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Abstract
Finding an informative, structure-preserving map between two shapes has been a long-standing problem in ge-
ometry processing, involving a variety of solution approaches and applications. However, in many cases, we are
given not only two related shapes, but a collection of them, and considering each pairwise map independently does
not take full advantage of all existing information. For example, a notorious problem with computing shape maps
is the ambiguity introduced by the symmetry problem — for two similar shapes which have reflectional symmetry
there exist two maps which are equally favorable, and no intrinsic mapping algorithm can distinguish between
them based on these two shapes alone. Another prominent issue with shape mapping algorithms is their relative
sensitivity to how “similar” two shapes are — good maps are much easier to obtain when shapes are very similar.
Given the context of additional shape maps connecting our collection, we propose to add the constraint of global
map consistency, requiring that any composition of maps between two shapes should be independent of the path
chosen in the network. This requirement can help us choose among the equally good symmetric alternatives, or
help us replace a “bad” pairwise map with the composition of a few “good” maps between shapes that in some
sense interpolate the original ones. We show how, given a collection of pairwise shape maps, to define an opti-
mization problem whose output is a set of alternative maps, compositions of those given, which are consistent,
and individually at times much better than the original. Our method is general, and can work on any collection of
shapes, as long as a seed set of good pairwise maps is provided. We demonstrate the effectiveness of our method
for improving maps generated by state-of-the-art mapping methods on various shape databases.

Categories and Subject Descriptors (according to ACM CCS):

1. Introduction

Shapes often do not appear in isolation, but rather in collec-
tions or families of related shapes, whether it is humans, an-
imals, fish, furniture, vehicles, etc. Such collections provide
a context for each individual shape, and thus can potentially
allow for higher quality analysis and processing of each ob-
ject than would have been possible if the particular shape
was treated in isolation. One application which can benefit
from the context provided by a collection is the important
task of generating an informative and structure-preserving
map between a pair of shapes. This problem, for a pair of
shapes in isolation, has been well studied for a variety of
classes of shapes and of criteria for map quality. A general
technique involves defining some measure of distortion of a
map, and then computing the map that minimizes this distor-
tion for a given pair of shapes. For example, for 3D shapes,

a common measure of distortion is the difference between
the pairwise geodesic distances between points on the source
shape, and the distance of their images under the map, aggre-
gated over all pairs of points using a standard norm.

Such optimal “as isometric as possible” mappings re-
late to the classical problem of the Gromov-Hausdorff dis-
tance [Gro07] of shapes viewed as metric spaces and compu-
tationally are special instances of the quadratic assignment
problem [Çel98], which in general is known to be NP-hard.
Besides the computational difficulty of the problem, how-
ever, there are deeper reasons in the shape context for which
such optimizations might not produce the maps that carry the
semantic structure we want. We argue below that the context
provided by other related shapes in a collection can often
help overcome these difficulties.

One common difficulty is caused by symmetric shapes.
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Consider, for example, two poses of a human shape. Two
equally good maps exist between these shapes, which pre-
serve geodesic distances equally well. One is the “straight”
map, mapping a right hand to a right hand and so on, and
the other is the symmetric map, taking each point to its sym-
metric point under the left-right reflection symmetry of the
human body — mapping the left hand to the right hand.

By considering only two shapes and the "as isometric as
possible" criterion, it is usually not possible to distinguish
between these two maps and determine which one is “cor-
rect”, regardless of the choice of algorithm used for comput-
ing the map. For the specific case of reflectional symmetry,
extrinsic properties such as normals may be used to distin-
guish symmetric maps from “straight” maps; however, many
more types and degrees of symmetries exist (e.g., a starfish)
which can foil such methods.

In some cases, the notion of “correctness” or “natural-
ness” of a map is actually a property of the underlying col-
lection of shapes. That is, the “correctness” of a specific map
between a given pair of shapes can vary depending on what
other shapes exist in the collection (Fig. 1).

(a) (b) (c)

Figure 1: (a) Two shapes that admit multiple “correct”
maps. (b) The third green shape indicates the “correct” map
is translation. (c) The two new red shapes indicate the “cor-
rect” map is rotation.

Another common problem with pairwise mapping algo-
rithms, is that they tend to perform well on shapes for which
a low-distortion map exists, e.g. shapes which are almost-
isometric deformations of each other. However, they are less
successful in cases where the best map has a larger dis-
tortion. Consider for example various poses of a charac-
ter, some with bigger distortions than others. Maps between
poses which are “closer”, in the sense that the distortion of
the geodesic distances is small, are well behaved, whereas
a large distortion in geodesic distances might cause undesir-
able mismatches in the map.

In many cases, for a given collection of shapes, a num-
ber of maps computed using an optimization criterion may
be “good”, whereas a number of others may be “bad”. For
example, in a collection of male shapes and female shapes
in various poses, we may have good maps within each sub-
group, and perhaps good maps between a male and a fe-
male in a neutral position, but otherwise bad maps between
males and females. Or, in a morph sequence between two
shapes, we may get a good map between every two consec-
utive frames, but bad maps between more distant frames.

One reason bad maps can arise is that no simple geomet-
ric optimization criterion truly captures the semantic trans-
fer of information that we want our maps to attain. The
semantics may depend on hidden attributes of the objects
beyond their surface geometry, not directly available to us
— such as internal structure, functional use, etc. Such sec-
ondary hidden attributes, like missing coordinates, might af-
fect correspondence-finding only a little when we have data
sets that are very close to each other, but may make a signif-
icant difference when the sets are far removed (in terms of
some shape space distance measure).

