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ABSTRACT

Throughput and fairness are conflicting performance met-
rics, leading to a natural tradeoff between these two mea-
sures. In this paper, we derive a generic optimization frame-
work to obtain a relationship of system throughput and fair-
ness, by introducing the bargaining floor. From the rela-
tionship curve, different degrees of performance tradeoff be-
tween throughput and fairness can be obtained by choosing
different bargaining floors. The solutions of resource alloca-
tion obtained from the optimization framework achieve the
Pareto Optimality, demonstrating efficient use of network
resources.

1. INTRODUCTION

In wireless networking, system throughput is usually the
common performance metric for network design [4]. Future
wireless broadband networks are expected to support multi-
media traffic (e.g., voice, video, and data traffic). With het-
erogeneous traffic, quality-of-service (QoS) provisioning and
fairness support are also important. With limited available
radio resources, increasing system throughput and maintain-
ing fairness are usually conflicting with each other [5], lead-
ing to a natural tradeoff between these two performance
measures. In particular, balancing system throughput and
fairness with QoS support and high resource efficiency is nec-
essary, depending on different application-specific scenarios.

In literature, only limited work on the optimal relation-
ship of throughput and fairness is addressed [1, 3, 7]. Utility
optimization is a tool to measure system performance sub-
ject to certain constraints (e.g., QoS requirements) [1, 3],
where a utility function is described as a measure of user
satisfaction. With different problem formulations (i.e., util-
ity functions), different performance measures can be ob-
tained (e.g., maximal throughput). Pricing schemes [3] can
be employed to achieve a tradeoff between throughput and
fairness, to a certain extent. However, the utility functions
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used in these work may not have any physical meaning. How
to find a meaningful utility function with an appropriate
pricing scheme can also be problematic. In addition, most
of the current work assumes that the utility functions are
separable in the dual problem [1, 3], which may not always
be the case, especially for interference-limited systems (such
as code-division multiple access (CDMA) systems), meaning
that applying existing approaches (e.g., [1]) generally results
in suboptimal solutions. Ideal (max-min) fairness can be
obtained by generalized processor sharing (GPS) [7], where
all nodes in the network share the total resources. With
GPS, the resource allocated to each node is dependent on
its own weight, whereby each node can have a fair share of
resources. However, the notion of a weight is an abstract
concept and the question of how to relate QoS requirements
to the weight effectively remains unsolved. In GPS, even
though all the weights or QoS requirements are already sat-
isfied, only (max-min) fairness is considered. Throughput
performance is not addressed properly in this context.

To the best of our knowledge, there is no unified frame-
work to effectively attain different degrees of performance
tradeoff between throughput and fairness with QoS support
and efficient resource utilization, which is the motivation of
this research. The key contribution of this paper is to derive
a unified optimization framework to obtain optimal relation-
ship (i.e., tradeoff curve) of system throughput and fairness
with QoS support for interference-limited wireless networks
by introducing the bargaining floor. Resource utilization
is efficient, which is verified by game theory, achieving the
Pareto Optimality [6].

2. SYSTEM MODEL

We consider a generic system model which is interference-
limited for wireless networks. Assume that the channel gains
are known. We further assume that call admission control is
in place so that the QoS requirements (i.e., required trans-
mission rate) of all admitted calls can be met by suitable re-
source allocation. Let Rd

m be the required transmission rate
of mth link, Rm(a) be the actual transmission rate of mth

link where a = (a1, a2, ..., am, ..., aM ) and am is the power
scaling factor of mth link’s transmitter, i.e., am ∈ [0, 1], and
M be the total number of active links in the network. For
simplicity, the actual transmission rate of mth link is given
by

Rm(a) = B log2 (1 + γm) (1)

where B is the channel bandwidth and γm is the signal-to-



interference-plus-noise ratio of mth link. In (1),

γm =
GmmPmam

σ
n�=m

GmnPnan + η
(2)

where Pm is a maximum transmit power level of mth link’s
transmitter, Gmn is the channel gain from nth link’s trans-
mitter to mth link’s receiver, σ is the cross-correlation fac-
tor between any two signals, i.e., σ ∈ (0, 1], and η is the
background noise power. Notice that (1) can be extended
to incorporate required bit-error-rate (BER) requirements,
coding and modulation schemes easily [1].

After the QoS requirements are met, the network perfor-
mance can be further improved for increasing system through-
put and/or maintaining (max-min) fairness.

3. PROBLEM FORMULATION

In this section, we first consider two optimization prob-
lem formulations, namely system throughput optimization
and max-min fairness optimization. Next, the generic opti-
mization problem formulation with system throughput and
fairness consideration is presented.

