stationary point.

Since at every step of the algorithm we either have a reduction of the function
f as in (a) above or a δ-stationary point as in (b), it turns out that the algorithm
terminates with a δ-stationary point in O( 1

δ2 ) steps, and this holds for any δ > 0.
Next, we consider the implications of δ-stationarity on the approximation

bound b = 0.3393. Following similar arguments, definitions, and notation as
in Section 4 and in the proof of Theorem 4.1 (using now the index sets SR(y, δ)
and SC(x, δ)), we obtain the following relationships at a δ-stationary point (x, y):

f(x, y) ≤ ρλ + (1 − ρ)δ,

f(x, y) ≤ (1 − ρ)μ + ρδ.

(Notice that the quantities λ, μ, ρ depend in general on δ.)
From the previous relationships, it can be easily verified that δ-stationarity

yields a 0.3393 + δ-approximate Nash equilibrium.
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