In all the cases described above, one can leverage the con-
text provided by the collection to improve the “bad” maps.
As mentioned previously, by considering only one map in
isolation, we often cannot make an informed decision on
whether the map is “good”, since we do not have the ground
truth available. However, given the collection we can com-
pute a few possible maps between every two shapes: the
direct maps provided to us, and others that are composi-
tions through other shapes. For example, given three shapes
S1,S2,S3, we have the original map m1,3 : S1 → S3, but we
also have the composed map m1,2,3 = m2,3 ◦m1,2 taking S1
to S2 and S2 to S3. If the collection of maps is all good we
would expect global consistency, namely that m1,3 and m1,2,3
should be the same, or at least similar. Hence, we can pro-
pose to define a criterion for the “goodness” of a collection
of maps, as the consistency of the collection, namely how
similar are the maps achieved by composing maps between
two shapes along different paths. An equivalent way of mea-
suring the same criterion, assuming the maps mi, j and m j,i
are 1-1 and onto (map invertibility), is to check how close a
map is along each “cycle” (e.g. m1,2,3,1) to the identity map.

This criterion has a few advantages. First, it is very gen-
eral, and does not require knowledge of the specific shapes,
or the maps in any specific form. All that is needed is a way
to compose maps, and a way to evaluate how close a map
is to the identity — thus this criterion can be applied to a
variety of shapes, and mapping algorithms. Second, it fits
nicely with the scenarios described above. Under some con-
ditions, it will correctly identify a collection of maps includ-
ing (for example) a symmetric map, as inconsistent and thus
“bad”. Finally, and most importantly, it provides a construc-
tive way of correcting the maps, as we can replace a map
mi, j : Si→ S j with the map mi,..., j if it improves the consis-
tency of the collection.

We propose an optimization method for estimating the
consistency of a given collection of maps, for identifying the
“bad” maps, and for improving the consistency by replacing
certain maps by compositions of other maps. The method
requires that there is a sufficient set of “good” maps in the
collection to at least connect all or most of the shapes. Our
algorithm is based on trying to estimate the “badness” of
individual maps by the amount of inconsistency they intro-
duce in the collection, and then improving them by replac-
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ing them with a composition of other maps that introduces
less inconsistency. We demonstrate how our method can im-
prove on the results generated by state-of-the-art mapping
methods such as the heat kernel map [OMMG10], Möbius
voting [LF09], and blended conformal maps [KLF11] on a
variety of shape collections. Furthermore, we show that the
paths between shapes that result in the optimal maps can in
some cases provide some information on the underlying se-
mantic structure of the collection based on phenotypic infor-
mation alone.

2. Related Work

There have been numerous prior papers that build similar-
ity graphs between shapes as tools for clustering and aggre-
gating shapes or understanding geodesics in a shape space.
For example, dimension reduction of a shape space can be
accomplished by non-linear dimensionality reduction ap-
proaches such as isomap [TdL00], which depend on con-
necting each shape to its “near-neighbors” [YK06]. We also
start from a network of shapes connected by edges when-
ever we have a map available between the two shapes. The
important novelty in our setting is that the graph edges have
maps associated with them. These maps can be composed
and possess an algebraic structure that we deeply exploit.
There has been little prior work related to improving pair-
wise maps based on the context provided by a collection of
related shapes. Some recent papers address variations of this
problem in the context of image analysis.

Our approach is most similar to the work of Zach et
al. [ZKP10], whose aim is to identify false correspondences
in a collection of images. They define a graph whose vertices
are images, or portions of images, and whose edges imply
some relationship between the regions, such as an affine cor-
respondence between feature sets. If there are repetitions in
the image (e.g., a building with a regular window pattern),
some of these correspondences may be wrongly identified.
They propose to prune the false correspondences using an
optimization approach based on the consistency of cycles in
this graph, assigning each edge a binary weight which will
indicate whether or not it is a false correspondence and then
using loopy belief propagation. Our approach is similar to
theirs in the sense that we also use cycles for identifying
inconsistencies. We, however, have a more general setup,
which allows us not only to remove erroneous edges, but
also to choose among better map compositions. In addition,
we use the weights found in this process to identify some
underlying structure of the collection of shapes.

Roberts et al. [RSSS11] extend in some directions the
work of Zach et al. by showing how to overcome the case
where the number of erroneous correspondences is much
larger than the number of correct correspondences due to
appearance of large repeating structures in the image. Al-
though such a case can also appear in our scenario, e.g. if

we have many non-similar shapes with no good maps, their
proposed solution is not easily transferred to 3D shapes.

Charpiat [Cha09] uses the idea of composing maps be-
tween close shapes to improve the maps between non-
similar shapes. Similarly to our approach, he builds a graph
where each shape is a vertex, and edges between shapes are
weighted by the cost of the best map between them. He then
replaces a pairwise map between Si and S j by the composi-
tion of the maps on the shortest (best) path between i and j.
However, the resulting compositions are solely based on the
weights of the pairwise maps, which do not include knowl-
edge about the collection (e.g., the quality of map compo-
sitions). We, on the other hand, learn the weights of the
pairwise maps from the inconsistency the maps introduce to
the collection and thus our method is more resilient to cases
where equally good maps exist but are inconsistent.

The work on 3D shapes that is most closely related
to our approach is on methods for joint segmentation of
almost-isometric deformations of shapes, such as [dGGV08,
Reu10], to mention just two recent works. These methods,
however, use the structure of some isometry invariant opera-
tor on the surface, such as the Laplace-Beltrami operator, to
achieve simultaneous correspondences, and do not take into
account the consistency of the collection of maps.

The concept of consistency along cycles has been also
addressed in the area of vector field processing (see e.g.
[LJX∗10]), where it is more commonly known as holonomy.
In that scenario, it is well-known that given a vector field on
a surface, in most cases consistency along cycles cannot be
achieved everywhere, and singularities must arise. It is possi-
ble that the two approach are related, if one considers vector
fields on a full shape space manifold. In that case, it might
also be the case that global consistency cannot be achieved.
However, since we only have a very sparse and in general
localized sampling of the shape space, we believe this prob-
lem will not arise in practice. We leave the investigation of
the relationship between our approach and the holonomy of
vector fields on the shape space manifold for future work.

