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Featured Application: Diabetes is a common chronic disorder defined by excessive glucose levels
in the blood. A good diagnosis of diabetes may make a person’s life better; otherwise, it can
cause kidney failure, major heart damage, and damage to the blood vessels and nerves. As a
result, diabetes classification and diagnosis are vital tasks. By using our proposed methodology,
clinicians may obtain complete information about their patients using real-time monitoring. To
gain new insights, they can combine historical information with current data, making it easier
for them to perform more thorough and comprehensive treatments than before, and they will be
able to provide proactive care, which will help to improve health outcomes and reduce hospital
re-admissions.

Abstract: Diabetes is a long-term illness caused by the inefficient use of insulin generated by the
pancreas. If diabetes is detected at an early stage, patients can live their lives healthier. Unlike
previously used analytical approaches, deep learning does not need feature extraction. In order to
support this viewpoint, we developed a real-time monitoring hybrid deep learning-based model
to detect and predict Type 2 diabetes mellitus using the publicly available PIMA Indian diabetes
database. This study contributes in four ways. First, we perform a comparative study of different
deep learning models. Based on experimental findings, we next suggested merging two models,
CNN-Bi-LSTM, to detect (and predict) Type 2 diabetes. These findings demonstrate that CNN-Bi-
LSTM surpasses the other deep learning methods in terms of accuracy (98%), sensitivity (97%), and
specificity (98%), and it is 1.1% better compared to other existing state-of-the-art algorithms. Hence,
our proposed model helps clinicians obtain complete information about their patients using real-time
monitoring and can check real-time statistics about their vitals.

Keywords: deep learning; CNN; Bi-LSTM; PIDD; real-time; prediction model
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1. Introduction

Diabetes is a prevalent chronic illness characterized by the presence of high glucose in
the blood. A proper diagnosis of diabetes can make a person’s life healthier; otherwise, it
may cause kidney failure, serious damage to the heart, and may also affect the blood vessels
and nerves [1]. There are three types of diabetes: Type 1, Type 2, and Gestational, which
are found in the human body [2]. If our body does not utilize the insulin that our pancreas
produces, then it is a severe explanation for Type 2 diabetes. People below 30 usually suffer
from Type 1 diabetes, which cannot be treated with oral medicines. It requires additional
insulin therapy. However, people of middle age and older who have type 2 diabetes may
recover by living a healthy lifestyle and receiving proper checkups. However, gestational
diabetes is a common kind of diabetes that affects women during pregnancy. High blood
glucose levels may be caused by several hormones and increased insulin content during
pregnancy [3].

There are some necessary diagnostics tests through which we can diagnose diabetes,
such as A1c, random blood sugar, fasting blood sugar, and oral glucose tolerance tests,
which need lots of parameters to predict diabetes properly. One cannot diagnose diabetes
with one parameter, such as excessive consumption of vitamin E can alleviate A1c levels,
while B9 and B12 can lower A1c levels. As a result, several criteria must be combined
to diagnose diabetes accurately. There are many factors that can help to diagnose dia-
betes. These factors include glucose level and BMI, diabetes pedigree, blood pressure, age,
pregnancy, skin thickness, and insulin, as referenced in Table 1.

Table 1. PIMA Diabetes real-time Dataset.

S.no Parameters Description of Parameters Range

1. Pregnancies No. of times pregnant 0–17
2. Glucose Plasma glucose 2 h in an oral glucose tolerance test (mg/dl) 0–199
3. Blood-pressure Diastolic blood pressure (mm Hg) 0–122
4. Skin Thickness Skin fold thickness (mm) 0–99
5. Insulin 2-h serum insulin (mu U/mL) 0–846
6. BMI Body mass index (weight in kg/(height in m)2) 0–67.1
7. Diabetes-Pedigree Diabetes pedigree function (weight in kg/(height in m)2) 0.08–2.42
8. Age Age (years) 21–81

1.1. Diabetes Prediction in Real-Time Environment

Intensive care of blood glucose levels helps in preventing and treating diabetic prob-
lems [4]. Innovative biosensors that may enable real-time monitoring of a patient’s health,
as well as recent advancements in information and communication technology (ICT), pro-
vide a new viewpoint on diabetes treatment. Diabetic patients can monitor their blood
glucose levels by using self-monitoring blood glucose (SMBG) portable devices [5] or
continuous glucose monitoring (CGM) sensors [6] to track glucose variations, because of
which they will be able to respond quickly and with the necessary actions. The findings
suggest that monitoring patients’ glucose levels can help them control their disease and
enhance their diabetes management performance [7]. The greatest option for improving
diabetes care is glucose monitoring in a real-time system that includes sensors, a gateway
(smartphone), and a cloud system [8]. It uses a smartphone as a gateway to acquire sensor
data from a sensor node connected to the body [9]. Wireless technology is required for com-
munication between the sensor node and the smartphone, as well as low-power operation
for the sensor node, and the best choice for this is Bluetooth low energy (BLE) [10].

1.2. Motivation

There are 415 million people worldwide suffering from type 2 diabetes, and the major
cause is an unhealthy lifestyle. According to WHO, 82% of deaths are due to noncommuni-
cable disorders, and diabetes is one of them [1]. According to Vhaduri et al. [11], continuous
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glucose monitoring using personal health devices in diabetes care may benefit from the
early detection of the disease. Medical recommendations advocate for early detection to
identify risk-prone individuals and encourage patients to proactively self-monitor their
lifestyle to reduce risk factors. Remote patient monitoring (RPM) may help decrease the
alarming number of diabetes-related mortality by providing early detection and timely
alerts to patients and medical practitioners. RPM lowers the need for routine examinations,
allows continuous treatment efficacy to be measured, and allows for intervention strate-
gies [12]. Through real-time monitoring, clinicians may obtain complete information about
thei patients. To obtain new insights, they can combine historical information with current
data, making it simpler for them to perform a more thorough and comprehensive treatment
than before, and they are able to provide proactive care, which assists in improving health
outcomes and minimizing hospital re-admissions. Additionally, patients themselves can
monitor their vitals in real-time, such as blood pressure and heart rate. This not only
motivates patients to regularize their habits, which contributes a lot to improving their
health conditions and also helps clinicians to receive real-time statistics about their vitals.