The system throughput optimization problem (STOP) is
given by

max
a

M

m=1

Rm(a) (3)

subject to Rm(a) ≥ R
d
m, 0 ≤ am ≤ 1, ∀m. (4)

The STOP can be rewritten as

max
a

M

m=1

Qm(a) (5)

subject to Qm(a) ≥ 0, 0 ≤ am ≤ 1, ∀m (6)

where Qm(a) = Rm(a) − Rd
m. The physical meaning of

Qm(a) is the amount of extra resources allocated (i.e., ex-
cess throughput obtained) to mth link. As a comparison,
Qm(a) can be viewed as the utility function of user m in the
conventional utility maximization [3]. However, in our case,
the utility functions are not separable in the dual problem
as Qm (a) only increases with am but not over a. Thus, the
solution space (i.e., resource allocation) is not necessarily
the same as those proposed in literature (e.g., [1]), meaning
that existing approaches cannot be directly applied.

For the max-min fairness, the corresponding optimization
problem formulation is given by [8]

max
a

min
m

Qm(a) (7)

subject to Qm(a) ≥ 0, 0 ≤ am ≤ 1, ∀m. (8)

In fact, the max-min fairness optimization problem (MM-
FOP) can be transformed into [3]

max L (9)

subject to Qm(a) ≥ L, 0 ≤ am ≤ 1, ∀m. (10)

At the maximum point, all Qm(a), ∀m, are to be equal, and
the maximum value of L is unique. The proof can be found
in [8]. Let J∗ and a∗ be the optimal solutions (i.e., maximal
L and optimal a) of the MMFOP. If the constraints Qm(a) ≥
J∗, ∀m, are added to the STOP, the optimal solution a∗

obtained from the MMFOP is also the optimal solution for
the STOP.

Proposition 1. If the constraints Qm(a) ≥ J∗, ∀m, are
added to the STOP, where J∗ is the maximal value obtained
from the MMFOP, the optimal solution a∗ obtained from the
MMFOP is also the optimal solution for the STOP.

Proof. If the constraints Qm(a) ≥ J∗, ∀m, are added to
the STOP, the optimization formulation becomes:

max
a

M

m=1

Qm(a) (11)

subject to Qm(a) ≥ J
∗
, 0 ≤ am ≤ 1, ∀m. (12)

Suppose that there exists another solution ã such that

m
Qm(ã) >

m
Qm(a∗). It means that there exists some

m such that Qm(ã) > J∗ within the feasible region. In the
MMFOP, if for some m, Qm(ã) > J∗ within the feasible
region, J∗ can be increased by decreasing the value of ãm

or increasing the value of ãn or both, for n �= m, until it
reaches the maximal value, say J̃ , leading to the contradic-
tion. Therefore, no such a solution ã exists. The optimal
solution a∗ obtained from the MMFOP is also the optimal
solution for the STOP.

With the new constraint set, the solution a obtained from
the STOP not only achieves max-min fairness, but also op-
timizes the corresponding system throughput. Therefore,
to bridge the system throughput and fairness performance
measures together, we introduce a parameter called bargain-
ing floor, denoted by J , where J ∈ [0, J∗] and J∗ is the so-
lution (i.e., the maximal value) of the MMFOP. The generic
optimization problem (GOP) is given by

max
a

M

m=1

Qm(a) (13)

subject to Qm(a) ≥ J, 0 ≤ am ≤ 1, ∀m. (14)

Clearly, the solutions of the GOP for the maximal system
throughput are obtained when J = 0 while that for the max-
imal (max-min) fairness when J = J∗, where J∗ is obtained
from the MMFOP. In this research, our focus is not to solve
the GOP. Instead, we employ it as a unified framework for
deducing a desired relationship of system throughput and
fairness with QoS support.

Proposition 2. The system throughput (i.e., M

m=1 Qm(a))
decreases with J .

Proof. Omitted due to the space limit.

Corollary 1. The minimum value of Qm(a) (i.e.,
minm {Qm(a)}) increases with J .

Proof. Omitted due to the space limit.

From the perspective of network resources, with a limited
amount of resources, improving fairness performance will
reduce the system throughput, which matches with the per-
spective of the GOP. With different values of J , the tradeoff
curve of system throughput and fairness can be obtained.
Thus, the GOP should be solved with different values of
J iteratively. The procedure to obtain the tradeoff curve,
denoted by (∗), is described below:

Step 1: Find J∗ by solving the MMFOP;

Step 2: Set J = 0 and solve the GOP, whereby the ob-
tained solution a corresponds to the maximal through-
put performance;



Step 3: Increase J by δJ and solve the GOP again;

Step 4: Repeat Step 3 until J = J∗, which corresponds to
the maximal fairness.