Many pairwise correspondence methods have been pro-
posed in recent years, and it is beyond the scope of our paper
to review them all. Our method builds on top of these and is
quite general — any such correspondence method, whether
it is applied to 2D contours or 3D shapes, can be used as
a building block for constructing the collection of pairwise
maps. In our experiments we chose to use dynamic time
warping [RRL78] for matching 2D contours, and Möbius
voting [LF09], the heat kernel map [OMMG10], and blended
conformal maps [KLF11] for matching 3D shapes, although
any other choice of algorithms would be equally valid.

At a more abstract level, our approach to shapes through
mappings relates to the key mathematical idea of functorial-
ity, which has a long tradition associated with it. Functorial-
ity in its broadest form is the notion that, in dealing with any
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kind of mathematical object, it is at least as important to un-
derstand the transformations or symmetries possessed by the
object or the family of objects to which it belongs, as it is to
study the object itself. Indeed, the study of the transforma-
tions is frequently the most powerful tool for analyzing an
object family. Instances of this program include Galois The-
ory, Felix Klein’s Erlanger program for geometry, and the
development of homological algebra and category theory.

3. Problem Statement

We are given as input a collection of n related shapes S =
{S1,S2, . . . ,Sn}, along with a collection of maps between
pairs of shapes M = {mi, j},mi, j : Si → S j. For simplicity
we will assume that the maps are invertible mi, j = m−1

j,i , that
for each pair of shapes there is a corresponding map, and
that the only self maps mi,i are the identity maps. Our goal
is to produce an alternative set of maps between every pair
m̂i, j : Si→ S j, which are “better” than the original maps. To
be able to evaluate the quality of the maps, we assume we
are given a metric dS : S× S→ R for any shape S, which is
commensurable between the different shapes. For example,
for a 3D shape, dS(p,q) can be the geodesic distance be-
tween p and q normalized by the diameter of S. To construct
the new maps, we consider composition of maps as paths
on the graph GM = (S,E), such that ei, j = (Si,S j) ∈ E if
mi, j ∈M. Any path γ = {i1, i2, . . . , ik} in G induces a map
mγ : Si1 → Sik given by the composition of the pairwise maps
on the edges of the path: mγ = mik−1,ik ◦ · · · ◦mi2,i3 ◦mi1,i2 .

We want maps m̂i, j which are better than the original
maps, in the sense that they are closer to some (possibly un-
known) ground-truth maps. Assuming that for every pair of
shapes Si,S j there exists a single ground-truth map m̃i, j, we
can define the accuracy of the map collectionM as follows.

Definition 1 The accuracy error of the collection of maps
M over the collection of shapes S is given by:

Eacc(M) =
1
|S|2 ∑

A,B∈S
Eacc(mA,B),

Eacc(mA,B) =
1
|A| ∑

p∈A
dB(mA,B(p), m̃A,B(p)),

where we assume that every shape A ∈ S is given as a dis-
crete set of points.

While this definition of accuracy error of a map is not
symmetric in general, if the ground-truth maps preserve the
distortion measure dS up to some ε≥ 0, so that ∀A,B ∈ S

|dA(p,q)−dB(m̃A,B(p), m̃A,B(q))| ≤ ε,

then the accuracy error on a map is nearly symmetric:

|Eacc(mA,B)−Eacc(mB,A)| ≤ ε.

Using these definitions we can specify our problem as
finding paths which will yield the most accurate maps.

Problem 1 Given a collection of shapes S and a collection
of maps M, we seek paths γi j from Si to S j for all i, j ∈
{1, . . . ,n}, such that for the collection of maps M̂= {m̂i, j =

mγi j} we have that Eacc(M̂) is minimal.

Of course, since the ground-truth maps are unknown, this
problem cannot be solved in this form. Instead, we devise
an algorithm to improve the maps by improving the consis-
tency of the collection. Our main claim is that maps which
degrade the consistency of the collection are in many cases
also far from the ground-truth. Our main focus is, therefore,
identifying such maps and replacing them, thus improving
both the collection’s consistency and the maps’ accuracy.

3.1. Consistency

For our maps to be consistent we require that different paths
between two shapes yield similar maps, or equivalently (un-
der the assumption that the maps are invertible) that cycles
yield maps similar to the identity. Another way to express
this is to say that we want our map diagrams to be as com-
mutative as possible, if we think of them as morphisms in the
sense of category theory. Hence, we define the consistency
error as follows.

Definition 2 The consistency error of the collection of maps
M over the collection of shapes S is given by:

Econs(M) =
1
|S| ∑

A∈S

1
|CG(A)| ∑

γ∈CG(A)
Econs(γ),

Econs(γ) =
1
|A| ∑

p∈A
dA(p,mγ(p)),

where CG(A) is the collection of cycles in G which start at A.
Note that in general a cycle γ1 = {i1, i2, . . . , in, i1} induces a
map mγ1 : Si1 → Si1 , whereas the cycle γ2 = {i2, . . . , in, i1, i2}
induces a map mγ2 : Si2 → Si2 . Therefore, when discussing
cycles in G we will always mention their starting shape.

(a)                        (b)  

                                              

BC

A D

A B

A 

B C 

D 

Figure 2: A collection of shapes with (a) consistent and (b)
inconsistent maps. In (b), the collection includes the same
maps as (a) except for mA,B, which introduces a symmetry.