1.3. Major Contributions

In this research, we have made a fourfold contribution:

• We made a comparison of several deep learning algorithms such as CNN, bi-directional
long-short memory (Bi-LSTM), deep neural network (DNN) [13], and their combina-
tions, CNN-LSTM and CNN-BiLSTM, for the detection and prediction of diabetes
using the static PIMA Indian dataset (PIDD) [14];

• We used the best parameters to train our models. We ran a grid search algorithm that
found the best values for parameters such as learning rate, epochs, optimizer, batch
sizes, and hidden units;

• We split our dataset into test and training sets by using 10-fold cross-validation,
and the precision of each model was improved. On the other hand, CNN-Bi-LSTM
outperformed with 98% accuracy, 97% sensitivity, and 98% specificity;

• We proposed a framework to test our optimized models using a real-time dataset.

The remainder of the paper is structured in the following manner: The second section
discusses related work; Section 3 describes the methodology, which defines the PIMA
Indian dataset and preprocessing steps to filter data, the models used to diagnose patients
with diabetes, and the proposed framework to diagnose diabetes in the real-time environ-
ment; the results and discussions are addressed in Section 4; and, finally, Section 5 draws
conclusions and discusses future scope.

2. Related Work

In India, diabetes is an inescapable problem as over 70% of the grown-up populace
suffers from diabetes. Different scientists attempted to detect and predict diabetes by
applying various ML and data mining methodologies, and some applied deep learning
and fuzzy logic [15]. Data mining approaches have supplanted old procedures because
they are more accurate, precise, and predictive in their predictions. Furthermore, ma-
chine learning is an artificial intelligence system that learns correlations between nodes
without the need for previous training [16]. The significant capacity of machine learning
approaches to drive the prediction model without extensive training is connected to the
mechanism that underlies these techniques. Methods such as data mining and machine
learning assist in detecting information that is otherwise difficult to identify when utilizing
a cutting-edge technique [17]. Some of the past related research work focuses on the de-
tection and prediction of diabetes using PIDD [14,18–22]. Numerous ML methods, such
as decision trees, RF, SVM, and Naive Bayes, have recently shown promising outcomes
in various types of medical research. Zolfagri et al. [23] suggested a way to identify dia-
betes in female Pima Indian populations by using a neural network and support vector
machine (SVM) models. Sanakal et al. [24] diagnosed diabetes using the prognosis of fuzzy
c-means clustering and SVM. Sneha et al. [1] used PIDD and chose the best attributes
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that are essential for classification and excluded the remainder, such as plasma, glucose,
postprandial, pregnancy, serum creatinine, and HBAIC attributes, from the dataset and
applied different ML algorithms such as SVM [25], Naive Bayes, and RF. However, SVM
outperformed the simplest with an accuracy of 77.37%. Karatsiolis et al. [26] suggested a
region-based SVM method for the diagnosis of diabetes on the Pima Indian medical dataset.
Similar to Karatsiolis, Kumari et al. [15] suggested SVM for the detection of Type 2 diabetes.
Al et al. [27] applied a decision tree approach to identify type 2 diabetes.

The researchers Dey et al. [18] and Zou et al. [28] developed a web-based strategy to
forecast diabetes using machine learning techniques on the PIMA Indian dataset. On the
other hand, no single study has examined all the well-known supervised learning methods
in a comprehensive manner. Sivastava et al. [20] used an ANN approach to predict diabetes
using the PIMA Indian dataset. Saji et al. [29] developed a multilayer perceptron that was
used to predict diabetes. Using an autotuned multilayer perceptron, Jahangir et al. [30]
suggested an expert system to predict diabetes. Kannadasan et al. [31] proposed a DNN
for the classification of Type 2 diabetes using stacked encoders for feature engineering,
a softmax function for classification, and a backpropagation method for fine-tuning the
network. Training of the model was performed with PIDD along with 786 patient records
and eight features and achieved an accuracy of 86.26%. Apporva et al. [32] used the
decision tree technique to predict type-2 diabetes using the PID dataset [33]. A comparison
of performance using an SVM classifier showed that the decision tree successfully predicted
type-2 diabetes. In summary, the above-discussed techniques have some pros and cons,
which are as follows: For example, ML algorithms such as RF, decision trees, and SVM
are helpful if we use them for classification problems, except for regression, where they
may not be suitable for predicting training data beyond the range. Similarly, within the
decision tree, if there is a little change in data, it may affect the entire structure of the
model [31]. Furthermore, SVM faces minor issues with noisy data [34]. Therefore, these ML
algorithms are suitable for classification problems. However, ANN and CNN are good at
making predictions because, in backpropagation, these methods obtain good results when
they use gradients to update the weights. However, they have some problems, such as
vanishing gradient problems or exploding gradient problems, where the value of gradients
(a value used to update the weights) decreases with backpropagation, so the value becomes
too small and does not help much with learning. However, it is possible to overcome
these limitations by applying an LSTM and GRU by using ReLU, which allows capturing
the impact of the earliest given data. Moreover, by tuning the burden value during the
training process, the vanishing gradient issue is usually avoided [35,36]. Our study used
CNN-Bi-LSTM, where CNN is employed for feature extraction, and Bi-LSTM has a cell
state memory during its training phase, which captures the impact of earlier stages. Besides,
it has another peehole connection, which helps remove the vanishing gradient problem.
Furthermore, Bi-LSTM can collect information in two ways: one from the past and one
from the future, which helps more efficiently with the prediction of diabetes.

3. Methodology

In this part, we proposed a framework by describing several components of the frame-
work, such as the dataset that was uploaded to cloud servers; preprocessing procedures
that are required for data cleaning; description of models used for detection and predic-
tion of Type 2 diabetes where we explained the implementation of three models using a
static PIMA dataset such as CNN, CNN-LSTM, and CNN-Bi-LSTM. Here, CNN-Bi-LSTM
is further explained through several phases, such as model training using static PIDD.
Then the model is optimized using a grid search algorithm. Furthermore, training results
were utilized for real-time testing, and lastly, the prediction process of CNN-Bi-LSTM was
discussed [36].
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3.1. Availability of Real-Time Dataset for Training and Testing

This section provides a comprehensive description of the real-time PIMA Indian
dataset [14] (1UCI: https://archive.ics.uci.edu/ml/support/Diabetes (accessed on 15 Jan-
uary 2020)), which consists of 768 female patients [37] who were between the ages of 21
and 25 years. There are 268 diabetics among them, and the rest are healthier ones. The
dataset consists of 8 vital parameters, and a complete overview of the dataset is given in
Table 1, where we input parameters and their ranges given, such as the number of times a
woman was pregnant and expressed in Figure 1.
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Remark 1. In Table 1, range specifies a threshold value for, e.g., BMI (weight in kg)/(height in m)2.