Through the procedure (∗), different sets of the optimal
solution a1 and the corresponding relationships of system
throughput and fairness can be obtained. We start at the
maximal throughput performance and end at the maximal
fairness performance. Interestingly, each link seems to bar-
gain with other links based on some agreement (i.e., the
bargaining level) and updates its rate iteratively until all
links achieve the maximal (max-min) fairness. Therefore,
different degrees of performance tradeoff between system
throughput and fairness can be found by suitably selecting
the values of J .

4. EFFICIENCY EVALUATION

In game theory, efficient resource utilization is determined
by the concept of Pareto Optimality [6].

Proposition 3. The optimal solution a of the GOP is
Pareto optimal.

Proof. Omitted due to the space limit.

From the perspective of game theory, the resources are
efficiently utilized for increasing system throughput and/or
maintaining fairness. In other words, for the optimal rela-
tionship of system throughput and fairness, every point (i.e.,
resource allocation) on the tradeoff curve (discussed in Sec-
tion 5) is Pareto optimal, utilizing the resources efficiently.

5. NUMERICAL RESULTS

This section presents numerical results on: 1) system through-
put and fairness performance with the value of J in the
GOP; and 2) the desired tradeoff curve of system through-
put and fairness. In the numerical analysis, we simply solve
the GOP by an exhaustive search with an increment size of
δa = 0.025. Suppose that there are I iterations in the pro-
cedure (∗). Let ai be the optimal solution obtained from the
GOP in the ith iteration. The measure of system throughput
in the ith iteration (i.e., i ∈ I) is given by

U =

M

m=1 Qm(ai) − mini∈I
M

m=1 Qm(ai)

maxi∈I
M

m=1 Qm(ai) − mini∈I
M

m=1 Qm(ai)

where U ∈ [0, 1]. Let Di = |J∗ − minm {Qm(ai)}|, where
J∗ is the solution of the MMFOP and Di represents the
deviation of the minimum value of Qm(ai) among all M

links from J∗, i.e., the larger the value of Di, the poorer the
max-min fairness performance. The measure of max-min
fairness in the ith iteration is given by

V =
maxi∈I {Di} − Di

maxi∈I {Di} − mini∈I {Di}
∈ [0, 1].

V indicates the fairness performance of the worst link. In
literature, Jain’s fairness index [2] is widely employed as a
measure of network-wise fairness performance. Let JFIi be
the Jain’s fairness index in the ith iteration, where JFIi =

1If there are multiple solutions a obtained from the GOP,
the one (ones) optimizing both system throughput and fair-
ness performance is (are) chosen.

(
m

Qm(ai))
2

M
m

(Qm(ai))
2 . The shaped Jain’s fairness index in the ith

iteration is given by

W =
JFIi − mini∈I {JFIi}

maxi∈I {JFIi} − mini∈I {JFIi}
∈ [0, 1].

In this numerical analysis, we consider four active links
(i.e., M = 4). The fading coefficient of a link is modeled as a
complex Gaussian random variable with zero mean and unit
variance. The channel gain matrix G used for the numerical
analysis is shown below:

G =

0.2818 0.3299 0.2739 0.0350
0.2418 0.1761 0.5019 1.0000
0.1823 0.9345 0.2802 0.0068
0.2016 0.4150 0.4480 0.0400

. (15)

Other system parameters are chosen as: B = 1, η = 0.01,
σ = 0.1, Pm = 1, ∀m, Rd

1, ..., Rd
4 = (2, 1, 0.5, 0.1), and

J∗ = 0.3249, where J∗ is computed by solving the MMFOP.
We follow the procedure (∗) described in Section 3 and the
numerical results are shown in Table 1.

