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This paper considers a routing and wavelength assign-
ment problem (RWAP) for the implementation of efficient 
Wavelength Division Multiplexing all-optical mesh net-
works without wavelength conversion. For a given physical 
network and required connections, the solution to the 
RWAP consists in how to select a suitable path and wave-
length among the many possible choices for each connec-
tion so that no two paths using the same wavelength pass 
through the same link, while minimizing the number of re-
quired wavelengths. We introduce an integer program-
ming formulation of the RWAP, which has an exponential 
number of variables, and propose an algorithm to solve it 
based on the column generation technique. The proposed 
algorithm can yield high quality solutions and tight lower 
bounds at the same time. Though the proposed algorithm 
cannot guarantee optimal solutions, computational results 
show that the algorithm yields provably good solutions 
within a reasonable time. 
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I. INTRODUCTION 

The emerging demand for integrated Internet applications 
requires a substantially higher bandwidth than that offered by 
current networks based on Electronic Time Division Multiplex-
ing (ETDM) technology. For this reason, all-optical networks 
based on Wavelength Division Multiplexing (WDM) technol-
ogy are considered promising for the realization of large band-
width networks in the future [1], [2]. Traditional ETDM net-
works use an electrical signal form to switch traffic along 
routes and restore signal strength. These networks are not fully 
utilizing the bandwidth of optical fiber (about 10 THz [3]) be-
cause only one carrier having a specific frequency (wave-
length) of light is used on an optical fiber to transmit data sig-
nals that can be modulated at a maximum bit rate of the order 
of 10 Gbps. The high bandwidth of optical fibers can be util-
ized through WDM technology by which distinct data signals 
may share an optical fiber, provided they are transmitted on 
carriers having different wavelengths [4]. WDM all-optical 
networks promise data transmission rates several orders of 
magnitude higher than current networks. The key to high 
speeds in these networks is to maintain the signal in optical 
form, thereby avoiding the prohibitive overhead of conversion 
to and from electrical form [4]. 

In this paper, we consider a routing and wavelength assign-
ment problem (RWAP) for the efficient implementation of 
WDM all-optical mesh networks without wavelength conver-
sion. Consider an undirected mesh network G, with the node 
set V and the link set E, a set of pairs of nodes K, and the num-
ber of required connections kr  for each pair of nodes Kk ∈ .  
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A connection between a pair of nodes  is realized on G 
by establishing a path between the two nodes ( , t ) and as-
signing a specific wavelength to it. We assume that each link 
consists of two counter-propagating unidirectional fibers, and 
all paths are bidirectional and carried by these fibers. The solu-
tion to the RWAP consists in how to realize all the required 
connections so that no two paths of the same wavelength share 
a common link, while minimizing the number of required 
wavelengths. 

Kk ∈

ko k

Practical limitations on transmission technology and optical 
devices restrict the number of available wavelengths on a fiber 
(WDM systems that can carry up to 40 wavelengths on a fiber 
are commercially available currently), so that a good solution 
to the RWAP is important to the efficient implementation of 
WDM all-optical networks. It is also crucial for network plan-
ning and design to determine the wavelength requirements for 
different traffic patterns. 

Many researchers have tried to solve the RWAP. However, 
they have concentrated on the development of heuristic algo-
rithms because the RWAP is NP-hard [5]. Their solution ap-
proaches include 1) choosing a path by some specified rule 
and then assigning a wavelength to it in a greedy manner [2], 
[4], [6]-[9], 2) decoupling the problem into a routing problem 
and a wavelength assignment problem [10], and 3) using 
meta-heuristics like genetic algorithms [2], [11]. All the above 
approaches essentially make the routing decisions and the 
wavelength assignment decisions in a sequential manner. In-
terested readers can refer to [12]-[14] for the review of various 
routing and wavelength assignment approaches. In particular, 
[12] provides an excellent survey of the previous studies in 
this area. 

In this paper, we propose a unified approach to solve the 
RWAP based on integer programming methods. Section II in-
troduces an integer programming formulation that yields tight 
lower bounds on the wavelength requirements both theoreti-
cally and computationally. Using the formulation, we devise an 
efficient algorithm to solve the RWAP based on the column 
generation technique [15]. Section III describes an efficient al-
gorithm for the column generation, and we present our algo-
rithm for the RWAP in section IV. Computational results are 
given in section V. 

II. MATHEMATICAL FORMULATION 

In this section, we present an integer programming formula-
tion of the RWAP and the procedure to solve the linear pro-
gramming relaxation of the formulation to get a lower bound 
on the optimal wavelength requirements. 

