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Abstract. Human pose estimation using monocular vision is a challenging prob-

lem in computer vision. Past work has focused on developing efficient inference

algorithms and probabilistic prior models based on captured kinematic/dynamic

measurements. However, such algorithms face challenges in generalization be-

yond the learned dataset.

In this work, we propose a model-based generative approach for estimating the

human pose solely from uncalibrated monocular video in unconstrained environ-

ments without any prior learning on motion capture/image annotation data. We

propose a novel Product of Heading Experts (PoHE) based generalized heading

estimation framework by probabilistically-merging heading outputs (probabilis-

tic/ non-probabilistic) from time varying number of estimators to bootstrap a syn-

ergistically integrated probabilistic-deterministic sequential optimization frame-

work for robustly estimating human pose. Novel pixel-distance based perfor-

mance measures are developed to penalize false human detections and ensure

identity-maintained human tracking. We tested our framework with varied inputs

(silhouette and bounding boxes) to evaluate, compare and benchmark it against

ground-truth data (collected using our human annotation tool) for 52 video vi-

gnettes in the publicly available DARPA Mind’s Eye Year I dataset 1. Results

show robust pose estimates on this challenging dataset of highly diverse activi-

ties.

1 Introduction

Estimating and tracking 3D pose of humans in unrestricted environments using monoc-

ular vision poses several technical challenges due to high-dimensionality of human

pose, self-occlusion, unconstrained motions, variability in human motion and appear-

ance, observation ambiguities (left/right limb ambiguity), ambiguities due to camera

viewpoint, motion blur and unconstrained lighting [1]. Efforts at addressing this chal-

lenging problem can be broadly classified into: (i) model-based approaches, and (ii)

model-less approaches [2]. Sminchisescu [3] alternately categorizes the research into:

(i) generative approaches and (ii) discriminative approaches. While generative approaches

1 Available at: www.visint.org
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are highly generalizable, the use of stochastic sampling methods to deal with the mul-

timodal posterior/likelihood function increases their computational complexity. On the

other hand, discriminative approaches are computationally tractable (for moderate sized

training sets) but lack generalizability to unseen exemplars. However, there is always

one or more fundamental assumptions involved that there is a priori knowledge about

the physical properties (e.g. mass, inertia, limb lengths, ground plane and/or collision

geometries), the activity in the scene, calibrated camera, imagery from multiple cameras

(often in laboratory settings), availability of similar motion dataset [4,5,6].

No formal studies exist on which methods are employed by the human visual sys-

tem for its marvelous visual perception. However, studies have constantly shown that

humans use motion based cues (the instantaneous retinal optical flow) for instantaneous

retino-centric heading (3D translation direction), eye-body rotation, and the relative

depth of points in the world [7]. Humans appear to use motion based cues whenever

motion is present in the scene and resort to visual cues (color, texture) when no/subtle

motion is present in the scene. To the best of our knowledge, no prior work has used

motion based cues for the task of explicitly estimating human heading direction.

Our work employs a model-based generative approach for the task of human pose

estimation for general human movements in unrestricted environments. Unlike many

previous approaches, our framework is fully automatic, without using camera calibra-

tion, prior motion (motion capture database), prior activity, appearance, body size in-

formation about the scene. Evaluations on a challenging dataset (DARPA Mind’s Eye

Year I) show the robustness of the presented framework.

Research Contributions

1. Product of Heading Experts - We model the heading estimation task independent of

features/types of individual estimators using the proposed Product of Heading Ex-

perts (PoHE) based generalized heading estimation framework which probabilisti-

cally merges heading outputs from time varying number of estimators to produce

robust heading estimates under varied conditions in unconstrained scenarios.

2. Motion Cues Based Heading Estimation - We propose a novel generative model for

estimating heading direction of the subject in the video using motion-based cues

thus, significantly reducing the pose search space.

3. Decoupled Pose Estimation - We propose a sequential optimization based frame-

work optimizing the uncoupled pose states (camera/body location, body joint an-

gles) separately using a combination of deterministic and probabilistic optimization

approaches to leverage the advantages associated with each.