First, we study the behaviors of the system throughput
measure U and the fairness measure V with different values
of J , shown in Fig. 1. U decreases from the maximum value
(i.e., U = 1) to the minimum value (i.e., U = 0) with J ,
while V increases from the minimum value (i.e., V = 0) to
the maximum value (i.e., V = 1) with J , which shows that
increasing system throughput and maintaining fairness are
conflicting with each other. The shaped Jain’s fairness index
is also plotted for comparison. From the results shown in Ta-
ble 1, the minimum utility value, minm {Qm(a)}, increases
and hence the max-min fairness performance improves with
J , as expected. Note that the fairness performance measure
of V and that of W are different (i.e., V for the worst-link
fairness performance while W for the network-wise fairness
performance); however, the general trend of both curves
agrees with each other, though more fluctuations are ob-
served in the curve of W . Thus, both fairness measures
match with the max-min fairness performance, as both V

and W increase with minm {Qm(a)}, in general.
Consider the trend of each utility function (i.e., Qm(a) of

mth link) in Table 1. For a small J , the links with smaller re-
quired transmission rates usually obtain larger utility values.
It is intuitive that those links with smaller required transmis-
sion rates have more freedom to increase their throughputs
than other links with higher required transmission rates. As
J increases, the utility values of those links with smaller re-
quired transmission rates decrease for the sake of achieving
a certain level of fairness. However, with different channel
gains, some link, say mth link, with a small required trans-
mission rate may be forced to use a small value of am so
that only a small value of Qm(a) is achieved, for example,
Q4(a) in our numerical analysis. From (15), G24 = 1.0,
meaning that the interference impact of the 4th link on the
2nd link is significant. In order to meet all the transmission
rate requirements, the 4th link can only use a small value of
a4, which results in a small value of Q4(a). Nonetheless, the
utility values of all links converge to the same value J∗ when
the condition of maximal fairness is met (i.e., max-min fair-
ness). Note that the discrepancies in Table 1 are due to the
discrete exhaustive search used in the numerical analysis.

The desired tradeoff curve of system throughput and fair-
ness performances is shown in Fig. 2. The curve is a bit
concave in shape, meaning that in a nearly unfair situation



Table 1: Numerical Results
J Q1(a) Q2(a) Q3(a) Q4(a) minm {Qm(a)} U V W a = [a1, a2, a3, a4]

0 0.8692 0.0051 1.3483 0.0042 0.0042 1.0000 0 0 [1.0000, 0.4750, 0.6750, 0.1500]
0.0433 0.9389 0.0542 1.1099 0.0452 0.0452 0.9136 0.1279 0.1215 [1.0000, 0.5000, 0.5500, 0.2000]
0.0866 0.8605 0.0936 1.0240 0.0888 0.0888 0.8243 0.2639 0.2120 [1.0000, 0.5750, 0.5500, 0.2750]
0.1300 0.8052 0.1363 0.9054 0.1309 0.1309 0.7264 0.3952 0.3255 [1.0000, 0.6500, 0.5250, 0.3500]
0.1733 0.8708 0.1770 0.6531 0.1753 0.1753 0.6147 0.5337 0.4327 [1.0000, 0.6750, 0.4000, 0.4000]
0.2166 0.6970 0.2201 0.6330 0.2200 0.2200 0.4980 0.6730 0.6079 [1.0000, 0.8250, 0.4500, 0.5250]
0.2599 0.6809 0.2646 0.4501 0.2614 0.2614 0.3737 0.8020 0.7171 [1.0000, 0.9000, 0.3750, 0.6000]
0.3032 0.5984 0.3039 0.3059 0.3078 0.3039 0.2187 0.9345 0.8066 [0.9750, 1.0000, 0.3250, 0.7000]
0.3249 0.3274 0.3395 0.3249 0.3252 0.3249 0 1.0000 1.0000 [0.7750, 1.0000, 0.3250, 0.7000]
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Figure 1: The system throughput measure and the

fairness measures against the value of J.

(i.e., V ≈ 0), a unit decrease in system throughput gives
a larger marginal improvement in fairness performance. At
a near-maximal fairness point (i.e., V ≈ 1), a larger de-
crease in system throughput is required to further increase
the fairness measure. From this relationship curve, different
degrees of tradeoff between system throughput and fairness
performances can be found by suitably choosing the value of
J . The shaped Jain’s fairness index is also plotted for refer-
ence. This tradeoff curve is undoubtedly useful for effective
and efficient resource allocation. With application-specific
constraints (such as fairness or throughput requirements),
the optimal tradeoff point can be obtained and hence the
corresponding resource allocation a can be deduced.

6. CONCLUSION

In this paper, we propose the unified optimization frame-
work for interference-limited wireless networks, whereby the
optimal relationship curve of system throughput and fair-
ness can be obtained. Different degrees of performance trade-
off between system throughput and fairness with QoS sup-
port can be achieved, by suitably adjusting the value of the
bargaining floor. From the perspective of game theory, the
resource allocation solutions achieve the Pareto Optimality,
demonstrating efficient allocation of network resources.
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