To present an integer programming formulation of the 

RWAP, we define the concept of an independent routing con-
figuration. A routing configuration c is represented by a non-
negative vector | , such that for all . A 
routing configuration c is independent if we can realize  
connections for all  on G simultaneously using only 
one wavelength. Let C be the set of all possible independent 
routing configurations. Then, the integer programming formu-
lation of the RWAP is as follows: 
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Each decision variable, , if an independent routing 
configuration c is realized l times by using l different wave-
lengths, where l is a nonnegative integer. The objective func-
tion represents the number of required wavelengths. Con-
straints (1) ensure that all the required connections should be 
realized. We do not need to explicitly consider the assignment 
of wavelengths to paths in the formulation. After a solution to 
MP is obtained, we can assign wavelengths to the realized rout-
ing configurations. 

lzc =

A linear programming (LP) relaxation of a formulation can 
be obtained by dropping integrality restrictions imposed on the 
decision variables. Let MPL be the LP relaxation of MP, and let 

 be the optimal objective value of MPL. Clearly,  
is a lower bound on the optimal objective value of the RWAP.  
Our computational results, given in section V, show that the 
lower bounds are very tight. In addition, the tightness of the 
lower bounds can be shown theoretically. Interested readers 
can refer to Lee [5] for the details. 

LPZ  LPZ

Generally, there are an exponential number of independent 
routing configurations for an instance of RWAP, that is, MP has 
an exponential number of decision variables. It is thus imprac-
tical to enumerate all the possible independent routing configu-
rations to solve MPL with all the decision variables at hand.  
However, MPL can be solved efficiently by using the column 
generation technique of Gilmore and Gomory [15]. 

The outline of this method is as follows: We assume that a 
subset C ' of C is given. Replacing C by C ' in MPL yields the 
restricted linear program MPL', whose solutions are suboptimal 
to MPL. Then, we solve MPL' using the simplex method [16], 
a well-known method for solving linear programming prob-
lems, which yields an optimal solution to MPL' together with 
an optimal dual solution  associated with con-
straints (1). Now, using , we search for a profitable inde-
pendent routing configuration c' whose addition to MPL' may 
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result in a decrease of the optimal objective value of MPL'. If 
there are no such independent routing configurations, the solu-
tion at hand is an optimal solution to MPL. Otherwise, we add 
c' to MPL', and then repeat the above process. 

The key step of the above procedure is to check whether 
there is a profitable independent routing configuration. We can 
formalize this issue as another optimization problem, the so-
called column (independent routing configuration) generation 
problem. Let  be the dual variables associated 
with constraints (1). Then the constraints in the dual of MPL' 
are 
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Let  be an optimal solution to the dual of MPL'.  
Then it is optimal to the dual of MPL if and only if 
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Therefore, we may write the optimality condition for MPL as 
follows : 

1}|max{ * ≤∈∑ ∈
Cca

Kk kckα .         (2) 

Using condition (2), we can derive a formulation of the col-
umn generation problem as follows: 
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where  is the set of paths between  and t , for all 
, and  is the set of paths in  that pass 

through link e, for all  and . From the definition 
of the independent routing configuration, it can be easily 
shown that x is a feasible solution to SP if and only if a routing 
configuration c is independent, where  for all 

. Now, suppose that we have an optimal solution to SP 
for a given optimal dual solution  to MPL'. By 
condition (2), if the optimal objective value of SP is greater 
than 1, the independent routing configuration corresponding to 
the solution is profitable and added to MPL', otherwise, no col-
umn is generated. 
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Using the above procedure, we do not need to enumerate all 
the possible independent routing configurations in advance of 
solving MPL. Now, we have only to be able to solve SP effi-

ciently. Unfortunately, SP is NP-hard [5]. We devised, however, 
an optimization algorithm for SP based on the integer pro-
gramming approach, which is presented in the next section. 

III. ALGORITHM FOR THE COLUMN 
  GENERATION PROBLEM FOR MPL 

Consider the following integer program SP(d, u) : 
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where  and u . For a given optimal solution 
 to the dual of MPL', SP(

||KRd +∈ ||KZ +∈
*α r,*α ) is the same as SP, which 

was presented in the previous section. 
In this section, we present a branch-and-price algorithm to 

solve SP(d, u). SP(d, u) has an exponential number of path vari-
ables; however, its LP relaxation can also be solved efficiently 
by using the column generation technique [15] as in the case of 
MPL. In the following, we first present the column (path) gen-
eration procedure to solve the LP relaxation of SP(d, u). We then 
detail the branch-and-price algorithm for SP(d, u). 