4. Probabilistic-Deterministic Optimization Scheme - We achieve faster convergence

to the global minima by obtaining initial guesses using population based global

optimization technique for deterministic convex optimization scheme.

5. Identity Maintained Pose Evaluation Metric - We introduce the notion of pose eval-

uation for videos with multiple humans by defining identity maintained pose eval-

uation metrics.
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Fig. 1: System diagram for human pose estimation framework.

2 Optimization Based Pose Estimation

Fig. 1 provides an overview of the human pose estimation framework. We use back-

ground subtracted binary images [8] and point features at the low-level to detect/track

humans/objects in the scene, extract human silhouettes at the mid-level leading to hu-

man heading and pose/salient-point estimation/filtering at the high-level. We consider 3

position variables and 5 angular variables to define the pose of a human (Figs. 2(a)-(c)).

2.1 Human Heading Estimation

Knowledge regarding the heading direction can significantly restrict the pose search

space and can result in better pose estimates at lower computational costs. In the past,

the task of heading estimation is not addressed separately from the actual body pose

which significantly increases the complexity of the problem. Furthermore, heading is

often modeled as a discrete variable using discriminative approaches with few possible

values [9]. Fig. 2(d) illustrates a sequence of frames where invaluable human head-

ing direction information can be inferred from following cues: (i) human silhouette

centroid, (ii) human silhouette bounding box centroid, (iii) detected human bound-

ing box centroid, (iv) area of human silhouette, (v) aspect ratio of bounding boxes,

(vi) human silhouette/bounding boxes centroid velocity (x and y coordinates), (viii)

regression/classification-based estimation of heading direction (Adaboost/Support Vec-

tor Machine), and/or (ix) optical flow.

Product of Heading Experts: We use a time evolving Product of Experts (PoE) [10]

model to optimally fuse hypothesis from various heading estimators at each instant in

time to propose a Product of Heading Experts (PoHE). We consider each estimator

T1, T2, ..., TK as experts for predicting the heading direction. Product of experts model

for heading ensures that the resulting model for heading is explained by all the experts.

Let θk be the parameters associated with probability distribution of each expert ( =
[µk, Σk]T in current case). Probability of any direction φ to be true heading of a human



4 Authors Suppressed Due to Excessive Length

Camera 

Plane
(x, y, z)

X

Y

Z

Z

(a)

�2

�1
�3

4�

(x, y, z)

�4

X
Y

Z

(b)

-Z

�d

X

Y

Z

(c) (d)

Fig. 2: Variables used in the model. (a) side view, (b) front view, and (c) top view of the

human model (d) frames from a vignette in the DARPA corpus depicting that the motion

cues provide significant information regarding the heading direction of a human. The

red arrow portrays the direction of motion of the human in the respective frame.

as explained by all the expert estimators is given by Equation 1.

p(φ|θT1
, θT2

, ..., θTK
) =

K
∏

k=1

pk(φ|θk)

∫

K
∏

k=1

pk(φ|θk)dφ

(1)

This model results in robust estimation because it allows to incorporate (or leave

out) arbitrary number of estimators, even those providing non-probabilistic output,

which could also be incorporated using Equation 3.

A wealth of information about the heading direction of the human torso can be in-

ferred solely from information regarding the human motion. In the current implementa-

tion, we focus on a PoHE based generative heading estimation method using (i) human

silhouette centroid, and (ii) human silhouette bounding box centroid. Once a silhouette

corresponding to a detected/tracked human is found in a frame, internal holes/gaps are

filled [11] for subsequent use in the pose-estimation process. The silhouette centroid

and the silhouette bounding box centroid are then evaluated for every valid frame and

any gaps are filled using linear interpolation. We model the 3D heading direction as a

continuous variable and approximate it as the 2D heading angle (which is the projected

3D heading angle) which works fairly well as will be evident in results. Fig. 3a depicts

two human silhouettes from two different frames (N frames/δt time apart) in a video.