Now we discuss the reasons for selecting these parameters for our model: There
is a high possibility that glucose levels may increase during pregnancy, which can lead
to diabetes-related complications [38]. One of the main reasons for diabetes mellitus is
the presence of high glucose in the blood. Obesity is another cause of Type 2 diabetes.
Diabetes is a genetic disease, so diabetes pedigree functions are critical in providing data.
Additionally, imbalances in insulin may also cause diabetes mellitus in people who may
consume insulin and suffer from skin-thickening problems. Lastly, as we age, the probability
of diabetes increases, specifically after the age of 45. Therefore, it is evident that all these
biological parameters play a significant role in measuring and correctly classifying diabetes
mellitus.

3.2. Preprocessing of Real-Time Data

To a considerable degree, the accuracy of the data determines the results of the predic-
tion. This indicates that preprocessing data plays a vital function in the model [39]. In this
analysis, we picked some of the necessary methods to refine the initial dataset. Firstly, there
are some incomplete and inaccurate dataset values due to mistakes or deregulation. These
pointless values contributed to several deceptive experimental results, such as the diastolic
blood pressure, systolic blood pressure, and body mass index values may not have been 0
in the initial dataset, implying that the true value was absent. We used the mean from the
training data to replace all missing values and reduce irrelevant values shown in Table 2.

https://archive.ics.uci.edu/ml/support/Diabetes
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Second, elimination of outliers: any attribute that does not conform to the usual boundary
is referred to as an outlier, as seen in Figure 2, and can be removed by using Equation (3):

Q1 = a.quantile(0.25) (1)

Q3 = a.quantile(0.75) (2)

IQR = Q3 −Q1 (3)

where Equations (1) and (2) are the first and third quantile [38], respectively. IQR stands
for interquartile range, and its values are shown in Table 3. All values that lie beyond this
threshold (IQR) are termed outliers.
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Table 2. Missing values in PIMA dataset.

S.no Attributes Missing Values

1. Pregnancies 0
2. Glucose 5
3. Blood-pressure 35
4. Skin Thickness 227
5. Insulin 374
6. BMI 11
7. Diabetes-Pedigree 0
8. Age 0

Table 3. IQR values for PIMA Indian dataset.

S.no Attributes IQR Threshold Values

1. Pregnancies 5
2. Glucose 41.25
3. Blood-pressure 18
4. Skin Thickness 32
5. Insulin 27.25
6. BMI 9.3
7. Diabetes-Pedigree 0.38
8. Age 17.0
9. Outcome 1
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Filtered values are seen in Figure 3. The next step is to normalize data, such as bringing
data into the range of 0 and 1 by adding normalized filters and calculating z-score values
by using Equation (4) [40]. Where a is the mean or average value of the variable, ai is input
values, and s is the standard deviation of the variable. However, bi is a new normal value.
Table 4 shows mean, standard deviation, minimum, and maximum values of the PIAM
dataset. This reduces the uncertainty of estimation and accelerates the process.

bi = (ai − a)/s (4)

where

bi : normalised value
ai = input data
a : input data average
s = input data standard deviation
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Table 4. Statistical analysis of PIMA Indian dataset.

S.no Parameters Mean Standard Deviation Minimum Maximum

1. Pregnancies 3.84 3.36 0 17
2. Glucose 121.6 30.46 44 199
3. Blood-pressure 74.8 16.68 24 142
4. Skin Thickness 56.89 44.51 7 142
5. Insulin 139.42 87.24 14 846
6. BMI 33.63 12.22 18 142
7. Diabetes-Pedigree 0.47 0.33 0 2.42
8. Age 33.24 11.76 21 81
9. Outcome 0.34 0.47 0 1

3.3. Feature Selection

Feature selection is the process of removing non-informative or redundant input
characteristics from the dataset. Feature selection decreases the computational complexity
of prediction algorithms. This minimizes prediction uncertainty and improves the model’s
overall efficacy.

The Chi-squared test is a non-parametric statistical technique used to examine the
relationship between two variables [41]. The approach generates a number that quantifies
the relationship between the input characteristics and the projected result. The greater
the value, the stronger the connection between the input and output characteristics, and
features with values less than the critical value are removed. As the Chi-squared approach
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operates on categorical data, the numerical values of the features in this dataset were
discretized depending on their frequency of occurrence.

Extra trees apply several randomized decision trees to different subsets of the total
dataset [42]. In the tree building process, the input variables and cut-off values are chosen
at random to divide a node so that they are fully independent of the output variable. Each
tree leads to a different model, which was trained with subsets of data, and the algorithm
evaluates the relevance of the contributing features using a criterion known as the Gini
index.

LASSO is an L1 regularization approach for feature selection that is used to facilitate
dataset interpretation [43]. In this technique, regression analysis is used to estimate pa-
rameters and pick models at the same time, minimizing feature variability by lowering
coefficients of noncorrelation characteristics to zero. Table 5 shows the essential charac-
teristics chosen by each technique, along with their ranking measures. The Chi-squared
test employs the chi-score, extra trees use the Gini index, and LASSO employs regression
coefficients. The characteristics of glucose, insulin, BMI, and age were consistently scored
as high in relevance and were chosen by each of the techniques used. After experiment-
ing with the characteristics, it was discovered that removing the skin fold thickness and
diabetes pedigree features enhanced the model’s overall performance.

Table 5. PIMA Diabetes real-time Dataset.

S.no Features Chi-Squared Test Extra Trees LASSO

1. No of Pregnancies 110.54 0.105 0.00
2. Glucose 1537.20 0.230 0.0065
3. Blood-pressure 54.26 0.089 0.0
4. Skin Thickness 145.20 0.090 0.0
5. Insulin 6779.24 0.147 0.0004
6. BMI 108.32 0.123 0.0006
7. Age 189.30 0.128 0.0002
8. Diabetes-Pedigree 4.30 0.128 0.0

3.4. Data Augmentation

The synthetic minority oversampling approach (SMOTE) was utilized to eliminate
biases in the produced models [44]. SMOTE is an oversampling approach that generates
new samples from existing class samples to increase the number of minority class samples
in the dataset. The method creates new minority class samples that are convex mixtures of
two or more randomly selected neighboring data samples in the feature space rather than
duplicates. A recent study showed that using SMOTE in clinical datasets improves model
performance by decreasing the detrimental impact of unbalanced data.