1. The Column Generation Procedure for SP(d, u) 

To present the column generation procedure to solve the LP 
relaxation of SP(d, u), let SPL be the LP relaxation of SP(d, u).  
Let SPL' be the restricted linear program which can be obtained 
by replacing in SPL by , for all .  
Let 

)(kP )()(' kPkP ⊂ Kk ∈
,kβ  for all k  and K∈ ,eγ  for all e  be the non-

negative dual variables associated with constraints (3) and (4), 
respectively. Then, for a given optimal dual solution  
to the dual of SPL', the reduced cost of each column (path) 

 for each pair of nodes , , is 
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where  is the set of links of which path h consists. hE
Then the column generation problem for each pair of nodes 

 is a shortest path problem between two nodes,  
and , of a pair of nodes  over a given network G 
with nonnegative links weights , for all . Denote the 
length of a shortest path  between a pair of nodes  
as 

k
. Then, if 

k
 ,  is 

also an optimal solution to the dual of SPL, so that there is no 
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column whose addition to SPL' may result in a decrease of the 
optimal objective value of SPL'. Otherwise, the path  with 

 is added to SPL', for each . 
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Since the link weights are nonnegative, the column genera-
tion problems can be solved in polynomial time by using ordi-
nary shortest path algorithms. We used Dijkstra’s algorithm 
[17] for our implementation. 

2. A Branch-and-Price Algorithm for SP(d, u) 

The branch-and-price approach to solve integer programs is 
essentially the same as the branch-and-bound approach [16] 
except that the column generation is performed at every node 
of the branch-and-bound tree. For the general expositions of 
the branch-and-price approach, see Barnhart et al [18]. The fol-
lowing is the structure of our algorithm for SP(d, u) based on 
the branch-and-price approach. 
 
Step 1: Initialization. Initialize SPL' with paths , 
for each , where  is a shortest path between a pair 
of nodes  over the given network G with link weights 
equal to 1. 

}{ kh

kh

Step 2: SPL' solution. Solve SPL' using the simplex method.  
Let  be the obtained optimal solution to SPL', and let 

 be the obtained optimal solution to the dual of SPL'. 
Step 3: Column (Path) Generation. Use  to solve 
the column generation problems (see sub-section 1). If one or 
more columns with positive reduced costs are generated, add 
these columns to SPL'. Otherwise,  is also an optimal solu-
tion to SPL, that is, we solved the LP relaxation of SP(d, u) at 
the root node of the branch-and-bound tree. Go to step 4. 

(

*x

Step 4: Integrality Test. If the obtained optimal solution  
is integral, stop. We found an optimal solution to SP(d, u).  
Otherwise, go to step 5. 

*x

Step 5: Branch-and-price Procedure. Perform the branch-
and-bound with the column generation to find an optimal solu-
tion to SP(d, u). 
 

To initiate the branch-and-price algorithm for SP(d, u), we 
need to have , for all . To this end, we 
initialize  as defined in step 1 of our algorithm. Note 
that , for each , does not need to be initialized as 
such and can be an arbitrary subset of . 

)() kP⊂
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)(kP
The key to developing the branch-and-price procedure in 

step 5 is identifying a branching rule that eliminates the current 
fractional optimal solution without making the column genera-
tion problem intractable after branching. To find an optimal so-
lution to SP(d, u), we must maintain the ability to solve the col-
umn generation problem after branching. In the following, we 

present a branching rule that does not change the characteristics 
of the column generation problem after branching and present 
other details of our algorithm. 

For a given optimal solution  to SPL, define U  
 for all e , such that  if and only if 

 for some path h . Clearly, if  is integral, 
, for all . Note that the converse is not al-

ways true. However, we can derive the following positive result. 
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Proposition 1. Suppose that an optimal solution  to SPL is 
given. If | , for all ,  is either integral 
or there exists an integral feasible solution to SP(d, u) with the 
same objective value. 