Figure 2 demonstrates the idea of consistency on a simple
collection of shapes. In (a) we show a consistent collection,
visualized by showing a small number of points which are in
correspondence across all pairs of shapes. In (b) we have re-
placed a single map mA,B with the left-right symmetric map,
resulting in an inconsistent collection, since, for example,
the composed map over the cycle (A,B,C,A) will not yield
the identity map.
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The advantage of the consistency criterion is that we can
measure it directly, without requiring the (usually unknown)
ground-truth maps. The important question is how consis-
tency can inform us about accuracy. Consider, for example,
the collection in Figure 2(b). It is easy to check that the cy-
cles (A,B,C,A) and (A,B,D,A) are not consistent, whereas
the cycles (B,C,D,B) and (A,C,D,A) are consistent. Fur-
thermore, the inaccurate map mA,B appears only in the incon-
sistent cycles. In this case then, the consistency of the collec-
tion allows us to identify the inaccurate map as the only map
which appears only in inconsistent cycles. We therefore want
to derive a connection between the consistency of a path and
the accuracy of the maps along its edges. To this end, we will
require the following lemma, which relates the accuracy of
a path and the accuracy of its edges.

Lemma 1 If the ground-truth maps preserve the distortion
measure dS up to some ε ≥ 0, then the accuracy of a path
γ = {i1, . . . , in} is bounded by the accuracy of its maps:

Eacc(γ)≤
n−1

∑
j=1

Eacc(mi j ,i j+1)+(n−2)ε,

where the accuracy of a path is defined as:

Eacc(γ) =
1
|A| ∑

p∈A
dB(mγ(p), m̃γ(p)), A = Si1 ,B = Sin .

The proof is quite straightforward, and is based on the fact
that since the maps are invertible, we can compute all the ac-
curacy errors in the sum in terms of points on the first shape
Si1 . Furthermore, since dS is preserved under the ground-
truth maps, we can measure all these errors on the last shape
Sin . The result follows from the fact that dS is a metric and
thus fulfills the triangle inequality. Note that there are n− 1
maps and the first map does not contribute an ε to the accu-
racy error, hence the additional error of at most (n−2)ε.

If we further assume that the ground-truth maps are ex-
actly consistent, namely m̃γ(p) = p for any cycle γ, then
Eacc(γ) = Econs(γ), and we get the following connection:

Corollary 1 If Econs(M̃) = 0, then for any n-cycle γ =
{i1, . . . , in, i1}, we have that

Econs(γ)≤ ∑
(i, j)∈γ

Eacc(mi, j)+(n−1)ε. (1)

In particular, if all the edges in a cycle are accurate, then
the cycle must be consistent. Similarly, if all the edges in a
cycle are exactly accurate except one, we may link the inac-
curacy of that edge to the inconsistency of the cycle:

Corollary 2 If Econs(M̃) = 0, then for any cycle γ =
{i1, . . . , in, i1} for which Eacc(mi j ,i j+1) = 0, ∀ j except j = k,
we have that

Econs(γ)−Eacc(mik ,ik+1)≤ (n−1)ε. (2)

This allows us to “flush out” inaccurate maps by investi-
gating the consistency of the cycles, as in Figure 2(b).

4. From Consistency to Accuracy

We now show how to use Corollary 1 to devise an optimiza-
tion problem to identify “isolated” inaccurate maps. Then,
using this optimization as a building block, we construct an
algorithm which iteratively improves the collection’s accu-
racy by repeatedly replacing maps suspected to be inaccurate
with compositions of more accurate maps.

4.1. Almost Accurate Collections

In our discussion so far, we have defined consistency in
terms of all cycles in G. However, considering all cycles is
algorithmically intractable, and so we limit ourselves to a
subset of all cycles. The 2-cycles are consistent by definition
(as the maps are invertible), thus we focus on the 3-cycles.
We discuss later how to overcome this limitation.

Definition 3 Given a collection of maps M, let B(M) =
{mi, j ∈M | Eacc(mi, j) > 0}— the collection of inaccurate
maps. Then we say that M is almost accurate, if there do
not exist two maps m1,m2 ∈ B(M), which both belong to
the same 3-cycle in GM. We call such maps isolated.

We now define an optimization problem whose aim is to
identify the inaccurate maps by assigning a positive cost to
every edge e = (Si,S j). On the one hand, we want to min-
imize the total inaccuracy in the collection, and so we use
a weighted sum of the costs as the energy function. Since
the costs are positive, this is equivalent to a scaled l1 norm
of the vector of costs, which has the additional advantage
of favoring sparser assignments, as shown by all the recent
work in compressive sensing [Bar07] and sparse reconstruc-
tion [CT05]. On the other hand, we want these costs to ex-
plain the measured inaccuracy of the cycles, so we use Equa-
tion (1) as the constraints in the problem. To avoid the depen-
dency on the starting shape, we define the cost of the cycle
as the maximal consistency error for any starting shape.

Definition 4 The cost of a cycle γ = {i1, . . . , in} is given by:

Cγ = max
j

(
Econs({i j, i j+1, . . . , in, i1, . . . , i j−1, i j})

)
,

and since Equation (1) holds for any starting shape, we have

∑
(i, j)∈γ

Eacc(mi, j)≥Cγ− (n−1)ε, (3)

which leads to the following optimization problem:

Problem 2 Given a collection of shapes S, a collection of
mapsM, and the resulting graph GM = (S,E), we seek an
assignment of costs ce for all e ∈ E:

minimize
ce

∑
e∈E

wece

subject to ∑
e∈γ

ce ≥Cγ, ∀γ ∈ L,

ce ≥ 0, ∀e ∈ E,
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where L denotes the set of all 3-cycles in GM and the objec-
tive weights we are given by we = 1/∑γ:e∈γ Cγ.

This is a linear program with a polynomial number of
variables and constraints, so it is tractable. Note that the
value of ε is not known and therefore cannot be incorporated
into the constraints. We therefore choose slightly stronger
constraints, so that equation (3) may be satisfied. The ob-
jective weights we choose make it more expensive for the
LP to assign costs to edges that participate in few bad cy-
cles, which improves its ability to identify a sparse set of
bad edges. As a simple example, consider a collection of 5
shapes with all input maps being correct except for a single
4-cycle of bad maps, such that Cγ = 1 if γ includes at least
one of these 4 maps. It is easy to check that if we choose
we = 1 for all e, the resulting LP has multiple integral op-
tima with different supports, whereas if we use we as defined
above, the resulting LP has a unique optimum that matches
the true solution.