3.5. Diabetes Prediction Models

This study aimed to develop a model for forecasting diabetes using CNN-Bi-LSTM that
has not been used for diabetes classification and prediction. Recently, different approaches
of deep learning, such as LSTM, CNN, and their derivatives, have been used for the
classification of diabetes, although these methods achieve good accuracy in the predictions.
However, they still face certain challenges, such as vanishing gradient problems and
exploding gradient problems, that adversely affect the model’s training. These drawbacks
can be resolved by applying a combination of CNN and Bi-LSTM, which adjusts the
weight value during the training phase to gather data results. This part clarifies the detailed
architecture of CNN, CNN-LSTM, and CNN-Bi-LSTM over the PIDD [15] and then attempts
to assess how well these models perform in terms of precision, sensitivity, and specificity.
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3.5.1. Convolutional Neural Network

Here, in this section, we explained the role of the CNN by explaining the functionality
of the different layers for the prediction of Type 2 diabetes mellitus. Initially, CNN was
used mainly for image classification, but today, CNN can be applied in various domains.

Definition 1. A CNN is a special kind of multi-layer perceptron identical to a traditional neural
network where specific inputs are supplied to each neuron. These are self-learned neurons that
learn from data with the assistance of weight and bias by conducting such operations as the dot
product [23]. CNN is made of layers, namely: a convolutional layer, a maximum pooling layer,
a flattening layer, and a fully connected layer. The goal of the convolutional layer is to learn the
feature representation for the input data. It is the heart of the network and has local connections
and weights for common features. In the first stage, input parameters are passed through the kernel
and then outputs are sent via a nonlinear activation function ReLU, which does not activate all the
neurons at the same time. It only activates those neurons which are in the range of 0 and 1. Then
output neurons are passed through the pooling layer, which may be thought of as a fuzzy filter since
it decreases the dimensionality of the features while increasing their robustness. Finally, the fully
connected layer receives signals from the preceding layers and delivers them to each neuron in the
system. The output layer, which is generally a softmax classifier, then does the classification. As
shown in Figure 4, In our case, the PIDD consists of six features as input and one as target output,
which consists of two values such as 0 and 1. Input features are described as where input parameters
belong to a feature set; here, the outcome variable belongs to a class label, such as 1 specifies a diabetic
and 0 specifies a healthier one.
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In our proposed model, these input features were passed through convolutional 1D,
where we applied batch normalization (BN) along with ReLU. Here, BN normalizes input
features into batches, which minimizes the gradient saturation during covariate shift [45],
and the ReLU activation function decreases the redundancy by allowing values that range
between 0 and 1 to accelerate the speed. The complete process is mathematically explained
in Equation (5) [46]

y(k) = f

(
N

∑
1

x̃j(k)×W p(k) + bp(k)

)
(5)

where

Wp : specifies weight
x̃ : Batch Normalization of input features
f (.) : represents the activation function ReLU
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p : no of filters
bp : bias term value ranges from 0–1

3.5.2. Architectural CNN-LSTM Model for Diabetes Prediction

Here, in this segment, we explained the working of the CNN-LSTM hybrid model by
explaining the functionality of CNN and LSTM for the prediction of Type 2 diabetes mellitus.
CNN and LSTM are deep learning models and are used for predictions. Here we use the
CNN-LSTM [47] combination to classify Type 2 diabetes mellitus over the PIDD. Whereas
CNN is used for feature engineering as it automatically selects the unseen features for model
training, and LSTM is used for diabetes classification. The complete structure of CNN-
LSTM is shown in Figure 5. Firstly, input features are passed through a convolutionary
layer responsible for generating a feature map by striding of filters at one step. Next, we
introduced non-linearity to the feature by using the ReLU function, which ranges from
0 to 1, i.e., it does not activate all neurons while simultaneously deactivating neurons
whose values are less than zero. These function maps are then transferred into a batch
normalization that regularizes their meaning and prevents over-fitting functions. Besides,
these functions were transferred into the max-pooling layer used for the downsampling of
the function diagram. Next, down-sampled features were passed through the flattening
layer, which is responsible for translating these function matrices into 1D vectors, and
were passed through the LSTM layers as inputs. LSTM is a particular type of RNN that
uses cell state memory instead of primary neurons to manage the sequence classification.
Eventually, these values were transferred into a classification layer that functions similarly
to how the ANN works. Finally, it went into the sigmoid activation, responsible for the
binary classification and predicted diabetes.
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3.5.3. CNN-Bi-LSTM: A Real-Time Framework

In this study, we utilized the architecture of CNN-LSTM in a bidirectional way, which
is designed for diabetes prediction in a real-time framework. Here, first, we performed
the training process over the static dataset using optimized parameters by using the
grid search hyperparameter optimization technique. Then, we cross-validated our model
with a real-time scenario, and lastly, we performed a prediction process over the training
dataset to predict diabetes. The complete working of the CNN-Bi-LSTM [48] architecture
was discussed in three sections, such as training of the model using the PIDD dataset,
optimizing the model with hyperparameter optimization, and lastly, prediction of diabetes
through our proposed optimized CNN-Bi-LSTM model. Architectural representation is
shown in Figure 6.
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I. CNN-Bi-LSTM Training Process: The main steps are explained by the activity diagram
shown in Figure 7.

• Input data: The necessary data for CNN-Bi-LSTM training must be entered;
• Preprocessing of input data: The z-score standardization approach was used to

normalize input data since there was a substantial gap in input data to fully train
the algorithm, as indicated in Equation (4);

• Initialization of network: Here, we initialized weights and biases for each layer
of CNN-Bi-LSTM;
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• CNN Layer Calculation: Eight input features with an input shape of 6 × 1 were
passed through a convolutionary layer, which is responsible for generating a
feature map by striding filters of kernel size 1 at one step. We introduced non-
linearity to the feature by using the ReLU function, which has a range of 0 and
1, i.e., it does not activate all neurons at the same time as it deactivates neurons
whose values are less than zero. These function maps are then transferred into a
batch normalization that regularises the meaning and prevents the over-fitting
functions. Besides, these functions are transferred into the max-pooling layer,
with pool size 1 being used for the downsampling of the function diagram.
Down-sampled features are then passed through the flattening layer, which is
responsible for translating these function matrices to 1D vectors.