*x
1|),( * ≤exU Ee ∈ *x

Proof. Suppose that | , for all , but  
has fractional coordinates. For each  consider a graph 

, where V ,  and 
 if and only if  for each  To 

each link of  except  assign a link capacity 
of 1, and set the link capacity of  to u . Then, 
it is clear that, for each , the maximum flow value from 

 to t  over  with link capacities defined as above is 
equal to . The maximum  flow can be ob-
tained by using ordinary maximum flow algorithms [17].  
Further, for a given maximum flow solution, we can decom-
pose flows into paths by using the flow decomposition algo-
rithm [17]. Since given link capacities are all integral, the flow 
value of each path obtained by the flow decomposition algo-
rithm is also integral. Therefore, we can obtain an integral fea-
sible solution to SP(d, u) with the same objective value.      
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By the above proposition, we have only to check if 

, for all  instead of checking the inte-
grality of the given optimal solution  to SPL in step 4. 
Now we present our branching rule. For the given optimal 
solution  to SPL, we first construct U  for all 

. We then choose  with the lowest index such that  
 If | we do not 

need to branch by proposition 1. Otherwise, we choose 
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and divide U  into two disjoint set U  and 

 such that U  and U  
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Then we make two child nodes in the branch-
and-bound tree such that each  cannot use the 
link  in the first node and each  cannot use 
the link  in the second node. That is, for the first node, we 
require 
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,0=hx  for all  and  );( *ekPh ∈ ),,( **
1 exUk ∈

and for the second node, we require 

,0=hx  for all  and k . );( *ekPh ∈ ),( **
2 exU∈

To satisfy the above requirements, for each path variable  
that is already generated, we first set the upper bound of the 
variable to 0 if  and  at the first 
node. We perform a similar bound setting at the second node.  
Furthermore, at the first node, for each , we 
perform the column generation procedure over the network ob-
tained by removing  from the given network G. The same 
scheme is applied at the second node. Since column generation 
problems can be solved by using ordinary shortest path algo-
rithms over the modified networks, they remain tractable after 
branching. 

hx
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Finally, we used the best bound rule [16] as the node selec-
tion rule in the branch-and-bound tree at step 5. 

IV. OVERVIEW OF THE ALGORITHM FOR 
   THE RWAP 

In this section, we present the algorithm to solve the RWAP.  
Our algorithm can be outlined as follows: We first perform a 
greedy heuristic procedure, which is devised by using the algo-
rithm for SP(d, u) presented in section III, to get a feasible solu-
tion to MP. Recall that a subset C ' of C is assumed to be given 
in the procedure to solve MPL. Therefore, the obtained heuris-
tic solution provides not only an upper bound but also the col-
umns to initiate the procedure to solve MPL. Then, we solve 
MPL using the procedure presented in section II. After the op-
timality of MPL is attained, if the obtained optimal solution to 
MPL is integral or the heuristic solution at hand can be shown 
to be an optimal solution to MP, then we are finished with an 
optimal solution to the RWAP. Otherwise, we go into the 
branch-and-bound phase with the current formulation of MPL.  
If the integral solution obtained in the branch-and-bound phase 
can be shown to be an optimal solution to MP, then we are fin-
ished. Otherwise, the fix-and-generated procedure is performed 
to try to find an improved solution. 

The following is the overall structure of our algorithm to 
solve the RWAP. 
 
Step 1: Greedy Heuristic Procedure 

Step 1.1: Initialization. Set . ,0=HZ ∅=HC
Step 1.2: Find Configuration. Solve SP(1, r) by using the 

algorithm in section III, where 1 is a |K|-dimensional vector 
each of which elements is equal to 1. Let  be the obtained 
optimal solution, and let  be the corresponding independ-

ent routing configuration. 

*x
*c
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, ∀  and . 

},{ *cCHH ∪←
1+← HH ZZ

,0 K∈

←kr
)(

)(

*∑ ∈
−

kPh hk xr ,Kk ∈
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Step 2: Lower Bounding Procedure 

Step 2.1: MPL Solution. Solve MPL using the procedure in 
section II. Let *z  be the obtained optimal solution to MPL, 
and let  be the corresponding optimal objective value. LPZ

Step 2.2: Optimality Test. If *z  is integral, it is an optimal 
solution to MP, stop. Else if , the heuristic solu-
tion obtained in step 1 is an optimal solution to MP, stop. 

 LPZZ H =

Step 3: Branch-and-bound Procedure 
Step 3.1: Integral Solution. Perform the branch-and-bound 

procedure [13] with the columns generated so far. Let z  be 
the obtained integral solution, and let  be the correspond-
ing objective value. 

BZ

Step 3.2: Optimality Test. If ,  LPB ZZ = z  is an opti-
mal solution to MP, stop. 
Step 4: Fix-and-generate Procedure 

Step 4.1: Variable Selection. Set , and let C’ be the 
set of columns generated so far. Choose a variable  such 
that  with the lowest index and 
has a fractional value. 