The red triangle (solid line) connects the centroid of the two silhouettes ((x1, y1) to

(x2, y2)) and the blue triangle (dashed line) connects the centroid of the two silhouette

bounding boxes ((xb1, yb1) to (xb2, yb2)). It can be seen that the true silhouette centroid

and the silhouette bounding box centroid information are corrupted by the merging of

the silhouette due to the shadow in the original human silhouette. In cases where partial

silhouette information is obtained, the silhouette centroid tends to be biased towards
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Fig. 3: Human heading estimation modeling. (a) Silhouette and bounding box centroid

modeling of human heading estimation, and (b) Outlier detection in angular data using

optimization based sector positioning.

the region where the foreground pixels are concentrated. However, the bounding box

centroid locates the centroid of the region irrespective of the foreground pixel density.

By merging information from both the sources we tend to reduce the effect of noise in

estimating heading direction. Equation 2 is used to evaluate an estimate of the heading

direction given the centroid information for two frames.

µk = tan−1

(

y2 − y1
x2 − x1

)

(2)

We build a Gaussian distribution for each heading estimate considering the distri-

bution mean to be situated at the corresponding estimated value and the variance to be

equal to the variation in the value from its vector mean in a local temporal window. In-

tuitively, we seek to weight the heading direction changes with uncertainty within each

temporal window. Please note that directional statistics [12] is required to deal with the

heading angle data.

p(φk(t)) = N(µk(t), σ
2

k), (3)

where, σ2

k(t) = φk(t)− φ̄k(t), φ̄k(t) = Arg(ρ̄k), k ∈ {s, sb}, ρ̄k = 1

N

∑N

n=1
zkn,

zkn = cosφk(t) + i sinφk(t)

Outlier detection in angular data: The raw heading estimates obtained are noisy due

to noise in silhouettes and so contain outliers which are eliminated using outlier detec-

tion. For outlier detection, we use an optimization based sector positioning technique

in which the data lying within a sector is considered to be fit for evaluating the heading

estimate within a local temporal window (Fig. 3b). The green circles on the main cir-

cle represents good samples and the red crosses represents the outliers. The blue sector

represents the angular region (of angle θb = π/2 degrees) samples in which are con-

sidered to be good and valid for heading estimation. Initially the sector is aligned with
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the main quadrant (θq = 0) and the sector positioning (θq) is determined by solving

the optimization problem in (4) which maximizes the number of samples lying in the

angular region:

argmax
θq

(max#{θq|θ ∈ bin(k)}) k = 1...K,K =
2π

θb
(4)

where the symbol ‘#’ stands for angular histogram. The optimization is carried out in

local temporal sliding window to remove the outliers and Gaussian filtering is carried

out on the filtered data considering the same temporal window. Intuitively, we rely on

the continuity of motion i.e. the human heading direction does not change within a

fraction of a second.

2.2 Optimization Based Body Position Estimation

We formulate the problem of determining the position of the body relative to the camera

as two optimization subproblems.

Z Coordinate Estimation: The camera depth (z coordinate) estimation is based on

the fact that an actual body with proportional dimensions and similar orientation in

space will roughly occupy a similar area in an actual image as that of the model in

the synthetic image. We set up an optimization problem based on the difference in the

silhouette area in the original image and the model generated image, and minimize the

square of this difference as in Fig. 4 (cz is the z coordinate of the camera in the model

coordinate system, Ao and Am is the silhouette area in the original and model generated

image, respectively.). We also specify an upper and lower bound on z coordinate such

that the model generates a reasonable area in the synthetic image.

X,Y Coordinate Estimation: The estimation of the x, y coordinate is based on the

fact that the centroid of the silhouette in the original image and the model generated

image should roughly be the same for model with similar orientation. We setup another

optimization problem in which square of the distance between the centroid of the orig-

inal silhouette and the model generated silhouette is minimized constraining the (x,y)

coordinates such that the model silhouette is within the synthetic image as in Fig. 4 (

(cx, cy) is the (x, y) coordinate of the camera in the model coordinate system, (xco,yco)

and (xcm,ycm) is the centroid of the silhouette in the original and model generated

image, respectively).