Remark 2. (Stride:) The stride is the number of pixels that have been moved across the input matrix.
If we set the value of stride as 1, the filters shift one pixel at a time, whereas if we set the value of
stride at 2, the filters move two pixels at a time. In this section, we use stride filters with kernel sizes
of 1.

• Bi-LSTM Estimation of the layer: Using Bi-LSTM [49,50], the output data of
the CNN layer are determined. Bi-LSTM is a bidirectional RNN that consists of
32 hidden LSTM cells, so there are a total of 64 LSTM cells that have an additional
peehole connection that prevents vanishing gradient problems and additional
cell state memory that uses past and future knowledge to forecast output by
using two separate hidden layers, such as forward state sequence, is represented

by
→
h t as shown in Equation (6) [43], the backward state sequence

←
h t is shown in

Equation (7) [43], and the output vector is represented by Equation (8)

→
ht = H

(
Wph pt + Whhht−1 + bh

)
, (6)

←
ht = H

(
Wph pt + Whhht+1 + bh

)
, (7)

where

ht : hidden state at timestamp t
Wph : weight matrix between input and hidden vector
pt : input vector at timestamp t
Whh : the weight vector between two hidden states
ht+1 : the hidden state vector at timestamp t + 1
bh: the bias vector for hidden state vectors

qt = Wpq
→
h t + Wpq

←
h t + Bq, (8)

As a result, output values qt are derived by summing up weight matrices of input and

output by performing a dot product by forwarding hidden layers
→
ht and backward hidden

layers
←
ht and adding a constant bias Bq.

• Dropout: 15% dropout was applied, which is used to reduce the overfitting in
neural networks by dropping some of the random nodes during the network
training process;

• Output values were transferred into a sigmoid function used for binary classifi-
cation, which determines whether or not the input instance is diabetic [51];

• Calculation Error: The cost function assesses how effectively the neural network
is equipped by describing the difference between the provided testing sample
and the expected performance. The optimizer function was used to decrease
the cost function. A cross-entropy function, which comes in a variety of forms
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and sizes, is commonly used in deep learning. Mathematically cost function ϕ is
expressed as Equation (9) [35]:

ϕ =
1
m ∑(a log(b) + (1− a) log(1− b)), (9)

where

m : batch size
a : output resultant value
b : expected value

Experiments have shown that when Adam is used, the optimal point is reached fast.
As a result, we employed the Adam optimizer method, which has a 1 × 10−4 learning rate.

• Evaluate if the prediction mechanism’s final criterion has been achieved: Effec-
tive completion of cycles depends on two factors: weights should not exceed
a certain threshold, and the estimated error rate is below a specified threshold.
If at least one of the graduation standards is fulfilled, the training is finished.
Otherwise, the instruction would be resumed;

• Back Propagation Error: The calculated error is spread in the opposite direction,
the weight and bias of each layer are modified, and then the process goes back
to stage (4) to start network training.

Hyperparameter Optimization: In this part, we presented the techniques for tuning
the hyperparameter for model training in the best way possible to predict diabetes more
accurately. It is a technique that helps us reduce the cost of the model by tuning hyperpa-
rameters that change the shape of the model to achieve the highest accuracy. This study
applied a grid search algorithm to five deep learning models to train their parameters.

Definition 2. (Grid Search algorithm) is often referred to as an exhaustive search across hyper-
parameters using permutation and combination. It returns the settings with maximum precision
and accuracy during the validation process. We discovered that each of the five models performs
well after analyzing them using a 10-fold cross-validation approach rather than dividing the dataset
for training and testing. We also reported that the CNN-Bi-LSTM model outperformed four deep
learning models in terms of accuracy, sensitivity, and specificity.

II. CNN-Bi-LSTM Prediction Process: The prediction of the CNN-Bi-LSTM model is
explained by the activity diagram shown in Figure 7;

• Input Data: The essential data for CNN-Bi-LSTM predictions must be entered;
• Preprocessing of input data: This is performed through standardization through

Equation (4);
• Process of prediction: Standardized data are fed into the CNN-Bi-LSTM, which

is then used to calculate the output value;
• Output Result: Recovered results are provided to complete the prediction process.

The model summary of CNN-Bi-LSTM is represented in Table 6.

Table 6. Layered structure of CNN-Bi-LSTM.

S.no Layers (Type) Filters Output Shape Param

1.
Sequential model with

input_shape
(None, 1, 6)

- - -

2. CONV1D F = 64,
Kernel = [1 1] (None, None, 1, 64) 576

3. BatchNormalization - (None, None, 1, 64) 256
4. MaxPooling Filter_size = [1 1] (None, None,1, 64) 0
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Table 6. Cont.

S.no Layers (Type) Filters Output Shape Param

5. Flattening - (None, None, 64) 0
6. Bi-LSTM - (None, 128) 66,048
7. Dropout 50% (None, 128) 0
8. Dense (None, 1) 129
9. Classification - -

3.6. Prototype Implementation and Testing of Proposed Model Using Real-Time Database

This section explains the prototype implementation of a real-time system that uses
deep learning models to predict diabetes and provide assistance to users and medical
experts. Because the focus of this work is on integrating a diabetes prediction model and
leveraging user acquired data to make predictions for enabling lifestyle management, the
proposed system is based on a cloud-based brokering framework that integrates multiple
health cloud platforms and devices. The devices used in this work are the Samsung Note 8
smartphone an IOT health device gateway that integrates SPO2 sensors such as MAX30100,
which is an integrated sensor used to sense SPO2, as well as BPM; an IOT sensor as Node 32;
BP sensor; and Pulse sensor. Additionally, it includes AWS serverless API gateway, AWS
storage, and AWS server. The working of the proposed framework is shown in Figure 8.
Data are collected from medical device smartphones through AWS serverless gateways
and transmitted to AWS cloud servers.
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3.6.1. Sensing of Real-Time Data through a Proposed Framework