Before discussing the properties of our optimization prob-
lem and its extensions, we would like to show how it per-
forms on real data. We chose a small collection of shapes
from the SCAPE database [ASK∗05] and computed straight
and symmetric pairwise maps between them using the heat
kernel map [OMMG10], by giving it two initial correspon-
dences which yield either a straight or a symmetric map.
We use Euclidean distances as an inexpensive estimator of
geodesic distances; the fact that the relevant measurement
is the average distance over the entire shape alleviates the
problems associated with this choice.

(a)        (b)  

         (c)                     (d)  

(1,2) 

(3,4) 

(5,6)

(3,6)

(1,2) 

(3,4) 

(5,6)

(3,6)

LP weights 

Acc error before 

Acc error after 

1 

2 

3 

4 

5 

6 

Figure 3: (a) An “almost-accurate” collection — all maps
are straight except red ones. (b) 3 symmetric maps and one
straight map. (c) The costs computed by the LP, accuracy
errors of the original maps, and accuracy errors of the final
maps. (d) Some of the final maps (compare with (b)).

We chose three of the maps to be symmetric, and the rest
to be straight, so that the collection is almost accurate, in
the sense that the “bad” maps are isolated. Fig. 3(a) shows

the shapes, where the symmetric maps are marked with red
arrows. Fig. 3(b) shows the symmetric maps themselves,
and one example of a straight map. Note, that for real data
the “good” maps are never exactly accurate. The SCAPE
database comes with correspondences, which we treat as the
ground-truth maps to measure the accuracy of the source
maps. Fig. 3(c)(center) shows the color coded accuracy er-
rors of the original maps, and it is obvious that the sym-
metric maps are the inaccurate ones. In addition, we show
in Fig. 3(c)(top) the color coding of the costs computed by
solving Problem 2. It is evident that the optimization indeed
identified correctly the inaccurate maps.

Using the computed costs we can find better maps on the
shape collection. We compute the shortest paths on γi j for
every two shapes Si,S j using the costs computed by the lin-
ear program as edge weights, and take the new maps to be
m̂i, j = mγi j . Fig. 3(c)(bottom) shows the color coded accura-
cies of the new maps m̂i, j , and (d) shows the output maps, for
the same pairs as in (b) — all the symmetries were resolved.

In some very simple cases, the objective weights we alone
can be sufficient to identify the inaccurate maps; however, it
is easy to see that simply using these weights as a measure of
quality of the maps frequently produces poor results, since
too much information is lost by summing the weights of the
cycles. Consider the synthetic example in Fig. 4. As we will
soon show, the LP can correctly identify the three inaccurate
maps (a); however, summing the weights of the cycle dis-
tortions results in the incorrect conclusion that one of the 3
inaccurate maps is the best map (b). Such an approach tends
to fail because it averages out the “blame” for the inconsis-
tency of cycles among all edges, so “good” edges become
indistinguishable from “bad” edges.

0.25

0

1

1 250

1

1.25

41 4

2
(a) (b)

Figure 4: Summing cycle weights is insufficient to distin-
guish accurate and inaccurate maps. (a) Accuracy errors;
the LP also assigns these costs. (b) Sum of the consistency
errors of the 3-cycles each edge belongs to; the “best” map
is using these values is one of the 3 inaccurate maps.

In the special case of an almost accurate collection we
can show under which conditions on G the solution to Prob-
lem 2 will always identify the inaccurate maps. For sim-
plicity we will present only the proof in the case where all
the ground-truth maps are isometries (that is, they are all
distance-preserving, so ε = 0), though we will discuss the
bounds obtained in the more general case as well.

Theorem 1 IfM is almost accurate, all ground-truth maps
are isometries, and maxm∈B(M)Eacc(m) < ((|S| − 2)2 −
3)minm∈B(M)Eacc(m), then the unique optimal solution to
Problem 2 is the assignment c(Si,S j) = Eacc(mi j).
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Proof In general, due to equation (3), the assignment c(i, j) =
Eacc(mi j) always fulfills the constraints. The challenge is to
show that any other assignment must be suboptimal. First,
we note that wi j = 1/((|S| − 2)Eacc(mi j)) for all mi j ∈
B(M), and so the assignment c(i, j) = Eacc(mi j) achieves an
objective value of |B(M)|/(|S|−2). Now assume there ex-
ists an alternative solution to the optimization problem ĉe.
Let us define some additional subsets of M: Let G0(M),
G1(M), and G2(M) denote the set of maps that participate
in exactly 0, 1, and 2 3-cycles with positive distortion, re-
spectively. SinceM is almost-accurate, the four sets B(M),
G0(M), G1(M), and G2(M) form a partition ofM. With
a slight abuse of notation, let B, G0, G1, and G2 denote the
corresponding sets of edges. Note that since we =∞ for all
e ∈ G0, we may assume ĉe = 0 for all e ∈ G0.