2.3 Optimization Based Pose Estimation

For a given camera position, the difference between original and model generated im-

ages is minimum when the correct limb pose is achieved. The absolute subtracted image

(of model generated and actual human silhouettes) measures the extent of mismatch and

serves as the objective function (Fig. 4 where the subscript i indicates ith joint in the hu-

man body model, Ia and Im denotes the actual and model generated silhouette image,

respectively ). Limits on the human joint angles are imposed based on the biomechani-

cal constraints set by the human body [13].
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3 Optimization Approach

The probabilistic optimization techniques are good at identifying promising areas of

the search space (exploration), but slow at fine-tuning the approximation to the min-

imum (exploitation) [14]. Thus, a much faster convergence to the local minima can

be achieved if initial guesses are obtained using population based global optimization

technique (Genetic Algorithm (GA) [15]) and then convergence to the global optima is

accomplished using convex optimization techniques.

3.1 Convex Optimization

We use Augmented Lagrangian method (ALM) [16] for solving the optimization prob-

lem considering its advantage over penalty methods which are less robust due to sensi-

tivity to penalty parameter chosen. In order to solve the ND unconstrained optimization

subproblem, we use Powell’s conjugate direction method [17] as it requires only the

objective function value and is more robust to noise in function evaluation, which is

often the case with image based objective functions. For 1D optimization subproblem

we employ Golden section with Swann’s bounding [18].

3.2 Optimization Framework

The optimization subproblems in Fig. 4 are highly coupled and cannot be solved inde-

pendently. While a weighted/combined optimization problem may be posed, it suffers

from multiple local minima as well as sensitivity to weightage of each objective. Hence,

in lieu of this, we adopt a sequential optimization framework as shown in Fig. 4. Once,

we have the heading estimates for each frame in the video, we first optimize for the

camera parameters (relative location of body with respect to camera) and then for the

pose assuming fixed geometries for the human body parts. In order to deal with the

well-known problem of pose ambiguity due to symmetric nature of human body and

keep the framework computationally feasible, we only resort to GA when either the

difference between the joint angles for the the left and the right leg are below a cer-

tain threshold or the joint angle limits are exceeded, to obtain good initialization for

pose. The presented framework is executed on each frame in the video to estimate two

corresponding poses (left leg forward and right leg forward).

4 Experiments

We evaluated the proposed human pose estimation framework on 52 challenging video

vignettes in the DARPA Mind’s Eye Year I1 dataset (resolution: 1280×720) of different

activities (collide, enter, follow, flee, leave, run, jump, walk, approach, fall, pass, stop,

replace, take, turn, throw, kick, go, hold, get) performed by multiple people interacting

with other entities (humans/objects) in outdoor scenes.

1 Available at https://sites.google.com/site/poseestimation/
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Fig. 4: Summary of optimization framework implemented for pose estimation on each

frame.

Inputs: In order to thoroughly test the system performance we test the pose estima-

tion framework on three different types of inputs: (i) Manually Labeled Silhouette

(MLS) and Manually Labeled Human Bounding Boxes (MLHBB) for a selected set

of the videos (6 in number) where it was possible to get good pose estimates as sig-

nificant lower limb movement was involved. This trial was carried out to establish the

benchmark against which to compare the performance of the algorithm with inputs of

varying fidelity; (ii) Background Subtracted Silhouette (BSS), Detected Human Bound-

ing Boxes (DHBB) [19], and Detected Object Bounding Boxes (DOBB) for the entire

dataset to establish the system performance over a larger set and all algorithm generated

inputs. We observed that the human detection results contains a lot of false positives

along with ambiguity in entity identity while tracking; (iii) Background Subtracted Sil-

houette (BSS), Tracked Human Bounding Boxes (THBB) and Detected Object Bound-
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ing Boxes (DOBB) for the entire corpus again to establish the system performance over

a large set and more reliable human detections [20].