This node contains gadgets that capture user data both actively and passively. The user
first enters their static profile information. The IOT devices offer active collection, in which
the user monitors their levels of glucose, blood pressure (BP), and SPO2. The smartwatch
and smartphone allow passive collection; they automatically track their steps, caloric
outflow, activity type, and duration. Additionally, one can upload its physical reports
through smartphones. We utilized an ESP32 based gateway that has built-in Bluetooth and
Wi-Fi. Our gateway takes data from all three sensors ( Spo2, heartbeat, and blood pressure)
and sends data to the AWS cloud using Wi-Fi, and receives data from our handheld device
via Bluetooth. Our gateway provides independence to elderly users who do not use mobile
phones. Signing into their respective mobile apps allows users to access this information.
Figure 9 depicts the data gathered from each of the devices for a single volunteer individual
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in this study. The various device sensors on Android smartphones and smartwatches are
used to automatically collect and aggregate activity data and present the fitness history
to consumers via the mobile application. The Google vendor API monitors movements,
activities, and heart rates, as well as calculating the calories burnt and steps taken by using
gyroscope and accelerometer sensors on smartphones and smartwatches, as well as an
added heart rate sensor on smartwatches.
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In the proposed framework AWS server retrieves patient information from the mobile
app as well as other mobile applications, e.g., Google Fit, every hour by connecting to
the AWS cloud using Server Less API gateway (AWS), and it requires only one-time
credential authentication. For authentication purposes, we required the OAuth 2.0 protocol
to connect with the mobile application API [12]. It is standard protocol for connection
with the various devices online, desktop, and mobile application authorization. This is
the security protocol that is utilized for both Google services and API data interaction.
A one-time authentication strategy was used to reduce the intrusiveness of reminding
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medical professionals or caregivers to authenticate themselves with the online application
every time they wish to monitor their data. When registering for the first time, the user
connects to their mobile app account over the API to approve access to vendor cloud API
privileges for the framework. The user was provided this one-time, two-step method
through the mobile app, and they do not need to repeat it. If required, the user may include
optional parameters such as skin fold thickness, number of pregnancies, and pre-existing
medical concerns into the online application. The server obtains and stores the unique
user authentication token for each vendor API. In order to keep the token continually
updated, the server connects to the cloud API of the respective vendor and automatically
renews the token before its expiry date. This is accomplished by configuring a server-side
automated method to update tokens depending on the expiry settings of each vendor API
token. AWS server then creates additional matrices depending on the other data that have
been acquired, such as age, gender, height, and weight, among other things, that have been
previously gathered. User data are aggregated on a daily basis by the server and ordered
according to the time stamp of data collection, even if it occurs on the same day. This allows
the server to sort user data chronologically. Additionally, metrics such as total daily energy
expenditure (TDEE), basal metabolic rate (BMR), and body mass index (BMI) are generated
to offer medical practitioners a more comprehensive monitoring capability. Maximum,
average, and lowest heart rate values are also computed for the same parameter. In order to
make it easier to adopt different prediction and monitoring strategies for accessible diabetic
user lifestyle management, it is necessary to increase the number of parameters that can be
extracted from the collected data.

3.6.2. Prediction of Diabetes Using Proposed Model Using Real-Time Dataset

We tested our optimized proposed model using a real-time dataset, where data were
imported from the AWS server in the form of chunks, each of which was tested with our
optimized CNN-Bi -LSTM model, and the results are updated after each instance. The
entire method is demonstrated in Figure 10. referred to through Algorithm 1.
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Algorithm 1: Algorithm to fetch real-time data

Require: Csize , Dsize, n, i, Ri, Rc
initialization: i = 0, Ri = 0
Ensure: n = Dsize

Csize
, n ≥ 0

if Dsize, ≥ Csize then
while n ≥ 1 do

Step1: Import chunk i of size Csize
Step2: Perform testing using proposed model.
Step3: Obtained result Rc of chunk i.
Step4: Update previous results Ri: Ri ← Ri � Rc

i← i + 1
n← n − 1

end while
end if

Dsize, ← Dsize − Csize = 0

Notations used in Algorithm 1:
Dsize : Size of database
Csize : Size of chunks
n : Number of chunks
Ri : Initial results of model
Rc: Results of the model at an instance i
� : used for updating of previous results

In the above algorithm complete set of steps are as follows:

• Step1: Real-time dataset of size Dsize is imported from the cloud server in the form of

n chunks such as n =
Dsize,
Csize

;
• Step2: We check if the size of the dataset is greater than or equal to chunk size. Then,

each chunk i is tested over our optimized proposed model;
• Step3: For every instance, previous results Ri were updated with a new result Rc;
• Step4: Lastly, we updated the size of the dataset Dsize, ← Dsize − Csize. If it was still

greater, then the chunk size algorithm starts from step1 again.

4. Experimental Results and Its Analysis in Real-Time Environment

In this section, the experiments were evaluated and analyzed over a real-time dataset
PIDD [14] with a python environment with six essential critical parameters such as glucose,
insulin, pregnancy, blood pressure, age, and BMI. In order to evaluate the effectiveness of
the proposed framework, the results were compared with the similar and recent existing
methods such as CNN [50], Bi-LSTM [52], DNN [53], and a combination of CNN-LSTM [54],
and CNN-Bi-LSTM for the classification of Type 2 diabetes over PIDD [14]. In this section,
five metrics were used to measure the overall success of our proposed model: accuracy
(A), as seen in Equation (10) [25]; Recall (R), as in Equation (11) [55]; sensitivity (SN), as in
Equation (12) [41]; and specificity (SP), as in Equation (13) [25], where the sensitivity of a
model determines its capacity to classify patients who currently have a disease correctly;
whereas the specificity of a model determines its capacity to classify disease-free patients
correctly. The precision of the model defines the number of patients accurately described by
the model. However, the ratio of the number of patients properly classified by the model is
called accuracy. Formulas are stated as follows:

A =
TP + TN

Total no of samples
(10)

R =
TP

TP + FN
(11)
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SN =
TP

TP + FN
(12)

SP =
TN

TN + FP
(13)

where true positive (TP) is defined as the number of positive patients who were scored as
positive. True negative (TN) is the number of negative patients predicted to be negative.
False-positive (FP) is the percentage of patients who are classified as positive but are
actually negative. Negative (FN) is used to calculate the percentage of positive patients
negatively observed.