Now any 3-cycle γ such that Cγ > 0 must include a single
edge b ∈ B and two edges g1,g2 ∈ G1∪G2. We then rewrite
the corresponding constraint ĉb + ĉg1 + ĉg+2 ≥Cγ as wbĉb +
wbĉg1 +wbĉg+2 ≥ 1/(n−2). If we sum this over all 3-cycles
γ such that Cγ > 0, we obtain the following:

(|S|−2) ∑
b∈B

wbĉb+ ∑
g∈G1

wbg1 ĉg+ ∑
g∈G2

(wbg1 +wbg2)ĉg≥ |B|

(4)
where bg1 and bg2 are the edges in B that share some 3-
cycle with g. But for all g ∈ G1, (|S| − 2)wg = (|S| −
2)/Eacc(mbg1) > 1/((|S|− 2)Eacc(mbg1)) = wbg1 . Also, for
all g ∈ G2, (|S| − 2)wg > wbg1 +wbg2 using the inequality
constraining the values of Eacc over B(M). (The proof is
simple algebraic manipulation and omitted for brevity.) Sub-
stituting these values in and dividing by |S|− 2, we obtain
∑e weĉe ≥ |B|/(|S| − 2), with equality only if ĉg = 0 for
all g /∈ B. Therefore ĉe is optimal if and only if ĉ(i, j) =
Eacc(mi j).

If Eacc is normalized so that 0≤ Eacc(m)≤ 1 for all maps
m, then we may satisfy the constraint on the accuracy of bad
maps by satisfying Eacc(m)> 1/((|S|−2)2−3) for all m ∈
B(M). (Note that neither this new constraint nor the original
constraint can be satisfied when |S| < 5.) Intuitively, this
requirement means that maps we consider to be bad must be
significantly bad; it is easy to construct an example where
a single “slightly” bad map among several “extremely” bad
maps will be assigned slightly lower costs by the LP than the
perfectly good maps that share a shape with it. Also note that
this constraint is quadratic in |S|, and so it rapidly becomes
irrelevant as the size of the collection increases.

When the ground-truth maps are only ε-distance-
preserving, the constraints on the values of Eacc are more
stringent. Using a similar normalization, we satisfy these
constraints when Eacc(m) > max{1/(|S| − 7),4ε}. Since
this constraint is linear as opposed to the quadratic constraint
obtained earlier, it requires larger collections in order to be
useful. Intuitively, increasing the size of the collection allows
the algorithm to handle a wider range of quality of maps, up
to a limit imposed by the quality of the ground-truth maps.

4.2. The Algorithm

So far we have shown how to infer accuracy from consis-
tency in special circumstances, under strict conditions on the
ground truth maps, the distance metric, and the existence of
inaccurate maps. In general, however, maps are never exactly
accurate, and inaccurate maps are much more prevalent than
allowed by Theorem 1. Nevertheless, we can use the opti-
mization problem devised for the idealized setting to design
an algorithm for improving collections of maps.

Our main motivation stems from the fact that even if not
all inaccurate edges are isolated, some 3-cycles might still
contain a single inaccurate edge, which should be identified
by the optimization described in the previous section. If the
costs ce computed by the optimization indeed approximate
to some extent the accuracy of the maps, we can find bet-
ter maps M1 by composing the original ones along short-
est paths on G, weighted by ce, as we did in Figure 3. If
we now consider 3-cycles onM1, there might be additional
3-cycles which contain a single inaccurate map. Note that
these 3-cycles correspond to larger cycles onM. Therefore,
by repeating these two steps — finding approximate accu-
racies and composing maps using shortest paths — we can
iteratively improve the maps using the information from pro-
gressively larger cycles. This replaces the need in the method
by Zach et al. [ZKP10] to randomly sample larger cycles.

This leads to an iterative algorithm, described in Algo-
rithm 1. Convergence is reached when either all the shortest
paths are of length 1 (i.e. a single edge), or when the total
consistency error is below some threshold.

Input: A collection of shapes S and mapsM
Output: A new collection of maps M̂
M0←M; k← 0
repeat

W k = {c(i, j)}← Solve Problem 2 onMk

forall the (i, j) ∈ E do
γi j← ShortestPath(GMk ,i, j,W k)

mk+1
i, j ← mk

γi j
end
Mk+1 ← {mk+1

i, j }
k← k+1

until converged

M̂←Mk−1

Algorithm 1: Improving a collection of maps

Using the same setup as described in the previous sec-
tion, we applied Algorithm 1 to a subset of 10 shapes from
the SCAPE database, this time using more symmetric maps,
such that the map collection has some 3-cycles with more
than one symmetric map. The resulting behavior depends on
the number of symmetric maps and on whether every shape
has enough “good” maps — as we are composing maps, our
output can only be good if we are given enough good maps.

Figure 5 shows the results for varying proportions of
straight and symmetric maps. In (a), we removed all the sym-
metric maps and remained with an accurate collection. In

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.



A. Nguyen, M. Ben-Chen, K. Welnicka, Y. Ye, L. Guibas / Improving Collections of Shape Maps

(a)          (b)  

(c)         (d)  
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Figure 5: Results on a collection of human shapes, where
some maps — 28 (a), 30 (b), 46 (c), and 82 (d) out of 90 —
were chosen to be symmetric. (left) Symmetric choice, accu-
racy error of (center) original maps, and (right) final maps.

(b), we have a configuration where one shape (shape 8) does
not have enough “good” maps, and therefore not all the sym-
metries can be resolved. In (c), we have almost 50 percent
bad maps. The process converges to a fully consistent state
by partitioning the shapes into two groups S1,S2, such that
the maps mi, j are straight if Si and S j belong to the same
group, and symmetric otherwise. Finally, in (d), although
we have only four pairs of shapes with straight maps, the
method still manages to reduce the accuracy error, and con-
verge to a consistent state. This experiment suggests that if
enough “good” maps are provided, the process will find the
correct composition of maps to improve both accuracy and
consistency. In all the experiments we did (including those
in the next section) the process always converged, and the
LP energy always decreased after each iteration; however,
we do not currently have a proof that this is indeed guaran-
teed to occur. We have observed that path replacements tend
to improve consistency, as all shapes within a path used as a
replacement become consistent with each other afterwards;
we have also observed that sparse assignments of costs result
in more path replacements, as sparse assignments are more
likely to violate the triangle inequality. These observations
suggest that the process should converge in many cases.