Pose Evaluation Metrics: Human annotation GUI2 was developed in order to assess

and quantify the performance of the pose estimation algorithm. 13 salient points on

human body: head center, right shoulder, right elbow, right hand, left shoulder, left

elbow, left hand, right hip, right knee, right foot (ankle), left hip, left knee, left foot

(ankle) were manually marked for all videos in the corpus. We build upon the pose

error metric proposed in [21] and define the following pose evaluation metrics for each

vignette in the corpus: (a) Average error per frame as in (5), (b) Average error per

marker per frame (Daepmpf ) (average of (5) for number of markers) , (c) Average error

for different markers per frame as in (6).

Daepf (X, X̂) =
1

N

(

N
∑

n=1

M=13
∑

m=1

||xm − x̂m||2

)

(5)

Daedmpf (X, X̂,m) =
1

N

(

N
∑

n=1

||xm − x̂m||1

)

(6)

where N is the number of processed frames in the considered vignette. For vignettes

with multiple humans, we first associate the estimated pose tracks with the ground truth

pose tracks by using the nearest neighbor approach on the entire track, as in (7).

ji = argmin
k

N
∑

n=1

M=13
∑

m=1

||xmk − x̂mi||1, Ex =
1

K

(

P
∑

n=1

Dx

)

, x∈{aepf, aepmpf, aedmpf}

(7)

where xmk, x̂mi are the coordinates of the mth marker in the ground truth data of the

kth person and in the estimated data of the ith person, respectively, ji is the ground

truth track associated with the ith detected track, K is the number of humans present

in the ground truth and P is the number of detected humans. The error over the entire

corpus is the average error obtained considering all the vignettes in the corpus as in 7.

5 Results

Fig. 6 depict the stick figure and bounding boxes superimposed over the original video

frame for vignettes corresponding to the verbs “pass”, “collide”, and “run” in the dataset,

respectively. As can be seen the tracking is carried out while maintaining the identity of

people in the video. Please note that the presented framework works well with different

types of verbs2 and does not make assumptions regarding the activity in the scene which

is an unstated assumption in many state-of-the-art pose trackers.

Fig. 5 shows the error metric obtained for the two probable pose estimates using

BBSS and THBB. Table. 1 shows a comparison of the pose evaluation metric for dif-

ferent inputs described in the Section 4. As expected, the average error per frame per

2 Available at https://sites.google.com/site/poseestimation/
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Fig. 5: Error metric on the two probable pose estimates using the BSS, THBB and

DOBB. (a) Average error (L2 norm) per marker per frame, and (b) Average error distri-

bution across markers (L1 norm) per frame.

marker increased from a value of 6 to 13 when BSS, DHBB, DOBB are provided as

input as opposed to MLS, MLHBB. However, the error reduced from 13 to 10 when

tracked human bounding box detections are used showing the performance of the pose

estimation framework over the entire dataset. Please note that an average human head

for the current dataset has a dimension of ≈50 pixels (ground truth), so an accuracy

of around 10 pixels (L2 norm) and 40 pixels (L1 norm) is fairly good. Since, the cur-

rent framework does not reliably distinguish between the left and the right leg the error

corresponding to the foot and the knee markers is relatively high (Fig. 5b).