*ˆ zz ←

'ˆcz

 }ˆˆ{maxarg' ' ccCc zzc −= ∈

Step 4.2: Fixing. Set  for all 
 

 }ˆ,0max{ '' ckckk zarr −=
,Kk ∈

Step 4.3: Generation. Solve MPL with C’ and the modified 
’s. Let kr

*z  be the obtained optimal solution, and let  
be the corresponding objective value. 

FZ

Step 4.4: Integrality Test. If *z  is integral, stop, otherwise, 
go to step 4.1. 
 

Instead of the fix-and-generate procedure, we can consider a 
branch-and-price procedure to get an optimal solution to the 
RWAP. There are, however, some difficulties in devising a 
branch-and-price procedure using the formulation MP. The 
main reason is that it is difficult to devise a branching rule 
which does not destroy the structure of the column generation 
problem. For the detailed discussion, refer to Lee [5]. 

The fix-and-generated procedure cannot guarantee an opti-
mal solution to the RWAP. However, computational results, 
given in the next section, show that the procedure can further 
improve the quality of solutions. 

Before closing this section, we briefly explain how one can 
recover the set of paths used to route the required connections 
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and the assignment of wavelengths to those paths from a solu-
tion *z  that is obtained by running the 4-step algorithm de-
scribed above. First, note that an independent routing configu-
ration is obtained by solving SP(d, u), so that the corresponding 
solution to SP(d, u) represents the set of paths used to route 
connections realized by the configuration. Also, note that the 
paths can be assigned to one wavelength. Therefore, if we are 
to assign a specific wavelength to the configuration, we have 
only to assign the wavelength to those paths. Now, assume that 

, where l is a positive integer. Then, we assign l different 
wavelengths to the corresponding configuration c one at a time 
to realize the configuration l times. 

*x

lzc =*

V. COMPUTATIONAL RESULTS 

We applied our algorithm for the RWAP to randomly gener-
ated problem instances on each of the three networks that are 
shown in Figs. 1, 2, and 3. The first network (NET1) is the 
NSF network [5], [19], the second one (NET2) is the 
COST239 network [20], and the third one (NET3) is from 
Grover et al [21]. 

We randomly generated two classes of problem instances on 
each network. Each class consists of 20 problem instances. In 
each problem instance of the first class (CLASS1), the number 
of required connections for each pair of nodes is set to 1 with 
probability 0.5 and 2 with the same probability. In each prob-
lem instance of the second class (CLASS2), the number of re-
quired connections for each pair of nodes is drawn uniformly 
from the set of integers in the range [1], [10]. Note that the 
numbers of pairs of nodes of NET1, NET2, and NET3 are 91, 
153, and 55, respectively. 

We implemented our algorithm in C++ using CPLEX [22] 
callable mixed integer library for the linear program solution 
routine and the branch-and-bound routine. The tests were per-
formed on a pentium PC (700MHz). 

Computational results are summarized in Tables 1 through 6. 
In those tables, LB refers to the lower bound obtained at step 2 
 
 

Fig. 1. The topology of NET1 (14 nodes, 21 links).  

 

Fig. 2. The topology of NET2 (18 nodes, 39 links).  
 
 

Fig. 3. The topology of NET3 (11 nodes, 23 links).  
 
of our algorithm and equal to . The headings  

, and  refer to the objective values of the integral solu-
tions obtained by the greedy heuristic procedure, the branch-
and-bound procedure, and the fix-and-generate procedure, re-
spectively. Each number in parentheses in these columns repre-
sents the difference between the objective value of the integral 
solution obtained by the corresponding procedure and the cor-
responding lower bound. If the number is equal to 0, the solu- 
tion is optimal. , , , and  refer to the amount 
of running time (seconds) it takes to perform step 1, 2, 3, and 4, 

 LPZ

FT

 ,HZ

BZ FZ

HT LPT BT
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respectively. 
Tables 1 and 2 show the computational results on NET1.  

From the results for the problem instances of CLASS1 (Table 
1), we can see that the lower bounds provided by the MPL are 
very tight. The greedy heuristic procedure yields sharp upper 
bounds, but it needs less than 1 second to get these solutions.  
The heuristic solutions were optimal in 11 problem instances, 
so that we did not need to perform step 3 and step 4. The 
branch-and-bound procedure could not yield improved solu-
tions; however, we could get better solutions by the fix-and-
generate procedure. In 14 out of 20 cases, the solutions ob-
tained by our algorithm were optimal. The maximum differ-
ence between a lower bound and the solution obtained by our 
algorithm was 1. The maximum running time needed to per-
form our algorithm was less than 40 seconds. 