5. Experimental Results

In this section we show a few more examples of the appli-
cation of Algorithm 1 to various collections of shapes. Since
the ground truth data is not always available, in some cases
we use different methods to evaluate our performance.

5.1. Limitations

Before discussing the results we would like to address the
limitations of our method. First and foremost, we are very
much dependent on the quality of the input maps. If we are
given a collection where not enough maps are good, in many
cases the accuracy of the output maps will not improve (al-
though the consistency usually will still improve, see Fig. 5).
We conjecture that if the majority of maps for each shape are
good, then the output maps of our method will all be good.

Second, the complexity of our method is quite high, as

we need to not only obtain but also compose dense maps
many times, and then evaluate all of those maps over the
entire shapes. Composing and evaluating all the maps takes
tens of seconds per iteration when we have 20 shapes with
10000 points each, and it grows cubically with the number
of shapes. However, the composition and evaluation of maps
may be done massively in parallel, so the primary serial step
is the solving of the LP. Tests with random weights show that
solving the LP once for 100 shapes takes around 20 minutes
on a modern laptop. Unfortunately, we lack a bound on the
number of iterations (and therefore number of LP instances)
required; however, there is the alternative to cap the number
of iterations performed. Furthermore, in all the experiments
presented, the process converged in 8 or fewer iterations.

(a)  

(b)  (c)  
 

Before After 

Figure 6: (a) shapes, (b) accuracy and consistency errors,
given by the fraction of shapes/cycles whose error is smaller
than a threshold. (c) Example of initial and final maps.

5.2. 2D Maps

Our method is quite general, and can be easily applied both
to 2D and 3D shapes. To demonstrate our method in the 2D
setting, we used as our input shapes the outline curves of
20 airplane meshes from the Princeton Segmentation Bench-
mark data set [CGF09] projected onto the xy-plane. To gen-
erate the mapsM we used dynamic time warping [RRL78]
on the curvature function of the outline curves. We took
the metric dS to be the curve length between two points di-
vided by the total length of the curve. Since the ground truth
maps are not available in this case, we used the segmen-
tation labels generated by [KHS10] to evaluate the maps.
The accuracy error Eacc(mi, j) is measured as the fraction
of points p ∈ Si which are labeled incorrectly: labeli(p) 6=
label j(mi, j(p)). Note that in this case the distance metrics dS
we used for the accuracy and consistency errors are not the
same. However, our algorithm does not require the accuracy
errors; they are used solely for evaluation.

Fig. 6 shows our results on this dataset. To show the
change in accuracy and consistency errors, we measure the
fraction of shapes x whose error is smaller than e and plot e
as a function of x. For example, 60% of the input maps had
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accuracy error below 0.6, whereas 60% of the output maps
had an error below 0.4. In addition we show one map, and
how it improved. We visualize the map by transferring the
segmentation from the source to the target. It can be seen
that our method improved both the accuracy and the consis-
tency of the collection and resulted in better maps.

5.3. 3D Morph

Symmetry is not the only obstruction to obtaining good
maps, and our algorithm can be applied in other cases as
well. For example, for many shapes the quality of the map
depends heavily on how “close” the shapes are, with closer
shapes yielding better maps. To check the performance of
our method in that situation, we took S to be 20 uniformly
spaced frames from the a morph sequence of an elephant to
a horse. On these shapes we computed all the pairwise maps
using Möbius voting [LF09], and interpolated those to a full
map using a variant of the GMDS technique [BBK06]. This
data set is in correspondence, so we used that as our ground
truth map, taking dS to be the Euclidean distance normalized
by the diagonal of the bounding box as an inexpensive ap-
proximator of geodesic distance, as in our earlier example.

(a)      (b)        (c)          

      (d)  
1 6 1 6 5 

1 6 10 

16 20 

Figure 7: (a) Shapes, (b) LP costs after one iteration, (c)
number of times original maps were used in the final maps,
(d) The original map (1,6), and the better map computed by
the composition (1,5,6).

Fig. 7 shows the results. In (a) we show a few of the shapes
from the morph sequence (frames 1,6,10,16,20). Since con-
secutive frames in the morph are more similar than other
pairs, we expect the accuracy of the maps to degrade the
further we are from the diagonal of the accuracy error ma-
trix. In (b) we show the costs ce computed in the first iter-
ation. It is evident that we identified correctly the relative
quality of the maps. It is interesting to check which original
maps are used the most in the final maps, as this informa-
tion discloses something about the structure of the collec-
tion. Fig. 7(c) shows the number of times the original maps
were used in the final maps. As expected, the maps which
are used the most are the ones between consecutive frames
— thus in effect our algorithm recovers the morph sequence
order just from the quality of the shape maps. In (d) we show
an example of an original map between two remote frames,
and its replacement by the composition of two better maps,
selected using the shortest path on ce.

5.4. 3D Shape Collections

We applied our algorithm to a few collections of 3D shapes:
the deformed Armadillos used in the heat kernel map pa-
per [OMMG10], as well as 10 shapes from the hand category
in the Princeton Segmentation Database [CGF09]. For these
collections we used the heat kernel map to generate a set of
100 sparse correspondences, which we then interpolated to
a full map using a GMDS [BBK06] variant. As in previous
examples we used the Euclidean distance normalized by the
diagonal of the bounding box for dS. In addition, we applied
our method to a few collections used in the paper Blended
Intrinsic Maps [KLF11].

Armadillos We computed all the pairwise maps between
the Armadillos using the fully automatic mode of the HK
map, and applied our algorithm to the resulting maps. These
models are in correspondence, which we used as the ground
truth for evaluating the accuracy of the original and new
maps. Fig. 8 shows (a) the shapes, and (b) a plot of the ac-
curacy and (c) consistency errors. In this case, some shape
pairs had larger geodesic distortion than others, leading to
different map qualities. For example, the shape “1” in (a) had
a single good map to it from the shape “2” (Fig. 8(d)). This
caused the final maps of all the other shapes to include a path
that goes through “2”. (e-f) show two such examples: the top
row shows the source shape, and the bottom row shows the
map before and after the compositions. In both cases, in the
original map, some of the points were mapped correctly, and
others were mapped to the symmetric part. After the com-
position, all the points shifted to better locations. After the
maps to “1” were fixed, all maps had good accuracy and con-
sistency, and the algorithm finished after one iteration.