6 Discussion

In this work, we propose a Product of Heading Experts (PoHE) based generalized head-

ing estimation framework bootstrapping an integrated probabilistic-deterministic opti-

mization framework for human pose estimation in uncalibrated monocular videos. We

benchmarked the standalone performance of the pose estimation framework against

ground-truth data for the DARPA video corpus using the proposed pixel-distance based

metrics emphasizing identity maintained human tracking and low false human detec-

tions. Results showed the robustness and performance of the proposed framework.
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Table 1: Error metric comparison for different inputs provided to the developed human

pose estimation framework on 52 vignettes from DARPA ARL-RT1 dataset

Input/Error Metric

Average Error

Per Frame (L2

Norm) (pixels)

Average Error

Per Frame Per

Marker (L2

Norm) (pixels)

Average Error for

Different Markers

Per Frame (L1

Norm) (pixels)

MLS + MHLBB (6 vignettes) 80 6 17

BSS + DHBB + DOBB (52 vignettes) 166 13 65

BSS + THBB + DOBB (52 vignettes) 128 10 43

References

1. Hen, Y.W., Paramesran, R.: Single camera 3d human pose estimation: A review of current

techniques. In: International Conference for Technical Postgraduates. (2009) 1 –8

2. Poppe, R.: Vision-based human motion analysis: An overview. Computer Vision and Image

Understanding 108 (2007) 4–18

3. Sminchisescu, C.: 3d human motion analysis in monocular video: techniques and challenges.

Computation Imaging and Vision 36 (2008) 185

4. Balan, A., Black, M.: An adaptive appearance model approach for model-based articulated

object tracking. In: CVPR. Volume 1. (2006) 758–765

5. Sigal, L., Isard, M., Haussecker, H., Black, M.: Loose-limbed people: Estimating 3d human

pose and motion using non-parametric belief propagation. IJCV (2011) 1–34

6. Yang, Y., Ramanan, D.: Articulated pose estimation with flexible mixtures-of-parts. In:

CVPR. (2011) 1385–1392

7. Perrone, J., Zanker, J., Zeil, J.: A closer look at the visual input to self-motion estimation.

Motion vision: Computational, neural, and ecological constraints (2001) 169–179

8. Ryde, J., Waghmare, S., Corso, J., Fu, Y.: ISTARE quaterly report: Signal unit. Technical

report, SUNY Buffalo (2011)

9. Andriluka, M., Roth, S., Schiele, B.: Monocular 3d pose estimation and tracking by detec-

tion. In: CVPR. (2010) 623–630

10. Hinton, G.E.: Products of experts. In: ICANN. (1999) 1–6

11. Soille, P.: Morphological Image Analysis: Principles and Applications. Springer-Verlag,

Berlin (2003)

12. Mardia, K., Jupp, P.: Directional statistics. John Wiley & Sons Inc (2000)

13. Anderson, F., Pandy, M.: Dynamic optimization of human walking. Journal of Biomechani-

cal Engineering 123 (2001) 381

14. Costa, L., Santo, I., Denysiuk, R., MGP, E.: Hybridization of a Genetic Algorithm with a

Pattern Search Augmented Lagrangian Method. In: International Conference on Engineering

Optimization. (2010)

15. Goldberg, D.: Genetic algorithms in search, optimization, and machine learning. Addison-

wesley (1989)

16. Schuldt, S.B.: A method of multipliers for mathematical programming problems with equal-

ity and inequality constraints. Journal of Optimization Theory and Applications 17 (1975)

155–161

17. Powell, M.J.D.: An efficient method for finding the minimum of a function of several vari-

ables without calculating derivatives. The Computer Journal 7 (1964) 155–162



12 Authors Suppressed Due to Excessive Length

18. Swann, W.H.: Report on the development of a new direct search method of optimization.

Research Note (64)

19. Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with discrim-

inatively trained part-based models. PAMI (2009) 1627–1645

20. Kumar, S., Agarwal, P., Corso, J., Krovi, V.: ISTARE proxy evaluation report: Human track-

ing. Technical report, SUNY Buffalo (2011)

21. Sigal, L., Black, M.: Humaneva: Synchronized video and motion capture dataset for eval-

uation of articulated human motion. International Journal of Computer Vision 87 (2010)

4–27

Pass

Collide I

Collide II

Run

Fig. 6: Raw pose estimation results for the verbs “pass”, “collide”, and “run” using the

system generated inputs. N.B. Identity of the persons is maintained before and after

collision for the verb “collide”. (Please view in color)
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