From the results for CLASS2 (Table 2), we can also see that 
the lower bounds provided by our algorithm are tight. The dif-
ferences between the solutions obtained by the greedy heuristic 
procedure and the corresponding lower bounds were relatively 
large in comparison to those in the case of CLASS1. However, 
the branch-and-bound procedure and the fix-and-generate pro- 

cedure could yield improved solutions, so that the maximum 
difference between a solution obtained by our algorithm and 
the corresponding lower bound was 2. The differences were 
only 1 in 12 out of 20 cases. 

Tables 3 and 4 show the computational results on NET2 for 
CLASS1 and CLASS2, respectively. For 9 problem instances 
of CLASS1, we could find optimal solutions. In each of the 
other cases, we could find a solution whose wavelength re-
quirement is larger than the corresponding lower bound by 
only 1. The maximum running time needed to perform our al-
gorithm was less than 160 seconds. 

Table 4 reveals similar results to those on NET1. In this case, 
however, the branch-and-bound procedure reached the time 
limit (1800 seconds) before finding an integral solution. The 
maximum difference between a lower bound and the solution 
obtained by our algorithm was 3. The average difference was 
about 2. The maximum running time needed to perform our 
algorithm was reasonable. 

Tables 5 and 6 show the computational results on NET3. The 
results confirm that our algorithm consistently provided tight 
lower bounds and near-optimal solutions within a short time. 

Table 1. Summary of computational results on NET1 (CLASS1). 

No LB HZ  BZ  FZ  HT  LPT  BT  FT  

1 18 19 (1) 19 (1) 19 (1) 0.41 3.08 1.01 2.09 

2 18 19 (1) 19 (1) 18 (0) 0.66 5.20 1.96 10.32 

3 18 18 (0) - - 0.45 3.48 - - 

4 19 19 (0) - - 0.37 2.80 - - 

5 20 21 (1) 21 (1) 21 (1) 0.35 2.53 0.68 5.37 

6 20 20 (0) - - 0.44 2.89 - - 

7 19 19 (0) - - 0.41 3.13 - - 

8 18 20 (2) 20 (2) 19 (1) 0.36 3.37 1.54 8.41 

9 20 20 (0) - - 0.40 3.04 - - 

10 19 20 (1) 20 (1) 19 (0) 0.36 2.83 1.21 6.45 

11 19 19 (0) - - 0.41 4.21 - - 

12 20 20 (0) - - 0.59 3.02 - - 

13 18 19 (1) 19 (1) 19 (1) 0.44 4.09 1.16 10.01 

14 17 19 (2) 19 (2) 18 (1) 0.37 4.02 1.44 8.34 

15 18 19 (1) 19 (1) 18 (0) 0.41 4.32 1.37 8.41 

16 18 18 (0) - - 0.29 3.32 - - 

17 19 19 (0) - - 0.48 4.55 - - 

18 19 19 (0) - - 0.38 2.80 - - 

19 18 19 (1) 19 (1) 18 (0) 0.37 4.00 1.85 33.13 

20 18 18 (0) - - 0.41 3.26 - - 
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Table 2. Summary of computational results on NET1 (CLASS2). 

No LB ZH ZB ZF TH TLP TB TF 
1 73 79 (6) 74 (1) 73 (0) 1.85 2.51 18.46 19.69 
2 64 71 (7) 66 (2) 65 (1) 1.26 2.66 94.60 22.19 
3 65 66 (1) 66 (1) 65 (0) 1.11 2.22 19.63 16.75 
4 63 66 (3) 66 (3) 65 (2) 1.26 2.80 48.45 16.20 
5 71 75 (4) 72 (1) 72 (1) 1.63 2.21 507.48 14.86 
6 58 62 (4) 60 (2) 60 (2) 1.25 3.41 139.04 17.60 
7 67 69 (2) 69 (2) 68 (1) 1.37 2.11 71.55 15.80 
8 73 79 (6) 75 (2) 75 (2) 1.60 2.24 120.44 19.59 
9 68 74 (6) 70 (2) 69 (1) 1.66 3.46 203.94 26.24 