4.1. Real-Time Qualitative Analysis

For real-time qualitative evaluation, we used grid search algorithms to find the top
three mean test scores, such as 90.38, 85.58, and 79.4, that helped to achieve the highest
accuracy, as seen in Table 7. By using the highest test score of 90.38, we were able to achieve
the best hyperparameters used for training models, such as learning rate of 0.01, epochs as
250, batch-size as 32, kernel-size as 1, hidden-units as 32, regularisation dropout as 0.05,
and optimizer as (referenced in Table 8). Where the following parameters are stated as:

• Learning Rate: states how many weights are modified in the loss gradient model;
• Batch Size: Specified are run through the model at any particular moment;
• Epochs: Defines the number of times the machine learning model is performed on the

same dataset;
• Dropout: Is a method of regularization to reduce the issue of overfitting by dropping

some of the random nodes during the training phase and improving generalization
error in NN.

Table 7. Optimized Hyper parameters.

Learning Rate Batch Size Hidden Units Epochs Mean Test Score

0.01 32 32 250 90.38
0.03 64 64 300 85.58
0.05 128 128 500 79.49
0.09 64 64 300 89.0

Table 8. Optimized Parameters used for training.

S.no Parameters Values

1. Regularization (dropouts) 0.05
2. Loss-function Binary-crossentropy
3. Optimizer Adam
4. Metrics accuracy
5. Learning Rate 0.01
6. Batch-size 32
7. Epochs 250

Remark 3. Adam is a stochastic gradient optimizer for the training of deep learning models, and it
is a combination of the best features of AdaGrad and RmsProp, so it can solve problems with low
gradients or a lot of background noise.

4.2. Real-Time Quantitative Analysis

For quantitative evaluation, we conducted a comparative analysis of deep learning
models such as CNN [56], DNN [54], Bi-LSTM [55], CNN-LSTM [50], and CNN-Bi-LSTM,
which are trained over a static PIDD dataset by splitting it into two portions, 70% for
the training dataset and 30% for the testing dataset, by using hyperparameters such as
kernel size as 1; the number of filters as 64; batch-size as 32; regularization dropout as
0.05; optimizer as; maximum pool size as 1; loss-method as binary cross-entropy; epsilon
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as 1−08; decay as 0.0; epochs as 250 with 32 hidden units and found CNN-LSTM [52]
with 90%, CNN [51,55,57,58] has an accuracy of 82%, Bi-LSTM [1] with 85%, DNN [1] with
87%, and, ultimately, CNN-Bi-LSTM outperforms and achieves an accuracy of 88.37% as
shown in Table 9. Although the accuracy of all models is reasonable, they suffer from
under-fitting and over-fitting problems, and they emerge when models have learned less
than or more than 250 epochs. The over-fitting problem model tends to memorize data and
cannot generalize new data, while the under-fitting model does poorly in testing but can
generalize new data.

Table 9. Comparative study of various deep learning algorithms for classification of siabetes by
dividing dataset into testing and training [59,60].

S.no Accuracy Measures CNN-LSTM
[26]

CNN
[27]

Bi-LSTM
[1]

Dense-NN
[1]

Proposed
Method

1. Accuracy 90 82 85 87 88.37
2. Precision 0.84 0.72 0.82 0.84 0.85
3. Recall 0.79 0.77 0.70 0.75 0.79
4. F1-score 0.83 0.74 0.75 0.79 0.81
5. Cohens Kappa Score 0.76 0.61 0.64 0.70 0.73
6. ROC-Accuracy 0.89 0.87 0.87 0.91 0.90

To remove the over-fitting and under-fitting problems, we trained our models at
250 epochs and over-optimized parameters using 10-fold cross-validation, and the accuracy
of each model was increased, as shown in Table 10. Besides, the accuracy of CNN-LSTM
was increased to 93%, CNN was increased to 96%, BI-LSTM was also increased to 95%, and
DNN was increased to 90%. However, our CNN-Bi-LSTM model outperformed compared
to other models and achieved the highest accuracy of 98.85%, as shown in Figure 11, with a
sensitivity of 97% and specificity of 98%. Thus, after the discussion, we can infer that CNN-
Bi-LSTM is better relative to other deep learning models in terms of accuracy, sensitivity,
specificity, precision, and recall. Therefore, we utilized the CNN-Bi-LSTM model in a real-
time setting to classify diabetic patients more accurately as well as to monitor their vitals
on a real-time basis. Additionally, we have validated our proposed model with different
scenarios. First, the proposed model is validated without imputations where the values
for precision~0.83, recall~0.88, and F1-score~0.85 for the outcome 0. However, for the
outcome 1 values of precision~0.83, recall~0.88, F1-score~0.85 and accuracy~80% as shown
in Table 11. Secondly, the proposed model is validated without removing outliers, where
the values for precision~0.81, recall~0.87, and F1-score~0.83 for the outcome 0. However,
for the outcome 1 values of precision~0.72, recall~0.61, F1-score~0.70 and accuracy~79% as
shown in Table 12. Hence, missing values and outliers affect the performance of the model.
Therefore, it is essential to preprocess data before training the proposed model.

Table 10. A Comparative Study of various Deep Learning Algorithms for the Classification of
Diabetes using 10-fold Cross-Validation.

S.no Accuracy Measures CNN-LSTM
[26]

CNN
[27]

Bi-LSTM
[1]

Dense-NN
[1]

Proposed
Method

1. Accuracy 93 96 95 90 98.85
2. Precision 0.93 0.97 0.97 0.92 0.98
3. Recall 0.93 0.96 0.86 0.87 0.94
4. F1-score 0.92 0.96 0.92 0.90 0.96
5. Cohens Kappa Score 0.95 0.95 0.89 0.89 0.94
6. ROC-Accuracy 0.96 0.96 0.99 0.95 0.96
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proposed model (CNN-Bi-LSTM). (c) Model accuracy of CNN-LSTM model. (d) Model loss of CNN.
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Table 11. Validation of proposed model with K-fold cross-validation without filling missing values.

Precision Recall F1-Score

0 0.83 0.88 0.85
1 0.75 0.65 0.70

Accuracy 80%

Table 12. Validation of proposed model with K-fold cross-validation without removing outlier values.