Segmented hands We ran our algorithm on a collection
of hand models from the Princeton segmentation database,
which are not in correspondence. Since we do not have the
ground truth we used the same evaluation method as in the
2D case, measuring the fraction of vertices which where
mapped to the correct segment. Fig. 9 shows (a) the shapes,
(b) the accuracy and (c) consistency error plots, and (d) the
improvement of a set of maps. We show the source shape
with a few points marked, and for the other shapes we show
the corresponding points under the original maps (top) and
composed maps (bottom). In all these cases, the composed
maps fixed all the points on the first, fourth and fifth fingers.
The second and third fingers are still flipped in a few cases.

Collections from Blended Conformal Maps We used the
animals, hands, humans and teddies collections, each con-
taining 20 shapes, for which we computed all pairwise maps
using the Blended Maps method [KLF11]. These collections
are accompanied by ground-truth sparse correspondences,
which we used to evaluate the accuracy errors. We took
Eacc(mA,B) to be the average geodesic distance on B between
the mapped correspondences and their correct locations, nor-
malized by the square root of the surface area of B.
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Figure 8: (a) Shapes, (b) accuracy and (c) consistency errors, (d-f) a few examples of maps. Source shapes (top row), and the
maps (bottom row), before and after running the algorithm. See the text for details.

Fig. 10 shows some maps computed for the (a) animals,
(b) hands, (c) teddies and (d,e) humans. For each group we
show the source shape with its index, the original maps (top)
and the composed maps (bottom). Fig. 11 shows the accu-
racy error matrices of the collections before (top) and af-
ter (bottom) applying our algorithm. Furthermore, the figure
shows the accuracy error plots of these collections before
(dashed lines) and after (solid lines).

Both figures indicate that our method improved on the
maps generated by [KLF11] with varying success rates. For
the animals collections, only 7 bad maps existed, and they
were all isolated, so our method found them all and fixed
them (Fig. 10(a)). Note how the legs are mapped correctly
for all the shapes. For the hands collection we also signifi-
cantly improved the maps, as can be seen both in the error
matrix, and in the plot. Fig. 10(b) shows examples of a few
of the improved maps from shape 1 in that collection.

The humans collection exhibits the interesting behavior
we have also encountered in previous examples: shapes
which do not have a majority of good maps associated with
them (such as shapes 16 and 18) do not improve. In fact, as
can be seen in Fig. 10(d), some of the good maps are re-
placed by bad maps, to improve the consistency. The maps
from shape 18 to 9,11,12 were good, and they were replaced
by bad maps consistent with 18 to 10, and with the other bad
maps from shape 18. On the other hand, since most human
shapes do have a majority of good maps, all the bad maps
between these shapes were cleaned up. Fig. 10(e) shows the
maps from shape 9 to a set of other shapes. Note how the
hands, feet, knees and shoulders are mapped correctly on all
shapes. It is also worth noting that the global accuracy of the
collection has improved in this case, as shown in the accu-
racy plot. The teddies collection exhibits similar behavior.

It is interesting to take a closer look at some of the im-
proved maps in the teddies collection (Fig. 10(c)). For exam-
ple, the consistency condition allowed us to infer correctly
the location of the hip (the light pink point). Consider the
map from shape 18: although the geometry of the hip point
is very different for the source and target shapes, causing the
original mapping algorithm to confuse it with a more curved
area near the nose, our algorithm has used the additional in-
formation from the collection to correctly identify this point.

6. Conclusions and Future Work

Multiple pairwise maps between shapes create a context that
allows an improved evaluation of individual maps. We have
shown how to use an optimization-based framework to infer
the accuracy of a map from the inconsistencies it generates
in a collection of other maps. In the special case when only
a relatively small number of the maps are not accurate, we
can prove under idealized conditions that one step of our
algorithm identifies correctly the inaccurate maps, and re-
turns a better set of alternative maps. For more complicated
collections where the number of inaccurate maps might be
large, we show experimentally on a variety of shape collec-
tions that our iterative algorithm persistently generates maps
which improve on the originals both in accuracy and consis-
tency. Finally, we have shown that by considering which of
the original maps are most used in the composition process,
we can identify the important “links” within the collection,
therefore extracting to some extent structural relationships
within the collection of shapes which may reflect on the un-
derlying process by which the shapes were generated.

The topic of investigating maps between shapes in the
context of a collection of multiple such maps is at its infancy,
and we believe that much more fruitful work can be done on
this subject. First, an obvious task for future research is to
prove our conjecture that the iterations converge, and to pro-
vide some theoretical guarantees on the consistency and ac-
curacy of the resulting maps in the more general case. Sec-
ond, our work currently considers only pairwise composi-
tions of maps, and better ways of combining maps can be
devised, such as the method proposed in [KLF11]. Finally,
we have only touched upon the possibility of investigating
the structure of the collection using the map composition in-
formation, and we hope it may be possible to correlate such
phenotypic structure with other deeper information in the
data based on the semantics of the dataset, such as morpho-
logical evolution in biology or stylistic variability in the case
of human-designed shapes.
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Figure 9: (a) Shapes, (b) accuracy and (c) consistency error plots, (d) original (top row) and composed (bottom row) maps.
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Figure 10: (a-c,e) Maps before (top) and (after) our algorithm for a few collections, (d) example of fail case See text for details.
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Figure 11: The accuracy error matrices and plots for a few
shape collections. See text for details.
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