10 59 67 (8) 61 (2) 60 (1) 1.06 3.48 232.40 19.42 
11 67 73 (6) 69 (2) 68 (1) 1.24 3.71 1126.29 24.77 
12 56 58 (2) 58 (2) 57 (1) 1.23 1.60 10.54 15.72 
13 70 74 (4) 72 (2) 72 (2) 1.63 3.10 100.42 21.89 
14 66 73 (7) 68 (2) 67 (1) 1.43 3.98 532.90 20.14 
15 72 76 (4) 74 (2) 72 (0) 1.25 2.63 343.56 20.68 
16 79 81 (2) 80 (1) 80 (1) 1.08 0.64 10.40 12.40 
17 71 78 (7) 73 (2) 73 (2) 1.54 3.30 97.13 24.94 
18 69 74 (5) 71 (2) 70 (1) 1.26 1.35 5.33 22.30 
19 69 71 (2) 70 (1) 70 (1) 1.36 0.71 0.74 53.86 
20 73 75 (3) 74 (1) 74 (1) 1.33 1.45 10.03 17.88 

 

Table 3. Summary of computational results on NET2 (CLASS1). 

No LB ZH ZB ZF TH TLP TB TF 
1 18 18 (0) - - 0.84 15.94 - - 
2 18 19 (1) 19 (1) 19 (1) 1.53 25.22 8.96 26.26 
3 16 17 (1) 17 (1) 17 (1) 0.96 23.35 9.31 35.08 
4 17 17 (0) - - 1.04 33.82 - - 
5 18 18 (0) - - 1.02 35.66 - - 
6 17 18 (1) 18 (1) 18 (1) 0.96 28.57 10.98 64.45 
7 17 18 (1) 18 (1) 18 (1) 1.03 31.98 12.14 74.32 
8 18 19 (1) 19 (1) 19 (1) 1.26 33.38 20.12 86.08 
9 18 18 (0) - - 1.17 13.42 - - 

10 18 18 (0) - - 1.48 47.60 - - 
11 18 19 (1) 19 (1) 19 (1) 1.21 33.80 14.04 102.4 
12 18 18 (0) - - 1.19 17.51 - - 
13 18 19 (1) 19 (1) 19 (1) 0.91 18.56 5.02 35.91 
14 17 17 (0) - - 0.96 30.37 - - 
15 18 18 (0) - - 1.04 38.50 - - 
16 18 19 (1) 19 (1) 19 (1) 0.97 28.89 12.62 73.18 
17 19 19 (0) - - 1.16 30.53 - - 
18 18 19 (1) 19 (1) 19 (1) 1.21 31.70 13.57 53.48 
19 17 18 (1) 18 (1) 18 (1) 1.47 36.35 16.97 80.53 
20 18 19 (1) 19 (1) 19 (1) 0.96 24.56 11.88 65.89 
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Table 4. Summary of computational results on NET2 (CLASS2). 

No LB ZH ZB ZF TH TLP TB TF 

1 62 65 (2) * 63 (1) 4.31 28.63 1800.0 180.06 
2 65 69 (4) * 66 (1) 3.44 28.03 1800.0 144.56 
3 66 70 (4) * 67 (1) 12.64 102.00 1800.0 123.32 
4 67 71 (4) * 70 (3) 3.41 27.43 1800.0 181.53 
5 58 62 (4) * 60 (2) 2.77 31.20 1800.0 137.65 
6 73 78 (5) * 76 (3) 3.34 9.64 1800.0 65.77 
7 65 69 (4) * 67 (2) 2.90 21.93 1800.0 118.90 
8 60 63 (3) * 62 (2) 4.15 21.53 1800.0 103.82 
9 67 71 (4) * 69 (2) 2.92 24.59 1800.0 126.81 

10 62 65 (3) * 64 (2) 3.99 23.53 1800.0 140.27 
11 61 64 (3) * 63 (2) 2.99 24.83 1800.0 105.21 
12 70 74 (4) * 73 (3) 1.01 28.72 1800.0 114.46 
13 69 76 (7) * 71 (2) 3.56 29.05 1800.0 143.31 
14 67 74 (7) * 70 (3) 3.49 26.80 1800.0 155.37 
15 72 76 (4) * 74 (2) 3.56 21.99 1800.0 133.81 
16 63 67 (4) * 65 (2) 3.02 23.27 1800.0 114.06 
17 68 73 (5) * 71 (3) 3.51 32.52 1800.0 155.84 
18 61 66 (5) * 63 (2) 2.56 20.14 1800.0 110.51 
19 62 65 (3) * 64 (2) 3.59 30.78 1800.0 99.47 
20 64 67 (3) * 65 (1) 4.05 19.11 1800.0 94.82 

* an integral solution could not be found within 30 minutes (1800 seconds). 
 

Table 5. Summary of computational results on NET3 (CLASS1). 