Precision Recall F1-Score

0 0.81 0.87 0.83
1 0.72 0.61 0.70

Accuracy 79%

The performance of different models can be visualized through a graph, as shown in
Figure 12. When compared to other current approaches, it is seen that a testing dataset is
adequately fitted to the training model in CNN-Bi-LSTM with very few distortions. Hence,
our suggested framework is more accurate and capable of properly classifying diabetic
patients. Additionally, we have tested various CNN-Bi-LSTM findings over-optimized
hyperparameters with different mean test scores (reference from Table 7), and the rest of
the results of our proposed methodology with different mean test scores are presented in
Table 13. It is clearly seen that our model outperformed, with the highest mean test score
at 90 (Reference from Table 10). Lastly, comparisons were made between various state-
of-the-art algorithms and the proposed model in terms of accuracy, as shown in Table 14,
and it was found that CNN-Bi-LSTM outperformed in terms of accuracy (referenced from
Table 10) [61,62]. After all these conversations, we may infer that the CNN-Bi-LSTM model
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is more accurate in identifying diabetes patients than the other four models as well as state-
of-the-art algorithms. As a result of the fact that CNN-Bi-LSTM combines the power of both
CNN and Bi-LSTM, where CNN is used for feature extraction, and Bi-LSTM has additional
peehole connections that prevent vanishing gradient problems as well as additional cell
state memory that uses past and future knowledge to forecast the output by using two
separate hidden layers.
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Table 13. Results of the proposed architecture with different Mean Test Scores using Grid Search
Optimization.

S.no Accuracy
Measures

Mean-Test
Score 85.58%

Mean-Test
Score 79.49%

Mean-Test
Score 89%

1. Accuracy 91 78 67
2. Precision 0.87 0.67 0
3. Recall 0.82 0.67 0
4. F1-Score 0.85 0.67 0

5. Cohens Kappa
Score 0.78 0.51 0

6. ROC-Accuracy 0.92 0.83 0.28
7. Sensitivity 91% 84% 2
8. Specificity 0.87% 67% 0

Table 14. Comparison of our model with other state-of-the-art algorithms in terms of accuracy
mentioned in related work.

S.no Author Dataset Validation Technique Algorithm Used Accuracy

1. Ashiquzzaman (2017) et al. [3] PIMA Dataset 0.1 split validation Deep learning architecture 88.41%
2. Kumari et al. [15] PIMA Dataset Divide hyperplane SVM 77%
3. K.Kannadasan (2019) et al. [31] PIMA Dataset 70% Training, 30% Testing DNN with auto-encoders 86%

4. Massaro (2019) et al. [36] PIMA Dataset
The training and

validation sets are split in
an 80/20 ratio

LSTM 86%

5. Patil et al. [41] PIMA Dataset K-fold cross-validation PCA, K-Means Algorithm 73%
6. Gill and Mittal (2016) et al. [54] PIMA Dataset 70% Training, 30% Testing SVM and NN 96.09%

7. Yuvaraj andSriPreethaa (2019)
et al. [57] PIMA Dataset 70% Training, 30% Testing RF 94%



Appl. Sci. 2022, 12, 3989 22 of 26

Table 14. Cont.

S.no Author Dataset Validation Technique Algorithm Used Accuracy

8. Naz and Ahuja (2017) et al. [63] PIMA Dataset
The training and

validation sets are split in
an 80/20 ratio.

ANN 90.34%

9. Kemal Polat et al. [64] PIMA Dataset K-fold cross-validation neuro-fuzzy-inference
system (ANFIS) 89.47%

10. Haritha et al. [65] PIMA Dataset 70% Training, 30% Testing Firefly and Cuckoo
Search Algorithms 80%

11. Mohammad et al. [66] PIMA Dataset 70% Training, 30% Testing NN with Genetic Algorithm 86.78%
12. Chen et al. [67] PIMA Dataset 10 fold cross validation K-means and DT 91.23%
13. Proposed Method PIMA Dataset K-fold cross-validation CNN-BI-LSTM 98.85%

In order to check the performance of deep learning models, we additionally performed
a statistical Student t-test between CNN-LSTM and CNN_Bi-LSTM. We used the variance
estimate by checking the dependency between the dataset and computing the p-value.
In the null hypothesis, we assumed that there was no statistical difference between the
performances of the models. However, the alternative hypothesis we have considered is
that there is a potential difference between the performance of models. If the p-value is less
than the significant value, then we rejected the null hypothesis and assumed that there was
no significant difference between the performance of deep learning models. If the p-value
was higher, then we rejected the hypothesis and considered the alternative hypothesis.
In order to calculate the p-value, we calculated the mean of the difference between the
results of two classifiers at every iteration step as we are using K-fold cross-validation by
using the formula: d = 1

n ∑n
1 di. Then we calculated the variance of the difference, through

σ2 =
∑n

1(di−d)
2

n−1 where n is the total number of data points. Then we computed the data
points used for training, i.e., n1 and data points for testing n2. Then we computed the mod
of variance, σ2

Mod =
(

1
n1

+ n1
n2

)
σ2 and finally, we calculate the time statics through d

σMod
.

The calculation of the p-value is shown in Figure 13, where it can be easily seen that the
p-value is approximately 1.84%, and the significance value is 5%. As the p-value is less than
the significance value, we rejected the null hypothesis and assume that the performance of
the proposed model is different from others and better in terms of accuracy as compared to
other models (referenced from Table 10).
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5. Conclusions

Diabetes is one of the prolonged diseases triggered by the unbalanced release of insulin,
which becomes apparent when blood glucose levels are above average levels. In this study,
five different models, such as CNN, DNN, CNN-LSTM, Bi-LSTM, and CNN-Bi-LSTM, are
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used to identify diabetic patients over static PIDD. The CNN-Bi-LSTM is used for the first
time in this study to perform well in the multiple classification and prediction problems,
which makes it unique. These models are applied to the dataset defined in two ways:
training data are kept separate from testing data. Furthermore, ten-fold cross-validation
methods are applied to measure the accuracy of models. Furthermore, hyperparameter
optimization is achieved using a grid search algorithm to track the maximum values of the
parameters. After an experimental analysis, we found that each of the five models works
well when using a 10-fold cross-validation approach instead of splitting the data set for
training and testing. Our analysis showed that the CNN-Bi-LSTM model outperformed
all deep learning models in terms of accuracy of 98.85%, sensitivity of 97%, and specificity
of 98%. Lastly, we proposed a framework that demonstrates the evaluation of our CNN-
Bi-LSTM model over a real-time scenario, which helps the clinicians to keep complete
information about the patients and check real-time statistics about their vitals. In the future,
we can generate a dashboard to visualize the summary of the vitals to the practitioners as
well as to the patients.
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