No LB ZH ZB ZF TH TLP TB TF 

1 10 10 (0) - - 0.11 0.98 - - 
2 10 10 (0) - - 0.13 0.68 - - 
3 9 9 (0) - - 0.11 0.53 - - 
4 9 9 (0) - - 0.12 0.42 - - 
5 9 9 (0) - - 0.14 0.48 - - 
6 9 10 (1) 10 (1) 10 (1) 0.19 1.13 0.18 1.28 
7 8 8 (0) - - 0.14 0.63 - - 
8 10 10 (0) - - 0.11 0.55 - - 
9 9 10 (1) 10 (1) 10 (1) 0.16 1.07 0.23 1.15 

10 9 10 (1) 10 (1) 10 (1) 0.21 1.15 0.17 3.69 
11 10 11 (1) 11 (1) 10 (0) 0.13 0.31 0.02 0.42 
12 10 10 (0) - - 0.12 1.00 - - 
13 8 9 (1) 9 (1) 8 (0) 0.09 0.34 0.05 0.57 
14 9 9 (0) - - 0.09 0.55 - - 
15 10 10 (0) - - 0.14 0.66 - - 
16 9 10 (1) 10 (1) 10 (1) 0.11 1.88 0.40 2.74 
17 9 9 (0) - - 0.16 0.80 - - 
18 11 11 (0) - - 0.17 0.42 - - 
19 9 9 (0) - - 0.16 0.95 - - 
20 10 10 (0) - - 0.14 0.55 - - 
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Table 6. Summary of computational results on NET3 (CLASS2). 

No LB HZ  BZ  FZ  HT  LPT  BT  FT  

1 28 29 (1) 29 (1) 29 (1) 0.45 0.61 0.11 2.05 

2 30 30 (0) - - 0.44 0.33 - - 

3 42 44 (2) 42 (0) - 0.45 0.45 0.8 - 

4 38 39 (1) 39 (1) 38 (0) 0.37 0.30 0.09 1.82 

5 34 36 (2) 36 (2) 35 (1) 0.63 0.64 0.51 4.58 

6 31 31 (0) - - 0.42 0.54 - - 

7 34 34 (0) - - 0.32 0.14 - - 

8 36 36 (0) - - 0.52 0.29 - - 

9 42 44 (2) 42 (0) - 0.46 0.18 0.04 - 

10 30 31 (1) 31 (1) 31 (1) 0.46 0.74 0.12 3.97 

11 36 36 (0) - - 0.49 0.23 - - 

12 31 34 (3) 33 (2) 32 (1) 0.49 1.16 0.63 3.82 

13 28 30 (2) 30 (2) 29 (1) 0.49 1.11 1.11 4.30 

14 34 36 (2) 35 (1) 35 (1) 0.26 0.42 0.11 1.50 

15 38 39 (1) 38 (0) - 0.50 0.09 0.04 - 

16 29 31 (2) 30 (1) 30 (1) 0.44 1.09 0.64 2.48 

17 36 36 (0) - - 0.38 0.07 - - 

18 33 33 (0) - - 0.41 0.04 - - 

19 34 37 (3) 35 (1) 35 (1) 0.54 0.56 0.11 2.88 

20 36 38 (2) 37 (1) 37 (1) 0.53 0.38 0.08 2.28 
 

From the computational results presented so far, we can see 
that the lower bounds provided by MPL are very tight. We can 
also see that the greedy heuristic procedure (step 1) of our algo-
rithm performs very well for problem instances in which the 
number of required connections is relatively small (CLASS1), 
so that the subsequent procedures (step 3 and 4) could not have 
many chances to yield better solutions. For the problem in-
stances of CLASS2, the differences between the solutions ob-
tained by the greedy heuristic solution and the lower bounds 
were relatively large. The branch-and-bound procedure and the 
fix-and-generate procedure, however, could reduce the differ-
ences and yield near-optimal solutions within a reasonable time. 

VI. CONCLUSION 

We have presented an efficient algorithm, based on the col-
umn generation technique, which provides high quality solu-
tions to the routing and wavelength assignment problem 
(RWAP) for the implementation of efficient WDM all-optical 
mesh networks without wavelength conversion. In comparison 
with the heuristic algorithms proposed by the earlier studies in 

the literature, our algorithm gives a unified approach to routing 
and wavelength assignment rather than handling the routing 
decision and the wavelength assignment decision in a sequen-
tial manner. Computational results performed on the three net-
works show that the proposed algorithm can yield high quality 
solutions and tight lower bounds at the same time. Though the 
proposed algorithm cannot guarantee optimal solutions, com-
putational results show that the algorithm yields provably good 
solutions within a reasonable time. 
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